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Abstract

Influential economic approaches as random utility models or quantal-response
equilibria assume a monotonic relation between error rates and choice difficulty
or “strength of preference,” in line with widespread evidence from discrimination
tasks in psychology and neuroscience. However, while the latter define difficulty
through objective dimensions (weight, length, etc), for economic decisions under
risk the appropriate dimension remains unclear, with candidates including payoft-
irrelevant numerical magnitudes. The very existence of the effects remains largely
untested, because fitting models which assume such relations to data simply pro-
duces spurious findings. We provide a systematic empirical validation relying on
two parsimonious experimental designs. Strength-of-preference effects are explained
by expected values if objectively-correct answers exist, and by cardinal differences
in independently-estimated utilities for preferential choices. Numerical magnitudes
produce additional but minor effects. Finally, response times are inversely related
to strength of preference, confirming that the observed relations are not “as if”
explanations.

JEL Classification: D01 - D81 - D91
Keywords: Stochastic choice - Strength of preference - Decision errors - Risk atti-
tude - Choice difficulty

1 Introduction

Errors are everywhere. Economics has by now embraced the view that economic choices

are subject to noise (e.g., McFadden, 2001). Research in stochastic choice has provided
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extensive evidence that human beings often make different choices even when repeatedly
confronted with the same set of options! (e.g., Fechner, 1860; Cattell, 1893; Tversky,
1969; Camerer, 1989; Hey and Orme, 1994; Ballinger and Wilcox, 1997; Hey, 2001;
Moffatt, 2005; Conte, Hey, and Moffatt, 2011; Agranov and Ortoleva, 2017). There
is, however, no universally-accepted view on the origins and determinants of noise or
errors in economic decision making. How often do economic agents make mistakes, and
what does the number of mistakes depend on? These questions are important both for
positive and normative reasons. On the one hand, forecasting economic choices requires
accurate models of decision errors, beyond the simple assertion that people indeed do
make mistakes. On the other hand, predicting the effects of economic policies and
evaluating their consequences is only possible if the consequences of human errors in
response to them are understood. Indeed, large individual error rates are reflected in
significant behavioral heterogeneity and can cause potentially large welfare losses at the
aggregate level (e.g., Choi et al., 2014; Harrison and Ng, 2016; Alekseev et al., 2019).2
The key question is whether error rates are associated with directly or indirectly
measurable economic variables. To understand the sources of mistakes (or stochastic
choice) in economic decisions, however, it is useful to briefly step back and examine
evidence from the cognitive sciences (chiefly cognitive psychology and neuroscience) on
tasks which are significantly simpler than the ones proper of economics. In the domain
of psychophysics, decades of research have concentrated on perceptual discrimination
tasks, where two stimuli are presented and human participants are asked to estimate
which one scores higher along an objective scale, for instance which of two sounds is
louder, which of two lights is brighter, or which of two lines is longer. In such simple
tasks, there is an objective, direct measure of choice difficulty: choices become gradually
harder as the difference between the stimuli becomes smaller (along the objective scale).
There are two firmly-established stylized facts in this literature. The first is that the
percentage of correct choices is strictly decreasing with choice difficulty, that is, error
rates are larger when stimuli are more similar (Cattell, 1893; Moyer and Landauer, 1967;
Laming, 1985; Klein, 2001; Wichmann and Hill, 2001). The second is that choices are
slower as choice difficulty increases, that is, response times are larger when the stimuli
are more similar (Cattell, 1902; Dashiell, 1937; Moyer and Landauer, 1967). The latter
fact is commonly taken as evidence that the effect on error rates derives from basic
(gradual) neural mechanisms in the human brain. That is, decisions might derive from

gradual, noisy processes of internal evidence accumulation, which are more error-prone

1“Common experience suggests, and experiment confirms, that a person does not always make the
same choice when faced with the same options, even when the circumstances of choice seem in all relevant
aspects to be the same.” (Davidson and Marschak, 1959).

2If a normative view is adopted where (except for knife-edge indifference cases) only one choice is
considered correct (or consistent with underlying preferences), the statement that choice is stochastic is
equivalent to the empirically-ubiquitous observation of positive error rates. It is in this sense that we
speak of “errors” in this work. This is also in line with a positive-economics view, where one aims to
understand the extent to which economic decision makers will deviate from choices deemed “rational.”



and time-consuming if the quantities that need to be teased apart are closer (Shadlen
and Kiani, 2013; Shadlen and Shohamy, 2016).

In this work, we ask the question of whether these gradual effects are relevant for
economic decisions under risk and, if so, which economic variables do determine them.
This question is obviously also important for conceptual reasons, as the phenomena
we discuss imply a cardinal effect of economic variables on choices, as opposed to the
classical, purely-ordinal view of preferences. However, studying the dependence of er-
ror rates on underlying economic variables is far from straightforward, for two reasons
which we will elaborate on below. The first is that it is by no means clear what the
gradual effects predicted by psychology and neuroscience should depend on for economic
choices, where a natural scale as weight, brightness, or length is usually not part of the
problem’s formulation, and utilities are neither directly observable nor objective. The
second is that economic models incorporating stochastic choice cannot be used to test
for the presence of a monotonic relation between error rates and choice difficulty. This
is because such models, e.g. random utility models, quantal response equilibria, or ev-
idence accumulation models, assume this relation from the onset. Hence, fitting them
to data will necessarily produce patterns in agreement with the assumed relation just
because the underlying dimension (e.g., imputed utilities in random utility models, or
fitted drift rates in evidence accumulation models) is estimated in order to produce a
good fit. In other words, the estimation method (very especially within-sample fitting
procedures) might often create apparent regularities where none exists, hence obscuring
the actual origin of the investigated phenomena (we provide an example illustrating this
point below).

The first problem is an obvious one. In a sense, and with apologies to those fields,
psychophysicists and perceptual psychologists face easier problems than economists. It
is a priori not clear whether objectively-given scales might play the role of weight or
length for economic decisions, or even for some of them. For instance, on the basis of the
available evidence, a good case could be made for numerical magnitudes, independently
of whether they are payoff-relevant or not. Results by Moyer and Landauer (1967)
and Dehaene, Dupoux, and Mehler (1990) (see also Dehaene, 1992; Dehaene et al.,
2008) show that the gradual effects on error rates and response times exist even when
humans are asked to discriminate among single-digit numbers. That is, (astonishingly)
people make more mistakes (and take longer to decide) when asked whether 6 is larger
than 5 than when asked whether 9 is larger than 2. This is compatible with evidence
from electroencephalography (EEG), which suggests that the neural representations of
numbers vary in a continuous, gradual way with numerical distance (Spitzer, Waschke,
and Summerfield, 2017). Recently, Khaw, Li, and Woodford (2018) and Frydman and Jin
(2018) have suggested that the mere imprecise representation of numerical magnitudes
along these lines may explain the large estimates of risk aversion which are typically

observed in laboratory experiments in economics. Given that many economic tasks



come with a numerical framing, it is necessary to tackle the question of which is the
(most) relevant dimension underlying possible gradual effects on economic choices.

Although error rates might indeed be affected by the imprecise representation of
observational variables as e.g. numerical magnitudes, this is unlikely to be the only
determinant of errors. More natural candidates, painting a less bleak picture of human
rationality, are related to economic gains, as is the case of expected value or (estimated)
expected utility. Inspired by models from psychology (Thurstone, 1927), random utility
models, as pioneered by Marschak (1960) and McFadden (1974, 2001), assume that
errors depend on underlying (unobservable) utility differences. However, very few studies
have actually empirically demonstrated a monotonic relation between error rates and
differences in underlying utilities. A notable exception is the early study of Mosteller
and Nogee (1951), which used utilities estimated through an interpolation procedure.
An added difficulty is that in the empirical work of Mosteller and Nogee (1951) (and
other experiments), as well as in theoretical random utility models an error is defined as
a choice which does not maximize utility, that is, there is no ez ante definition of error
independent of the (estimated or assumed) utility.

This leads us straight to the second problem. Most applied work in discrete choice
microeconomics and beyond assumes a gradual relation between underlying utility dif-
ferences and choice probabilities, often with a specific logit or probit form, in order to
parametrically estimate the utilities themselves. This is true for random utility models
(Anderson, Thisse, and De Palma, 1992; McFadden, 2001; Moffatt, 2015), but is also
an assumption for the choice rules underlying quantal response equilibria (McKelvey
and Palfrey, 1995; Goeree, Holt, and Palfrey, 2005), which are extensively used in game
theory. A similar implication follows from evidence accumulation models from cogni-
tive psychology and neuroscience (e.g., the Drift-Diffusion Model of Ratcliff, 1978), which
are receiving increasing attention in economics (Fudenberg, Strack, and Strzalecki, 2018;
Baldassi et al., 2019).3 Those imply logit choice probabilities, and hence again incor-
porate a gradual relation between a form of choice difficulty and error rates. While all
these approaches are invaluable to compare the fit of different utility- or payoff-based
models of choice and have delivered many important insights, they are not appropri-
ate to test the basic hypothesis that gradual effects exist, or to pin down measurable
determinants thereof. A structural property cannot be tested by fitting a structural
model to a dataset if the model incorporates the property among its assumptions. In
particular, we specifically contend that there is, to date, no systematic analysis testing
for an actual relation between utility differences derived from choices and subsequent
choice errors out of sample. Studies fitting models which assume properties in this vein
can be misconstrued to “show” such relations, but such an interpretation would be both
incorrect and misleading. This is important, because, as pointed out above, in the ab-

sence of clear tests, there is no justification to actually assume a particular variable (say,

3 As pointed out by Webb (2019), there is a relation between drift-diffusion models and random utility
models, which in particular explains why the structural relation mentioned above is present in both.
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Figure 1: Analysis of a dataset of random, simulated choices. Left-hand panel: Choices
as function of expected utility difference using a standard, within procedure. An appear-
ance of order and gradual effects of expected utility differences on error rates emerges,
even though no regularity is present in the data. Right-hand panel: The same choices as
function of expected utility difference using an out-of-sample procedure. No regularity
can be identified. Gray areas indicate 95% binomial proportion confidence intervals.

expected utility, expected value, or simply payoff-irrelevant numerical magnitudes) as
the determinant of error rates.

To drive this point home, we constructed a dataset by simulating fictitious subjects
who made completely random decisions among alternative risky choices. We then treated
the dataset as if it would come from actual decision makers and used a standard fitting
approach estimating an alleged risk propensity, assuming that errors depend on utility
differences. Specifically, we estimated a CARA utility function using an additive random
utility model and heteroskedastic, normally-distributed errors, as commonly done in the
literature (e.g., McFadden, 2001; Moffatt, 2015); for more details on the estimation
procedures, see Section 4.2 below. Plotting choice frequencies against the estimated
utility differences yields a regular sigmoidal curve (as in any logit or probit model), which
creates the appearance of order (and gradual effects arising from utility differences) for
the nonsensical dataset. This is shown on the left-hand panel of Figure 1. Actually,
this appearance is a mere artifice of the method, as can be shown by estimating utility
out of sample, i.e., using part of the choices for estimation purposes and plotting the
rest of the choices against the resulting estimated utility differences. Specifically, we
estimated a CARA utility function from even-numbered choices and used it to plot data
from odd-numbered choices, and vice versa. This approach shows that there is no actual
regularity in the dataset, as depicted on the right-hand panel of Figure 1. We conclude
that structural models where utility is estimated can mistakenly create an appearance

of gradual effects, and hence direct tests are needed.*

4The point that fitting a structural model can produce spurious findings is widely acknowledged in
the literature. Thus, various criteria have been proposed to examine the validity of structural models,
as the prominent Akaike’s Information Criterion (e.g. Wilcox, 2008). However, measures of goodness of
fit are intrinsically relative and do not provide an actual test of the effects we target here.



In this work, we aim to test and clarify the dependence of error rates (the variable
of interest) in decisions under risk on economic variables. We attack the problem on
three fronts. First, we conduct an experiment (Experiment 1) with normatively-correct
answers (but high error rates) where the explanatory variable can be determined in
advance. This is made possible by employing a binary-choice gambling task where
the winning probability or, equivalently, expected value, is an unequivocal, objectively
measurable indicator of choice difficulty. In this study, the definition of error can be made
ex ante, independently of any estimation of utility, simply because correct responses are
independent of attitudes toward risk. In this sense, this is representative of tasks in
the judgment and decision making domain, as those employed to study many heuristics
and biases (e.g. Bar-Hillel, 1980; Grether, 1980; Charness and Levin, 2005). The key
is that we commit to the explanatory variable before collecting the data, and utility
estimation plays no role. The task is simple in the sense that rational decision makers
could “figure it out” with relative ease, as is the case of many problems in judgment
and decision making, where an optimal decision under risk has to be made on the
basis of individual (updated) beliefs. We find a significant fraction of errors (above
25%), and we demonstrate that far from being pure noise, error rates stand in a clear
monotonic relation with differences in expected value. That is, we demonstrate the
existence of gradual effects of an objective economic distance among alternatives on error
rates. Importantly, the design also allows us to test for dependence on payoff-irrelevant
numerical effects as in Moyer and Landauer (1967), and we find that there is indeed
some relation, but it is a second-order phenomenon compared with the dependence on
expected-value differences. This delivers a first, objective confirmation of psychophysical,
gradual effects in decision making under risk arising from economic variables.

Second, we conduct a different experiment (Experiment 2) using a betting paradigm
where whether a decision is correct or not depends on individual attitudes toward risk,
as is the case for most lottery-choice tasks. Rather than fitting the data to an estimated
utility, we employ an out-of-sample estimation procedure excluding any artifices arising
from the estimation method. Again, we find a monotonic relation, with larger error
rates arising when the differences in the expected utility of the options are smaller. This
relation is robust to different structural assumptions on the estimated utility. In con-
trast, the dependence on expected value differences is considerably weaker. That is, we
demonstrate that the gradual effects on choice observed in psychophysics can be readily
found in standard economic tasks, but they will in general arise from a subjective eco-
nomic distance which arises from integrated, unobservable variables (“utility”). Further,
economic distance (subjective or objective) can then be considered a cardinal measure
of “strength of preference,” because its cardinal magnitude determines a measurable,

continuous variable (error rates).

SPrecisely due to the problems pointed out above, out-of-sample testing is gaining ground both in
economics and in psychology. Examples include studies on test-retest reliability (e.g. Weber, Blais, and
Betz, 2002), or the leave-one-out approach (e.g. Lopez-Guzman et al., 2018).



Third, we conduct a further test to confirm the cardinal nature of the uncovered
effects. In both experiments, we collect response time data as an independent variable,
which in particular plays no role for the estimation of underlying utilities. Psychophysics
predicts a robust relation, with decisions where stimuli are closer being slower. We find
this relation in both experiments. In Experiment 1, response times increase as differ-
ences in expected value decrease, but they are relatively unaffected by payoff-irrelevant
numerical magnitudes. In Experiment 2, the analysis of response times confirms that
differences in underlying utilities are a better candidate for economic distance (which
replaces the choice difficulty of psychophysics) than differences in expected value (or
numerical magnitudes). In both cases, the relation with response times (again a mea-
surable, continuous variable) confirms the cardinal content of economic distance.

Taken together, our evidence provides a systematic demonstration showing that the
psychophysical effects found in the cognitive sciences are indeed very relevant for eco-
nomic decisions under risk, but they depend more on economic variables than on per-
ceptual or numerical ones. Decision-irrelevant factors (numerical magnitudes) influence
error rates, but they play a secondary role in comparison with purely-economic variables.
In settings where objectively-optimal answers can be derived from (correct) beliefs, it is
possible to give an exogenous definition of errors, which in turn allows for a straightfor-
ward observation of the link between economic distance and error rates (in particular,
one which is free of estimation problems). When risk attitudes play a role, the explana-
tory variable is a subjective, integrated one capturing “strength of preference,” which
needs to be estimated. This result validates the ideas and assumptions behind random
utility models and other approaches. Further, the relation to response times shows that
the effects are more than “as if” accounts of decision making and have their origin in
brain processes of a gradual nature, as assumed e.g. by evidence accumulation models
(Ratcliff, 1978; Fudenberg, Strack, and Strzalecki, 2018).

The paper is structured as follows. Section 2 briefly reviews the related literature.
Sections 3 and 4 discuss Experiments 1 and 2, respectively. The analysis of response

times is conducted in the last subsections within those sections. Section 5 concludes.

2 Related Literature

Our work is related to long-standing problems in economics and to several strands of the
recent literature. Classical studies of stochastic choice endorsed the view that utilities
should be understood as reflecting choice probabilities (e.g., Debreu, 1958; Luce, 1959), in
direct opposition with the neoclassical view that they reflect preferences of an exclusively
ordinal nature (Hicks and Allen, 1934). The proliferation of experimental data showing
the stochastic nature of economic choice has led to increased attention on theoretical
models of stochastic choice in the recent years (e.g. Manzini and Mariotti, 2014; Gul,
Natenzon, and Pesendorfer, 2014; Fudenberg and Strzalecki, 2015; Apesteguia, Ballester,
and Lu, 2017; Apesteguia and Ballester, 2018; Natenzon, 2019). In game theory, models



of stochastic (logit) choice based on observable payoffs and unobservable idiosyncratic
shocks have given rise to new equilibrium concepts as quantal response equilibria (McK-
elvey and Palfrey, 1995; Goeree, Holt, and Palfrey, 2005). In microeconometrics, random
utility models (Anderson, Thisse, and De Palma, 1992) have become standard for fitting
experimental data and recovering underlying utility functions, assuming specific func-
tional forms (e.g., logit or probit) for error terms. Those models assume exact functional
forms mapping differences in utilities to error terms, which are highly valuable as struc-
tural assumptions but are in general not directly tested. In stark contrast, Alés-Ferrer,
Fehr, and Netzer (2018) have recently shown that certain properties of the empirical dis-
tribution of response times allow to recover the underlying preferences in random utility
models without imposing any substantive assumptions on the distribution of random
terms.

The relation between choice difficulty and choice frequencies has also repeatedly been
illustrated in a domain which bridges the gap between psychophysics and decisions under
risk. In experimental studies on consumer choice (typically snack food items), partici-
pants make choices based on their personal preferences. Although they generally have
a very different focus, several works in this domain have illustrated a relation between
differences in subjective, self-reported ratings and choice frequencies (Krajbich, Armel,
and Rangel, 2010; Fisher, 2017; Clithero, 2018; Polania, Woodford, and Ruff, 2019, e.g.,).
However, the approach in those works is typically to fit an evidence accumulation model,
which assumes a relation of this sort (as discussed above) and is hence inadequate to
test for the postulated effects, and in any case does not extend to decisions under risk.

To the best of our knowledge, the first study to point at a connection between utility
differences and choice frequencies in decisions under risk was the inspiring experiment
of Mosteller and Nogee (1951) on poker dice gaming, which aimed to “test the validity
of the construct” represented by (expected) utility. Their analysis included illustrations
which suggested a sigmoidal relation between utility differences and choice frequencies,
although, as the authors admitted, those were at the individual level and cherry-picked
among all experimental participants. While suggestive, their illustrations were not a
test for the presence of gradual effects (and were actually not meant to be), because
their utility functions were constructed exclusively out of observed indifferences. For
instance, although their illustrations map zero utility difference to 50 percent choice
frequency, “this finding was built into the expected utilities by the construction leading
to the utility curves” (Mosteller and Nogee, 1951, p. 202).

Conceptually, our work is also related to the study of Khaw, Li, and Woodford
(2018), who carried out an experiment on risky choice where participants chose between
a sure amount and lotteries with a single non-zero outcome and a fixed probability of
winning varying amounts (that is, the winning probability was identical for all choices).
By varying the sure amount and the lottery outcome, Khaw, Li, and Woodford (2018)
explored the reaction of choice frequencies to changes in payoffs and argued that the

data could be explained assuming an imprecise internal representation of numerical



magnitudes, in line with Moyer and Landauer (1967) and Dehaene (1992). Hence, their
work speaks in favor of a direct effect of numerical magnitudes in error rates. However,
by design, their numerical magnitudes stand in a monotonic relation to payoffs, and
hence in their data it is not possible to disentangle the effects of numerical magnitudes
and the effects of expected values (or utilities). In our experiments, different numerical
magnitudes are associated with the same expected payoffs and vice versa, allowing us to
study the effects separately.

Although our main variable of interest are decision errors, we also examine response
times for two reasons. First, well-established effects in psychophysics encompass both
error rates and response times, hence the analogy would not be complete without the
latter. Second, while an explanation of error rates alone might be challenged as a pure
“as if” story, response times allow reasonable inferences on the actual decision processes
generating the errors. In this sense, our work is related to the small but growing lit-
erature examining response times in economics (see Spiliopoulos and Ortmann, 2018,
for a recent review). The most-closely related contribution to this aspect of our studies
is the work of Chabris et al. (2009), who studied intertemporal decisions and found a
monotonic relationship between response times and estimated utility differences (dis-
count factors). More recently, Konovalov and Krajbich (2019) found a negative relation
between response times and a distance measure between estimated, subject-level util-
ity parameters and the parameter values which would have yielded indifference in trial-
specific choices. Their data included an intertemporal choice task, a binary mini-dictator
game, and a binary choice between a sure outcome and a gamble including losses; in
the latter case, they abstract from risk aversion and the utility parameter they estimate
captures loss aversion only. Also related is Alés-Ferrer et al. (2016), which postulated a
model of lottery choice and evaluation including a relation between choice difficulty and
response times to investigate the determinants of the preference reversal phenomenon
(Lichtenstein and Slovic, 1971; Grether and Plott, 1979; Tversky, Slovic, and Kahne-
man, 1990). Other response-time studies in economics include Wilcox (1993, 1994) and
the web-based studies of Rubinstein (2007, 2013). On a different front, Achtziger and
Albs-Ferrer (2014) relied on response times to differentiate different decision processes in
a framework where intuitive reinforcement might conflict with optimal decisions based

on Bayesian updating of beliefs (see also Alés-Ferrer and Ritschel, 2018).

3 Experiment 1: Objective Domain

We first aim to demonstrate the gradual effects of “strength of preference” on error rates
(for decisions under risk) in a domain where the variable influencing those effects is
objectively given, and, as a consequence, utility estimation plays no role. The task we
employ is representative of studies in the judgment and decision-making domain, where
economic agents make decisions under risk or uncertainty but there is an objectively-

correct answer, for example due to stochastic dominance. A prominent example is given



by tasks involving updating of previously-held beliefs (e.g. Bar-Hillel, 1980; Grether,
1980, 1992; Charness and Levin, 2005; Achtziger and Alds-Ferrer, 2014). We will rely on
a simple gambling task with given probabilities, which is designed with two objectives
in mind. The first is that objectively-correct decisions exist, independently of attitudes
toward risk, and thus an exogenously-given measure of the strength of preference is
available.5 The second is that numerical differences (in a perceptual sense) can be disen-
tangled from economic incentives, allowing us to investigate both possible dimensions of
choice difficulty. Additionally, the design aims to avoid extraneous dimensions of choice
difficulty (e.g., complexity of the options, competing heuristics, etc.) to concentrate on

the role of strength of preference.

3.1 Design and Procedures

The experiment was computerized and programmed in Psychopy (Peirce, 2007), a soft-
ware which ensures high precision in the measurement of response times. We recruited
N = 96 participants (54 females, age range 19 — 47, mean 24) using ORSEE (Greiner,
2015) at the Cologne Laboratory for Economic Research. Participants were university
students enrolled in fields other than psychology and economics. They were provided
with written instructions and answered five control questions before starting the task, to
ensure correct comprehension of the procedures and payment mechanism. Three partic-
ipants failed at least one comprehension question and were excluded from the analysis.
Subjects were paid according to their performance in the experiment. Total earnings
were the sum of the earnings in the 160 trials plus a show-up fee of EUR 4. Sessions
lasted around 60 minutes and the average payoff was EUR 16.45 (around USD 17.60
at the time of the experiment). All trials in the experiment were paid. In our context,
this payment mechanism is incentive compatible under mild assumptions on individual
preferences, as shown by Azrieli, Chambers, and Healy (2018, 2020).7

The experimental task is as follows. Participants are confronted with three decks
of cards, a red one (Diamonds) and two black ones (Clubs and Spades), containing ten
cards each (numbered 1 to 10, see Figure 2) left-hand panel. The participants’ task is
to choose twice from which of the two black decks a card should be randomly extracted
from, and the game’s objective is to beat a card extracted from the red deck with the

black one. Each trial starts with a participant choosing between the two (complete) black

50f course, it is conceivable that even in this setting some subjects rely on alternative objectives, e.g.
if they distort probabilities. The point is merely that normatively-correct answers can be identified in
this paradigm, independently of any individual-level estimation, and thus we are able to commit to an
objective scale before conducting the experiment.

“The pay-all mechanism is incentive compatible if subjects’ preferences fulfill a condition called “no
complementarities at the top” when evaluating bundles of outcomes (Azrieli, Chambers, and Healy,
2018). In the context of the current experiment, this assumption is immediately fulfilled as long as
participants prefer more money over less (but the assumption might impose stronger restrictions in more
complex environments). In the binary choice setting of the current experiment, in every trial one option
is dominated by the other. Choosing the correct option in all rounds dominates any other alternative
bundle of choices, hence making this payment mechanism incentive-compatible according to Azrieli,
Chambers, and Healy (2018).

10
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Figure 2: Experiment 1. A trial starts with participants choosing between the black
decks (left). A black card is extracted from the chosen deck and a red card is displayed.
No replacement happens after the first choice. Participants then choose a black deck
again, and a card is extracted from that deck. The participant wins if and only if the
second extracted black card is strictly larger than the red one. The right-hand panels
depict stay choices as function of expected value difference (stay minus switch; upper
panel), and of the numerical distance (black minus red; lower panel). Gray areas indicate
95% binomial proportion confidence intervals.

decks, but this first choice is irrelevant for our purposes since at this point both decks
are identical. It is also unpaid (to avoid possible reinforcement or valence effects). The
choice, however, creates an asymmetry which is the essence of the task. After the first
choice is made and the first black card is extracted, that card remains on the table (there
is no replacement). A card is extracted from the red deck, and the participant is asked
to choose between the black decks a second time. This is the choice we are interested in.
A (black) card is extracted from the chosen deck, and the participant received EUR 0.15
if and only if that black card has a number strictly bigger than the red card, otherwise
she receives nothing. Subsequently, the trial ends, all cards are placed back in their
decks, and decks are reshuffled before a new repetition starts. Participants knew that
trials were independent, so the outcome as well as the cards displayed in one trial were
unrelated to those of subsequent trials. Each participant completed 160 of such trials.
After the first choice, one black deck has either one winning card less or one losing
card less. Hence, by design, there is an optimal decision pattern for the second choice,

which is to bet on the deck with a higher proportion of winning cards. That is, if the
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first black card was smaller or equal than the red card, the participant should choose the
same deck, and if the first black card was strictly larger than the red card, the participant
should choose the other deck. In the example depicted in Figure 2 left-hand panel, the
red card is a 5 and the first black card is a 4 (of spades), so the spades deck contains
only 9 cards, 4 losing and 5 winning ones. The clubs deck still contains 10 cards, 5 losing
and 5 winning cards. Therefore the deck of spades contains 1 losing card less than the
untouched deck of clubs and the optimal choice is to choose it again. On the contrary,
if the first extracted black card had been strictly larger than the red card, the chosen
deck contains 1 winning card less than the other one, and the optimal decision would be
to choose the untouched deck. Hence, independently of risk aversion, there is always a
normatively-correct decision for the second choice.

In spite of the fact that all choices are either objectively correct or objectively wrong,
some choices are “more correct” than others, because opportunity costs are different.
Let r,b; € {1,...,10} be the red card and the first extracted black card, respectively.
Let 7°(r,b1) and 7'(r,b1) be the probability of winning by choosing the same deck
or by shifting to the other deck, respectively. Then V(r,b1) = |n°(r,b1) — 7' (r,b1)]
is the cardinal difference (distance) between the probability of winning by making the
correct choice and the probability of winning while making an error. Since participants
are paid only in case they win, up to a rescaling of monetary units this is also the
difference in expected values between a correct decision and an error. If » > by, one
obtains 7%(r,b1) = (10 — r)/9 and 7'(r,b1) = (10 — 7)/10. If r < by, one obtains
70(r,b1) = (10 — r — 1)/9 and 7'(r,b;) = (10 — r)/10. Hence,

10—7)/90 ifr > by,
Vb)) = (10—=7)/90 if r > by
r/90 if r < by

By design, V (7, b1) assumes values in the set {1/90,2/90, ...,9/90}. These differences
in expected value indicate the opportunity cost of (not) choosing the right answer and
reflect how far away from “indifference” the participants were in every decision, and are
hence a natural measure for the “strength of preference.” Thus, we take V(r,b1) as the
potential driver for stochastic choice and refer to this magnitude as (objective) economic
distance.

The probabilities of winning by staying or switching, and the economic distance, are
monotonic functions of the numerical value of the red card. However, for computing the
optimal choice the only necessary information is the sign of the relation between the first
black card and the red card. That is, the actual magnitude of the difference between the
values of these two cards is economically inconsequential. However, Moyer and Landauer
(1967), Dehaene, Dupoux, and Mehler (1990), and others have shown that, in simple
comparisons, errors do depend on the numerical differences between stimuli. Therefore,
we also contemplate the possibility that the distance between the numerical values of

the first black card and the red one influences choice frequencies (and response times).
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There are ten possible distances between the two cards, ranging from 0 to 9. We refer
to this magnitude as the numerical distance.

To ensure enough variability in the stimuli, the set of initial stimuli (first black card
and red card) was predetermined and pseudorandomized. Furthermore, the red card was
never a 10, since in this case winning would be impossible, hence the choice would be
inconsequential (the instructions did not claim that the red card was randomly selected,
since the procedure by which it was selected was payoff-irrelevant once the actual choice
was faced). The key second black card was randomly selected among the remaining

cards.

3.2 Choices and Errors

In spite of the simplicity of the task, the mean error rate across participants was 28.93%,
with a median of 31.25% (SD = 18.21, min 0.63%, max 60.00%). We start by exam-
ining the dependence of error rates on both economic and numerical distance. Figure
2 (right-hand panels) plots the frequency of “stay” decisions (choosing the same deck
as in the first decision) for each possible value of each variable. The upper-right panel
plots the dependence on economic distance, i.e. differences in expected values. The red-
shaded areas correspond to errors, as a rational decision maker should stay for a positive
expected value difference and switch for a negative one. To facilitate the comparison,
in all figures and regressions the economic and numerical distances are normalized to
be between 0 and 1.8 The probability to stay with the same deck stands in a clear
positive relation with the difference in expected values. The frequency of errors becomes
smaller as the difference becomes larger (no matter the sign), and it is largest (essen-
tially 1/2) when the difference approaches zero. This pattern is radically different from
that predicted by neoclassical economic theory. Even accounting for noise, neoclassical
predictions would prescribe choice frequencies with a flat slope somewhere above zero for
negative expected value differences (where stay is an error), and a flat slope somewhere
below one for positive ones (for which stay is the correct option). This is clearly not the
case. Subjects gradually make less errors as the objective economic distance between
the options becomes larger.

In contrast, the lower-right panel of Figure 2 depicts the relation between choice
frequency and the numerical difference between the values of the (first) black card and
the red card. Again, shaded areas correspond to errors, since the correct decision is to
stay when the first black card was strictly smaller than the red one, and switch otherwise.
The gradual relation is essentially absent in this case (with slopes being relatively flat),
and there is a clear discontinuity at zero (the normative switching point). That is,

subjects on average understood the task, but the numerical distance between card values

8For all figures, unless otherwise specified, each point represents each distinct value of the variable in
the z-axis and the corresponding average value of the variable in the y-axis (choice frequencies or average
response times). Therefore each point is an average across potentially different subjects and trials. The
depicted curves are estimated using a fractional regression with a polynomial of second degree.
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Figure 3: Experiment 1. Left-hand panel: Stay choices as a function of expected value
differences for various, fixed numerical distances. Right-hand panel: Stay choices as a
function of numerical distance for various, fixed expected value differences. The 95%
binomial proportion confidence intervals are plotted.

does not play a large role. The comparison between panels suggests that the variability
in responses arises mainly from differences in expected values, and not from numerical
differences.

Figure 3 further investigates the relative contribution of the two dimensions of choice
difficulty by letting one variable vary while keeping the other fixed (which is made pos-
sible by our design). In the left-hand panel, we plot choice frequencies as a function
of expected value differences, separately for trials where the numerical distances corre-
spond to three particular, fixed values (1, 2, or 3, corresponding to 0.1, 0.4, and 0.7
after normalization). The positive relation between the proportion of stay choices and
expected value difference is unchanged, with the depicted curves overlapping. In con-
trast, the right-hand panel plots choice frequencies as a function of numerical distances,
separately for trials where the expected value differences correspond to three particular,
fixed values (1/90, 2/90, or 3/90, again corresponding to 0.1, 0.4, and 0.7 after nor-
malization). The relation changes drastically for different expected value differences,
uncovering a negative, monotonic, and gradual relation between choices and the numer-
ical difference between the stimuli, which becomes stronger for larger expected value
differences. The figure suggests again that expected value differences are the determi-
nant factor (gradually) influencing error rates, but also that, when keeping the economic
dimension of choice difficulty fixed, second-order effects appear which are compatible
with common findings from the perceptual literature.

We now turn to a regression analysis. The data form a strongly balanced panel
with 160 trials for each of the 93 participants. Table 1 shows random-effects Probit
regressions where the dependent variable is 1 in case of a correct answer.” Model 1
establishes the basic effect, namely that larger (objective) economic distances lead to

less errors. Model 2 introduces the numerical distance and shows that this variable also

9For this and all other regressions below, relying on a fixed effects regression instead does not affect
the main results, showing that they are not determined by heterogeneity among subjects.
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Table 1: Experiment 1. Random-effects Probit regressions on correct answers.

Correct Model 1 Model 2 Model 3 Model 4

Econ. Dist. 1.229*** 1.447* 1.622%** 1.620%**
(0.099) (0.107) (0.140) (0.141)

Num. Dist. 0.362*** 0.584*** 0.582%**
(0.087) (0.094) (0.093)

Econ. Dist. x Num. Dist. —0.010*** —0.010***
(0.004) (0.004)

Round —0.001*** —0.001** —0.001** —0.007**
(0.000) (0.000) (0.000) (0.003)

Constant 0.233** 0.003 —0.061 0.886***
(0.095) (0.096) (0.103) (0.284)
Controls No No No Yes
Log L. —7358.011 —7337.550 —7329.264 —7265.955

Wald test 163.304*** 191.995*  188.653***  251.391***
Obs. 14880 14880 14880 14880

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

leads to lower error rates, revealing perceptual effects on top of value-induced ones.!?

Since both distances are normalized, we can compare the magnitude of the two effects.
The regression coeflicients for economic distance range from 1.2 to 1.6, and the regression
coefficients for numerical distance range from 0.36 to 0.58. We can also calculate the
relative elasticity of the two variables. A percentage variation in the economic distance
predicts an average increase of 21.84% in the probability of a correct answer, while
a percentage variation in the numerical distance predicts an average increase of only
5.40% in the probability of a correct answer. This provides further evidence for the
predominant role of the economic dimension of choice difficulty over the perceptual.

As Figure 3 illustrates, our design allows to examine trials with identical expected
value differences but different numerical distances, and vice versa. However, a purely me-
chanical effect prevents both variables from being fully orthogonal, as a larger numerical
distance between the cards allows a larger number of feasible values of economic distance
(the Spearman correlation between numerical and economic distances across the set of
decisions is p = —0.6491, N = 160, p < 0.001). Hence, in Model 3, we introduce the
interaction between the two dimensions of choice difficulty as a control. The coefficient
is significant and negative, reflecting the mechanical relation in the dimensions across
the entire dataset. However, the main effects are unaffected by this control. Last, Model
4 adds a number of other controls: gender, native language, left-handedness, and accu-
mulated earnings. The regression shows that the main effects are robust (see Appendix

B for details on the controls).

10T he results are unchanged if we define the numerical distance through the log of the numerical values
of the cards, as suggested by Moyer and Landauer (1967).
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Figure 4: Average response times as a function of expected value difference (left-hand
panel) and as a function of numerical distance (right-hand panel).

3.3 Response Times and the Underlying Processes

As an additional, independent test of the cardinal effects of economic distance, we mea-
sured response times for all decisions. For our purposes, the key decision is the second
one within each trial. For this decision, we computed individual average response times.
The average of those across individuals was 1.612 seconds (SD = 0.648, median 1.560,
min = 0.272, max = 3.797).

The left-hand panel of Figure 4 plots average response times as a function of the
expected value difference between stay and switch. There is clear evidence of gradual
effects as postulated in psychophysics. An inverted U-shape is apparent, indicating a
negative relation between response times and the distance in expected values between
stay and switch. Choices closer to indifference (zero expected value difference) are as-
sociated with the longest response times. In contrast, the right-hand panel of Figure 4,
which depicts the relation between response times and numerical differences, shows an
essentially flat trend. That is, unlike in the case of expected value differences, there is
no discernible pattern. In summary, response times suggest a gradual effect of (objec-
tive) economic distance (but not of numerical distance), confirming that the postulated
relationship goes beyond a simple as if story and reflects actual decision processes.

We now turn to a regression analysis. Response times are a noisy variable, usually
presenting a skewed, non-normal distribution and rare extreme observations. To ac-
count for these features it is common practice to take the logarithm of response times
as the variable of interest in regression analyses (Fischbacher, Hertwig, and Bruhin,
2013; Achtziger and Alés-Ferrer, 2014). Table 2 reports random-effects regressions of
log-transformed response times, taking advantage of the panel structure of the data. To
control for individual differences in mechanical swiftness, we use the log-transformed re-
sponse time for the non-rewarded, first black card and the log-transformed response time
for pressing a space bar, which was required before the start of each trial. Model 1 estab-
lishes the basic effect, namely that responses are faster for larger (objective) economic

distances, confirming that the phenomena we study reflect basic properties of actual
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Table 2: Experiment 1. Random-effects regressions on log response times.

Log RT Model 1 Model 2 Model 3 Model 4

Econ. Dist. —0.174*** —0.237*** —0.321*** —0.316%**
(0.020) (0.031) (0.035) (0.035)

Num. Dist. —0.106*** —0.224*** —0.209***
(0.029) (0.038) (0.039)

Econ. Dist. x Num. Dist. 0.005*** 0.005***
(0.001) (0.001)

Round —0.001*** —0.001*** —0.001*** —0.005***
(0.000) (0.000) (0.000) (0.003)

Constant 0.644*** 0.712*** 0.746*** 0.853***
(0.048) (0.055) (0.057) (0.253)
Controls No No No Yes
R? overall 0.108 0.109 0.110 0.130

Wald test 219.477** 220.200**  257.260***  259.572***
Obs. 14880 14880 14880 14880

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

decision processes. Model 2 adds numerical distance. The coeflicient is also significantly
negative, although of a smaller magnitude (recall that both variables are normalized to
have the same range). This shows that, in spite of the relatively flat shape of the ag-
gregate relation as depicted in Figure 4, response times are also influenced by numerical
differences, at least as a second-order determinant. As in the case of choice frequencies,
Model 3 shows that the effects are robust to controlling for the interaction between the
two distances. Finally, Model 4 shows that the results are robust to additional controls

(see Appendix B for details).

3.4 Discussion of Experiment 1

The first experiment is probably as close as one can get to pure psychophysics in the
economics domain. By using a gambling task with objectively correct answers, we can
commit to the exact values of the explanatory variable before running the experiment;
that is, we can rely on expected value differences and no utility estimation is needed.
Still, the task is representative of the judgment and decision-making domain and re-
mains intrinsically interesting for decision making under risk. We find a robust gradual
relation between cardinal, objective economic distance, as captured by expected value
differences, and error rates. Error rates gradually decrease as the distance between al-
ternatives becomes larger (decisions become easier). Purely numerical effects (by how
much a number is larger than another one, even if the comparison is payoff-irrelevant)
do influence error rates as predicted by psychophysical studies, but this is a second-order

effect and the main explanatory variable remains economic distance.

17



The fact that high error rates are observed in decisions under risk even when objectively-
correct answers exist is of course not new. For instance, this is reflected in any experiment
where subjects choose dominated options, in many tasks from the heuristics and biases
literature, and in the probability matching literature (which shows that humans often
choose intermediate probabilities even when they should go for corner solutions; Vulkan,
2000). What our analysis adds is that such errors are not simply white noise, and that an
underlying, objective variable can be fruitfully used to better understand their structure.

Response times confirm the gradual relationship. As predicted by psychophysics,
easier decisions (in the sense reflected by objective economic distance) are faster. This
is important, because response times are a direct reflection of the underlying decision
processes. Hence the relationship further confirms that the gradual effects of choice
difficulty do reflect actual decision processes and not just a characteristic of how the

statistical model of errors fits the data.

4 Experiment 2: Subjective Domain

Experiment 1 can be seen as a streamlined proof of concept which does away with the
problems inherent in utility estimation. In Experiment 2, we parsimoniously go one
step further by reproducing the analysis for more complex decisions under risk where
what is “correct” depends on the individual risk attitude, and hence utility estimation
is unavoidable. In this sense, Experiment 2 studies choices in the subjective domain,
while Experiment 1 belonged to the objective domain. Crucially, to avoid the problems
pointed out in the Introduction, we will strictly adhere to an out-of-sample approach
where the utility used to test the gradual dependencies in the data is always estimated
from a different part of the dataset. This ensures that the estimation allows us to test for
the presence of gradual effects, instead of artificially creating them. Since the estimation
procedure requires to focus on a parametric family of utility functions, we conducted
several robustness tests to ensure that the effects do not hinge on the specific parametric
form. We report on an estimation using CARA utilities below, but Appendix C repeats
the analysis for CRRA functions instead, and Appendix D reproduces it relying on a
random parameter model.

As in Experiment 1, we focus on error rates. We will have three (explanatory)
variables of interest in sight. Of course, we will focus on expected utility as just described.
Additionally, in this experiment we can examine the differences between expected value
and expected utility differences as determinants of gradual effects on error rates. For
completeness, we will also examine the potential effects of (payoff-irrelevant) numerical
distance. Last, and again as a confirmatory exercise, we will examine the effects of those
variables on response times.

In order to concentrate on the effects of strength of preference, we again strive to

streamline the choice environment to reduce possible additional sources of choice diffi-
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culty. In particular (and again as in the previous experiment), all decisions are embedded

within a fixed, naturalistic environment.

4.1 Design and Procedures

Implementation, procedures, and data collection were as in Experiment 1. Participants
were N = 96 (different) university students (66 females, age range 18 — 36, mean 24).
Sessions lasted around 60 minutes and the average payoff was EUR 13.45 (around USD
14.40 at the time of the experiment). Three participants were unable to understand the
task and were excluded from the analysis.

The experimental task is as follows. Participants are confronted with two decks
of cards, a red one (Diamonds) and a black one (Clubs), containing ten cards each
(numbered 1 to 10). At the beginning of each of the 170 trials, two cards are extracted
from the black deck, one red card is extracted from the red deck, and a monetary prize
is displayed (see Figure 5). The participants’ task is to decide whether to bet or to pass.
After this decision, a further black card will be extracted from the remaining eight cards
in the black deck, and the objective is to beat the red card with that new card. Betting is
costly: placing a bet costs EUR 0.10 (fixed for all trials), independently of the outcome
of the trial. If the participant bets and if the newly-extracted black card is strictly
larger than the displayed red card, the participant receives the displayed monetary prize
(minus the cost). Otherwise, the payment is zero (resulting in a net loss equal to the
cost of betting). If the participant does not bet, there is neither a payment nor a cost.
Before a new trial starts, all cards are returned to their respective decks and those are
reshuffled. Hence, each trial reflects an independent decision situation. All trials were
paid. In our particular context, this payment mechanism is incentive-compatible under
mild assumptions on the participants’ preferences, as shown by Azrieli, Chambers, and
Healy (2018, 2020).1!

The set of initial stimuli (red card, first two black cards, and prize) was predetermined
and pseudorandomized across trials to achieve adequate stimuli variance. The crucial
third black card was randomly selected among the cards remaining in the deck. Red
cards were extracted in such a way that there was always some probability of winning,
so as to avoid trivial decisions. Hence, there were eight possible distinct probabilities
of winning, ranging from 12.5% to a sure win. Prizes ranged from 10 to 120 cents, and
were determined trial-by-trial as deviations from the actuarially-fair prize, the amount
that leaves a risk-neutral agent indifferent between betting and passing. Eleven different
distortions from the fair prize were implemented, ranging from 50% below to 50% above,

in 10% steps.

HSpecifically, the requirements are monotonicity and a weak condition called show-up fee invariance,
which Azrieli, Chambers, and Healy (2018, footnote 26) argue to be a reasonable assumption in contexts
as ours where choices are independent and feedback is given independently of choices. This is because
each decision problem can be considered independent, since participants receive feedback on what would
have happened for every choice they could have made before, and hence incentives to experiment (hedge)
are eliminated (Azrieli, Chambers, and Healy, 2018).
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In each trial, at the moment of the decision, the black deck contains eight cards,
and the two already-extracted cards are displayed. The probability to win when betting
depends on the magnitude of the red card and on whether the displayed black cards
are winning or losing cards. In the example depicted in the left-hand panel of Figure
5, the red card is an 8 and the two extracted black cards are a 2 and a 4, hence both
are losing cards. That is, the black deck contains two winning cards and six losing
ones, yielding a probability of winning of 1/4. Since the cost of betting is 10 cents, the
actuarially-fair prize is 40 cents, but the offered prize is 24 cents. Hence, a risk-averse
or risk-neutral agent should decline to bet, while a risk-loving one might rationally
decide to bet. That is, there are no objectively-correct decisions in this task; rather,
what is “correct” depends on the individual risk attitude. Therefore, we hypothesized
that the natural measure of choice difficulty or subjective economic distance would be
the difference between the expected utilities of betting and passing, referred to as EU
distance for clarity, which requires us to estimate the underlying individual utilities of
money.

By design, however, the expected value of betting depends on the distortion of the
fair prize. For risk neutral individuals, the difference in expected value between passing
and betting reflects how far away from “indifference” the participants were, and are
hence a natural, alternative measure for “strength of preference.” Therefore, another
candidate determinant of gradual effects is simply the absolute value of the expected
value differences between betting and passing, which we refer to as EV distance. In
contrast to Experiment 1, the comparison between these two measures of economic
distance is informative of which is the relevant measure of strength of preference in this
context.

We remark also that the probability of winning does not depend on the numerical
distances between the black cards and the red one, but only on whether the former are
larger or smaller than the latter. Hence, numerical distances in themselves are payoff-
irrelevant (but the sign of the numerical differences is not). Analogously to Experiment
1, this allows us to disentangle the numerical closeness of stimuli as a further possible
dimension of choice difficulty, which is the closest one to standard measures of perceptual
similarity used in psychophysics. Since there are two black cards, we have different pos-
sible candidates for numerical distance. We present here the analysis using the distance
between the red card and the second, most recent black card, since a large literature has
advocated the prominence of the recency effect (Deese and Kaufman, 1957; Murdock Jr.,
1962). There are ten possible perceived distances between the red card and the second
black card, ranging from 0 to 9. We refer to this magnitude as numerical distance. We
also carried out analyses with other definitions of numerical distance; the main results

described below are unaffected.!?

12We also considered the distance between the highest black card and the red one, the distance between
the average of the two black cards and the red card, and the distance between the highest or lowest black
card and the red one, and the distances between log-transformed numbers.
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4.2 Utility Estimation

We estimate out-of-sample risk attitudes for each subject. Specifically, we use the choices
made in odd trials to estimate risk attitudes and use this estimation to predict the
expected utility in the even trials, and vice versa.!3

Following a standard approach, we estimate an additive random utility model (RUM)
which considers a given utility function plus an additive noise component (e.g., Thur-
stone, 1927; Luce, 1959; McFadden, 2001). The estimation procedure employs well-
established techniques as used in many recent contributions (Von Gaudecker, Van Soest,
and Wengstrom, 2011; Conte, Hey, and Moffatt, 2011; Moffatt, 2015). We provide a
short description in Appendix A.

For the functional form of the utility function, we adopt a normalized constant abso-
lute risk aversion (CARA) function as in Conte, Hey, and Moffatt (2011), which is given

by

1—exp(—rz) .
U(AT) = { 1—exp(—r&max)’ ifr ;é 0

L if r=0,

Tmax

where Zpax is the upper bound of the outcome variable z. For the noise term, we consider
normally-distributed errors. All our results remain qualitatively unchanged if we assume
a CRRA utility function instead; we provide the corresponding analysis in Appendix
C. However, random utility models have been recently criticized (see Wilcox, 2008,
2011; Bruner, 2017; Apesteguia and Ballester, 2018; Vieider, 2018). In Appendix D we
repeat the analysis using a random preference model (RPM; Loomes and Sugden, 1998;
Apestegufa and Ballester, 2018), which follows a different approach for the specification
of noise. Again, the results remain qualitatively unchanged. That is, our results do not
hinge on the particular functional form of the utility function or error specification.

The estimated risk propensities in our dataset have an average r = 0.026 (SD = 0.016,
median 0.025, min = —0.007, max = 0.086). The risk propensity estimated on odd trials
(r = 0.027) is not significantly different from the one estimated on even trials (r = 0.025;
Wilcoxon Signed-Rank test, N = 93,z = 0.738,p = 0.463). Given the estimated risk
attitudes 3 subjects are classified as risk-seeking, while some subjects display values of r
close to 0, indicating risk neutrality. However, the majority of subjects are estimated to
be risk averse. As an illustration, an agent with a risk propensity equal to the average
in our sample, r = 0.025, would have a certainty equivalent of about $4.69 when facing
a lottery paying $10 with 50% probability and zero otherwise.

For the simulation reported in Figure 1, we generated a dataset where each of 93
fictitious subjects randomly chose 170 times between accepting certain bets or not (the
dataset mimics the basic features of Experiment 2). Bets involved a certain probability
of a positive prize, and led to the loss of a small amount of money with the remaining

probability. The outside option always yielded zero payoffs. Prizes and probabilities

13Qur results do not change if we use different out-of-sample approaches, as e.g. using an initial block
of observations for the estimation and predicting the expected utility for the remaining trials.
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Figure 5: Experiment 2. Each trial starts by extracting two black cards, a red card,
and displaying a prize (left). Participants then decide whether to bet or not (betting is
costly). After a bet, a black card is extracted, and the participant wins if and only if
it is strictly larger than the red card. Proportion of betting decisions as a function of
expected utility differences (upper right) and expected value differences (lower right).
Gray areas indicate 95% binomial proportion confidence intervals. Shaded areas indicate
the proportion of errors.

changed across trials, but the amount potentially lost was fixed. The set of bets was
such that a risk-neutral subject would accept half of the times. “Decisions” were fully
random and unrelated to the options. The right-hand panel of Figure 1 corresponds to
an estimation performed exactly as described above for Experiment 2. The left-hand
panel depicts the results of an estimation using the same CARA functional form, but
with a standard within-sample approach as common in the literature. Specifically, we
implemented a RUM assuming heteroskedastic Fechner errors (Fechner, 1860; Hey and
Orme, 1994). We used the estimated risk attitudes to compute, within sample, the
expected utility difference between the two options (betting minus passing), and then
plotted this difference against the proportion of times one option was chosen over the
other. As argued in the introduction, the difference between both approaches shows that
the estimation procedure might create apparent gradual effects simply because they are
assumed in the underlying random utility model. Our out-of-sample procedure ensures

that the regularities we uncover correspond to actual features of the data.

22



4.3 Choices and Errors

We define an error as a choice which gives a negative expected utility, e.g. deciding
to bet when the expected utility (as estimated out of sample) of betting is strictly
smaller than the expected utility of passing. The mean error rate across participants
was 27.31%, with a median of 28.24% (SD = 8.44, max 44.12%, min 10.00%). Figure
5 (right-hand panels) plots the frequency of betting decisions for each possible value of
each variable. As in previous pictures, to facilitate the comparison, in all figures and
regressions the various distances are normalized to be between 0 and 1. The upper panel
plots the dependence on expected utility differences. The shaded areas correspond to
errors with the definition above. We observe that the relation between betting frequency
and expected utility differences has a sigmoidal shape resembling a cumulative normal
distribution or a logistic curve. This shape indicates that error rates decrease gradually
as the difference in expected utilities between the options becomes larger. For very large
differences, error rates are close to zero. For differences close to zero, error rates are
close to 50%. This stands in sharp contrast to deterministic, neoclassical models, which
would predict that subjects always bet when expected utility differences are positive and
always pass when they are negative.

The lower right-hand panel of Figure 5 plots the proportion of betting choices as
a function of the differences in expected value (betting minus passing). We observe a
positive but non-monotonic trend with greater expected values corresponding roughly to
a higher frequency of betting.!4 This is not surprising, since as long as utility is increasing
on monetary amounts, there will be some positive correlation between expected utility
and expected values in a dataset. However, the figure strongly suggests that expected
utility differences better explain gradual effects on error rates that differences in expected
values.

Similarly to Experiment 1, one can depict the proportion of betting decisions as a
function of numerical distances as defined above (errors, however, cannot be derived from
numerical distance alone in this experiment). For the sake of brevity, we omit this figure
(see Figure Bl in Appendix B) and simply comment that a graphical representation
suggests a weak, noisy monotonic relation which might hint to second-order effects but
offers no strong evidence of an impact of purely numerical, payoff-irrelevant perceptions
on choice frequencies.

In summary, our data shows that, as in Experiment 1, there is a gradual relation
between economic distance and error rates, but the former now corresponds to differ-
ences in expected utilities. We remark that this and subsequent results do not hinge
on the specific functional form or error structure that we assume. Equivalent results
are obtained assuming CRRA instead of CARA (Appendix C) or considering random
parameter models instead of RUMs (Appendix D).

MErrors in this panel are defined as decisions which contradict expected value differences. According
to this risk-neutral definition, the mean error rate across participants was 36.29%, with a median of
36.47% (SD = 6.60, min 19.41%, max 54.12%).
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We now turn to a regression analysis. The data form a strongly balanced panel with
170 trials for each of the 93 participants. We ran random-effects panel Probit regressions
where the dependent variable is 1 in case of a correct answer. For completeness, we
provide separate analyses for expected utility (Table 3) and expected value differences
(Table 4), while controlling for numerical distance in both. Recall that Expected Utility
distance (EU distance), Expected Value distance (EV distance), and numerical distance
are all normalized to range from 0 to 1. The various regression models are built in a
completely analogous way, and hence we discuss them simultaneously. Note that the
definitions of errors is the natural one in each table, i.e. choices against expected utility
differences in Table 3 and choices against expected value differences in Table 4.

In Model 1 of both tables we see that larger economic distances lead to less errors,
confirming the basic prediction. However, there is a considerable difference in the magni-
tude of the estimated coefficients, with EU distance having a coefficient almost 30 times
bigger than EV distance. To conduct a proper comparison, we calculated the relative
elasticities. A percentage variation in EU distance increases the probability of a correct
answer by an average of 18.31%, while the analogous percentage for EV distance is only
11.98%. This confirms the message from Figure 5 that differences in expected utility,
and not in expected value, are the relevant dimension of strength of preference in this
context.!®

Model 2 in both tables introduces numerical distance as an additional control. In
the presence of EU distance, numerical similarity does not seem to play a role. The
effect is also insignificant when controlling for the interaction between numerical distance
and EU distance (Model 3), and when adding further controls (Model 4; Appendix
B contains the details on the controls). In the presence of EV distance, numerical
effects are not statistically significant. They only become significant when we further
control for the interaction between numerical distance and EV distance (Model 3) as well
as other controls (Model 4). The results for numerical distance should be attributed
to the fact that there is a (mechanical) correlation between the expected value and
numerical distance across all decisions in the dataset (Spearman’s p = 0.1453; N = 170,
p = 0.0587), but there is no correlation between numerical distance and expected utility
(Spearman’s p = 0.0931, N = 170, p = 0.2271). In all models we control for learning

effects. Participants appear to improve as the experiment advances (Round, 1-170).

4.4 Response Times and the Underlying Processes

The previous section shows that differences in expected utilities are the best candidate as
an explanatory determinant of gradual effects on errors. Expected value differences and

numerical differences also display significant effects, but those are of a smaller magnitude

5The same conclusion is obtained in regressions using utilities estimated with a CRRA functional
form (Appendix C) or considering random parameter models instead of RUM (Appendix D).
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Table 3: Experiment 2. Random-effects Probit regressions on correct answers for EU
distance, defined as passing when EFU < 0 and betting when EU > 0.

Correct Model 1 Model 2 Model 3 Model 4
EU_Dist. 13.854*** 13.881*** 16.345%** 16.277**
(0.443) (0.463) (0.625) (0.639)
Num._Dist. 0.008 0.006 0.003
(0.044) (0.043) (0.044)
Num._Dist. x EU_Dist. —5.544*** —5.332%**
(0.924) (0.907)
Round 0.003*** 0.003*** 0.003*** 0.003***
(0.000) (0.000) (0.000) (0.000)
Constant —0.130***  —0.131***  —0.139*** 0.536**
(0.040) (0.038) (0.038) (0.257)
Controls No No No Yes
Log L. -8392 -8392 -8379 -8320
Wald test 984.525***  985.811***  1024.929***  1041.316***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4: Experiment 2. Random-effects Probit regressions on correct answers for EV
distance, defined as passing when EV < 0 and betting when EV > 0.

Correct Model 1 Model 2 Model 3 Model 4
EV_Dist. 0.463*** 0.464*** 1.100*** 1.113***
(0.053) (0.053) (0.069) (0.070)
Num._Dist. —0.013 0.628*** 0.639***
(0.030) (0.061) (0.062)
Num._Dist. x EV_Dist. —1.552%** —1.600***
(0.116) (0.124)
Round 0.002*** 0.002*** 0.002*** 0.002***
(0.000) (0.000) (0.000) (0.000)
Constant —0.011 —0.006 —0.285*** —0.159
(0.021) (0.025) (0.035) (0.258)
Controls No No No Yes
Log L. -10170 -10170 -10102 -10037
Wald test 223.538***  223.868***  453.437*** 466.95***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

and appear less robust. In this section, we further compare the gradual effects of all three
variables by focusing on response times. The main objective is to show that, while there
appears to be a strong, clear correspondence between expected utility differences and
actual human decision processes as reflected by response times, that relation is far from
clear when it comes to other alternative variables.

The variable of interest is the time participants took to decide whether to bet or to

pass. The average across individual average response times for this decision was 2.051
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Figure 6: Experiment 2. Average response times on EU Difference (left) and EV differ-
ence (right). Gray areas indicate 95% confidence intervals.

seconds (SD = 0.150, median = 2.090, min = 1.354, max = 2.200). Figure 6 plots average
response times as a function of expected utility differences (left) and of expected value
differences (right). Response times and EU distance clearly show an inverted U-shaped
relation. Harder decisions, resulting in longer response times, are those corresponding
to smaller expected utility differences. However, the figure shows no systematic relation
with EV differences (the corresponding coefficient is not significantly different from zero,
coef. =0.012,z = 0.85,p = 0.393). A similar result to EV differences is obtained for the
numerical distance (coef. = 0.017,z = 0.25,p = 0.803; see Figure Bl in Appendix B).
This provides an independent confirmation that a larger strength of preference, in the
sense of larger subjective economic distance, can be linked to easier decisions.

As for Experiment 1, we conducted a panel regression analysis for log-transformed
response times. Tables 5 and 6 report the corresponding regressions using expected
utility distances and expected value distances as a measure of strength of preference,
respectively. In all models with further control for individual differences in mechanical
swiftness using the log of the response time for pressing the space bar to move to the
next trial.

Response times are significantly shorter for larger EU distances across all models
in Table 5. This effect is robust to controlling for numerical distance and additional
controls. Additionally, numerical distance does have an effect on response times, vali-
dating the view from psychophysics (Moyer and Landauer, 1967; Dehaene, Dupoux, and
Mehler, 1990) that even payoff-irrelevant perceptual differences might influence actual
choice difficulty. That is, in addition to the effects of subjective economic distance, re-
sponse times are shorter for more perceptually distinguishable stimuli (larger numerical
distance).

In contrast, the effect of expected value differences is less clear. In Model 1 of
Table 6, we observe larger response times for higher values of EV distance, contrary
to expectations if EV distance was taken to explain the gradual effects of strength of

preference. However, the effect becomes non-significant when we control for the relation
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Table 5: Experiment 2. Random-effects regressions on log response times, EU distance.

Log RT Model 1 Model 2 Model 3 Model 4
EU _Dist. —1.286™**  —1.482***  —1.149"** —1.154***
(0.223) (0.214) (0.206) (0.206)
Num._Dist. —0.055***  —0.136™** —0.136***
(0.013) (0.019) (0.019)
Num._Dist. x EU_Dist. 1.823*** 1.824***
(0.286) (0.285)
Round —0.002***  —0.002***  —0.002*** —0.003***
(0.000) (0.000) (0.000) (0.000)
Constant 1.313%* 1.320™** 1.317%** 1.268***
(0.040) (0.040) (0.040) (0.309)
Controls No No No Yes
R? overall 0.135 0.136 0.140 0.159
Wald test 458.704**  523.572 ***  559.366***  579.216 ***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 6: Experiment 2. Random-effects regressions on log response times, EV distance.

Log RT Model 1 Model 2 Model 3 Model 4
EV _Dist. 0.054*** 0.068*** 0.009 0.009
(0.015) (0.015) (0.023) (0.023)

Num._Dist —0.149**  —0.211*** —0.211***
(0.018) (0.024) (0.024)
Num._Dist. x EV_Dist. 0.145*** 0.145
(0.044) (0.043)

Round —0.003***  —0.003***  —0.003*** —0.003***
(0.000) (0.000) (0.000) (0.000)

Constant 1.231%** 1.288*** 1.315%** 1.290***
(0.037) (0.039) (0.040) (0.310)
Controls No No No Yes
R? overall 0.132 0.136 0.136 0.154

Wald test  472.772***  607.972***  665.532*** 687.710***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

between EV distance and numerical distance as well as other controls (Models 3 and
4; Appendix B adds details on the controls). Again, the analysis is consistent with the
view that expected utility differences are the key variable explaining the gradual effects
that we investigate. In all models we control for time trends, reproducing the standard
observation that subjects become slightly faster over time. Other controls deliver no

additional insights.
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4.5 Discussion of Experiment 2

The second experiment considers standard economic decisions under risk (betting), which
are an example of preferential choice where there is no objectively correct alternative.
Contrary to the first experiment, the appropriate dimension explaining gradual effects
on error rates needs to be estimated from the data. Our evidence shows that expected
utility, and not expected value, is the appropriate integrated variable capturing strength
of preference. Choices with a larger expected utility difference between the alternatives
result in lower error rates and shorter response times. The effects are robust and obtain
even though we use a strictly out-of-sample approach, that is, they are not an artifice of
the estimation method. Further, the link to response times shows that the relationship
between expected utility differences and choice difficulty reflects the characteristics of
actual decision processes, rather than being just “as if” modeling.

Numerical distance, seen as a more perceptual dimension of choice difficulty, plays
a minor role. The effects on error rates are small and not robust to the addition of
controls. Response times suggest that a second-order effect is present, but expected

utility differences are the major determinant of the effects we study.

5 Discussion

Homo oeconomicus does not play dice (but homo sapiens might). A fully rational eco-
nomic agent would be consistent, choosing an option 100% of the time if it delivered
a slightly larger payoff than the alternative, and 0% if a minute payoff reduction left
it worse than the alternative. However, considerable evidence suggests that the imple-
mentation of decision processes in the human brain follows processes of a more gradual
nature (e.g., Shadlen and Kiani, 2013). We have demonstrated the existence of a stable,
gradual relation between error rates in decisions under risk and an underlying, cardinal
“strength of preference,” and shown that the latter is best represented by integrated
variables of an exclusively economic nature. That is, decisions become more error-prone
as the economic distance between the alternatives becomes smaller.

Our research strategy has followed three complementary approaches. First, we
have shown that, in decisions in the domain of judgment and decision making where
objectively-correct options can be identified, expected value differences are enough to
explain error rates. This is important, because such an explanatory variable is indepen-
dent of any estimation of subjective values and hence constitutes the direct parallel to
psychophysical studies which have identified gradual effects as a function of objective
differences in weight, length, brightness, etc. The typical candidate explanatory variable
derived from purely psychophysical approaches for economic tasks, (payoff-irrelevant)
numerical differences (Moyer and Landauer, 1967; Dehaene, Dupoux, and Mehler, 1990),

does play a role but can be safely considered a second-order variable.
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Second, we have shown that, in decisions under risk in the subjective domain, where
what is correct depends on individual risk attitudes, strength of preference can be charac-
terized by an integrated variable reflecting differences in expected utility, while expected
value differences do a considerably worse job. Again, numerical differences do play a
role, but appear to be relatively less important than pure economic distance. Crucially,
our approach has followed a strictly out-of-sample procedure where utility functions are
estimated on one part of the dataset and the test of gradual effects between utility dif-
ferences and error rates is conducted using the choices in a different part of the dataset.
This is important, because fitting a dataset with, say, a random utility model merely
assumes that errors follow a smooth distribution; that is, gradual effects are assumed
and would appear to be present after the fact even if they did not exist at all.

Third, we have shown that the relation between strength of preference, as captured
by notions of economic distance, and error rates reflects more than an ex post and as
if model. The same gradual effects are obtained when examining response times, with
easier decisions (where economic distance is large) being made faster than harder ones
(where economic distance is small). Response times are an easily-measurable reflection of
the actual functioning of human decision processes. Most importantly, they are unrelated
to estimation and fitting procedures and hence serve as an independent confirmation of
the postulated effects.

Our results provide empirical support and explicit foundation for the literature on
stochastic choice, which has been long advocated as a realistic building block for theories
of microeconomic decision making (Debreu, 1958; Davidson and Marschak, 1959; Luce,
1959; Machina, 1985). It is in line with modern empirical contributions pointing out the
ubiquitousness of stochastic choice and decision inconsistencies (Camerer, 1989; Hey and
Orme, 1994; Hey, 2001; Agranov and Ortoleva, 2017), but goes beyond those by precisely
examining the content of elusive concepts as “strength of preference” and isolating them
from possibly-artificial phenomena derived, e.g., from the underlying assumptions of
models used to estimate noisy utility.

The results also speak to the role of choice difficulty in economic decision making. Of
course, our experiments are (on purpose) stylized and, by design, shut down a number of
additional dimensions of choice difficulty that are bound to also play a role in economic
decisions. Those range from the complexity of the options’ description to the presence of
transparent relationships (e.g., dominance) and whether the decision environment cues
in cognitive shortcuts or not. Our claim is merely that strength of preference is one of
the relevant dimensions underlying choice difficulty, and in particular it is a dimension
that can be characterized by measurable variables with an explicitly economic content.

The analysis is broadly in line with the psychophysics and neuroscience literature,
where the presence of gradual effects on decision making is regarded as an elementary,
firmly-established fact (e.g., Weber’s Law), but goes beyond it by showing that economic
distance is not as simple as objectively-measurable weight or length. Economic decisions

are decisions, and hence it is unsurprising that they might share (neural) mechanisms
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with perception-based judgments. However, economic decisions are complex decisions,
and it is equally unsurprising that simple applications of psychophysics (as, say, focusing
on numerical magnitudes only) fall short of the task of accounting for economic errors.

Conceptually, our results agree with earlier studies as Mosteller and Nogee (1951)
and with recent contributions as Khaw, Li, and Woodford (2018). Both report gradual
increases in the proportion of risky choices in lottery experiments as the reward increases.
Khaw, Li, and Woodford (2018) argue in terms of an imprecise perception of stimuli.
Those are payoff-relevant numerical magnitudes and hence aligned with economic dis-
tance as we consider it.

It is also important to remark that the sigmoidal relation between economic distance
and choice frequencies arises spontaneously from the data, and either require no utility
estimation (Experiment 1) or are robust to alternative utility and error specifications
(Experiment 2; Appendices C and D). Hence, our results provide empirical support for
random utility models as typically used in applied microeconomics, which often employ
logit or probit error distributions. By taking a step back from fitting approaches, our
analysis highlights the presence of a systematic structure of noise terms reflecting the
gradual effects of choice difficulty. This observation builds upon earlier arguments by Hey
and Orme (1994) and Harless and Camerer (1994), which attempted to shift the focus
in microeconomics away from deterministic choice models as alternatives to expected
utility theory.'6

The implications of our results are of broad significance for economic modeling. First,
the systematic demonstration of the gradual relation between economic integrated vari-
ables and errors provides a foundation for theories of stochastic choice and empirical
approaches to preference revelation alike. Second, the fact that these effects are a nat-
ural extension of those observed in psychophysics provides a tangible bridge to other
disciplines, most notably neuroscience, through which new techniques and ideas can
travel (in both directions). Third, accounting for strength of preference might be im-
portant to gauge the actual extent of received anomalies in economic decision making,
ranging from the endowment effect (Knetsch, 1989; Kahneman, Knetsch, and Thaler,
1990) to decoy effects (Huber, Payne, and Puto, 1982; Soltani, De Martino, and Camerer,
2012) or preference reversals (Grether and Plott, 1979; Alds-Ferrer et al., 2016). The
reason is that these anomalies are often demonstrated for choices where the options are
of similar value along some economic dimension (e.g., the monetary value of the options
in Knetsch, 1989), and thus larger error rates are to be expected. Fourth, the results
pose a significant conceptual challenge to traditional, neoclassic as if modeling, because
the latter is based on deterministic and, more importantly, purely ordinal preferences.
Our results on gradual mappings from economic variables to error rates and response
times go beyond any as if interpretation, and, in our opinion, are best viewed in the

context of an inherently cardinal view of preferences.

16«Perhaps we should now spend some time on thinking about the noise, rather than about even more
alternatives to expected utility?” (Hey and Orme, 1994).
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A Description of RUM Estimation

We now describe the details of the estimation procedure used in the main text, which
follows the approach described in Moffatt (2015, Chapter 13). All trials t = 1,...,T
used for the utility estimation involved binary choices between “bet” and “pass.” The
option to bet at ¢ corresponds to a lottery A, = (py, x —y; 1 — pr, —y) paying an amount
¢ — y with probability p;, and an amount —y with probability 1 — p;. The option to
pass corresponds to the degenerate lottery B paying an amount 0 for sure. The amount
y is the cost of betting, and is fixed for all subjects i = 1,..., N and trials. We use odd
trials to estimate the utility of options in even-numbered trials out-of-sample, and vice
versa. In the main text we assume a normalized constant absolute risk aversion (CARA)
function as in Conte, Hey, and Moffatt (2011),

l—e— T .
Ty T #0
1) ua [r)={ T |
Tmax ’ lf r= 0’
where Zyax = max{x1, ...,z }—y is the maximum outcome across all T trials. However,

the results are qualitatively unchanged when we assume a utility function with constant
relative risk aversion (CRRA) instead (see Appendix C). Under the assumption of
Expected Utility maximization, subject , with utility function u(x | r;), chooses A; over
B if the expected utility of A is positive (since EU;(B) = 0), that is,

¢ _e—Ti(JCt—y) — Pt _eTiy
) v =0 )+

1 — e TiTmax
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(for r; # 0). To estimate individual utilities, we follow a standard approach based on a
Random Utility Model (RUM). We add an error term g;; ~ N (0,02) with 62 > 0 to (2).
That is, A; is chosen if and only if

3) Vi(ri) + i > 0.
Define the binary choice indicator for trial ¢ by

1 if A; chosen by subject 4
Yit =
—1 if B chosen by subject i.

The probability that subject i chooses A; in trial ¢ is

(4) Pyt =1)=P (Vi(ri) > —eip) = P (M)

g

where @ is the standard normal cumulative distribution function. Conversely, the prob-
ability of B is
) Pl =-1)= Pe < ~Vilr) =& (- T2).

The conditional probabilities described in Equations 4 and 5 above were derived
conditional on a subject’s risk parameter r;. To account for individual heterogeneity,
we assume that the risk parameter is distributed over the population and we estimate
the parameters of this distribution (e.g., see Harless and Camerer, 1994; Moffatt, 2005;
Harrison and Rutstrom, 2008; Bellemare, Kroger, and van Soest, 2008; Von Gaudecker,
Van Soest, and Wengstrom, 2011; Conte, Hey, and Moffatt, 2011; Moffatt, 2015). This
approach is standard by now, and is generally preferred to estimating risk parameters
separately for each individual (e.g., see Hey and Orme, 1994). The main reason is
that the former greatly reduces the degrees of freedom compared to individual-level
estimates, avoiding possible overfitting problems (see Conte, Hey, and Moffatt, 2011,
for a more detailed discussion). Further, the population estimation allows to obtain
estimates even for extremely risk-averse or risk-seeking subjects, which is sometimes
impossible at the individual level due to identification issues (Moffatt, 2015). Last,
population-level estimates are generally preferable when predicting the behavior of the
same or a similar group of individuals (Conte, Hey, and Moffatt, 2011).

Assume that the individual risk attitudes are distributed normally in the population

(from which our subjects were drawn) according to

r~ N(u,n?).



Hence, the log-likelihood of a sample given by the matrix I' = (4;4) consisting of T trials
and N subjects is

©) ot =3 [~ 110 (w™22) 1t

r—p\2
(=) is the density function of the risk parameter r.

Nl=

1 —

\/ 2mn? €

The log likelihood can be maximized by standard methods to obtain the maximum

where f(r | 1) =

likelihood estimates. Since the integral in the likelihood function does not have a closed-
form solution, we approximate it using standard simulation techniques (see Train, 2003,

for details). Specifically, we approximate this integral by the average

o 1 Z (Hq) ( Vi nh(u n))))

using a sequence of H (transformed) Halton draws (r;1,. .., ) from N(u,n?) for each
subject 7 (fixed across trials ¢). Halton draws, a by-now-standard procedure, are pseudo-
random draws that ensure even coverage of the parameter space (e.g. avoiding clustering)
using Halton sequences (Halton, 1960; Moffatt, 2015). For the estimation, we use the
Stata implementation “mdraws” of this procedure (Cappellari and Jenkins, 2003) for
a uniform distribution U(0,1) and transform the resulting sequence (g1, 92,...,91) to
obtain draws r;; (i, 1) = p+n® " (gn) from N(u,n?).

The maximum simulated likelihood (MSL) approach amounts to replacing the inte-
gral in (6) by (7) and then maximize the resulting function log L. Maximization of log L
is carried out using standard MLE routines to obtain the estimates (fi,7,6). Given
those estimates we obtain the posterior expectation of each subject’s risk attitude 7;

conditional on their T choices approximating the conditional expectation by

1 St rin (I @ (=52 ))
)

where r;, = 7;,(f1, 7). Given the estimated individual risk parameter #;, we obtain

(8) 7y = E(rilvit, ..., vir) =

1 _ —Pi:c
¢ for 7 # 0

al(w) = 1— e_TAixmax

as the estimated utility function of subject 1.

B Omitted Tables and Figures

This section contains the regressions with additional controls from Tables 1-6 in the
main text (Model 4 in each table). In the main text, these regressions are just used

to show that the main effects are robust to the inclusion of additional controls. Here



we present the actual regression coefficients and briefly discuss some interpretations and
complementary tests.

The two regressions in Table 1 correspond to Model 4 in Tables 1 and 2, respec-
tively, and refer to Experiment 1. The first is a random-effects probit model on correct
answers. Females (54) make more errors than males, as can be confirmed by a direct, non-
parametric test (females 33.08%, males 23.19%; Mann-Whitney-Wilcoxon test, N = 93,
z = aL52.764, p = 0.0068). Native speakers (72) make less errors than other participants
(natives 25.89%, others 39.35%; MWW test, N = 93, z = 3.116, p = 0.0018). Also, par-
ticipants who earned more in previous trials (Sum Won) are more likely to make a correct
choice, which is merely an indication of heterogeneous skills among participants. The sec-
ond regression is a random-effects model on log-transformed response times. To control
for individual differences in mechanical swiftness, we use the log-transformed response
time for the non-rewarded, first black card (RT1) and the log-transformed response time
for pressing a space bar, which was required before the start of each trial (RT0). Gender
and accumulated earnings did not affect response times, but native speakers took longer
to respond than other participants.

The two regressions in Table 2 correspond to Model 4 in Tables 3 and 5, respectively,
and refer to Experiment 2 using expected utility differences as a regressor (EU distance).
Again, the first is a random-effects probit model on correct answers. There are no
gender differences in errors defined according to EU distance, as confirmed by a non-
parametric test (females 22.41%, males 23.46%; MWW test, N = 93, z = 1.558, p =
0.1201). Likewise, native speakers (77) did not perform significantly differently from
other participants (natives 22.29%, others 19.41%; MWW test, N =93, z = 1.298, p =
0.1971). The second regression is a random-effects model on log-transformed response
times. As in Experiment 1, to control for mechanical swiftness, we include the log-
transformed response time for pressing a space bar before the start of each trial (RTO).
Other controls deliver no additional insights, except that left-handed subjects took longer
than right-handed ones.

The two regressions in Table 3 correspond to Model 4 in Tables 4 and 6, respectively,
and refer to Experiment 2 using expected value differences as a regressor (EV distance).
Again, the first is a random-effects probit model on correct answers. When defining errors
according to expected values, females did behave differently (males 37.22%, females
33.91%; MWW test, N = 93, z = 2.399, p = 0.0164), as did native speakers (natives
35.68%, others 39.26%; MWW test, N = 93, 2 = —1.874, p = 0.0609). The second
regression is a random-effects model on log-transformed response times. Again, left-

handed subjects took longer than right-handed ones.



Table 1: Experiment 1. Random-effects Probit regressions on correct answers and
random-effects regressions on log response times.

Correct Log RT
Econ. Dist. 1.620*** —0.316™**
(0.141) (0.035)
Num. Dist. 0.582*** —0.209***
(0.093) (0.039)
Econ. Dist. x Num. Dist. —0.010*** 0.005***
(0.004) (0.001)
Sum Won 0.011* 0.008
(0.006) (0.006)
Female —0.438*** —0.056
(0.141) (0.078)
Native 0.462*** 0.281***
(0.169) (0.119)
Age —0.045** —0.014
(0.010) (0.009)
Left handed 0.378** —0.014
(0.194) (0.191)
Round —0.007** —0.005***
(0.003) (0.003)
RTO 0.117***
(0.037)
RT1 0.145%*
(0.032)
Constant 0.886*** 0.853***
(0.284) (0.253)
Wald test 251.391*** 259.572%**
Obs. 14880 14880

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.



Table 2: Experiment 2. Random-effects Probit regressions on correct answers and
random-effects regressions on log response times both for EU distance. Correct answer
is defined as passing when EU < 0 and betting when EU > 0.

Correct Log RT
EU_Dist. 16.277* —1.154***
(0.639) (0.206)
Num._Dist. 0.003 —0.136™**
(0.044) (0.019)
Num._Dist. x EU_Dist.  —5.332*** 1.824***
(0.907) (0.285)
Sum Won —0.000 0.000
(0.000) (0.000)
Female —0.077 0.011
(0.050) (0.082)
Native 0.069 0.088
(0.066) (0.116)
Age —0.016*** —0.009
(0.005) (0.011)
Left handed 0.128 0.227**
(0.105) (0.085)
Round 0.003*** —0.003***
(0.000) (0.000)
RTO 0.200***
(0.018)
Constant 0.536** 1.268***
(0.257) (0.040)
Wald test 1041.316*** 579.216 ***
Obs. 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.



Table 3: Experiment 2. Random-effects Probit regressions on correct answers and
random-effects log response times both for EV distance. Correct answer is defined as
passing when E'V < 0 and betting when EV > 0.

Correct Log RT
EV_Dist. 1.113*** 0.009
(0.070) (0.023)
Num._Dist. 0.639*** —0.211%**
(0.062) (0.024)
Num._Dist. x EV_Dist. —1.600*** 0.145
(0.124) (0.043)
Sum Won —0.000 0.000
(0.000) (0.000)
Female —0.086** 0.011
(0.041) (0.083)
Native 0.096* 0.073
(0.054) (0.116)
Age —0.003 —0.009
(0.005) (0.010)
Left handed —0.001 0.221*
(0.070) (0.091)
Round 0.002*** —0.003***
(0.000) (0.000)
RTO 0.196***
(0.018)
Constant —0.159 1.290"**
(0.258) (0.310)
Wald test 466.95*** 687.710***
Obs. 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 1: Experiment 2. Proportion of betting decisions (left) and average response
times (right) as functions of numerical differences. Gray areas indicate 95% confidence
intervals.

Figure 1 displays the analogous plots to the ones in Figures 5 and 6 when considering
payoff-irrelevant, numerical differences in the stimuli. The left panel shows the propor-
tion of betting decisions. As commented in the main text, although there appears to
be a trend relating payoff-irrelevant numerical differences and error rates, the relation is
weaker than the one observed for expected utility differences (recall the discussion for
Experiment 1). The right panel shows the average response times, illustrating that there

is no relation between those and numerical differences.

C Robustness Analysis: CRRA

In this section, we conduct a further robustness check. Specifically, we repeat the RUM-
based estimation exercise described in Appendix A using the following constant relative

risk aversion (CRRA) utility function

.1

T ifr#£1l

(9) wz [ r) = .
In(z), ifr=1

instead of the CARA function used for the estimation reported in the main text. We then
reproduce the analysis of Experiment 2 reported in the main text with this alternative
estimation. As we detail below, this robustness check confirms that the results reported
in the main text do not hinge on the CARA specification of the utility function, but
remain robust when the CRRA specification above is used instead.

We re-define errors using the estimated CRRA function. The mean error rate across
participants was 27.41%, with a median of 27.65% (SD = 8.40, max 57.64%, min 3.53%).
Figure 2 (left panel) plots the frequency of betting decisions as a function of expected
utility differences. The shaded areas correspond to errors with the definition above. We
confirm that the relation between betting frequency and expected utility differences has

a sigmoidal shape resembling a cumulative normal distribution or a logistic curve.



75
L
25
L

15 2
|

Proportion of betting
5

25
L

Average RT in (s)

. 5 0
EU Difference EU Difference

Figure 2: Experiment 2. Proportion of betting decisions as a function of expected utility
differences (left panel). Average response times on EU Difference (right panel).

We ran random-effects panel Probit regressions where the dependent variable is 1
in case of a correct answer. Table 4 is the equivalent of Table 3 when CRRA is used.
In Model 1 of both tables we see that larger economic distances lead to less errors,
confirming the main results. We further replicate that EU distance has a coefficient
larger than EV distance (almost 28 times). To conduct a proper comparison, we re-
calculated the relative elasticities. A percentage variation in EU distance increases the
probability of a correct answer by an average of 18.82%, while the analogous percentage
for EV distance increases is only 11.98%.

Model 2 in both tables introduces numerical distance as an additional control. In the
presence of EU distance, numerical similarity does not seem to play a role. The effect
is also insignificant when controlling for the interaction between numerical distance and
EU distance (Model 3), and when adding further controls (Model 4).

In all models we further control for learning effects. Participants appear to improve
during the course of the experiment. As in the CARA case, native speakers (77) did not
perform significantly differently from other participants (natives 26.62%, others 31.21%;
MWW test, N =93, 2 = —0.662, p = 0.5133). When using CRRA, there are marginally
significant gender differences in errors defined according to EU distance, as confirmed by
a non-parametric test (females 28.47%, males 24.68%; MWW test, N = 93, z = 2.146,
p = 0.0321). This is a different result compared to Appendix B, where using CARA we
did not find significant gender differences. However, this difference across estimations
might be due to measurement errors and should not be overstated (Gillen, Snowberg,
and Yariv, 2019).

Figure 2 (right panel) plots average response times as a function of expected utility
differences. Response times and EU distance clearly show an inverted U-shaped relation.
Table 5 reports the corresponding regressions, analogously to Table 5. We confirm that
response times are significantly shorter for larger EU distances across all models. This
fundamental effect is robust to controlling for numerical distance, accumulated earnings,

gender, native language, and other controls. Additionally, we replicated that numerical



Table 4: Experiment 2. Random-effects Probit regressions on correct answers for EU
distance. Correct answer is defined as passing when EU < 0 and betting when EU > 0.

Correct Model 1 Model 2 Model 3 Model 4
EU_Dist. 12.9471%** 12.863***  13.606*** 13.583***
(0.724) (0.750) (0.843) (0.844)
Num._Dist. —0.021 —0.023 —0.027
(0.052) (0.052) (0.053)
Num._Dist. x EU_Dist. —1.780** —1.480*
(0.848) (0.835)
Sum Won —0.001***
(0.000)
Female —0.112***
(0.055)
Native 0.110
(0.068)
Age —0.003
(0.006)
Left handed —0.065
(0.078)
Round 0.003*** 0.003*** 0.003*** 0.003***
(0.000) (0.000) (0.000) (0.000)
Constant —0.229***  —0.225"**  —0.226™** 0.359
(0.039) (0.036) (0.037) (0.279)
Log L. -8510 -8509 -8507 -8445
Wald test 411.431***  415.257***  415.727*** 422.769***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

distance does have an effect on response times, validating the view from psychophysics
(Moyer and Landauer, 1967; Dehaene, Dupoux, and Mehler, 1990) that even payofi-

irrelevant perceptual differences might influence actual choice difficulty.
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Table 5: Experiment 2. Random-effects regressions on log response times, EU distance.

Log RT Model 1 Model 2 Model 3 Model 4

EU _Dist. —0.893***  —1.063***  —0.895"** —0.903***
(0.258) (0.243) (0.239) (0.240)

Num._Dist. —0.045*** —0.142*** —0.142***
(0.012) (0.022) (0.022)

Num._Dist. x EU_Dist. 1.957%** 1.956™**
(0.383) (0.382)
Sum Won 0.000
(0.000)
Female 0.018
(0.081)
Native 0.074
(0.116)
Age —0.010
(0.011)

Left handed 0.230***
(0.089)

Round —0.002***  —0.002***  —0.002*** —0.003***
(0.000) (0.000) (0.000) (0.000)

RTO 0.198*** 0.199*** 0.200*** 0.200***
(0.018) (0.018) (0.018) (0.018)

Constant 1.303*** 1.310™** 1.316™** 1.296™**
(0.041) (0.041) (0.040) (0.304)
R? overall 0.131 0.131 0.137 0.156

Wald test 458.704***  458.844 ***  618.502***  642.214***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.
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D Robustness Analysis: RPM Estimation

Random utility models have been recently criticized (see Wilcox, 2008, 2011; Bruner,
2017; Apestegufa and Ballester, 2018; Vieider, 2018) and Random Preference Models
(RPM) have been suggested as an alternative (e.g., Loomes and Sugden, 1995), since
they are immune to some of the critiques. The RPM approach is based on the idea
that a subject’s risk parameter is not fixed but varies randomly. The drawback is that
this also renders it arguably less appropriate in our context since our goal is to obtain a
(fixed) measure of individual risk attitudes. Nevertheless, we also consider an RPM as
an additional robustness check to further ensure that the results obtained in the main

text do not hinge on the specifics of the estimation procedure.

D.1 Description of RPM procedure

For the RPM estimation, we use the same setup as for RUM, and the CARA utility
function given by Equation (1). In contrast to the RUM approach, the RPM assumes
that a subject’s risk parameter is not fixed across trials but varies randomly between
trials. Specifically, we assume that subject ¢’s risk parameter in trial ¢ is distributed
according to iy ~ N (mi,UQ) where m; is subject i’s mean risk attitude. Assuming
Expected Utility maximization, in this setup subject ¢ with utility function u; chooses
Ay over B if and only if Ay(ry) > 0, where A.(r) is as given in equation (2).

Let r; be the risk parameter that would make a subject exactly indifferent between
betting and passing in task ¢, that is, A¢(ry) = 0. Then,

At(rit) >0 & rig> ’l”:.

Again using v;; € {1, —1} as a binary indicator that A; is chosen by subject ¢ in trial
t, the probability of a choice conditional on a subject’s mean risk attitude m; is given
by
m; — 1]
P(vitlmi) = P(vit(rie — r{) > 0lm;) = @ ('Yitth)
where ® is the standard normal cumulative distribution function. As in Appendix A, in
order to introduce between-subject heterogeneity we let the individual mean risk attitude

vary at the population level. In particular, we assume that
~ N 2
m; ~ N (p, 7).

Hence, the log-likelihood for a sample consisting of T trials and N subjects given by the

matrix I' = (i) is

o0

N
10 logL=>» In
(10) sL=3 |

e (™5 g | oy
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Figure 3: Experiment 2. Proportion of betting decisions as a function of expected utility
differences (left panel). Average response times on EU Difference (right panel).

where f(m | u,n) is the density function of the mean risk attitude m. This function is
then approximated following the MSL approach as in Appendix A to obtain the param-
eter estimates (fi, 7, ). Given those estimates, we compute the posterior expectation of
a subject’s mean risk attitude m; conditional on the observed T choices analogously to
equation (8).
Given the estimated individual mean risk parameter /m;, we obtain
1 — T

Gi(r) = ————— for 7; # 0

B 1 — efmifmax

as the estimated utility function of subject 1.

D.2 Results based on RPM estimation

We re-define errors according to the utilities estimated above. The mean error rate
across participants was 29.57%, with a median of 30.59% (SD = 9.08, max 54.71%, min
7.06%). Figure 3 (left panel) plots the frequency of betting decisions as a function of
expected utility differences. The shaded areas correspond to errors with the definition
above. We confirm that the relation between betting frequency and expected utility
differences retains a sigmoidal shape as in the main text (using a RUM with CARA
functions) or in Appendix C(using a RUM with CRRA functions).

We ran random-effects panel Probit regressions where the dependent variable is 1 in
case of a correct answer. Table 6 is the equivalent of Table 3 when an RPM is used. In
Model 1 we see that larger economic distances lead to less errors, confirming the basic
prediction. We reproduce the observation that EU distance has a larger coefficient than
EV distance (almost 16 times). To conduct a proper comparison, we calculated the
relative elasticities. A percentage variation in EU distance increases the probability of a
correct answer by an average of 16.15%, while the analogous percentage for EV distance

increases is only 11.98%.
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Table 6: Experiment 2. Random-effects Probit regressions on correct answers for EU
distance. Correct answer is defined as passing when EU < 0 and betting when EU > 0.

Correct Model 1 Model 2 Model 3 Model 4
EU_Dist. 7.567** 7.533%** 8.712%** 8.683***
(0.418) (0.438) (0.473) (0.474)
Num._Dist. —0.010 —0.024 —0.026
(0.044) (0.043) (0.043)
Num._Dist. x EU_Dist. —2.735%** —2.749***
(0.558) (0.554)
Sum Won —0.001***
(0.000)
Female —0.021
(0.035)
Native 0.088**
(0.043)
Age —0.012**
(0.005)
Left handed 0.073
(0.067)
Round 0.003*** 0.003*** 0.003*** 0.003***
(0.000) (0.000) (0.000) (0.000)
Constant —0.163***  —0.161""* —0.163*** 0.765***
(0.040) (0.038) (0.038) (0.237)
Log L. -8931 -8931 -8921 -8859
Wald test 347.236%*  347.995%**  402.792***  488.139 ***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

Model 2 in both tables introduces numerical distance as an additional control. In the
presence of EU distance, numerical similarity does not seem to play a role. The effect
is also insignificant when controlling for the interaction between numerical distance and
EU distance (Model 3), and when adding further controls (Model 4).

In all models we further control for learning effects. Participants appear to improve
during the course of the experiment. As in Appendix B, there are no gender differences in
errors defined according to EU distance, as confirmed by a non-parametric test (females
30.29%, males 27.69%; MWW test, N = 93, z = 1.469, p = 0.1432). However, under
this specification native speakers (77) performed marginally significantly better than
other participants (natives 28.77%, others 33.42%; MWW test, N = 93, z = —2.312,
p = 0.0199).

Figure 3 (right panel) plots average response times as a function of expected utility
differences. Response times and EU distance clearly show an inverted U-shaped rela-
tion. Table 7 reports the analogous regressions to Table 5. We confirm that response

times are significantly shorter for larger EU distances across all models in Table 7. This
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Table 7: Experiment 2. Random-effects regressions on log response times, EU distance.

Log RT Model 1 Model 2 Model 3 Model 4

EU _Dist. —0.585"**  —0.532*** —0.635*** —0.635***
(0.178) (0.180) (0.194) (0.193)

Num._Dist. —0.128*** —0.144*** —0.144***
(0.018) (0.019) (0.019)
Num._Dist. x EU_Dist. 0.245 0.240
(0.185) (0.185)
Sum Won 0.000
(0.000)
Female 0.010
(0.081)
Native 0.078
(0.116)
Age —0.009
(0.011)

Left handed 0.223***
(0.089)

Round —0.002***  —0.003*** —0.003*** —0.003***
(0.000) (0.000) (0.000) (0.000)

RTO 0.198*** 0.200*** 0.200*** 0.200***
(0.018) (0.018) (0.018) (0.018)

Constant 1.296*** 1.347* 1.354*** 1.309***
(0.041) (0.043) (0.043) (0.308)
R? overall 0.134 0.137 0.137 0.155

Wald test 439.833***  575.801 *** 572.307 ***  589.463***
Obs. 15810 15810 15810 15810

Robust standard errors in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01.

fundamental effect is robust to controlling for numerical distance, accumulated earnings,
gender, native language, and other controls. Additionally, we again replicate the obser-
vation that numerical distance does have an effect on response times, validating the view
from psychophysics (Moyer and Landauer, 1967; Dehaene, Dupoux, and Mehler, 1990)

that even payoff-irrelevant perceptual differences might influence actual choice difficulty.
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