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ADAPTIVE ESTIMATION FOR AFFINE STOCHASTIC
DELAY DIFFERENTIAL EQUATIONS

MARKUS REISS

ABSTRACT. We consider the stochastic delay differential equation

0
dX(t) = ('ng(t) +X(t—1)+ X(t+ u)g(u) du) dt + o dW (t),
—Tr
with 7,0 > 0, 70,7~ € R and a weight function g € L'([-r,0]). For
stationary solutions of this equation we consider the problem of non-
parametric inference for the weight function g and for 7o, 7, from the
continuous observation of one trajectory (X(t), t € [0,7]) up to time
T >0.

For weight functions in the scale of Besov spaces By, ; and L”-type loss
functions convergence rates are established for long time asymptotics.
The estimation problem is transformed into an ill-posed inverse problem
with error in the data and the operator. The degree one of ill-posedness
explains the rate (1'/log1’)” +3 obtained under certain restrictions
on p and p. This rate is shown to be optimal in a minimax sense for
the estimation problem. Our adaptive estimator is based on a suitable
wavelet thresholding algorithm for the ill-posed problem involved.

1. INTRODUCTION

Stochastic delay differential equations (SDDEs for short) appear natu-
rally in the description of many processes, e.g. in population dynamics with
a time lag due to an age-dependent birth rate (Scheutzow 1984), in econom-
ics where a certain "time to build” is needed (Kydland and Prescott 1982)
or in laser technology (Garcia-Ojalvo and Roy 1996), in finance (Hobson and
Rogers 1998) and in many engineering applications, see Kolmanovskii and
Myshkis (1992) for an overview. They are also obtained as continuous-time
limits of time series models, e.g. Jeantheau (2001), Rei (2001). Among
the huge variety of types of equations, the so-called affine stochastic de-
lay differential equations form the fundamental class. They generalize the
Langevin equation leading to the Ornstein-Uhlenbeck process and appear
as continuous-time limits of linear autoregressive schemes. A general scalar
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2 MARKUS REISS
affine SDDE is of the form

0

(1.1) dX(t) = (
(1.2) X(u) =F(u), uel-r0.

X(t+u) da(u)) dt + odW(t), t>0,

-

The drift coefficient depends linearly on the past trajectory (X(u), u €
[t — r,t]) by means of an integration with respect to the finite signed Borel
measure a on [—r,0]. The values r and o are supposed to be positive and
(W(t),t > 0) denotes a standard Wiener process adapted to a filtration
(Ft)e=0, satisfying the usual conditions. In order to ensure well-posedness
of the differential equation, a whole initial function F' independent of the
Wiener process is prescribed. The Langevin equation without memory effect
is obtained if a is taken to be a point measure ady with o € R.

The asymptotic properties and the existence of stationary solutions for
affine SDDESs, even with more general driving processes, have been studied in
detail by Mohammed, Scheutzow, and von Weizsaecker (1986) and Gushchin
and Kiichler (2000). Our goal here is to estimate the weight measure a
nonparametrically from the observation (X (¢),t € [—r, T]) of one realization
of a stationary solution to (1.1). For this purpose, we assume that the weight
measure has a Lebesgue density. As it turns out, it is rather natural from a
mathematical point of view that we also allow the measure to have additional
point masses in the interval endpoints —r and 0.

A linear estimation technique for L?-risk and weight functions in L?2-
Sobolev balls of regularity s > 3 has been presented in Reif§ (2002). By solv-
ing a related ill-posed inverse problem by the Galerkin projection method a
minimax risk of order 7—%/(25%3) for observation times T'— oo has been es-
tablished. Here, we strive for adaptive estimation, that is we do not suppose
the regularity of the unknown weight function to be known and we automat-
ically adapt to spatial inhomogeneity of the function. Moreover, we allow for
more general LP-loss, p € (1,00). As usually in adaptive estimation theory,
we are lead to consider density functions in Besov spaces B ,([-7,0]) and
to use nonlinear approximation techniques. Under suitable conditions on p
and p we shall find for our adaptive estimator an asymptotic risk of order
(T/1og T)~*/(?3+3) which will be shown to be minimax with respect to the
Besov classes considered.

For the construction of the estimator wavelet thresholding techniques in
a suitable image domain are used. Our approach is related to the wavelet-
vaguelette decomposition and vaguelette-wavelet decomposition methods
which have been proposed for solving ill-posed problems (Donoho 1995,
Abramovich and Silverman 1998). In fact, the latter paper presents the
main idea: we first threshold the wavelet coefficients and then invert the
equation. Since our operator is not exactly known (and for each observation
different) the inversion should not be performed by calculating the corre-
sponding vaguelettes exactly, but rather by applying a numerical inversion
algorithm. For this we can allow for numerical errors up to the order of the
statistical error in the first step and even rely on adaptive procedures, see
Cohen, Hoffmann, and Reifl (2002) for details and mathematical results.
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Mathematically speaking, we denoise the data in a certain Sobolev space
and follow the lines of the abstract results obtained by Kerkyacharian and
Picard (2000) for heteroscedastic noise. Then in a second step, an integral
equation with the empirical covariance function as kernel and with the data
derived from the wavelet estimator will be solved. For the right choice of the
thresholding level and for theoretical purposes the regularity of the covari-
ance function and the mapping properties of the covariance operator have
to be thoroughly investigated. A numerical simulation study is beyond the
scope of this paper and we refer to Cohen, Hoffmann, and Reifl (2002) where
an algorithm is presented that can be adapted to determine our estimator
in practice.

Except for the afore-mentioned paper (Reil 2002), statistical inference
for the weight measure in affine SDDEs has so far only be considered for
parametric models, e.g. by Kutoyants, Mourid, and Bosq (1992), Gushchin
and Kiichler (1999) and Gushchin and Kiichler (2001), where for sufficiently
smooth parametrisations of the weight measure a = ay the classical LAN-
property with rate 7-/2 holds under stationarity assumptions. On the other
hand, nonparametric and even adaptive estimation of the drift coefficient b
in ergodic diffusions

dX(t) =b(X(t))dt+ocdW(t), te][0,T],

is well established (Hoffmann 1999, Dalalyan 2001). Albeit a similar struc-
ture of the estimation problem, under recurrency conditions the minimax
rate for estimating drift functions b of regularity s is 77%/(25%1D indicat-
ing a close relationship with classical regression estimation. In our SDDE
case the worse, because smaller, exponent s/(2s + 3) can be explained in-
tuitively by the presence of an integration in the drift term, which leads to
additional smoothing of the observation and thus makes the inference more
difficult. More correctly, the deterioration is due to an ill-posed inverse prob-
lem involving the covariance operator of the solution process of the SDDE.
Ill-posed problems with stochastic error in the data have attracted increas-
ing attention recently and exact minimax rates have been obtained for ideal-
ized settings, see Donoho (1995), Nussbaum and Pereverzev (1999), Cavalier
and Tsybakov (2002) or Kalifa and Mallat (2003) and the references therein.
These results provide a good guideline for the estimation technique applied
in this paper, but their assumptions like known operator, exact mapping
between Sobolev scales or Gaussian noise are violated. As far as we know,
inverse problems with approximately known operator kernel have only been
considered in an abstract deterministic setting by Hamarik (1983) and coau-
thors.

In Section 2 we introduce the theory of affine SDDEs and their stationarity
behaviour and present results on the regularity of their covariance function
and mapping properties of their covariance operator. Section 3 is devoted to
the construction of the estimator and the statement of the main theorems.
In Section 4 we assess the optimality of our estimator by the minimax ap-
proach. The proofs of the statements are delayed to Sections 5 to 7, Section
n providing the proofs for Section n — 3. In the appendix we have collected
some essentials on function spaces and wavelet bases.
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Let us fix some notation. P, and E, denote the probability measure and
the expectation operator depending on the parameter a. The space of con-
tinuous (resp. p-integrable) functions on the interval I is denoted by C(I)
(resp. LP(I)). The space of finite signed Borel measures on I is written as
M(I) and equipped with the total variation norm |fe||7y. d, is the Dirac
measure in = and g o A denotes the measure with Lebesgue density g € L.
Usually, the density ¢ is identified with the measure g o A and thus oper-
ators acting on measures are considered to act on the densities itself. For
Jf € C(I) and p € M(I) we introduce the dual pairing (f, ) := [; f du. The
cardinality of a set M is denoted by |M|. Finally, the symbol A(T") < B(T)
means that A(T) is bounded by a multiple of B(T) independently of T', that
is A(T) = O(B(T)) in the O-notation. Equally, A(T) 2 B(T) stands for
B(T) S A(T) and A(T) ~ B(T) for A(T) < B(T) as well as A(T) 2 B(T).

2. AFrFINE SDDE

For the theory of deterministic delay equations we refer to the mono-
graphs by Hale and Verduyn Lunel (1993) and Diekmann, van Gils, Ver-
duyn Lunel, and Walther (1995), whereas fundamental results on stochastic
delay equations can be found in the monographs by Mohammed (1984) and
Mao (1997). If we put ¢ = 0 in (1.1), we obtain the deterministic linear
delay equation

(2.1) i(t) = /O 2(t +u)da(u), t>0.

—-r

As for linear ODEs the ansatz z(t) = e gives rise to a characteristic func-
tion the zeros of which determine the long-time behaviour of general solu-
tions z.

Definition 2.1. The characteristic function associated to (1.1) is defined
by

0
Xa(A) := A —/ eMda(u), MeC.

-Tr
The mazimal real part of its zeros is denoted by

vo(a) := sup {Re(A) | xa(A) = 0}.

Without loss of generality we shall henceforth assume o = 1; otherwise

we rescale X and consider X (t) = 01X (¢) instead. Kiichler and Mensch
(1992) then prove the following result:

Theorem 2.2. A stationary solution of the affine SDDE (1.1) exists if and
only if vo(a) < 0 holds. In this case the stationary solution X is unique.
It is a centered Gaussian process with (auto)covariance function qq(t) :=

E.[X(0) X (|t])], t € R, satisfying

0
(2.2) q.(t) = / qa(t + u) da(u) for all t > 0.
Its spectral density is given by

o ; 1
2.3 Ga(& ::/ ut)eStdt = ——— ¢cR.
23 &= e = e
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Example 2.3. For the point measure a = ady equation (1.1) reduces to a
stochastic ordinary differential equation with the Ornstein-Uhlenbeck process
as solution. We obtain xq(A) = A — a and vy(a) = a. For a <0 a station-

ary solution exists with covariance function q,(t) = ﬁe"aﬂ and spectral

density qa(€) = (&2 +a®) ™.

The law px of the solution process X on the interval [0, 7] is mutually
absolutely continuous to the law pp of Brownian motion starting in X (0)
in the canonical space C([0,7]). We express the likelihood ratio by certain
sufficient statistics by and Q7 that will be of major importance subsequently.

Definition 2.4. For the solution process X of (1.1) define
T
by (u) ;:/ X(t +u) dX (1) we [=r,0],
0

T
qr(u,v) := /0 X{t+u)X(t+v)dt  wu,ve|[—r0],

0
Qrulu) == / gr(u,v) dp(v) we [=r,0], p € M([—r,0]),

-
0
Quitu) = [ aulu =) du(v) we [=r,0], g € M([=r,0]).

-T
The operator Q, is the covariance operator of the stationary process X on
[—7, 0], regarded as element of C([—r,0]), which maps the dual M ([—r,0]) to
C([-7,0]). The operator %QT 1s referred to as empirical covariance operator,
since %qT 18 the empirical covariance function.

It is understood that for by a continuous version in u € [—r, 0] is chosen,
which is possible since the Kolmogorov continuity theorem applies due to
the moment bound:

E [(/OTX(t ) dW (L) — /OT X (t + us) dW(t))ﬂ

(2.4) SE[(/OT(X(t—i—ul) — X(t+ up))? dtﬂ
S T2 (ur — u2)?,

which follows from the Burkholder-Davis-Gundy inequality and the uniform
Lipschitz continuity of the covariance function ¢,, see Proposition 2.8.

Theorem 2.5. For a deterministic initial function F in (1.1) the Radon-
Nikodym derivative Ap(X, X(0) + W) of px with respect to pw is given
by

Ar(X, X(0) + W) = x—;
:exp(/OT iX(t—ku) da(u) dX(t)—%/OT( iX(t—Fu) da(u)) dt)

= oxp({br,0) — §(@ra,a)).
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This result is the basis for the maximum-likelihood theory developed by
Gushchin and Kiichler (1999). Its proof is derived from the Girsanov theorem
for diffusion-type processes and the stochastic Fubini theorem, see Liptser
and Shiryaev (2001) or Kiichler and Sgrensen (1997).

The first impulse to define a nonparametric estimator ar of a would thus
be to maximise the likelihood function which amounts to solving the infinite-
dimensional equation Qrar = byp. However, the empirical covariance oper-
ator Q7 need not be invertible, and although the covariance operator Q,,
obtained in the limit, is invertible, its inverse ;! is an unbounded op-
erator, as will be shown later. Hence, we are in a classical nonparametric
situation and smoothing methods need to be employed. Our basic idea is to
smooth first and then to solve the maximum likelihood equation in terms
of the smoothed quantities. The convergences %QT — @, and %bT — Qqa
for T — o0, a consequence of Theorem 3.2 and Corollary 3.3, show that
in the limit of an infinitely long observation period the weight measure a
is always identifiable. Having adapted an asymptotic viewpoint, we proceed
by analysing the covariance operator @, in detail. From this analysis and
the exact convergence properties all subsequent results will be derived.

For the notion of Besov spaces B, , of functions with LP-regularity s and
fine-tuning parameter o we refer to the appendix. Just recall the identity
B3 o = W* 2 50 that the subsequent results are in particular valid for the
scale of L?-Sobolev spaces W*2. Kiichler and Mensch (1992) show that the
covariance function g, is twice differentiable on R\{0}, but its derivative
has a jump in zero which implies that, roughly speaking, the covariance
operator (), is smoothing of order two, that is measures with density B, ,
are mapped to Bf;*(f, cf. Theorem 2.9. Moreover, the point measures §_,
and Jyp at the boundary of [—r,0] are even mapped to B;j;3, which is not
true for point measures in (—r,0) that “see” the irregularity of g, at zero.
In anticipation of these mapping properties we introduce suitable spaces of
weight measures, just recall that g o A denotes the measure with Lebesgue
density g on [—r,0].

Definition 2.6.
e (Besov scale) For s >0, p € (1,00), a € [1,00], v < 0 set

By i= {1080 + 10+ 90 A 70,5 € R, g € Bya([=r,0]) }.

BS (v) = {a € B |vo(a) < fv}.
On B, , we introduce the norm
17000 + o + g © Mls.p,a == 1ol + [yel + 191l B3 . (1=r.0))-
e (LP scale) Forp € (1,00), v <0 set
LP = {70(50 + %0 +goX|v0,v €ER, g € LP([-r, 0])},
LP(v) = {a € LP|vp(a) < —v}.
On LP we introduce the norm

17000 + -0 + g © Ally = [0l + [yl + [lgll o (—r0)-
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The space B, , is isomorphic to the tensor product R? ®B, , and thus
(By.as llellsp.a) is a Banach space. The SDDE (1.1) with weight a € B, ,

typically reads like

0
dX(t) = (fYOX(t) FX(E—r)+ | X(t+wglw) du) dt +dW(t), t>0.
T
The set B, ,(v) is a closed subset of B; ,, due to v < 0 consisting of weights
with a uniform mixing behaviour. This follows from a result in Reiff (2002)
adapted to more general weight measures. By the same arguments these
properties also hold for £P. The Besov-type weights form the nonparametric
class M(s,p, S,0) for which our estimator will be shown to be rate-optimal,
whereas the space LP will merely occur in the context of mapping properties
of the covariance operator.

Definition 2.7. For s >0, S >0, p € [1,00] and § > 0 set
M(Svpv Sa 6) = {CL € BZSJ,I(_(S) | ”aHS,p,l S S}

The choice a = 1 in the definition will be discussed in Section 3.3. We shall
need a very precise regularity and tail behaviour result for the covariance
function ¢, depending on properties of a. Roughly speaking, the covariance
function is three times more regular than the weight itself and decreases
exponentially fast.

Proposition 2.8. Let Es be the multiplication operator with the exponential
Es(f)(t) := f(t)e’ . Then for a € B; ,(v) with v <0, s >0 and p € (1,00),
a € [1,00] the covariance function g, has for any 6 € (0,|v|) the property
Esqa € B3 ([0,00)).

In ReiB (2001) and Gushchin and Kiichler (2001) it was shown that the
covariance operator is always one-to-one on M ([—r,0]) and maps densities
in L2([—7,0]) to W22([—r,0]). Here, we need the mapping properties along
the scale of Besov spaces. Using Proposition 2.8 we show that the covariance
operator is for a certain range of Besov spaces also smoothing of order two.
The inclusion of point measures at the interval boundary makes this mapping
isomorphic:

Theorem 2.9. For weight measures a in B, ,(v) and the parameters as
before the covariance operator is a bijective bounded linear operator on the
appropriate spaces:

Qa: B, — B;jf([fr, 0)) and Q, : LP — W?P,

In order to obtain upper bounds in a minimax sense for our estimator,
we shall need uniform norm bounds in the preceding statement.

Theorem 2.10. If (a,,) is a sequence of B, ,(v)-weights that converges in
By -norm to the B, ,-weight a for some o > s —2+(1V 1%) and s,p, o, v as
before, then the covariance operators converge in operator norm:

nh—)nf}oHQan — QaHBz,a_’B;g,tf = 0
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Consequently, for s,5,0 > 0, p € (1,00) the operator norms are uniformly

bounded:

sup [ Qallgs _ pst2 < oo, sup ||Q;1HBSE2_)BS < 0.
a€M/(s,p,S,0) P P a€M(s,p,S,0) P P

The statements remain true if B, , is everywhere replaced by LP and Bf,jf
by W2P and under the condition that (a,) converges in LP-norm to a.

3. CONSTRUCTION OF THE ESTIMATOR

3.1. The general idea. We start by smoothing the statistic by adaptively.
To this end kernel and wavelet methods are equally applicable, but since an
integral equation with this estimator as data has to be solved later, wavelet
techniques avoid a second numerical discretisation step. For the notation
(1) of an s-regular wavelet basis on [—r, 0] we refer to the appendix. The
thresholding techniques used are similar in spirit to the methods developed
by Donoho (1995), Abramovich and Silverman (1998) and Kerkyacharian
and Picard (2000).

First, we need to clarify the functional nature of the noise in the estimate
%bT of Qga. A good intuition gives the decomposition (recall o = 1)

bT(u)—/0T<X(t+u)/iX(t+v)da(v)) dt+/OTX(t+u)dW(t)

T
(3.1) = (Qra)(u) +/0 X (t+wu)dW(t).

Suppose for a moment that %QT equals @, exactly (it is in fact the less
important estimation error). The error term is then due to the stochastic
integral term which is as regular with respect to u as Brownian motion due
to the Kolmogorov continuity theorem. Thus, we do not face the classical
“signal+white noise”’-model, but rather an integrated form involving the
signal and a perturbation by Brownian motion; one may think of recovering
the function f from the noisy observation

Y(t) = f(t) +eW(t), teo,1].

However, in our setting the noise is not Gaussian and we are not interested
in the signal f = Qua itself, but rather in Q;'f = a. Taking account of
Theorem 2.9 we are going to minimise the expected LP-loss in estimating
the signal Q,a with minimal W?2-loss. Although our noise process is more
regular than white noise, we encounter an ill-posed problem because the
noise is far less regular than the norm we want the signal to be estimated
in; the regularity differs roughly by %, since the W%P-norm postulates reg-
ularity 2 while Brownian motion is of regularity % only. A general result
in an idealised Gaussian and Hilbert scale setting for this kind of ill-posed
problems has been developed by Nussbaum and Pereverzev (1999). They
obtain our minimax rate 7%/ ((+3/2)) in our case of (known) operators of
smoothing order 2 and noise regularity %
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For resolving our problem in practice the abstract wavelet thresholding
results by Kerkyacharian and Picard (2000) can be well adapted. Our es-
timator by is obtained by expanding by in a wavelet basis up to a certain
level and only keeping the significant coefficients (hard thresholding).

Definition 3.1. Let spae > 2 be fized. With by from Definition 2.4 intro-
duce for any multi-index A the wavelet coefficient

Bag = (&b, 1y),
where (¥x)x is a compactly supported Spmaz-regular wavelet basis in
L2([—7,0]) (see Appendiz 8.2). Define the thresholding estimator

by == BT’J(T),/{(T) = Z (ﬂAvT1|ﬁ>\,T|>“>\(T)) U
IA|<J(T)

for a certain resolution level J(T) and thresholds (kx(T))x.

3.2. Results. How should we choose the threshold values kx(7")? The sec-
ond term in the decomposition (3.1) gives for 8y the variance estimate
T~ HQuvn, V)) ~ T-12721M by Lemma 8.8. In Section 3.3 we comment on
the choice for a specific sample, here however, we only strive for asymptoti-
cally optimal threshold values x)(7T), T — oo, that obey uniform exponen-
tial tail estimates. To this end we study the convergence of exponential-type
moments of %QT

Theorem 3.2. Let (vx)x be a compactly supported 2-reqular wavelet basis of
L3([-7,0]) and let 8, R > 0 be given. Then there are constants K, Ty > 0 such
that for all weight measures a with vo(a) < —0, ||la||ry < R, all multi-indices
A, all measures . € M([—7,0]), all T > Ty and all o € [0, TY2(K || p||7v) ")
the following moment bound holds true:

E, [cosh(aT 222N 2(LQr — Qa)p,10))] < exp (K ||ul3ya?).

In particular, using 2™ < cosh(z) we obtain

(3.2) Eal((7Qr — Qa)u ) >"™ S T2 N2y

We note that the overall noise level is 7~1/2 as expected and that the noise in

+qr(x, ) — ga(z — o) is a-Hélder continuous for all aw < 1 (put g = ;). This
is intuitively clear by the definition of ¢ as a convolution-type integral. For
br however, the noise regularity will only be like Brownian motion of order
%, which can be established by using the decomposition 3.1 and martingale
inequalities in combination with the result for ¢r. Even more, we obtain
Gaussian tail estimates.

Corollary 3.3. Let R, 6, p > 0 and fix a wavelet basis () as before. Then
there is a universal bound k* > 0 such that uniformly for all weight measures
a withvy(a) < =94, ||lallrv < R, all multi-indices X and all T sufficiently large
the following large deviation bound holds:

(33)  Pa(2MTY2(Fbr — Qua, 02| = 5108 T) ST ¥k 2 k"

We shall therefore set sy (T) = 2~NT-Y2\/logTk. As is classical in
wavelet methods, we choose the maximal frequency level J(T') such that
J(T)27(") is anti-proportional to the variance level T,
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Proposition 3.4. Let s € (0, Symae — 2], S > 0, p,p € (1,00) and 6 > 0 be
given satisfying

(3.4)

<

S
=
DI
wlw

Set 27 ~ T/logT and kx(T) = k2-NT=1/210g(T) with k chosen as in
Corollary 3.3. Then we obtain the following asymptotic estimate for the
estimator by from Definition 3.1 :

Ed[lbr — Qual ]<( d )
sup T — a 20| .
a€M (s,p,S,0) ¢ amliwEe lOgT

In the next step we construct an operator @T from the observations up to
time 7', which is close to the true covariance operator. We could, of course,
use the results for QQp from Theorem 3.2, but it is even simpler to use the
relationship ¢, (t) = Qua(—t) for t € (0,r] deduced from (2.2):

0 0
0t) = [ ault+5)dato) = [ aul-t - ) dals) = Qua( )

—r —r
Writing ¢, (t) = ¢4(0) + fg q¢),(u)du, we can thus determine ¢, from ¢,(0) and
Q.a and derive an estimator from estimators for these two quantities. This
is exactly the construction method of Qp we shall adopt. We thus avoid
further time consuming calculations.

Theorem 3.5. Let the parameters s, S, p and 6 be as before. Introduce the
integral operator Qr with convolution kernel

] ‘—l ! 2 " v)dv, u€|[-rr
qT(u).—T/O X(t) dt+/ubT()d, € [-rrl,

ice. Qru(t) = [°, ar(t —u) du(u) Jor t € [=r,0], p € M([=r,0]).
Define the estimator ap by

. min (SH@;IIA)THZ,}, 1) @;18% if @T 1 LP — W2 s invertible,
ap =
0, otherwise.

Then the following asymptotic upper bound holds for T — oo:

T \ 213
s Eollor - alel S (g ) -
a€M (s,p,S,0) OgT

3.3. Discussion. Our method differs from the classical wavelet threshold-
ing algorithm for density estimation or regression due to the ill-posedness
involved. Our threshold k) depends on the resolution level |A|, because the
intensity of the noise coefficients is of order 2= MT~1/2, Furthermore, it is
not necessary to suppose additionally that the weight lies in W= because
the restriction (3.4) is much stronger than in the classical setting. We have
chosen the Besov scale (B, ,) with a = 1 for simpler embedding relations.
In fact, @ = p/p would do as can be seen from (6.2). It is not known whether
this value is the maximal possible.

Which rate of convergence do we obtain for the LP-risk of the weight
function g = —1[_ 1] with delay r = 17 This might be seen as a toy example
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1
34|
(2]
3/10
38 7
0 1/20 14 12 3/5 1
1/p

FIGURE 1. Restriction (3.4) for adaptive estimation of B, ;-
weights in LP-loss, p = 5/3; 2; 4; 20. For any space above the
lines the rate is (T'/log T)~%/(25+3) for those below we have
to use embeddings. The dashed line shows the embedding of
a piecewise constant weight function.

for estimating a change point or the maximal delay time. The function g lies
in Bllyoo([—l,OD and thus by embedding in W? and By, for o < %. This
shows that linear methods as in (Reifl 2002) cannot converge faster than
with rate T—1/(2+30) whereas our wavelet thresholding estimator achieves
(almost) the rate T'/5 for p < 5/3 and the rate T—/(¢) for p > 5/3, which
is a significant gain, see also Figure 1. If our results could be generalized
to cover the case of the quasi-Banach spaces LP for p < 1 (which is to be
expected), then g € le,,/o% for p < 1 would yield (almost) the L'-rate 7-/3.

In the mathematical results we have focussed on the spatial adaptivity
of our estimator, but the construction is clearly independent of major a
priori knowledge of the unknown parameter. However, we had to assume
some maximal domain of regularity (Smaz), some bound on the size (S) and
some uniform mixing behaviour (4). The resulting minimal asymptotically
optimal threshold x* depends in a complicated way on these quantities. So
clearly the question is how to choose k) for a specific observation up to time
T.

First of all note that T8 r — (Q7a,¥y) is a martingale with respect to T
with quadratic variation (Q7y, ¥y ). Asymptotically for 7" — oo the random
variable

= T2 Br — (£Qra, ¥y) (

with 03 7 := (2Qri, ¥y) ~ 272)
O\T

Ui

is therefore N(0,1)-distributed by the martingale central limit theorem.
In other words, we observe the coefficient (%QTa,le under the mnoise
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7Y 20,\7T77,\’T. Because 012\7T converges stochastically, we conclude that the
noise is approximately normal distributed with variance Tfla?\’T, which is
observable. Thus, we are lead to apply the usual threshold rules in the Gauss-
ian shift setting, see Donoho and Johnstone (1994) for a detailed discussion
and Neumann and von Sachs (1995) for the case of only asymptotically
Gaussian noise. It only remains to take account of the W22-norm used so
that we have to be a little bit more conservative and should choose in the

Hilbertian case p = 2
Rj = T_l/zd,\,T\ /6 log(TU;’%ﬂ),

provided the isomorphy constants in Theorem 2.9 are close to one when
measured in the corresponding wavelet coefficient norms, cf. equation (17)
of Abramovich and Silverman (1998). The maximal frequency J should be
chosen such that J71277/ ~ T~!max, aiT, which is an estimate of the
squared noise level.

If only discrete observations (X;,) are available with 0 =g < t; <--- <
ty = T, then it can be shown that the error in approximating the stochastic
integral by does not increase the asymptotics as long as A := max;(t;+1—t;)
satisfies A < T—1/2, For low-frequency observations, that is A > 0 fixed and
N — 00, it is an open question whether a consistent estimator exists at all.

One might want to consider the submodel in which the weights do not
include any point measures, i.e. the weight space B, ; instead of B} ;. For
this one can project the estimator a; onto LP([—r, 0]) by neglecting the point
measure part. The asymptotic risk bound remains the same.

Finally, note that the approach can be extended naturally to multi-
dimensional affine SDDEs where a matrix A of weight measures is to be
estimated. In this case, we use the matrix-valued statistics by and gp formed
by applying the one-dimensional definition to all cross terms and we are lead
to the analogous inverse problem QTA ~ by to determine an estimator A. A
mathematical analysis of an adaptive version of A seems feasible and a wide
range of applications could be addressed, the model being the counterpart
of vector autoregressive processes in time series analysis.

4. OPTIMALITY OF THE ESTIMATOR

We show that the adaptive wavelet thresholding estimator is rate-optimal
with respect to LP-risk functions, in the sense that one cannot improve on the
restriction (3.4) in order to obtain the speed of convergence (T7'/logT )_%H
for weights in B, ;. For smaller values of p the rate of convergence is indeed
worse and is obtained by embedding B ; to By ; with some properly chosen
o < s and m > p, see Figure 1 for an illustration. In the sequel, we merely
assume s + % — % > 0 in order to have the embedding B, ; C £” and thus a
well-defined risk. For the sake of simplicity we do not present the proofs for
the stationary case, but for fixed deterministic initial functions in (1.1). Due
to ergodicity the initial segment is not significant for asymptotic statements,
but the proofs for stochastic initial conditions are lengthy and tedious, see
Reil (2001).
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Theorem 4.1. Let s >0, p > 0,5 > 0 and d > 0 be given with s—i—%—% >0
and such that M (s,p, S, d) has nonempty interior in B; 1. Then the following
asymptotic minimaz lower bound holds for T — oo:

1_1
s+ P

T \ 2s+3-2

wf s Bllar—alel 2 (op)
aT qeM(s,p,S,0) IOgT

where the infimum is taken over all o(X(t), —r < t < T')-measurable esti-

mators ar.

We obtain a fairly complete picture of the minimax rates for the L?-risk
of certain Besov regularity classes M (s,p, S, J).

Corollary 4.2. Assume that s >0, p € (1,00), S >0 and 6 > 0 are given

such that M(s,p,S,0) has nonempty interior in B 1. In what follows the
infima are taken over all o(X(t), —r <t <T')-measurable estimators arp.

(1) (sparse case) For % - % > %% the risk lower and upper bound match,
that is our estimator s rate-optimal in a minimaz sense. We find

| A T\
inf  sup  E,f||ar —allze] ~ < )

aT qeM(s,p,S,0) IOgT
: _ 3 1_1
with o = z25(s 4+, —3) < s
(2) (regular case) For % — % < %% we have

T~ 5%3 Sinf osup  Egfllar —allge] S (L) e
ar a€M(s,p,S,0) 10g T

It should be noted that the actual minimax rates in the regular case are of
course T%/(25%3) which can be attained by estimators taking the regularity
s of the unknown parameter for granted. A Lepski-type adaptive estimation
rule could be applied, too. The transfer of the estimation problem to an ill-
posed inverse problem and the mathematical tools developed allow to apply
further nonparametric inference techniques, e.g. change point analysis to
detect the maximal delay time or hypothesis testing with nonparametric
alternatives.

5. PROOFS FOR THE COVARIANCE FUNCTION AND OPERATOR

5.1. Proof of Proposition 2.8. First we establish the exponential decay
property and the regularity result separately.

Lemma 5.1. The covariance functions decrease uniformly, in the sense that

for all S >0 andv>4§>0

sup [ E54alloc < o0
llallzv <8, vo(a)<—v
Proof. We consider the formula G,(£) = |x4(i€)|~2 from (2.3). Due to
Ixa(i)|? = Xa(i€)xa(—i€) the Fourier transform ¢ can be extended to a
holomorphic function on the strip {z € C ||[Im(z)| < vo(a)} (Katznelson
1976, Section VI.7.1) and satisfies

Bs(0a)(€) = Gal€ +16) = xa(i€ — ) xa(—i& + )1,
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The assumptions guarantee |, (i€ F5)| > [i€+3| —Se”. Since subsets U C
M ([—r,0]) that are bounded and closed in total variation norm are compact
in the weak-* topology of M ([—r,0]) by the Banach-Alaoglu Theorem, the
set of characteristic functions {x,|a € U} is compact in the space of entire
functions equipped with the convergence on compact sets. Consequently, the
classical result from calculus about the convergence of maxima on compact
sets yields for the respective choice of signs
K. = sup max |y, (£i€ 7 0)|7! < oo,
a [§]<28

where the supremum is taken over all measures a as in the statement of the
lemma. We conclude

sup || Esqalloc < sup/
a a

—00

SS(K++K_)+/ (i€ + 8| — Se’™) 2 d¢ < .
lg1>25

o0

Xa(if o 5)71Xa(*i€ + 5)71 dé-

Lemma 5.2. For s >0, p € (1,0), a € [1,00] and v < 0 we have
ac B;7a(v) = qq € B;fj([o, r]),
a € LP(v) = q, € WHP([0,7]).

Proof. Let us write a = g + adg + S, as in Definition 2.6. The covariance
function satisfies (2.2) such that for ¢ € (0,7)

0 0
)= [ aullt+uda(u) = [ aullt + ulglu) du + aga(t) + Baar 1
holds. The properties ¢,(0+) = —3 and g, € C?([0,00)) from Kiichler and
Mensch (1992) imply for ¢ € (0,7)

0
(0 = 5 (| e+ ul)ssnle + wg(u) du+ adi¢) - Bal(r 1))

T

0
= [ 1t + ulgtu) du+ 26,0+)9(-) + ad6) + Baltr )

—Tr
This shows that the third derivative ¢/’ is as regular in a Besov space sense as
g and ¢/. For the first term note that the integral can be split up according
to fi)r = f__: + f_ot such that the regularity result from Lemma 8.3 with
k = g, f = ¢/ and with obvious modifications of the interval boundaries
applies. Since ¢!/ is always more regular than ¢ the result follows. Formally,

one proceeds by putting o := sup{s > 2|q, € B, ,} and noting that the

B}(fa—Q—e)/\s

right hand side is an element of for any € > 0, hence ¢, is in

Béfaﬂfs)/\(sﬁ) and o = s+ 3 follows. For the L£P-scale the proof is the same

except that Lemma 8.4 can be immediately applied to the expression for
/

Qa- [

Proof. (of Proposition 2.8) Again, we make use of identity (2.2). We infer
that ¢, becomes increasingly regular as the time evolves so that g, is in
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Bst3((0,]) for all t > 0 by Lemma, 5.2. Moreover, applying (2.2) repeatedly,
we conclude

145 ()] < llaly lgallo(e—nrg) for t > nr.

By Lemma 5.1 the choice n = [s + 3] + 1 then implies that qgn) decays with

exponential order 6. Expanding the n-fold derivative of e%q,(t) then proves
the assertion ||E5qa]|B;+as([0 soy) < 00 O

5.2. Proof of Theorem 2.9.

Proof. First, let us see how Q, acts on functions f € B; ,. Since @, maps
M ([—r,0]) continuously to C(|—r,0]) by general properties of covariance
operators (Vakhaniya, Tarieladze, and Chobanyan 1987, Thm. 111.2.2), we
only need to estimate ||(Qqf)"||sp,o- By symmetry of ¢, and by the regularity
result ¢, € B;,jgf([o, r]) (Proposition 2.8) we obtain for ¢ € [—r, 0] like in the
proof of Lemma 5.2

0

@u)'®) = [ dite—5)1(s)ds — 100

-

From Lemma &.3 we infer as before the estimate

1(Qaf) lspo S I flspia + 1 ls-1pall@llspr0r S (1 + llgallsts.p.a) 1]

which shows that (), maps B, , continuously to B;EQ. Writing the derivative
operator as D, we further find for any € € (0,2 — (1% Vv 1)) by Lemma 8.3
with k& = ¢/ and by the embedding Bf,:gl C B;,*’;,

||(D2Qa +1d) fllste S ||f||s+€—1,p,a||qg|‘s+s,p’,a’ S lgalls+3pallfllspa-
Hence, D?Q, + Id is a compact operator on Bj (Bste([-r,0]) C
By, o ([~7,0]) compactly).

Let V' C B , denote the kernel of D?Q, and let V¢ be a complementing
subspace of V. By Fredholm theory (Rudin 1991) the range of D?Q, is
closed and its codimension equals the finite dimension of V. Therefore there
exists a complementing subspace U of D2QQ(B;7Q) with dimU = dimV.
The situation is illustrated by the following diagram:

S,p, ¢y

Bi,, = V¢ @& V
Je.
Bt = Qu(Bja) + (DH)7N(U)

Bj,= D?Qu(Bj,) & U

While the decomposition in the first and in the third line hold by definition,
the representation of Bf,i’f in the second line follows from the third line due
to (D?)7(By ) = (D*)THD?*Qu(B} ) ®U) C Qu(By,) + (D?)7H(U). The
fact that Qu(V) is contained in the kernel of D? implies that the operators
Q. and D? each map the vertically corresponding subspaces into each other.

This argument shows that Qq (B3 ,) is a closed subspace of B2 of codi-
mension not larger than two. Due to Qu0_, = gu(e + 7) and Q.09 = ¢, we
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have Qq(span(d_,, dy)) C Bst?® C Bit? by Proposition 2.8. The injectivity
of Q4 on M ([—r,0]) implies that Q4 (span(d—,, dp)) is a two-dimensional sub-
space of B5t? in the complement of Qq(Bj ). Owing to codim Q. (Bj ) < 2
this codimension must equal two and Q, : B} , — B;jf is onto, hence bi-
jective. Because @, is separately continuous on these two subspaces, it is
continuous on its span By , and by the open mapping theorem it is an iso-
morphism.

Exactly the same reasoning applies for L” and L? instead of B, , and

By ., just apply Lemma 8.4 to (Q.f)". O

5.3. Proof of Theorem 2.10. This will be a consequence of the following
continuity property.

Proposition 5.3. Suppose s > 0, 1 < p < oo, a € [1,00] and v < 0 are
given. If (ay) is a sequence in By ,(v) that converges in B, ,-norm to the
B; (v)-weight a, then ||Es(qa, — q“)HBf;,JB? — 0 follows for all 6 < |v|.

Proof. Put f,, := qa, — 9o and an, = gn + Vr,nd—r + Y0,n00. As before the
following identities hold for ¢ € (0, 7):

o= ([ ot wdag)— [ aulet da<u>)/ (0

-r -

0 !/
= ( 3 fnle+u) dan(u)> (t) + (Qalan —a)(—e))'(t)

4 0
—— [ nt=wgdes [ 1+ 0 du

—-r

= Yrnfn(r =) + Yo fr(t) = (Qalan — a))'(—1)
r—t

0
—— | fhu)ga(—u—t)du+ /_ Fo(wgalu — t)du

0

= Yranfn(r =) + Yo fn(t) = (Qalan — a))'(=1).

By Lemma 8.3 we obtain for all o > 0 (allowing the value co) the estimate

£ llopa S 1 fallop o llgnllo-1p.a + (Y10l + 2n DI

(5.1) +1Qull oo g lan = all 10,

U7p7a

For a,, — a weakly the covariance functions converge in W#:2([0,7]) for
all p < 3, which has been established in ReiB (2002) by spectral methods.
Hence, || fu|lo,p, — 0 holds for all 0 < 2+ %. In particular, the convergence
| fnllL» — O follows. The right hand side of estimate (5.1) is thus finite for
all o € (0, %) Once again using By, C B;’,Talfe for any € € (0,2 — (% V1)),
we obtain for all 0 < s+1

||fn||a+2,p,a N ”anLp + Haan,p,a |fn’|o+2*€,p,a + ||Qa“Han - aHs,p,Ot'

Starting with op = &, we can iterate this estimate (0,41 := min(o,+¢, s+
1)). Hence || fp||s+3,p.o is bounded by a multiple of || fu||ze + || frll2.p,0 + ||an —
a||s p,a» Which tends to zero for n — oo. This proves || fn|/s4+3,p,a — 0. O
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Proof. (of Theorem 2.10) By linearity we have for f € By , and t € [—r,0]
(Qan — Qa)N)"(t) =
—t

r+t
/0 ft = u)(qa, — ¢a)" (u) du + A ¢a)" (u) du.

By Lemma 8.3 and by the norm estimates |[[o||s42,/ .00 S [[o|lo+3pe and
lloll o S |lo|lo+3,p,0 We infer the bound

1(Qap — Qa) fllst2p.0 S (Qap — Qa) fllzee + [ flls—1p.0l (dan — ¢a)" s pr .o
N (ann - anLT‘/ + [|9an — Qa||d+3,p,a)||f||s,p,a

s p.ac
Since M (s, p, S,d) is bounded in B, ,, it is relatively compact in any By ,
for ¢ < s. Since the operator norm of @), depends continuously on a in

B ,-norm for some o < s, the supremum of [|Q,]| is attained and finite.
The norm continuity of the mapping Q, — Q' (Rudin 1991, Thm. 10.11)
yields the second bound.

The proof in the IP-case is performed in a completely analogous way. [

5 ||Qan - Qa||a+3,p,a

6. PROOF OF THE UPPER BOUND

6.1. Proof of Theorem 3.2.

Proof. Due to cosh(z) =) % we shall estimate polynomial moments.
Using the finiteness of E[|| X HQC’E‘[_T T])] by the Fernique theorem on C'([—r, 1)
as requirement for the Fubini Theorem we obtain:

Eo[((£Qr — Qa)is ¥2)*™]
= Ea[(:uv (%QT - Qa)’@b/\>2m]

= /[T o E, [ﬁ(%QT - Qa)l/)(uz')] du(uam) . . . dp(ur)

2m
< HNHQTT{} SUP/[ op E, [H(%QT(W,U@') — Q(z(ui,vi))} Hw,\(vi) dvom, . .. dvy
-, m i1

w; "
7 =1

= HuH%ﬂ'}Tﬂm Sup/ dvoy, ... dvy / dtom, ... dt;
Uj [7T70]2m [OaT]Qm
2m 2m
Ea | TTOC (s 4+ w) X (1 + v1) — qawi — )] TT 0awi).
i=1 1=1
In order to evaluate the expected value of the product, let us introduce
the set P5(2n) of all partitions of the set {1,...,2n} into subsets with two
elements. An easy argument based on the characteristic function shows that
for a centered Gaussian random vector (Ny, ..., Na,) the formula

E[ilei}: S II ENN

TePy(2n) (kl)el
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is valid. Let us set n = 2m, Az = Ngi_l, Bl = Ngi = and a = E[AZBZ]
Then we obtain the following formula because terms involving neighbouring
random variables Ny;_1, No; cancel (proof by induction over n):

2m

(6.1) EG[H(AiBi—a)} - ¥ ] EaNiN.

=1 repPy(4m) (kl)er
Vi:{2i—1,2i} ¢TI

In our case the expected value of the product equals

Z H Ga(2k — 21)

TePy(4dm) (k,l)el
Vi:{2i—1,2i}¢T

with z9; 1 = t; +u; and 29; = t; + v;. Changing the order of integration, we
start with the integration over v;, ¢ = 1,...,2m. Since any v; appears only
once in the product, we have to deal with products over terms which have
one of the following three forms:

a(ti +wi — tj — uj), (I),

0
/_ Qalti + ui — t; — v})oa(vy) do; (1),

0 0
/ / dalts + vi — £ — 0 )ox (03)tba (v;) dov o (I11).

For the factor (I) we shall use |qq(t; +u; — t; —u;)| < Cre~=! derived
from Proposition 2.8 for § < —wg(a).

The Lipschitz constant of g,(t; + u; — t; —e) on [—r,0] is of order
e~0(ti=t;1=7) by Proposition 2.8, which implies the existence of a constant Cs
such that the modulus of the integral (1) is smaller than Cy23IM/2¢ =0t~
(Lemma 8.9).

For the estimation of the integral (III) we let S denote the length of the
minimal interval supporting 1 and distinguish the cases (1) |t; —t;| > 2-1Mg
and (2) [t; —t;| < 27MS. A substitution gives

0 0
/_ /_ qa(ti +v; — tj - Uj)?,[))\(vi)?ﬁ,\(vj) dvi de
[ttt 2 o M (w)u(e;) dus
[vi—v;|<S

which shows that in case (1) g, needs only to be evaluated at either positive
arguments or at negative ones. Due to the Lipschitz continuity of ¢/, with
exponentially decaying norm (Proposition 2.8) the estimate in Lemma 8.9
shows that the modulus of (III) is in case (1) smaller than C32~3Me=0lt:i=t;1
C3 > 0 a constant. In case (2) g, is at least Lipschitz continuous and the
modulus of (III) is by the same arguments smaller than C;2~ 2 e=0lti—t],
Cy > 0 a constant.
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Finally note that each u; and v; appears exactly once in the product and
that each t; appears twice so that with C' := max; C;

. 2m
/[ . dvoy, .. .dv1 E, H(X(tZ +ui) X (ti + vi) — qa(u; — v;)) H U (v5)
77‘,0 m 7,:1

“3|Afm 2 A —Sltrn or—t
< Z 9—3|Alm 2m H (1 + 9l |1{k,l even,|tk/2—tl/2|352*lﬂ})e Oltrk/21—tri/2 |,
r (k,l)eT

The partitions I' can also be described by fixed point-free permutations.
Let us denote 2k — 1 and 2k by the same symbol s(k). The idea is to start
with one pair {ko,k1} € T, to look for {k},ko} € T with s(k}) = s(k1),
then for {k}, ks} with s(k}) = s(kq) and so forth until s(k;) equals s(ko).
This describes a cyclic permutation of {s(kop),...,s(k—1)}. Proceeding in
the same manner for the remaining elements of I' and identifying s(k) with
[k/2] a fixed point-free permutation 7 = 7(I") of {1,...,2m} is defined. To
clarify the construction look at the following example (m = 6):

I = {{1,3},{2,11}, {4, 7}, {5, 10}, {6,9}. {8, 12}}
= 5(1) — s(2) — s(4) — s(6); s(3) — s(5) = 7(G) = (1246) (35).

Let us denote by C(7) the set of cycles in 7 and by |o| the length of a

cycle o. Then we can easily evaluate the integral over the product for fixed
I

A —I|t —t
/[0 Lo H (1 + 2l ‘1{1@1 even,|tk/2—tl/2|§327‘>‘|})6 [tri/21 =t /21 dty...dto,
(k,)er

lo|

/[OT H —|—2| |1|5k+] —si|<S2- IM}) \Sk+1—5k|dsl.”’ds|0|

ceC(m(I))
|0| 1
< H / dsy / 1+ 2|M1|uk|§5’2*|/\‘})675‘u“ duy ... ,du|0‘_1
oeC(m(I)) Tt k 1
< II (r@st+25))
oeC(n()

< 7ICED) (2671 + 25)2"’
So far we have shown

Eo[(£Qr—Qa) . )*™] < ||pllFnT—>™(20(5~ +S))2m 3\/\|mZT|C ()|

It remains to solve the combinatorial problem to determine the number
an, i of fixed point-free permutations of {1,...,n} with exactly k cycles. We
claim that the following recursive relation is true for all n > 3, k£ > 1:

ank = (n—1)ap_11 + (n—1)ap_o k1. ap1 = apo =1, ay =0.
We classify with regard to the element n. If in a permutation n is in a cycle
of length at least three, then by leaving n away, we obtain a fixed-point free
permutation of {1,...,n—1} with k cycles. Since n can stand in front of every

other element, there are exactly n — 1 possibilities to generate from a valid
(n — 1)-permutation such an n-permutation. This explains the first term,
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the second stems from the permutations where n lies in a cycle of length 2.
By removing this 2-cycle we obtain a fixed point-free permutation of n — 2
elements with & — 1 cycles. Since the other element of the cycle involving n
can be chosen from all other elements, we find the second summand.

From this recursive relationship we infer by an easy induction argument
that the generating function satisfies

Now we are in the position to prove the assertion of the theorem:

[cosh(aT1/223|’\|/2<(%QT — Qa)p, )]

(aT' P2W2{(7:Qr — Qa)p, )™
(2m)!

p"qg

3
Il
o

m 2m_om 2m
|2 =207 + 8)) "™ &

k
> agmiT
(2m)! —

(lul3v T~ (207 + 8))*a?

m!

3
Il
o

1y m)

3
]
)

= £

(lullryT=2(20(5 7 + 5))a)™ <T , m)

m

o

m=

1 (Ipllzv (€™ + 8))a) 11 =+
< exp(K||p|Fya?)

where K :=2(2C(6* +S))2 and T > Tj large enough. The estimates of the
covariance function relied only on Proposition 2.8 whence by Proposition
5.3 the uniformity of the constant follows. O

Proof. (of Corollary 3.4) The moment inequality in Proposition 3.2 yields

1/263|Al/2 5 NloaT eXP(K”MHQTVO‘Q)
]P(I(T 2 ‘<( Q Qa))u’vib}\” Z 2 OgT) S COSh(O[%\/m)

for any suitable a. The choice a = §+/IogT /(2K ||p||3+) yields the bound
27—+*/(6Klullzv)  From the decomposition (3.1) it follows that

1 T
82 = (Qua ) < [((hQr = Qula.n)l + [ [ (X(e+ o) vy (o)

The stochastic integral has quadratic variation (Qry, 1)) and by the exact
deviation probability bound found by Liptser and Spokoiny (2000) we infer
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for any x > 0 and large T’

olAly pT
P“(T’/O (X (t+0),1bn) dW ()] > %\/22"\|<Qa¢,\,1/1A)TlogT>
< 4\/51,{(10g T)T—KQ/(S—I—QH(logT)1/2T’1/2)
+ Pa(22|'\||<(%QT — Qa)Un. )| > g\/YTogT)

5 T—n2/9 + T_H2/(16K||¢”il)_

By Lemma 8.8 the expression 22‘)‘|<Qa1/1/\,w>\> is uniformly bounded from
below by some m > 0 and we obtain the uniform estimate

P, (2N T2y 1 — (Qua,1by)| > £1/log T)

< T_Hzg\/\\/(lﬁKHaH%V) + T—nz/(9m2) + T—NQ/(16K||1/’||i1m2)‘

If we choose k? > max(48K R?, 48m?||¢[|3,,27m?)p =: k*, then the right
hand side is of maximal order 7°=3°. ]

6.2. Proof of Proposition 3.4.

Proof. Without loss of generality we assume p < p and we omit the 7-
dependence of the quantities. Let us introduce the true coefficients (b; )
and error coefficients (e; ;)

bik = (Qaa,Yjk),  €jk = Bjk — bk = (Fbr — Qaa, V).

We split the risk according to the usual bias-variance decomposition:

Eolllbr — Qaallwzs] < Eallbr — PrQaalw2.] + 1d —Pr)Qaallwz.s.

The second (bias) term can be dealt with by linear approximation theory.
The Besov space embeddings (8.1) yield under the restriction (3.4) that

B;ff C W52 By Jackson’s inequality (8.2) in W2P(|—r,0]) we thus
find

1(1d = P)Qaallwz S 2755 Quall ) piy 20 S (T/log T) 55 1Qaall gs+2-

Due to Q. : By; — B;ff isomorphically (Theorem 2.9) with uniform con-

stants (Theorem 2.10), this second term is of order (7/ log T)fﬁ+3 uniformly
over M(s,p,S,0).

The first term can be estimated using the imbedding Bil([—r, 0]) C
W2P([—r,0]), the characterisation of Bil by 2-regular wavelets (Appendix
8.2) and Jensen’s inequality:

A (51 p
Ealllbr — PrQaallwas] S Ba[ > 2572 (3 |8i115, 410, — bia|)
J<J k

< Z 9i(3—3) (Z E, [
k

J<J

1/9}

P\ 1/p

The term |8 x1|s, ,|>; — bjk|” can be split according to whether thresh-
olding takes place or not and whether the true coefficient is large or not. It
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equals

1Bjk = bikl"Lig; o> r; + 10561 118, 1<k

Y P 1P e
= leinl" Vg, pion; ekl L om0kl <y + 10561115, 4 <
[bj k] <r5/2 [bj | >t /2 [bj, 1 |>2; [bj, k<2

< |ej7k|p1|€j,k|>ﬁj/2 + |ej’k‘p1|bj,k|>lﬁj/2 + |b'7k‘p1|ej’k|>ﬁj + |b,]€ p1|bjyk|§2ﬁj

= Sl(jv k) + SQ(jv k) + 53(j7 k) + 54(j? k)

By the Cauchy-Schwarz inequality, the large deviation bound on e; ;, (3.3)
and by (3.2) we obtain a fast decay for the sum involving S1(j, k):

Zzﬂ%—%>(2Ea[sl(j,k)])1/”gZQﬂi (ZP (lejl > 2)/2E [2p]1/2)/
k J<J

J<J
< Z 9i(5 ) (Z T—3p/22—jpT—p/2) 1/p
i<J k

~ T=2937/2 < 7172,

Even more easily, the large deviation estimate bounds the sum over
SS(j7 k)

2213*%>(2Ea[53(j,k)])1/ — Y 265 (ZIP’ (lejul > 5 )|b]k|)

i<Jd k i<J
S 1Qaa

The remaining estimates rely on nonlinear approximation theory. Using
the characterisation of the Besov space norm by (s + 2)-regular wavelets
(Appendix 8.2)

@ualg g, ~ (8 (o))

we infer for all 7 € Ny and 7; > 0 by a Chebyshev inequality-type argument
the following bound on the cardinality of large wavelet coefficients:
(6:2) D 2P|k ] >l S 1Qualllr, < | Quall

s+2 s+2°
3>0 Bp,p/p Byi

2,017 ST 7|allss, -

The sum involving S(j, k) can be bounded by separate estimates, where
. 1
jo is such that 270 ~ T'2s+3:

> D (S rds0 )
k

i<J
(2-1) 1/p
=326 (ZE 117111, 15, /2)
I<J
< 23(2—‘ 9d/p=1/29—j 9J (-1 T=r/29=ipq 1/p
> + P Z gl /2
7<Jjo i>jo

STl L YD P (y )p/”Hk b3 > 5 /2) 9

J>Jjo
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. . 3
< T71/223‘70/2 4 T_%+%2_]O(L:+£_%)
~ T 1/29300/2(1 4 Tp/2,02*jop(5+%)/ﬁ) ~ T %5755

In the fifth line we have used the sparsity estimate (6.2) and the fact that
% + 2—2 — 3 is non-negative due to % — % < %%
The slightly extended technique also applies to the estimate of the sum
. 1
over S4(j, k). Here, one must choose 270 ~ (7'/logT)?+3 for balancing the

two appearing sums:

Y 26 (Z]Ea[s4(j, k)])l/p
k

J<J
(5_1 1/p
=y 26 (Z|bj,k|p1|bj,k|sznj)
J<J k
(5 _1y (51 1/p
< Z 2 p)2j/p2'€j + Z 2 (Z“)j’klp Z 12*mﬁj<|bj,k|§2*m+l’ij>
Ji<jo J>Jjo k m>0

- (2 —= 1/
< 20271210 Y2 4 3 93 (3=%) (Z 3 2(—m+1)p,§§1|bj7k‘>2,mﬁj> P
7>jo k m>0

T \ =+ 51y »
: (logT> D0 D 2 R by > 27w}

m=037>jo

< ( T >2s+3 n Z 2j0(pps+22fgg)(Zm(logT)1/2)(p—p)/p

T1/2
T \ 253
- <logT> '

All estimates together yield

. T \ 213
Eallir -~ Quallwaol $ (3o7)

where the constant holds uniformly for a € M(s,p, S, 9). O

6.3. Proof of Theorem 3.5.

Proof. Due to by € W2P([—r,0]) the kernel §r o, is an element of
W3#([0,7r]) and the continuity of Qp : £° — W2P([—r,0]) follows from
Lemma 8.4. Formally, the Neumann series expansion yields for Q}l

o0

Q7' = (1d-Q(Qu — Or) Q" = D (Q:H(Qu — Qr)™ Q™

m=0

Introducing the random set

Cr = {|Qa lw2r—ollQa — Qrllcomzn < 53,
the operator @T is therefore invertible on Cp with

197 lw2o—cr < 21Q2 lw2s—co.

107" = QM w2z < 21Q7 2020 1QT = Qall o
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In order to bound the probability of Cp from below, we use the estimate
1Qa — Qrllzo—w2e S 90 — drllws.e(-ro)), derived from Lemma 8.4 with
k(t) = (qa — Gr)(—t) and W3» C W2#'. From Proposition 3.4 we know

T\~
Eolllge — @7llw2e] = EallQaa(—e) = gz (=) llw2r] < <logT> -

Furthermore, we infer from Propositions 2.8 and 5.3
2

B [Jaa0) — & [ x| = b [ [ og2u—v)duas < 1
with uniform constants. We conclude
T \ 53
(63) Eollan — drlhwool S (o)

Finally, Markov’s inequality yields for suitable ¢ > 0

sup P, (2\ Cr) < sup Po(llga — drllws.e > )
a€M(s,p,S,0) a€M (s,p,S,0)

<  sup  Eufllga — drllwsslc?
a€M (s,p,S,0)

(T —ﬁrs.
~ \logT

It therefore suffices to work on the set Cp, because on its complement the
loss is bounded by 2S. Since our renormalisation uses the a priori knowledge
lla|[cr < S, our estimator is on Cp only up to a constant factor worse than
the estimator obtained by pure inversion. We obtain on Cp

lar — allze

< 1Q7 br — Q7 Quall e

<NQ7 w2 — o lbr — Qaallwzo + 1Q7! — Qo Hlwzo— £l Quallw2.s

< 201Q5 w2 —collbr — Quallwzs + 21Q5 M 120201 Qa — @1l co— w2 | Qaall2
< lbr — Qaallwzs + g0 — drllws..

By Theorem 2.10 the last estimate holds uniformly for all a € M(s,p, S, ).
From Proposition 3.4 and the estimate (6.3) we conclude

sup  Eqfllar — allgele,] ST 243,
GEM(S,pvs,J)

which accomplishes the proof of the asymptotic risk upper bound. ([

7. PROOF OF THE LOWER BOUND

Proof. (of Theorem 4.1) We build from a weight ap in the interior of
M(s,p,S,6) a family of local alternatives (a;). Choose a compactly sup-
ported s-regular wavelet basis in L*(R) and denote by R; a maximal set
of integers with supp(¢;x) C [-r,0] and supp(¢;x) N supp(Yjr) = @ for
all k,k' € R;, k # K. For any k € R; we set aj; = ao + Y, with

v =7(T) ~ 27 I(M(+3-3) such that lajkllsp1 < S and vo(ajr) < —06 are
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satisfied, hence a;, € B(s,S,p,0) holds true. We briefly interrupt the proof
for stating a classical lemma on lower bounds in the sparse case.

Lemma 7.1. Suppose the likelihood ratio satisfies
Pa (log(A (X (0), X)) > —j) > 70 > 0

uniformly for all aj,. Then for o(X(t), —r < t < T)-measurable
estimators ar the following lower bound holds:

inf  sup  Eafllar — allpe] 2 A(1)2DGE78) ~ o7 i D75,
ar aeM(Szpysyé)

Proof of the Lemma. This is an adapted version of (Hérdle, Kerky-
acharian, Picard, and Tsybakov 1998, Lemma 10.1). Merely note the

. (L_1
relations K ~ 27, v& ~ Ay ~ j and [Jajr — ajir|, ~ 727(2 ») in their
statement, having substituted n by T'. O

We use the likelihood ratio from Theorem 2.5 with some fixed initial
condition and apply Lemma 8.8 and estimate (3.2):

Eq, [log(Az(X 1), X(%4)))?)

—E,, [(/OT(X(t + o). g — ao) dW(0) — HQr(az — an). s —ao)) |

< 2v°T(Qa; ¥ jis Vik) + 3 Bayy [(Qr(aji — ao), ajr — ao)?]
< 29T (Quy ks Vi) + 7 T (Qay Wik k) + 7 By [(Qr — TQayy )k Vi)’
< 72T2—2j + 74T22—4j + 74T2—4j

with a uniform constant for all a;;. Thus, by Chebyshev’s inequality the
requirements of Lemma 7.1 are satisfied, when we balance the restrictions

on v by choosing 2(2S+3_%)j(T) ~ T'/logT such that
A(TYAT22~4(T) T29—i(T)(4s+6-3) (log T)? ~ 5(T)?
holds. The lower bound follows. O

Proof. (of Corollary 4.2)

(1) The lower bound is just Theorem 4.1 properly rewritten. For the
upper bound use the embbedding B, ; C B7 ; with % =0 — 8+
% < 1. Due to % — % = %% we can apply Theorem 3.5 to the class
M(o,m,S,6), S’ chosen appropriately.

(2) The upper bound is the content of Theorem 3.5, whereas the lower
bound follows along the lines of the L?lower bound proof using

Assouad’s cube in Reiff (2002). The details are omitted.
(|
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8. APPENDIX

8.1. Function spaces. For a more detailed account see for instance Triebel
(1983). Let us introduce the scale of Sobolev spaces W™P(I), m € N, p €
[1,00], I C R an interval:

W™P(1) :={f € LP(1)| f) e LP(I) for all i = 0,...,m},

where f() denotes the i-th derivative of f in a weak (distributional) sense.
These spaces are Banach spaces with respect to the following norm

£l = (3 15O1)
=0

An even larger scale of function spaces is given by the Besov spaces B, ,,
measuring the regularity s in an LP-sense with an additional fine-tuning

parameter o € [1, 00].

Definition 8.1. Let I C R be an interval, Ay f(z) :== f(z + h) — f(x) and
In:={x € I'lx £ h € I}. Then the n-th order LP-modulus of smoothness is
defined by

Wn(fa E)p ‘= sup HA;LLfHLp(Inhﬁ
|hl<e

where A} denoting the n-fold application of Ay. For p,a € [1,00] and s > 0

set "
L rwon(fot)p \ @ dt\ 7
Wlose =+ (| (5%) )
0

with the usual modification sup, wy,(f,t)pt =% for & = 0o and withn = |s]+1.
The Besov space By (1) := {f € LP(I) ||| fllspa < 00} is a Banach space
when equipped with the norm ||e||sp.q. On a bounded interval I an equivalent
norm is given by (n as above)

11830 ~ 1 llee + 17"Vl sc 1)

Proposition 8.2. The following embedding relations hold true
By CB; s> s, any o, o;
>
ByoCBy o p>1;
/
B, C B;’a,, a<aoy
the Sobolev embedding theorem generalizes to

/
(8.1) By, CBy,, fors>s ands— % > — I%;

as a special case By, , C Cs fors — % > s follows.

The first embedding is compact for Besov spaces on bounded intervals.

The regularity property of convolutions with variable integral bound
seems obvious, but not to be treated in the literature.

Lemma 8.3. For functions f € B, ,([-7,0]) and k € B;,JFO{,([O,T]), s>0
and p,p’ € (1,00), a,a’ € [1,00] with %—f-z% = é—l— & =1, set

t
L(f,k)(t) ::/0 fu—t)k(u)du, te]o,r].
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Then L is a bilinear mapping from By ,([—r,0]) x B;ti/ ([0,7]) to Bs£1([0,7])
with

1L R lst1p.a S 1 llspa

Proof. First, we show for a fixed function f in LP([—r,0]) that Tk := L(f, k)
maps By, ./([0,7]) to B, ,([0,7]) for s € (0,1) and all p and a.

In order to apply abstract interpolation theory, we consider the case s = 1
in a Sobolev scale first:

1T wre ~ 1T e + [(Tk) || v

<kl + ([ s >dv)/i

S||f||Lp||k||Lpf+Hf<—- )+ [ H K

< W llzellEll o + 1 llze lklloo + 1T (K| o
S A el
Due to |Tk| o < |[f|lz»||k||;» the real interpolation theory ((Triebel 1983,
Thm. 3.3.6)) yields for all s € (0,1)
1Tkl pa S 1 lzellFllspr 0

In a second step, we use an induction argument from s to s + 1 for non-
integer s > 0. Suppose f € Bj , and k € B;fi The weak derivative of

L(f,k) is given by (see above)
L(f.k)'(t) = f(-=0)k(0) + L(f, K)(¢), t€[0,r],
which yields for s € (0,1)
ILCEB) [spo < I f lspalEloo + 1T E) spo S 1 lspallEllstrp o
and a fortiori for s > 1, s ¢ N by induction
IL(f, k)/HS,p,a < | fllspall®lloo + HfHS—l,p,a”k,HS,p’,a’ S 1 lspal Blls+1,p 00

Since the very first argument provided an estimate for | L(f, k)| z» of the
same type, the norm ||L(f, k)||s4+1,p,o is bounded.

Finally, the same induction argument for s € N requires an extra estimate
for |T(k®))||0p.a- Since f is in By, C L™ and k in B;,J;i, C C%, we infer
from

t /
( / J(u = Ok () du) (1) = FO)R (@ / f(u (u) du
0
and the convolution estimate (use (Triebel 1983, Thm. 2.11.2, Prop. 3.3.2))
Dl (/15 ) * (K1) (O S 1 ol 1

that [ T(E)l|or S 1 1pallkllys17,00 holds. 0

|k”s+1,p’,a’-

Lp

0,p' 0/

Lemma 8.4. Suppose that k is a function in W ([0,7]), p' € (1,00) and
p satisfies % =+ % = 1. Then the integral operator

0
Kf(t) = / Kt~ s))f(s)ds, te [ r0]

—-r
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is continuous from LP([—r,0]) to WP ([—r,0]) with || K| Lo _w2e S [kl -

Proof. First consider the following identities in an almost everywhere-sense
for t € [-r,0] and f € L*([—r,0])

0
(K ) (t) = / K(|t — s|) sen(t — 5)f(s) ds,

T

sy = ([

—-r

0
_ / K'(|t = s]) f(s) ds + 2K/ (0) f(1).

—r

° !

0
K (e — ) f(s) ds — / K(s — ) (s)ds) (1

By the Holder inequality we obtain

1K flle < 2[[k] Lol f] 2o
I £ e < pllE"l o 1 2o + plIE oo [1£ 1 o -

The Sobolev embedding W*?" < C? proves | K f|lw2e S |kllypoe | fllze- O

8.2. Wavelets.

Definition 8.5. (We largely follow Cohen (2000).) For j € Z and k € Z
introduce the multi-index X = (j,k) and put |\ := |(4,k)| := j. A wavelet
basis (x)x is an orthonormal basis of functions in L?(R), derived from one
function 1 € L*(R) by translations and dilations

YA(x) = i) := 2/2p(2Tx — k).

Furthermore set V; as the closure of span(iy, |A| < j). By P; : L*([—r,0]) —
V; we denote the orthogonal projection onto Vj.

Cohen, Daubechies, and Vial (1993) constructed orthonormal wavelet
bases on a bounded interval 1. The basis functions are obtained by restric-
tion. Wavelet functions i, whose support crosses the boundary of I are
suitably corrected in order to keep the orthogonality and approximation
properties. These corrected functions are still denoted by ) even if they
are not directly derived from . A consequence of this construction is that
only multi-indices A\ = (j, k) with |k| < 27 are used and that the spaces
V; are finite-dimensional, whence we can start off with a space V_; and an
orthonormal basis (11 ) of V_1. Then any function f € L?(I) has the
wavelet decomposition

F=YFa= D> (fvm)tm
A i>—1 &

Note that summation over |[A| < jo will always mean summation over (j, k)
for all j < jg and all possible values of k.
Wavelets are like tailor-made for the description of Besov spaces.

Definition 8.6. A wavelet basis () will be called s-reqular on the interval
I if the following two conditions are satisfied:
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(1) For all o € (0,s], p,a € [1,00] the function f is an element of
By (1) if and only if

IP=1fller + (i 2e+aTy) (ZW, ¢jk>|p)a/p>1/a < .
=0 :

The above expression constitutes a norm equivalent to | e||gp.a-
(2) For allk=0,...,|s] the vanishing moment property is fulfilled

/oo zFip(x) dr = 0.

Sufficiently regular wavelets guarantee that for m,s > 0 and p € [1, o]
the general Jackson inequality

(8.2) 1f = Prfllwme S 277 fllwmese ¥V f€WTHP

~

holds (Cohen 2000). From (Cohen, Daubechies, and Vial 1993) we immedi-
ately obtain (only mind the different notion of s-regularity there):

Theorem 8.7. s-reqular wavelet bases exist for any s > 0. Moreover, they
may be chosen to have compact support.

We shall often need estimates on (Q,%x, %) and similar expressions.

Lemma 8.8. For any weight measure a with ||a||7v < R < 0o and vo(a) <
—6 < 0 and for any multi-index X we have (Qqtbx,1z) ~ 272 uniformly.

Proof. Using the formula for the spectral density (2.3), estimates as in the
proof of Lemma 5.1 and the spctral characterisation of the space W12 we
obtain

_ [T @Z/\(f) : ~ OO 2\—1.7 2
@ = [ | ke | ek a
oo . 2
— s [ [ @@ 9RO = s (b
Ifllg2=1"J =00 [17llyy1,2=1
The last expression is clearly of order 272/l (]

Lemma 8.9. Let f € C™'([—r,7]), i.e fU is Lipschitz continuous, be
given with m € Ny and suppose that (1)) is a compactly supported (m + 1)-
regular wavelet basis of L*([—r,0]). Then

0 0
‘/_ | @ = y)a@)aly) dyde] S £l 1 27 IAI(m+2)

holds with a constant independent of f and of the multi-index A.

Proof. Note that for y € [-r,0] the function f(e — y)|_.q lies in
C™([—7,0]). By the (m + 1)-regularity of (1)) we find

0 0
‘/_ - f(z —y)a(z)Ya(y) dy dx
< sup [(f(e —y), ¥)ll[¥allLe

ye[fT‘,O]

_ 1y -
S sup [|f(e = y)llgma2 PO 22 g 1,
ye[*T‘,O]
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Note that we have used the embedding C"! C Bo’gj;}j. EI
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