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EULER-MARUYAMA AND MILSTEIN
APPROXIMATIONS FOR STOCHASTIC
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
DISTRIBUTED MEMORY TERM

Evelyn Buckwar *

Department of Mathematics, Humboldt- Universitit zu Berlin, Unter den Linden 6
10099 Berlin, Germany. email: buckwar@mathematik.hu-berlin.de

Abstract

We consider the problem of strong approximations of the solution of
stochastic functional differential equations of Itd form with a distributed
delay term in the drift and diffusion coefficient. We provide necessary
background material, and give convergence proofs for the Euler-Maruyama
and the Milstein scheme. Numerical examples illustrate the theoretical re-
sults.

1 Introduction
Consider a scalar stochastic differential delay equation (SDDE) of the form
(1) dX(#)=F@X(#),Y () d + Gt X(1),Y(?) dW(t), tel0,T]

where Y (t) represents a memory term of the type

0
(2) Y(t) = /K(t,s,X(t+s))ds = /K(t,s—t,X(s))ds.

-7 t—7

The drift and diffusion coefficients F' and G are given functions. The fixed value
7 > 0is called the lag or delay, and W (t) = W (t,w), t € [0,T], w € (, is a scalar
standard Brownian motion on the filtered probability space (2, A, {A¢ }+efo,17, P)-
(As usual, the dependence of W on w will be suppressed.) It is necessary to
specify the whole éinitial path ¥ on J := [—7,(], i.e., we require

(3) X(s) = ¥(s) for seJ.

*This work was partially supported by the Deutsche Forschungsgemeinschaft, SFB 373
(“Quantifikation und Simulation Okonomischer Prozesse), Humboldt-Universitat zu Berlin.
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Equation (1) is an abbreviation of the integral equation

t t
(1) X(t)=X(0)+ / F(X(s),Y(s)) ds + / G(X(s), Y (5)dW (s),

for t € [0,T] and with X (¢t) = ¥(¢t), for ¢t € J. The second integral in (4) is a
stochastic integral which is to be interpreted in the It6 sense.

Remark 1.1: For ease of exposition we consider only one memory term.
There is no essential difficulty involved in extending the calculations to equa-
tions containing several memory terms.

Deterministic models with distributed memory terms have been well studied.
More realistic mathematical models can be investigated by allowing for random
perturbations incorporated into the equations. The dynamical behaviour of
such equations with examples in population dynamics has been discussed in
(e.g.) Kuang [14]. More references to applications in economy or other areas
can be found in Kolmanovskii and Myshkis [13]. In Guttorp and Kulperger
[9] the following model is considered as a model for the average behaviour of a
large single-species population, incorporating randomness, that is allowing for
individual differences and interaction between the individuals:

() dX(t) = X(t) (u —A /0 ’ 9(8) 110,00 (t — )X (t — s)ds)dt +oX(B)dW (1),

where g(s) is a positive integrable function, 7 is the resource renewal time and
14(s) the indicator function of the set A. A model like (1) but with an additional
discrete delay term is considered in [15, 7, 22]

(6) dX(t) = F@t,X(@®),Y(@®),Z@%)dt + G, X(@),Y(t),Z(¢)) dW(t),
/e“X(t-l—s)ds, Z(t)=X({t—-71).

—T

Y ()

More models with a financial mathematics background based on similar equa-
tions appear in Appleby [1] and Hobson and Rogers [10].

In this article the theorem on strong convergence of explicit one-step schemes,
stated and proved in [4] for SDDEs with discrete lags, is extended to cover the
case of a distributed lag. The standard technique to develop approximation
schemes for stochastic differential equations and establish their order of conver-
gence is to set up an Ito-Taylor expansion by application of the Ito-formula to
the drift and diffusion functions, see [12, 18]. In the case of a discrete lag the
authors in [11] have developed an Ité-formula for functionals of the solution of
the form ®(X (¢), X(t — 7)). As it turned out, anticipating stochastic integrals
appear in the process of establishing the formula and Malliavin calculus becomes
the appropriate tool. In [2], stochastic analysis for stochastic functional differen-
tial equations is developed, in particular an It6-formula for so-called quasi-tame
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functions is proved. A quasi-tame function ® : L?([-7,0]) x R — R is such
that ®(v,0) = h(v,fi, f(0(s))g(s)ds), where h : R2 — R and f : R — R are
C*-bounded, and g : [-7,0] = R is C'-bounded, with g(—7) = 0. (Compare
also Chapter IV, §4. in [21].) In [15, 7, 22] an Ité-formula for functions of the
form ®(X (¢),Y (¢)) and Y (t) = f_OT eM X (t + s) ds is established. As e #£0
this @ is not a quasi-tame function. In the next section we give an It6-formula
for functions of the form F' and G as in (1). As it turns out, and already did
in [15, 7, 22], a term incorporating X (¢t — 7) appears. An Itd-formula for func-
tions of the form ®(X (¢),Y (¢), Z(t)), with Y, Z as in (6), would be necessary to
obtain higher order approximation methods, or treat the equations considered
in [15, 7, 22]. This is a subject of further work. In Section 4 we apply the
It6-formula to establish consistency estimates for the Euler-Maruyama and the
Milstein method. Numerical experiments, presented in Section 5, confirm the
theoretical results.

2 Analytical background

In this section we state the necessary assumptions, provide estimates on the
moments of the solution of (1), as well as an It6-formula for functions of the
form F and G in (1).

2.1 Assumptions

By C([—7,0], R) we mean the Banach space of all continuous paths from [—7,0] —
R equipped with the supremum norm ||5|| := sup,¢[_, o1 [7(s)], n € C. W(t) =
W(t,w);t > 0,w € Q is a one-dimensional standard Brownian motion on the
filtered probability space (2, A, {A:}icjo,1], P)-

(A1) The functions F : [0,T] x RxR - R, G : [0,7] x Rx R — R and
K :[0,T] x [-7,0] x R = R are continuous.

(A2) (Uniform Lipschitz conditions) There exist positive constants Lg; and
Lg,;, i =1,2 and Lk such that for all ¢1, ¢2, 1, ¥2, € Rand t € [0,T7:

(1) [F(t,d1,¢2) = F(t,91,42)] < Lralér — ¢1] + Lrg|d2 — 92l
8)  |G(t,d1,¢2) — G(t,¢1,42)] < Laaldr — 1| + La 2|2 — ¢,
and for ¢ € [0,T] and s € [-7,0]:

(9) |K(t,s,41) — K(t,5,92)] < Lkl — ¢

(A3) (Linear growth conditions) There exist positive constants Qr, Q¢ and Qx
such that for all ¢, ¢1,4,11 € R and t € [0,T]:

(10) |F(t,0,61)> < Qr(1+|¢]”+ o),
(11) Gt v, v1)> < QoL+ ¥ +[v1]),
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and for ¢ € [0,T] and s € [-7,0]:
(12) |K(t,5,0)* < Qx(1+]g]*).

(A4) The initial path ¥(¢) is an 4p-measurable C([—7,0],R) valued random
variable such that E[|¥||? < co. ¥ is Hélder-continuous with exponent v € (0, 1],
i.e., there exists a positive constant Ly such that for ¢,s € [—,0]

(13) E(@(t) —¥(s)[") < Lw |t—s/”, p=1,2.

(A5) We assume that F, G and K have sufficient differentiability with respect to
their arguments. The partial derivatives are uniformly bounded in modulus on
the domain of definition of F, G and K, respectively. We denote these bounds
by the same constant M3 < oco. Precise conditions on differentiability will be
given later.

We assume that there exists a path-wise unique strong solution to equation (1)
(defined as (4)). Proofs of this can be found in [17], [19] and [20, 21].

2.2 Moment estimates

Theorem 2.1 Suppose that Assumption (A3) holds. Then the solution of equa-
tion (1) has the property

(142) B( s IXOF) < M)

with
(14b)  My(T) = (1 +4 E||¥|)?) exp(3 (T Qr +4 Qg) (1+ 7% Qk) T).

Moreover, for any 0 < s <t <T witht—s <1,

(15a) EX(t) - X(s)? < My(T)(t—s),
where
(15b) My(T) =2(Qr + Qa)(1+7° Qi)(1+ Mi(T)).

Proof:  The proof follows the standard lines of, for example, [17, Section
5.4]. The inequality (a + b+ ¢)? < 3(a® + b? + ¢?), Cauchy-Schwarz’s and the
Burkholder-Davis-Gundy inequality (e.g. [17, Theorem 1.7.3]), the (continuous)
Gronwall inequality (e.g. [17, Theorem 1.8.1]) and the linear growth conditions
are the main ingredients. We omit the details.
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2.3 It6-Formula and 1to-Taylor-Expansion

The derivation of the Ité-formula presented in this section follows the work [2]
and also generalizes the formula given in [15, 7, 22], regarding the distributed
lag part.

We will apply a multi-dimensional It6-formula which we cite from [8, Theorem
4.5.3).

Theorem 2.2 Let d&;(t) = a;(t)dt+b;()dW (t) (1 <i < m) andlet f(z1,-..,2m,t)
be a continuous function in (z,t) where z = (z1,...,2m) € R™, t > 0, together

with its first t derivative and second x-derivatives. Then f(&1(t),...,En(t),1t)

has a stochastic differential, given by

df (Z(t),1)

(#1200 + Y £.(20),0a:()
F3 D feun, (200, 010D 1)t
i,j=1
(16) + mez (Z(t)at)b’l(t)dw(t)a

where Z(t) = (&1(t), - -, &n()).

In order to apply Theorem 2.2, we set m = 2, Z(t) = (&1(¢),&(t)), &(t) =
X(t) and &(t) = Y(t). In what follows we denote by D;h(ty,...,t,) and

D?h(t1,...,t,) the first and second order derivative of a function h with respect
to the i-th argument. We then rewrite Equation (1):
d&(t) = ai(t)dt + b1 (t)dW (),
dé&(t) = aq(t)dt + ba(t)dW (1),
with a1 (t) = F(@,X(@),Y(®)),
bl (t) = G(t7 X(t)a Y(t))7
p ¢
ax(t) = p7 / K(t,s —1t,X(s))ds
t—T1

¢
/ D1K(t,s —t,X(s)) — D2K(t,s —t, X (s))ds
':-[{(ta OaX(t)) - K(ta =T, X(t - T))a

by(t) = 0.

In integral form and with our original notation we obtain for a function h subject
to the conditions of Theorem 2.2, and ¢ € [0,7] :

(17) h(t, X (t), Y (t)) — h(t, X(0),Y(0))
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= /0 [Dlh(s,X(s),Y(s))+D2h(s,X(s),Y(s)) F(s,X(s),Y(s))
+ D3h(s,X(s),Y(s)){/DlK(s,u—s,X(u))—DQK(s,u—s,X(u))du

+ K(5,0,X(s)) — K(s,~7,X(s = 7)) }
+ SD3h(s, X (), ¥ (5)) G*(s, X(s), ¥ ()] ds
+ /0 Dyh(s, X (s),Y(s)) G(s,X(5),Y(s)) dW(s).

For some function f we abbreviate f; := f(¢, X (t), Y (t)) and introduce operators
A1, Az, As in the following way:

1
(18) Aihy = Dihy+ Fy- Dyhy + B G} - Dihy, Ashy = Gy - Dahy,
¢
Ashe = / DK (tu — t, X(u) — DoK (t,u — t, X (u))du
t—1

+K(t,0, X(t) - K(t, =7, X (t = 7)) - Dshu.
We expand the solution of Equation (1) in the usual way for It6-Taylor-expansions,
see [12, 18]. We start with
t+h t+h
X(t+h)=X()+ F(s,X(s),Y(s))ds + G(s,X(8),Y(s))dW (s),
t t
and apply the Ito-formula to the functions F' and G. We obtain
X(t+h)

(19)

t+h t+h
X(t)+Ft/ ds+Gt/ dW (s) + Ry + Ry + Ry,
t t

t+h ps
(20) R, = / / MF, + AsF, du ds
t t

t+h ps t+h ps
21) Ry = / AsFy dW (u) ds + / MG + AsGo du dW (),
t t t t
t+h s
(22) Ry = / / AoGl dW (u) dTV ().
t t

From (19) we will derive the Euler-Maruyama method, the term Ry + R + Ry
constitutes the remainder to be estimated. If we expand the integrand in Ry
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we can obtain the Milstein method from:

(23)  X(t+h)

t+h t+h
X(t)+Ft/ ds+Gt/ AW (s)
¢ ¢
t+h ps
+ AQGt/ / dW (u) dW(s) + R1 + R2 + Rs,
t ¢
t+h s u
(24) where R3 = / / / A AG, + A3AG, dz dW (u) dW (s)
¢ t Jt

+ /t o /t | /t " MoAoGl W (2) AW (u) VY (s),

and R;, R, are given by (20) and (21), respectively.

3 Convergence

We define a family of meshes with a uniform step on the interval [0,T] of the
form

(25) TN ={0=tg <t; <ts,--- < tn} C[0,T],

with t, =nh, n =0,...,N, hN < T, N € N. In addition, the choice of h is
not arbitrary, and we require, with the lag 7 given, that

(26) h=71/N.,  N;eN

On TN we consider strong approximations X,, of the solution to (1), using
stochastic explicit one-step methods of the form

(278‘) )?n = )?n—l + ¢(h7tn—17)?n—17}7n—17I¢(tn—1))7 n > 17
(27b) Ym = Z T(h7 tm,te — tm, Xf: Iy (tf))a m > 07
{=m—N,

where the initial values are given by X’Z := U(t;) for 4 < 0. The expression )N’m
provides an approximation to the integral Y (¢,,).

The increment functions ¢ and T incorporate a finite number of multiple It6-
integrals (see [12] or [18]) of the form

t+h ps; s2 . . .
©@8) I s =/t /t /t AW (s1) ... AW (s1_1)dW (sy),

where j; € {0,1} and dW°(t) = dt and with t = t,,_; in the case (27). We
denote by I;(t) and Iy (t) the collection of Itd-integrals required to compute the
increment functions ¢ and T. The increment function ¢ is assumed to generate
approximations X, which are A;, -measurable.
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Assumptions on the increment functions ¢ and Y:

We suppose there exist positive constants Lg 1, Lg,2, L 2, such that for all ran-
dom variables £(t), &' (¢),n(t),n'(t) : [0,T] — R, adapted to the filtration 4; the
following Lipschitz-like conditions hold for all ¢ € [0, T:

|E (¢(h7ta£(t)an(t)a‘[¢(t)) - ¢(hat: gl(t)anl(t)al¢(t))|“4t) |

(29) < Lo hE([E() = €'(#)| + [n(t) — 0 (8)]]As),
]E(|¢(h7t;£(t)7n(t)a‘[¢(t)) - ¢(hatagl(t)anl(t)aI¢(t))|2|At)

(30) < Ly h E(|E(t) — € @) + () — ' (t)]*| Ar)
and for all t € [0,T],s € [—7,0]:

E ( |T(h5 ta S, ‘f(t)a IT (t)) - T(h, ta S, fl(t)a IT(t))|2 |‘At)

(31) < Ly B E(JE(t) — €' (1) | Ay

We will consider convergence of our approximations in the following sense.

Definition 3.1 The approrimations {X’n} for the solution X of equation (1),
defined on TN with the step-size h constraint by (26), are said to be convergent
in the mean-square-sense, with order p, on the mesh-points, when

(32) max (]E|X(tn) - )?n|2)§ < CW ash—0,
tn €TV

where C' < oo is independent of h, but may depend on T and on the initial data.

We shall establish a relationship between convergence, that is, the behaviour of
the global error of the approximation to consistency, that is the local truncation
error, measured in an appropriate way.

Definition 3.2 The approzimations {)N(n} for the solution X of (1) are said to
be consistent with order p; in the mean and with order p; in the mean-square
sense if, with

(33) P22 % and p1 > p2+ %7

and with §,, n =1,..., N the sequence of random variables

(34) 8 = X(tn) = X(tn-1) — (b, tn-1, X (tn-1), Y (tn-1), Is(ta_1)),
(35) Y(tm) := > Y (hytmste — tm, X (te), Iy (te)), m >0,

{=m—N-,
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the following estimates hold:

p1
(36) 1énnastﬂE((Snﬂ < C by as h—0
and
(37) max (]E|6n|2)% < Cy hP?, as h — 0,
1<n<N

where the constants C1 and Cy do not depend on h, but may depend on T and
the initial data.

Before proceeding with our main theorem, we state a discrete Gronwall inequal-
ity, familiar in the (numerical) analysis of Volterra integral equations (see, e.g.
[3, 5, 6, 16]).

Lemma 3.1 Let the positive sequence Zy, Z1,. .. satisfy

n—1
anhCZZi+Dn, n>r, r>0,
i=0

where h C > 0, 22:_01 Z; <n. If, forr <n <N, |D,| < D, then
Zn < (D+ hCn) exp(NhC), n=r,r+1,...,N.
We now state the main result of this article.

Theorem 3.2 We require that assumptions (A1) to (A4) hold. We suppose
the method defined by (27) satisfies the estimates (36) and (37), the increment
function ¢ in equation (27) satisfies the estimates (29) and (30) and Y satisfies
(31). Then the approzimation (27) for the solution of equation (1) is convergent

in the sense of Definition 3.1 with order p = pa — %

Proof: Define e, := X(t,) — X,, n > 1. Note that e, is A, -measurable
since both X (¢,) and X,, are A;,-measurable random variables.

Using (34), adding and subtracting X (¢,—1) and, with ?(tm) given as (35),
d(hytn—1, X (tn-1),Y (tn—1), I(tn—1)) and rearranging we obtain

e, = X(tn) — X,

= ep_1 + 0y + Un—1,
where u,, is defined as

(38) Um = (s tm, X (tm), Y (tm)s Is) — &(Bytm, Xy Yy Ig).-
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Thus squaring, employing the conditional mean with respect to the o-algebra
Ay, , and taking the modulus, we obtain

E|en|*|At)
< Elen—1 "l As) + (160 7| A,) +2 [E(0n - en—1 |As)]

1) 2)

(30)  + 2 [Elen— ~unr [ )] + 2 [BGn - unct [A)| + Eluni Pl As),

3) 0 5)

v

which holds almost surely.

We will now estimate the separate terms in (39) individually and in sequence; all
the estimates hold almost surely. We will frequently use the Hélder inequality,
the inequality 2 ab < a? + b? and properties of conditional expectation. The
latter immediately imply for the term labelled 4) that 2 |[E(d,, - up—1 |As)| <
E(|6, |?| Az, ) + E(Jun—1]?| Az, ), therefore we have twice the terms labelled 1) and
5) below. The structure of the proof is similar to the proof of Theorem 3 in [4],
we thus omit the details of some of the computations and refer to [4].

e For (twice) the term labelled 1) in (39) we have, due to (37),

2 E( [0u2|4s) < 2 C3 h.

e For the term labelled 2) we have, due to the consistency condition (36),

2 [ - en1 [Aw)l < CF P71 + h E(len—1|*|As,)-

e For the term labelled 3) in (39) we obtain by the assumptions (29) on ¢ and
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(31) on Y and that h = 7/N,

2|E (en-1 - un-1[As)| <2E (Jen]

<

IN

IN

IA

IN

- E(un—1 A, )| [Ak)
-2
1—

n
{=n—

2 Loy b {Ellen 1 PlA) + E(len_1| x
N.

Xlr(h)tn—latl—n—l;X(tl)JIT(tf)) - T(thn—lat(—n—l;XE;IT(tf))l |At0)}

n—2

1
2 Loy hE(len 12l Ai) +Toah 3 {2 (Elen_11? [4s,))? x

f=n—1—N,
X (]E ]E(|T(h, tn—1,te—n—1, X(tg), I’r(tg)) —

_T(h7tn—17tl—n—17)?€7IT(tf))|2 |Ate) |At0))
2 Ly h E(len1[*As,)

M=

}

n—2

tLoa Lra b D {2 (Blen-1l® [Aw))® x (Blecl? | 4s,))

{=n—1—N,
2 Ly h E(len—1[*|As,)

=

}

n—2

+Loy Lra b Y {E(len1|” |Aw) + E(lee|* |Ag)}
{=n—1-N,
n—2
Loy b (2 + Ly o) B(len_1[*[Aw) + Loy Lra B2 ) E(lec|* | As).
{=n—1—N,

e For (twice) the term labelled 5) in (39) we have from the assumptions (30) on
¢ and (31) on T

2 E(jun—1*[As,) = 2 E( E(lun—1]* [Ar,_,) [Ar)

<

IA

IA

n—2

2 Ly h {]E( leno1l? [ Ai) +E( S (cont.)

{=n—1—N,

T(h/a tn—17 tf—n—l; X(tf)a IT(tf)) - T(h/a tn—l; tl—n—17 )?57 IT(tf))|2|Ato)}
n—2

2 Loz h {E( Jenf? [Au) + Ny 3 { (cont.)

{=n—1—N,
E( E (|X(hytn-1,te — tn_1, X (o), Ir (te)) —
)

“X(hytn-1yte = tn-1, KXo, Fe (b)) | 44,) [As) }

n—2
2052 hE( len1f* [Aw) +2 Loo Lrp B2 1 Y E( e | Ay) -

{=n—1—N,
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Combining these results, we obtain

E(len*|As,) < E (len—1[*|As)
+ h(1+2Lgah+ Ly (2+ Ly 7)) E( len_1f” [Ay)

=y
n—2
+ h? (2 LT72 L¢’2 h 1+ L¢71 LT’Q) Z E(|e4|2|¢4t0)
h e g {=n—1—N,
::FQ
+ 202 p%2 4 C? B2 1,
—n(h)
Tterating yields
E(len|*|As) < hT1 Y Ellen;|*As)
j—l
+h* T Z Z (lee—il*|As) + Y n(h)
j=1l4=n— j=1
j-1
(40) = h Z Ty E(le; *|As,) +h T2 Y E(led*|As,) ¢ +n n(h).
f=j—N,

We write
(41) Ry=0 and Ry =max{E(e]|As;)|i=k—N,+1,k—N,+2,---,k}.

Note that the sequence {R}},>1 is monotonically non-decreasing. Then (40)
and (41) give

n—1
(42) Rn <h Y {T1 Rj+h N,T2R;} +n n(h).
j=0
Now h N, =7 and n n(h) = n(2 C3 h?P2 + C% h?P2~1) < (2 C3 4+ CF) n h?P2 <
(2C2+4C?) T h?27! as 2py < 2p; — 1 and nh < T. We deduce
n—1
(43) R, <hTs3 Y Rj+Ay,
7=0
with T3 = Ty + 72 and Ay, = (2 C% + C?) T h**2~!. We now apply Lemma
3.1 with » = 0 and thus n = 0. This establishes the theorem.

Remark 3.1: For simplicity we have assumed exact initial values, therefore
there is no dependency on starting errors. Similarly, the dependence of the
convergence error on the error of the quadrature method is implicit in the
assumptions on the consistency error.
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4 Two specific schemes

Recall definition (25) of the mesh 7,V. In this section we investigate two spe-
cific choices of the increment functions ¢ and Y. First we consider the Euler-
Maruyama scheme with the quadrature method for Y (¢) chosen to be the com-
posite Euler method. The second method is the Milstein scheme, together with
an appropriate quadrature method for Y'(t). We assume that the initial values
are given by X, = ¥(rh) for r <0, r € Z~. We will use notation given in (18)
and introduce corresponding operators 1~X1 and 7\2 for K as:

MK,y = DoK(t,5—t, X (5))+Fs-D3 K (t,5—t, X () +1 G2- DK (t,s—t, X (s)),
AQKS’t = Gs . D3K(t, s — t,X(S))

Method 1: Euler-Maruyama (EM)
For n > 0, the increment function ¢gas of the EM-method is given by
(44)
¢EM(h; tna Xn7 YnEa I¢EM (tn)) = h F(tn; Xna YnE) + G(tnaXna YnE) AI/Vn+la

tn41

where AW, 11 denotes [ dW (s).

tn
For m >0, m — N, < £ < m — 1, the increment function T¥ of the composite
Euler method has the form

(45) YE (Rt te — tm, Xo, Ire(te)) = b K(tm, te — tm, X¢),
thus
o~ m_l o~
YE= 3" hK(tm te—tm, X).
{=m—N,

Method 2: Milstein
For n > 0, the increment function ¢ys of the Milstein method is given as

St (B, X, VI () = b F(tn, Xn, V) + Gltn, X, V) AWy
- - tnt1 s
(46) +A3G(ty, X, VM) / dW (u) dW (s).
tn tn

For m > N,, m—N, < £ < m—1, the increment function Y™ of the quadrature
method has the form

YM (hytyste = tmy Xe, Fpna (8)) = h K (ty te — tm, X¢)
tey1 8

(47) +D3K<tm,te—tm,fm-G(tz,fq,f@M)/ AW (u) ds,

te te

for m < N, we take TM to be the same as TE.
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Thus for m > N,

N m—1 _ - tet1 ps
vai= Y {h K(tm,tz—tm,Xz)—i—AzK(tm,tg—tm,Xg)/ AW (u) ds},
{=m—N, te 17]

otherwise Y is the same as V.2,

Our purpose in the subsequent exposition is to provide consistency estimates of
the form (36) and (37) for the methods described by the increment functions
(44) and (46) and verify that (44) and (46) satisfy conditions (29) and (30). We
will also provide estimates of the consistency error of the quadrature schemes
YE and YM and ascertain that T and TM satisfy (31).

In the course of the corresponding proofs we will require estimates of multiple
Ito-integrals and we begin with a lemma providing these. It is adapted to our
notation, based on Lemmas 2.1 and 2.2 [18] and the discussion in that section,
where its proof can also be found.

We denote multiple Wiener integrals with some function f(.) as an integrand
by

t+h sy 82 . X
48) Iy somilf) = / / / F(s1) AW (sy) ... dWo(s)),

where j; € {0,1}, i = 1,...,l and dW°(s) = ds. If f = 1 we omit the argument,
as in (28). The integrand f may be one of the coefficient functions F or G, the
kernel K or their derivatives.

Lemma 4.1 Suppose that
(49) Elf ()] < Ms.
Then we have for the multiple integral (48) the following estimates:
a) B, jo,....0).0t(f)) = 0, if at least one jp #0, k=1,...1;
b) B(I(j, ja,...;ji)nt () < Mahl!, if all jr, =0, k=1,...1;
c) (]E|I(j1,1-2,___,jl),h7t(f)|2)% < My hht2/2 where 1y is the number of zero
indices jr and ls the number of non-zero indices jy in (48).
Method 1: Euler-Maruyama
We first treat the composite Euler scheme Y'F.

Lemma 4.2 Assume (9) and that /~\1Ks,t and /~X2Ks,t exist for s € [-1,0], t €
[0,T) and are uniformly bounded in modulus by some constant Ms (we spec-
ify condition (A5) concerning the function K). Part 1.: The composite Euler
quadrature Y satisfies for all m > 0 the consistency estimates

a) [E(Y (tm) — VE(tn))| < M 7 pmin(n1)
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b) BY (tm) — VE(tm)]2 < M 72 Amin11),

where M is a constant, not depending on h. Part 2.: The increment function
YE satisfies (81) for all random variables £(t),€'(t) : [0,T] — R, adapted to the
filtration A; and for all t € [0,T),s € [—,0].

Proof: For Part 1., we have to distinguish two cases, 3) t,, — 7 > 0 and %)
0 (if ¢t,, — 7 < 0 < t,, one would need to separate the integral).

For part a), case %), we use the It6-formula and Lemma 4.1 to obtain

m—1  tet1

|E(Y(tm)—17E(tm))|:|E_ZN]E th > S—tms X (8)) =K (tm, ti—tm, X (te)) ds |

-1 tet1 s m—1
< EN ]E( I [1A utm|duds) < Y Myh*=Ms7h

{=m te Ly {=m—N,

For part a), case i) we obtain, using conditions (9) and (13):
toy1

K m; m;lI’(S)) - K(tm;tl - tm;‘p(tl)) ds |
E m— N by

m tet1
< Lk Ly Z / S—tg s = MT1h.
{=m—N, te

For part b), case i), set |s| :=tg if t, < s < tg41 and s:=ty if s = tn.

tm -1
]E|/ K (b, 5 — tm, X(s)) ds — h Z Kt te — t, X () 2
tm—T {=m—N,
tm
< B[ | (b5~ b X(6)) — Kt 5] = b X (5] d)
tm—T
m—1 tg+1 s s
< 7 Z IE(/ | [ MKy, du+/ A Koy, dW (u))? ds)
{=m—N- te te te
m—1 tet1 s tet1 s
< 27 h //]E| MKy, [2du ds + //E|K2Ku,tm|2 du ds
t=m—N- te tg te tg
m—1
< 27 Ms (b3 +h%) < M3 12 h.
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For part b), case i) we obtain, using conditions (9) and (13):

Em -1
E| K (tm,s — tm, ¥(s)) ds — h Z K(t ms> U(t)) 2
tm—7 {=m—N,
tm
< T / 1K (b8 =t U(5)) = K (b, [5] — t U([ ) d)
tot1
< / LLE(19(s) - ¥(to)[?) ds
{=m— N’ te
tog1
< 7I% Ly Z / (s—t)» ds = 72 L% Ly h27.
{=m—N- 7-+ 1

For Part 2. we have

E(ITE(h t,s,&(t), Ire (8)) — T (h,t,5,€ (1), Iy (1))]*| A)
= KW E([|K(tsE1) — K(t,s,€(1) [ |Ar)
< h2 Lr E( |€t) = €'@) I [A) -

We turn now our attention to the Euler-Maruyama scheme (44).

Lemma 4.3 Assume that A1 Fy, Ao Fy, A3Fy, A1Gy, AoGy and A3Gy exist fort €
[0,T) and are uniformly bounded in modulus by a constant Ms. In addition the
assumptions of Lemma 4.2 are supposed to hold. Part 1.: The Fuler-Maruyama
method (44) satisfies the consistency estimates a) (36) with p; = min(1 + v, 2)
and b) (37) with 2p; = min(2y + 1,2). Part 2.: The increment function ¢rnp
satisfies the Lipschitz-conditions c) (29) and d) (30).

Proof: Part 1.: We recall the definition of §,, (34) and sing the Ito6-expansion
(19), we obtain:

on

B (F(tnms, X (tnm), ¥ (tamr)) = Fltnm, X (tnma), ¥(t00)))
+ (G(tn_l,X(tn_l),Y(tn_l)) - G(tn_l,X(tn_l),ffE(tn_l))) " dW (s)

tn—1

+ Ri+Rs+ Rpy.

Part a) Only the first summand and the term R; in the remainder contribute,
when taking the expectation. Applying the mean value theorem and denoting
& =Yty 1)+ C(YE({#, 1) = Y(t,_1)), 0 < ( <1, we have using Lemmas
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4.1 and 4.2
EG)| < B IE(Ftn 1, X (0 1), Yt 1)) = Fltn 1, X (0 1), TE (b0 1))
t+h s
n |]E(/ / ALF, + A3 F, du ds)|
th_1 Jt
< h |E(D3F<tn71,X(t sl )T () = Yt 1))
tn
+ / |ALFy| + [AsFy| du ds)
tn—1 Jin—1

< h Mz [E(Y (tn 1) = YE(tn 1))| + Mz b2 < M pmin(+72)

Part b) E|§, |2

—~ 2
< 5 E|F(X(tn 1), Y (tn 1) = F(X(ta 1), VP (tn 1)
~ tn 2
+ 5 B[O (t01), Y (tn)) = G (t0-0). PP 00m)) [ ()
tn—1
+ 5E|R > + 5E|R:|® + 5 E|Ry|?
< 5{ Lo B |Y(tno1) = VE(tno)P + h L5 E |V (tn1) = VE(tn1)[?
tn s tn s
+E| / / A Fy + A3F, du ds|* + 2 F| / / Ao F, dW (u) ds|?
tn—1tn—1 tn—1 th—1
tn s
+2E / / A1Gy + MGy + A3Gy, du dW(s)|?
tn_1tn_1
tn s
+ E| A2Gy dW (u) dW (5)|? }
tn_1 Jtn_1
< 5{ W L3, E|Y (tn-1)) = Y (taot) [  + b LE 5 E|Y (tn-1)) = VE (i) [

+M;s h* +2M3 B® + 2M3 B® + Mz h* } < M pmineriha)

Part c), we have for all random variables £(t),&'(¢t),n(¢),n'(¢) : [0,T] — R,
adapted to the filtration A; and for all ¢ € [0, T:

IE (pmar (b t,€),n(0), [ AW (5)) = G (B,
< B E(F(E®),0(1) — Ft,€0),7(
+ [E (Gt £@),n(1) = Gt € (),7'()

€(t),n'(1), J, " aw ()4 |
DA |
D AW (s)lA) |

The result follows from the Lipschitz-continuity of F' and Lemma 4.1, a).
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For Part d), we have for all random variables £(¢), &' (t),n(t),n'(t) : [0,T] = R,
adapted to the filtration A; and for all ¢ € [0, T1:

E (| (b, £, n(), [ dW () = G (hyt, €0, 0/ (@), [ W ()| Ar)
<21 E(IF(460),0(00) ~ F(t,€(0),n' ()P A)
+ 2B ([ [/ Gt E0,n(1) - G, @),1/ (1) dW ()2 |Ar) -

Now the result follows from the Lipschitz-continuity of F' and G and Lemma
4.1, c).

Method 2: Milstein
The remainder of this section is devoted to the analysis of the Milstein method
(46).

Lemma 4.4 Assume that Kle,t and 1~\2K3,t exist for s € [-7,0], t € [0,T] and
are uniformly bounded in modulus by M3z (we specify condition (A5) concerning
the function K). Part 1.: The composite quadrature Y™ with its increment
function YM given by (47) satisfies for all m > 0 the consistency estimates

a) [E(Y (tm) — YM(t,))| < M 7 hmin(vh)
b) E|Y (tm) — VM (tm)2 < M 72 pmin7h®),

where M is a constant, not depending on h. Part 2.: The increment function
YM satisfies (31) for all random variables £(t),&'(t) : [0,T] — R, adapted to the
filtration Ay and for all t € [0,T],s € [-7,0].

Proof: Part 1: As in Lemma 4.2 we have to distinguish the two cases, )
tm —7 >0 and %) t,,, <O0.

For part a), case i), we use the It6-formula and Lemma 4.1. We have

[E(Y (tm) — Y™ (t0))]

tm
|]E( t K(tm,s —tm,X(s)) ds

m—1 (7281
= Y (b K(tmote tm,X(tg))+A2Ktetm/ /
{=m—N,

tot

K tm,S m,X(S)) — K(tm,tg —tm,X(tg)) ds |,

EmN te

then the proof proceeds as in the proof of Lemma 4.2, part a), case i), giving
the desired result. In the same way we can prove part a), case ii).
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For part b), case i), set |s| :=tg if t, < s < tg41 and s: =ty if s = tn.

EY (tn) — VM () < 7 E ( / 1K (t, 5 — £y X(5))

tn—T

Kt 5] — by X ([5])) — KoK oy, /dW(u)|2 ds)
L2}

tetr1 s
< {h / /]E | MKy, [2du ds
{=m—N, te te
tetr1 s
+ / /E |K2Ku,tm — KZth,th du dS}
te tg
m—1 toq1
< 27 ) Mshd / / KEIX(u) = X (te)]* du ds
{=m—N,
—1
< 2(Mz+L% , M h® < Ms 72 h?.

{=m—N,

Part b), case %) is the same as in the case of the Euler-Maruyama method.

For Part 2. we have for all random variables £(t),&'(¢) : [0,7] — R, adapted to
the filtration A; and for all ¢t € [0,T],s € [-7,0]:

E(|Y(h,t,s,£(t), Ix(t)) — Y(h,t,s,E(t), Iy ()] Ar)
< 2K E(|K(t s, &) — K(t,s,&(t ||At
+2 IE(|GSD3K(t,s,£(t)) GsD3K(t,s, &' (1) | W (u) ds|2|At>
17] tz
< 2 (L + Ly z) PP E(JE@E) - @) A) -
=Ly 2

Lemma 4.5 Assume that AlFt, AgFt, AgFt, Ath, AzGt, Ath, A1A3Gt, A2A3Gt
and A3As3G, exist and are uniformly bounded in modulus by a constant M3 and
As>GY is Lipschitz-continuous with respect to its second and third argument. In
addition the assumptions of Lemma 4.2 are supposed to hold. Part 1.: The Mil-
stein method satisfies the consistency estimates a) (36) with p1 = min(1 + ~, 2)
and b) (87) with 2p> = min(2y + 1,3). Part 2.: The increment function ¢
satisfies the Lipschitz-conditions c) (29) and d) (30).

Proof:
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Using the Ité-expansion, we obtain for the consistency error d,, (34)

6n = h (F(tn—I;X(tn—l);Y(tn—l)) _F(tn—laX(tn—l)a?M(tn—l)))

+ (Gt 1, X (ta 1), Y (tn-1) = Gltn-1, X (tn-1), T (1)) [ dW(5)

tn—1

+ (26t Gltn 1, X (tn 1), T (b0 1)) - D2G<n1,X<tn,1),ffM<tn,1)))

WL CLC

Part 1., a) We obtain the same result as in the computations for the Euler-
Maruyama method.

Part 1., b)

+Ri + Ry + Rs.

E |6, |?
< 6Lpy h*E |V (tn- 1)) Y Mty )2 +6 Las hE [Y(tn_1)) — YM(tn_1)|?
+ 6 Lp,g h? IE [Y(tn_1)) = YM(t,_1)]> +6 M h* + 12M3 h® + 12M; h®

+121[4:|1t /t / (MASG(X (2), Y (2)) + A2AsG(X(2), Y (2)

+L4A3G(X(z),Y(z))) dz dW (u) dW (s)|”

+ 128 | /t /u AsAsG(X(2), Y (2)) dW () dW () dW (s)|”

< 6(Lpp + Lae)D?E]Y (tn-1)) = Y™ (tn_1)[? + 6L 2hE]Y (tn_1)) — V™ (tn_1)[?
+ 6Msh* + 12M3h° + 12M3h® + 12M3h* + 12M3h°.

Part c), we have for all random variables £(t),&'(t),n(¢),n'(¢) : [0,T] — R,
adapted to the filtration A; and for all ¢ € [0, T':
IE(gar (b, €0, m(0), [ dW (s), [ [ dW () a1V (5))
ol 0,0 [ AW 5) [ 7 W (0) ()14
< R E(F(EE(),n(t) — F@,&(),n (¢ ))'At) E
using Lemma 4.1, a), the result follows from the Lipschitz-continuity of F.
For Part d), we have for all random variables £(t), &' (t),n(t),n'(t) : [0,T] = R,
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adapted to the filtration A; and for all ¢ € [0, T:

E(|gum (b, t,E(t),n(t), [, dW (s), [T 7 dW (u) dW (s))
— ey, €)' (8), [T aW (s), [T [7 dW (w) dW (s)) ]| A;)
<3 R2E(|F(t,E(t),n(t) — Ft,€ 1), 7 (t)[2]Ar)

t+h

+3E <| [ G(t,&(t),n(t)) — G(¢, &' (t),n'(t)) dW (s)]? |At>

+3E(] tt}htfa(t,at),n(t))  DaG(t ) m()
LG €)1 (1) - DaGLE(®), ' (8) AW (W)W (s)]? | Ar)

Now the result follows from the Lipschitz-continuity of F,G and G - D»G and
Lemma 4.1, ¢).

5 Numerical experiments

We present some results of numerical experiments corresponding to an example
of (1). Our objective is to illustrate the convergence of the Euler-Maruyama
and the Milstein method with respect to decreasing step-size.

Example 5.1 Consider

(50) dY(t):[—o.z t Y(s) ds — 0.3V (¢)| dt + 0.5Y (£)dW (¢),

for t € [0,2] and Y(s) =1+ ¢ for —1 < s < 0 and W(¢) is a one dimensional
Wiener process.

If we square both sides of (32) we obtain the mean-square error £| X (T) — X />
which should be bounded by C h?P. An ‘explicit solution’ was computed on
a very fine mesh (4096 steps). To illustrate the convergence of the method,
we have simulated 2,000 sample trajectories with each of the step-sizes h =
272,273 274,275 and computed the error

2000

(51) 2000 Z Yy

at the final time T" = 2. In Table 1 the results of an experiment are presented,
in Figure 1, we have plotted log, (") versus log, (h) together with reference lines
with the slope 1 and 2.
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Table 1: Example (50)

Time step h EM € Mil "
0.25 0.0072224 0.002671
0.125 0.0028965 | 0.00057764
0.0625 0.0011966 | 0.00013745
0.03125 0.00051249 | 3.7755E-05

22

5 46 42 -38 34 -3 26 -22 1.8 —5 46 42 38 34 -3 26 22 18

Figure 1: log,(e") versus log,(h) for (50) with left: Euler-Maruyama method
(y =z — 6.5), right: Milstein-method (y = 2z — 6).

References

[1]
[2]
[3]

[4]

[5]

J. Appleby, A complete market model with feedback, Tech. Report, MS-00-
010, Dublin City University, Ireland, 2000.

M. Arriojas, A stochastic calculus for functional differential equations,
PhD. thesis, Southern Illinois University at Carbondale, USA, 1997.

C. T. H. Baker, The Numerical Treatment of Integral Equations, Clarendon
Press, Oxford, 1977.

C. T. H. Baker and E. Buckwar, Numerical analysis of explicit one-step
methods for stochastic delay differential equations, LMS J. Comput. Math.
3, pp. 315-335, 2000.

C. T. H. Baker and N. Ford, Convergence of linear multistep methods for
a class of delay-integro-differential equations, in International Series of Nu-
merical Mathematics 86, pp. 47-59, Birkhduser Verlag Basel, 1988.



Strong Approximation of SFDEs 23

[6] H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra
Equations, CWI Monographs, North-Holland, 1986.

[7] I. Elsanosi, B. Qksendal and A. Sulem, Some solvable stochastic control
problems with delay, Stoch. Stoch. Rep. 71 (1-2), pp. 69-89, 2000.

[8] A. Friedman, Stochastic Differential Equations and Applications, Volume
1, Academic Press, 1975.

[9] P. Guttorp and R. Kulperger, Statistical inference for some Volterra popula-
tion processes in a random environment, The Canadian Journal of Statistics
12 (4), pp. 289-302, 1984.

[10] D. G. Hobson and L. C. G. Rogers, Complete models with stochastic volatil-
ity, Math. Finance 8 (1), pp. 27-48, 1998.

[11] Y. Hu, S. E. A. Mohammed and F. Yan, Discrete-time approzimations of
stochastic delay equations: the Milstein scheme, Tech. report, Southern Illi-
nois University, 2001. (electronic, URL: http://salah.math.siu.edu/).

[12] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations, Springer-Verlag, Berlin, 1992.

[13] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applica-
tions of Functional Differential Equations, Mathematics and its Applica-
tions, Kluwer Academic Publishers, Dordrecht, 1999.

[14] Y. Kuang, Delay Differential Equations with Applications in Population
Dynamics, Academic Press, San Diego, 1993.

[15] B. Larssen, Dynamic programming in stochastic control of systems with
delay. PhD. thesis, University of Oslo, Norway, 2002.

[16] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM,
1985.

[17] X. Mao, Stochastic Differential Equations and their Applications, Horwood
Publishing Limited, Chichester, 1997.

[18] G. N. Milstein, Numerical Integration of Stochastic Differential Equations,
Kluwer Academic Publishers Group, Dordrecht, 1995. Translated and re-
vised from the 1988 Russian original.

[19] V. J. Mizel and V. Trutzer, Stochastic hereditary equations: existence and
asymptotic stability, J. Int. Eq. 7, pp. 1-72, 1984.

[20] S. E. A. Mohammed, Stochastic differential systems with memory. Theory,
examples and applications, in Stochastic Analysis and Related Topics VI.
The Geilo Workshop, 1996 , eds. L. Decreusefond, Jon Gjerde, B. @ksendal,
A .S.Ustiinel, Progress in Probability, Birkhauser (1998),pp. 1-77.



Strong Approximation of SFDEs 24

[21] S. E. A. Mohammed, Stochastic Functional Differential Equations, Pitman
(Advanced Publishing Program), Boston, Mass., 1984.

[22] B. Qksendal and A. Sulem, A mazimum principle for optimal control of
stochastic systems with delay, with applications to finance, in Optimal
Control and Partial Differential Equations- Innovations and Applications,
(J. M. Menaldi, E. Rofman and A. Sulem, eds.), IOS Press, Amsterdam,
2000.



