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On integrals with respect to Lévy processes

Uwe Kiichler
Humboldt University Berlin, Germany

Institute of Mathematics

Abstract

Assume L is a non-deterministic real valued Lévy process and f is a
smooth function on [0,¢]. If for some Borel function H P-almost sure the
equality

H( [ f(&)dL,) = L
[0,¢]

holds, then f is constant on [0, t].

AMS-Classification: 60G51, 60E07, 60H20
Key words. Lévy process, compound Poisson process, integration with respect
to Lévy process.

1 Introduction

In modeling term structures of interest rates driven by Lévy processes L =
(Ls, s > 0)) arises the question, if for a fixed positive ¢ and for a given determinis-
tic continuously differentiable function f on [0, ¢] there may exist a (deterministic)
Borel function H with

H( / f(s)dLs) ~L, P-as. (1)
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See Kiichler, Naumann [3]. Obviously (1) holds with H(z) = ¢ 'z if f equals
a nonzero constant c. In this note we will show that for any non-deterministic
Lévy process L the existence of a measurable function H with (1) implies f to
be constant.

Note that under assumption (1) the support of the distribution of the random vec-

tor (Iy, L) with I; = / f(s)dLy is a zero set with respect to the (two-dimensional)
0,t

Lebesgue measure )\[2. ]Therefore the assertion immediately follows if one can en-
sure that (I;, L;) has a common density with respect to . This is the case if L
is a Wiener process with positive diffusion coefficient and arbitrary drift. Indeed,
if f is not a constant then (F}, L;) is two-dimensional Gaussian distributed with
a regular covariance matrix. For other Lévy processes L Eberlein and Raible [1]
proved that the following condition on the characteristic function of L; is suffi-
cient for (I;, L;) to have a common density: There exist real constants C,~,n > 0
such that

|Elexp(iuLy)]| < C-exp(—7lul") VueR (2)

But not for every Lévy process L the vector (I;, L;) has a common density, con-
sider for example Poisson processes. Analyzing the arguments above it turns out
to be enough for our purpose to show that the common distribution of (I3, L;)
has a nonzero absolutely continuous part with respect to A if f is not equal to
a constant. The key point of the proof of the theorem below is to show that this
property holds for every non-deterministic Lévy process L.

2 Lévy processes

Assume L = (Lg, s > 0) to be a real valued Lévy process defined on some proba-
bility space (€2, 2, P). This means

(i) P(Lo=0)=1.
(ii) L has independent and stationary increments.

(iii) All trajectories (Ls(w),s > 0),w € Q, are cadlag, i.e. continuous from the
right and having limits from the left.

Examples of Lévy process are

- the Wiener process W with drift ;1 and diffusion o > 0, in this case W, — W,
is N(u(t — s),0%(t — s))-distributed, and all trajectories are continuous,



- the Poisson process N with jump intensity A > 0, in this case N; — Ny is
Poisson-distributed with parameter \(¢ — s) and the trajectories are piece-
wise constant, non-decreasing, jumping at times 7, k > 1, with jump size
one where (7, — 7% 1),k > 1, with 79 = 0 are mutual independent exponen-
tial distributed with parameter A random variables.

N,
- the compound Poisson process Y; = Et Zy, where N = (N5, s > 0) is a
k=1

Poisson process with jump intensity A > 0 and the (Z, k > 1) are inde-
pendent identically distributed random variables the distribution function
F of which satisfies F'(0+) = F(0—). Moreover, the (Z;,k > 1) and N are
independent. The Z; form the jump sizes of (Y;, ¢ > 0).

We summarize some well known facts on Lévy processes that will be used below.
For proofs and further details see for example Sato [4]. In general, to every Lévy
process L is assigned a uniquely determined characteristic triple £ := (u, 02, v)
where 1 € R,0%? > 0 and v is a measure on the real axis R satisfying

72
1+ 22

v({0}) = 0, / v(dzr) < 00 (3)

such that it holds
Eexp(iyL;) = explt-¥(y)], t>0,y €R

with
2 o0

. g yzT
w@%=wy—§w“%/@y—1—

T
1+ a?

yv(dz),y € R.

Conversely, to any triple £ = (i, 0%, v) with (3) there is a uniquely in law deter-
mined Lévy process L having £ as its characteristic triple. If 0% + v(R) = 0 it
holds Ly = us, s > 0. We call this case the deterministic one.

If v = 0 then we obtain a Wiener process with p as drift and with o2 as diffusion
coefficient.

Let L be a Lévy process. For any € > 0 one can decompose L into two mutual
independent Lévy processes L=¢ and L>¢ defined by

LS>5 = Z ]I{|ALu|>s}ALua S Z 0, where
u<s
AL, = Ly— Ly,
and
LS = L,—L> s>0.
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The process L”¢ is a compound Poisson process with jump intensity
Ae = v(R\[—¢,¢]) and jump size distribution F;(dz) := A\ 'v(dz) - Up\[_c(2).
If f is a continuously differentiable function on [0,¢] we define the integral
| £(s)dL, by

[0,7]

[ )L, = f)L~ [ L f(s)ds

[0,2] [0,¢]
and denote it shortly by I;.
Note that L is a (possibly degenerated to the deterministic case if 02 = 0) Wiener
process if and only if Ly = 0 for all ¢ > 0.

3 Results

The result of this note is the following theorem.

Theorem 3.1. Fix a positive number t, let f be a real valued continuously differ-
entiable function on [0,t] and assume L = (Ls,s > 0) to be a non-deterministic
Lévy process. If for some Borel function H it holds

H( / f(s)dL3> — L, P-as (4)
[0,2]
then f 1s necessarily a constant.

Proof. Let us firstly consider the case that L is a Wiener process with param-
¢

eters 4 € R and 0? > 0. Then (I}, L;) = ([ f(s)d Ls, L;) is a Gaussian vector.
0

Its distribution is degenerated by assumption (4). Thus its covariance matrix is
singular, because of 02 > 0 this implies (/ f(s)ds)* =t / f2(s)ds. By the

[0,¢] [0,¢]
Cauchy-Schwarz inequality this is only possible if f is a constant.

As a second step we assume that L is a compound Poisson process with jump times
Ti, Ta, - - - and jumps sizes Z; at time 73, £k > 1. Denote the distribution function of
Zy by F. Let z be a point of increase of F'. This means P(z—e < Z; < z+¢) > 0
for all € > 0.

We may suppose z > 0, otherwise consider —L instead of L. If f is not a constant
function, based on the assumptions on f we find a subinterval U := (ug,u;) of
(0,t) with ug < uy and f'(xz) # 0 at all points z from U. In particular f' is
either strictly positive or strictly negative on U. Thus f is strictly monotone on
U and consequently maps U one-to-one on an interval V' = (vg, v1) with vy < v;.



Without restriction we can assume vy > 0, otherwise restrict U to a smaller open
non-void interval and/or consider, if it is needed, —f instead of f.

We continue the proof by choosing a positive € such that

c—1
c+1

e z-

with ¢ := (v1/v)2. For every n > 1 put
Cen i ={weQ| Zp(w)e(z—¢c,z+¢),k=1,...,n}
and
D,:={weQ:u <7nw) <...<mpw) <up, T (w) <t}

Because of the special choice of the point z and the independence of the Z;, k > 1
we have P(C.,) > 0. The jump times 7,,n > 1 have the property that the
differences 7.1 — 7, k > 1, are independent and exponentially distributed. This
implies in particular P(D,) > 0. Now using the independence of the (Z;,k > 1)
from the (74, k£ > 1) we conclude that

P(D, N C.,) = P(D,)P(C.,) > 0. (6)
We have P-almost surely for all w € D, N C;
L= [ f(s)dL, = 3" Zef(m) € (n(z = £)uo,n(z +€)ur) (7)
0.1 k=1

Consequently, the distribution of I; given D,, N (., can be expressed as

P(l,e B|D,NC;,) =

PCT [ P(X s € BID) F(da) - F(dz) ()

(z—e,z+e)™ k=1

where B is any Borel set. Here we have used once again the independence of the
(Zg, k > 1) from the (7, k > 1).

At this point we formulate and prove an auxiliary result on the distribution of
n

> 2, f(7%) as a lemma.
k=1
Lemma 3.1. Assumen > 1, as well as z, > 0,k =1,...,n, to be fired. Then the

n
distribution of Sy, := Z zkf (k) given Dy, has a density being strictly positive on
k=1

n n
Ti= (X a0y a).
k=1 k=1



Proof. Given D? := {1, < t < 7,41} the random vector (71, 7s,...,7,) has a
strictly positive density on A, := {(s1,...,8,) : 0 < 81 < 50 < ... < 5, < t},
indeed it is uniformly distributed thereon (see for example Sato [4], Chapter 1.3).
This implies immediately that given D,, the vector (7,...,7,) is uniformly dis-
tributed on A, N (ug, u1)™.

Put S,(s1,...,8,) := En: zkf(sk). The function G defined by G(s1,...,s,) =
k=1

(51,825« s Sn—1, Sn(S1,-..,5,)) maps A, N (ug,ur)" continuously differentiable
one-to-one on (A,_; N (ug,u;)" !) x J. This is a consequence of the supposed
smoothness and the strict monotonicity of the mapping f from (ug,u;) onto

(vo,v1). Thus, given D,, the vector G(m1,...,7,) = (71,...,Tu-1, »_ 2 f (%)) has
k=1

a density being strictly positive on (A,_1N(ug, u1)" 1) x J which can be expressed
as

Y Maunuouny (G (V1 02,y vn)) (2l £ (v0) )

where 7y is the normalizing constant. Consequently given D,, the random variable
Sy = Sp(71,...,7,) has a density ¢g (v) equal to

’Vznil ) / HAnn(Uo,m)" (Gil(vla e Uno1,0)) v, dp

Ap_1N(ug,uy)?~1t
f ) (v) , veR,

which is strictly positive on 7. Thus the lemma is proved. O

Corollary 3.1: Giwen D, NC,,, the integral I, has a density being strictly positive
at least on the non-void interval (nvy(z + €), nvi(z — €)).

Proof. We use the Lemma 3.1 to express the integrand in formula (8)

P(ézkf(fk) € B|Dn> - /ngn(u;zl, e za)do 9)

Inserting (9) into (8) and changing the order of integration we get

P(]tEBanﬂCs,n)'P(CETL):

)

/( / ¢Sn(v;zl,...,zn)F(dz1)...F(dzn)>dv

B (z—e,z+e)”

Thus given D, N C;, the integral I; has a density which is strictly positive on
(nvg(z + €), nv1 (2 — €)).



That this interval is non void follows from assumption (5). Indeed, (5) implies
z+4¢e < c(z—¢€) as well as z > ¢ and thus we have

vl(z—e)202(2—5)2.z+6>z+5>1. (10)
vo(z +¢€) (z4¢€)? z—¢e z-—¢
This completes the proof of the corollary. O

We continue the proof of the theorem. By assumption we have
H(It) = Lt P —aqa.s.
For any n > 1 this implies
H(L)=> Zye (n(z—¢),n(z+¢)) P(-|D,NCep) — as. (11)
k=1

Now choose two positive integers [ and m with

z+e | 92 — €
<c

— 12
z—e m z+te (12)
which is possible because of (10).
Introduce for any n > 1 the two intervals
Vo= (n(z —¢),n(z+¢)) and W, := (nvg(z + ¢), nvi(z — €)).
By construction of [ and m we get from (12) [ > m and
w:=lvy(z +¢) <mui(z —e) = . (13)
Thus it holds
WiN Wy, = (w, @) # 0. (14)

From Corollary 3.1. and (11) it follows for n =1
H(v) € Vi Lebesgue - a.e. on W,

and for n =m

H(v) €V, Lebesgue - a.e. onW,,.
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Thus (14) implies

H(v) € VNV, for all v from (w,w). (15)

But from the first inequality of (12) we have [ > m and I(z —€) > m(z +¢), this
means V; NV, = (. This is a contradiction to (15). Consequently, the assump-
tion, that f is not constant cannot be valid.

The proof of the theorem is finished for L being a compound Poisson process or
a Wiener process, both non degenerated.

In the third part of the proof we assume that L is a general non-deterministic
Lévy process. We choose an € > 0 such that L”* is non-trivial. (If no such ¢
exists then L necessarily is a Wiener process, and for this case the proof was given
at the beginning.)

By assumption we have

H(It>€ + ItSE) = Lt>5 + Ltss P-a.s. (16)
with

= /f(s)dL;E, 5 = /f(s)dLgf.

[0,t] [0,t]
We know that (1%, L7¢) is independent of (I5°, LF°).

Therefore from (16) we get

H(I7*+y)=L*+z  P-as. (17)

for PUFSLET) _ almost all (y, z). Thus there exists at least one pair (y, z) such
that (17) holds. As a consequence from the second part of the proof we obtain

H(I7¥)=L>*  P-as. (18)

for the Borel function H (z) := H(v+y)—z. Because L;¢ is a nontrivial compound
Poisson process, the function f has to be constant. Now the proof of the theorem
is complete. O
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