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Abstract 

Controlling for time fixed effects in analyses on longitudinal data by means of time-

dummy variables has long been a standard tool in every applied econometrician’s toolbox. 

In order to obtain unbiased estimates, time fixed effects are typically put forward to 

control for macroeconomic shocks and are (almost) automatically implemented when 

longitudinal data are analyzed. The applied econometrician’s toolbox contains however 

no standard method to control for time fixed effects when time-dummy variables are not 

applicable. A number of empirical applications are crucially concerned with both suffering 

from bias due to omitting time and time-dummies being inapplicable. This paper 

introduces a simple and readily available parametric approach to approximate time fixed 

effects in case time dummy variables are not applicable. Applying Monte Carlo 

simulations, we show that under certain regulatory conditions, trend polynomials 

(smoothing time fixed effects) yield consistent estimates by controlling for time fixed 

effects, also in cases time-dummy variables are inapplicable. As the introduced approach 

implies testing nested hypotheses, a standard testing procedure enables the identification 

of the order of the trend polynomial. Applications that may considerably suffer from bias 

in case time fixed effects are neglected are among others cartel overcharge estimations, 

merger and regulation analyses and analyses of economic and financial crises. These 

applications typically divide time into event and control periods, such that standard time 

dummies may not be applicable due to perfect multicollinearity. In turn, their estimates 

of interest most crucially need to be purged from other (unobserved) time dependent 

factors to be consistent as time may by construction induce omitted-variable bias. 
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1. Introduction 

 

Controlling for time fixed effects in empirical models that are based on longitudinal data has long been 

a standard tool in applied empirical applications.1 Time fixed effects allow controlling for underlying 

observable and unobservable systematic differences between observed time units. In applied (micro-

) econometric applications, time fixed effects are typically put forward to control for macroeconomic 

shocks and are (almost) automatically implemented when longitudinal data are analyzed, in order to 

obtain unbiased estimates. Time fixed effects are standardly obtained by means of time-dummy 

variables, which control for all time unit-specific effects. This implies controlling for T-1 time-unit 

dummy variables in case T time periods are observed in the data. Due to different reasons, in many 

applications the observations are measured on a yearly basis, such that time fixed effects are typically 

controlled for by T-1 year dummies in case T years are observed in the data. 

Time-dummy variables may however be inapplicable in a number of econometric applications due to 

perfect multicollinearity. For these applications, the applied econometrician’s toolbox so far contains 

no standard method to control for time fixed effects. The lack of controlling for time fixed effects 

potentially results in considerably biased estimates, especially in case the variables of interest are 

measured conditional on time. This paper introduces a simple and readily available parametric 

approach to control for time fixed effects in case time-dummy variables are not applicable.2 

Applications that may especially suffer from bias due to the omission of time fixed effects in the 

literature as well as in practitioners’ applications are cartel overcharge estimations, merger and 

regulation analyses and analyses of economic and financial crises. In these applications the typical 

measurement of events involves dividing time into event and control periods, such that standard time 

dummies may not be applicable due to perfect multicollinearity. In turn, their estimates of interest are 

constructed conditional on time and thus by construction need to be purged from all time dependent 

factors. Time may therefore be regarded as immediate source for omitted-variable bias in these 

applications. 

Applying Monte Carlo simulations, we show that polynomials of the time trend allow for approximating 

time fixed effects which yield consistent estimates under certain regulatory conditions. Our results 

show that unbiased estimates can be obtained or at least be approximated under smoothing time fixed 

 
1 We use the term “longitudinal” in order to indicate that some evolvement over time is present in the data. 
Underlying data consistent with our setting can especially be panel data and pooled or repeated cross-sections. 
Furthermore, we refer to “time-unit fixed effects” simply as “time fixed effects”. 
2 The suggested parametric approach for obtaining time fixed effects without time-dummy variables can be 
expressed as a special case of generalized additive models (GAM). 
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effects, especially when unobserved time-dependent factors change smoothly over time. In case time-

dummy variables are applicable however, these are clearly superior to smoothing time fixed effects. 

Applications in which the event of interest is measured as binary variable conditional on time however, 

time-dummy variables are typically not applicable due to perfect multicollinearity, especially when the 

event of interest can merely be measured in units of the observable time periods. Our results suggest 

that in these cases, time-dummy variables may in turn introduce greater bias if applied. 

The empirical literature so far has therefore widely ignored time fixed effects instead, despite a clear 

expectation of potential bias in many cases. Smoothing time fixed effects may introduce a crucial albeit 

very simple correction in many applications, in which time-dummies would otherwise introduce 

additional bias in the estimates. The proposed parametric approach of smoothing time fixed effects 

does not make any assumptions about the form or magnitude of the unobserved time-dependent 

effects. The order of the trend polynomials however needs to be determined by the user. As the 

introduced parametric approach implies testing for nested hypotheses, standard F-tests may guide 

determining the order of the trend polynomial that is underlying the data generating process. 

Many applications relevant in economic research are concerned with perfect multicollinearity when 

time-dummies are included as new regulatory requirements usually start at the beginning of the year 

or month and, in general, business decisions are usually made for a full calendar year. Yet, economic 

time series are often available merely on the level of the very same time periods. On the one hand 

economic time series are usually not available on high frequencies of for example a daily or weekly 

basis. On the other hand, many events may not be traced back to a precise starting point, such that 

the measurement might be based on an available definition of time merely due to pragmatical 

reasons.3  

In empirical analyses of economic relations, the underlying time series usually tend to be highly 

correlated over time, such that a minimal smoothing requirement is often naturally met. In addition, 

time fixed effects also capture all time-unit specific effects, that may be observable or unobservable 

or at least unobservable to the researcher.4 The trend variable measuring time can then be included 

in the regression equation linearly, quadratically or as higher polynomial approximating the otherwise 

discrete steps of time-dummies.5 In turn, with smoothing time fixed effects perfect multicollinearity of 

time-dummy variables can be overcome, while retaining the purging properties of time fixed effects. 

 
3 One example is the financial crisis. It is difficult to define a clear starting point for different industries and 
countries. 
4 This may also apply to other field of research such as in social sciences in general. Wherever it is applied and a 
period of time is observed, this problem arises. 
5 Similar to time-dummy variables, only T-2 polynomials can be included. 
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A similar approach introduced by Carter and Signorino (2010) also acknowledge that time-dummies 

may not be applicable in cases of binary dependent variable models and thus suggest the inclusion of 

polynomial time approximations. Their analysis entails a binary dependent variable in the case of a 

survival analysis in political science. As alternatives to parametric trend polynomials, they also propose 

semi-parametric modelling using splines. Carter and Signorino (2010) face a similar challenge as 

suggested in this paper. Their approach aims at explicitly modelling time within the context of their 

binary dependent variable indicating certain events. Against this backdrop, the event measured by the 

binary dependent variable cannot be distinguished from the underlying observed time units. Therefore 

time-dummy variables are not applicable in their context either. Thus, in this context, their approach 

is not concerned with the approximation of unobservable time fixed effects, but rather aims at 

explicitly modelling time in order to make statements about the likelihood and duration of an event. 

In applied time series econometrics parametric time trends are frequently used and discussed against 

the backdrop of potential spurious correlations and within the context of integration and co-

integration of time-series. Here, deterministic time trends are implemented to model observed time 

trends and in the context of extrapolation and prediction models (Mills, 2003). 

Application implementing linear time trends in the context of cartel overcharge estimations are 

Friederiszick and Röller (2010) as well as Hüschelrath et al. (2013). In these papers, the authors 

examine the effects of the cement cartel in Germany on cement prices. Implementing a linear trend in 

their models, the authors argue that many of the explanatory variables follow a linear time trend and 

may thus be more flexibly represented by a deterministic time trend polynomial of order one. Rather 

than a leaner data set, as put forward by the authors, the argument that the omitted variables may 

likely be highly correlated (macro)economic time series is probably valid. Their linear trend variable 

may indeed depict these observable as well as other unobservable developments underlying in the 

data. 

The introduction of trend polynomials does not constitute an entirely novel approach in the empirical 

literature. The contribution of this paper however is the introduction of a parametric approach by 

means of trend polynomials as a standard tool for approximating time fixed effects. Thus, we provide 

an in-depth analysis of the properties of smoothing time fixed effects. Based on our analysis, we 

conclude, that smoothing time fixed effects should be introduced as means for obtaining time fixed 

effects when time-dummy variables are not available. Although in some settings, smoothing time fixed 

effects may only imperfectly approximate the underlying unobserved time-dependent effects, our 

results suggest that neglecting time fixed effects altogether typically results in higher bias. 

We show that the polynomials of the time trend yield very similar results to time dummy variables in 

their mechanism and represent a smoothing of the discrete steps of time dummy variables. For this 
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reason, the more flexible standard approach using time dummy variables are superior to the trend 

polynomials in the context of continuous treatment variables. If it is not possible to include time 

dummy variables due to collinearities, smoothing time fixed effects are a reliable alternative under 

certain regulatory conditions. 

 

2. Empirical Setting 

The applied econometrician typically does not observe the full set of time-dependent variables 

underlying in longitudinal data and thus crucially relies on time fixed effects. The estimation equation 

is then of the form: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝜂𝑖𝑡 

𝜂𝑖𝑡 = 𝛽3𝑥3𝑡 + 𝜀𝑖𝑡 

in which 𝜂𝑖𝑡 = 𝛽3𝑥3𝑡 + 𝜀𝑖𝑡 is the empirical residual and 𝜀𝑖𝑡 is the error term. Hence, 𝑥3𝑡  represents an 

unobservable omitted variable and thus leads to a bias if the variable of interest 𝑥1𝑖𝑡  is correlated with 

𝑥3𝑡 . In this setting, 𝑥3𝑡  only depends on time, such that a standard inclusion of time-dummy variables 

may sufficiently represent the underlying unobservable time-effects. The bias may thus be corrected 

by means of time-dummy variables in case applicable. The unobserved time-dependent variable 𝑥3𝑡  

represents numerous unobserved effects in real applications. Time-varying observed or unobserved 

effects in (micro-)economic applications are typically assigned to macro-economic developments. The 

underlying unobserved time-varying variables will however typically differ depending on the subject 

matter. 

 

Smoothness of underlying time series 

Many underlying macro-economic time series may be characterized as rather smoothly evolving over 

time, once seasonality has been controlled for.6 Smoothness of the underlying unobservable variables 

is a favorable property for smoothing time fixed effects. A readily available measure for smoothness is 

the lag one autocorrelation Corr(𝑥3𝑡 , 𝑥3𝑡−1). The higher the correlation the smoother is the time 

series. Table 1 shows the smoothness of time series from different fields of economic research. These 

macro-economic time series show an average smoothness factor of at least 0.61, but typically above 

 
6 Note that in the typical setting, in which time-dummy variables result in biased estimates, seasonal dummy 
variables will still often be applicable. If the data frequency allows, seasonal dummy variables may further 
increase smoothness. 
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0.9. Even the typically very volatile time series for energy prices (here import prices for mineral oil & 

electricity price index) show a high smoothness factor.  

Table 1: Smoothness of economic time series 

Series Smoothness Min Max Mean Sd Length 

Mineral oil 7 0.607 88.2 183.6 133.95 34.92 15 

GDP8 0.989 75.4 114.8 96.21 11.15 25 

Unemployment9 0.986 3 9.6 5.47 1.71 156 

HCPI10 0.9978 75.7 105.5 89.74 9.64 24 

PPI11 0.9621 83.03 104.18 94.30 7.62 19 

Smoothness is characterized by the first lag correlation of the underlying unobserved time-series. 

In order to introduce an intuitive approach to smoothing time fixed effects, we first postulate a number 

of properties for the unobserved time-dependent variable as well as the variable of interest. Before 

we relax these assumptions in the Monte Carlo simulations in section 3, we show results from Monte 

Carlo simulations conditional on the form of the curvilinearity of 𝑥3𝑡 . For the matter of comparison 

between time-dummy variables and smoothing time fixed effects, we first show results from Monte 

Carlo simulations, in a setting in which both are applicable. Both are applicable in case the variable of 

interest is measured continuously. Subsequently we shall concentrate on the setting in which the 

variable of interest is merely measured binary, with a strict time division into event and control 

periods, where time-dummy variables are inapplicable. The postulated curvilinearity of the underlying 

unobservable time-series 𝑥3𝑡  in this section can entail three different forms. We postulate three 

different intuitive forms, a linear time trend, a u-shaped or of a cubic form. Figure 1 shows the 

postulated courses. 

 

Data generating process 

With a time-range of T = 20 time-units, the data generating process further assumes that 𝜀𝑖𝑡 is normally 

distributed around 0 with a standard deviation of 10. The variable of interest 𝑥1𝑖𝑡  is either simulated 

as a continuous (section 2.1) or a binary (section 2.2) variable. The additional explanatory variable 𝑥2𝑖𝑡  

is generated to be exogenous and normally distributed with a mean of 0 and a standard deviation of 

10. The true coefficients are postulated as 𝛽0 = 10, 𝛽1 = 15, 𝛽2 = 2 and 𝛽3 lying randomly between 

10 and 50 for the simulation with a continuous variable of interest 𝑥1𝑖𝑡  (section 2.1) and between 0.5 

 
7 Statistisches Bundesamt (2020), Index of import prices: GP09-061. 
8 Eurostat (2020), GDP at market prices for the EU28, Index 2010=100. 
9 Statistisches Bundesamt (2020), monthly unemployment rate (ILO-Concept): 13231-0003. 
10 Eurostat (2020), Harmonized Consumer Price Index - Germany – yearly data, Index 2015=100.  
11 OECD (2020), Producer Price Index – EU28 – yearly data, Index 2015=100. 
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and 1 for the binary variable of interest 𝑥1𝑖𝑡  (section 2.2).12 The dependent variable is then simply the 

result of the generated (pseudo-)random variables and the postulated intensities of their effects. 

For all simulations, the absolute correlation between the variable of interest 𝑥1𝑖𝑡  and the unobservable 

𝑥3𝑡  is restricted to [0.3,1). This is done in order to postulate an initial bias if time fixed effects are not 

controlled for.13  

Figure 1 Figures of three postulated forms of the unobserved time-dependent error 

 
𝑥3𝑡 = 100 − 𝑡       𝑥3𝑡 = 100 − 3𝑡 + 0.1𝑡2 

 
𝑥3𝑡 = 100 − 5𝑡 + 0.41𝑡2 − 0.01𝑡3 

Three postulated forms for the unobserved underlying time-dependent error with the assumed respective underlying 

equations. First: linear. Second: quadratic. Third: cubic.  

In order to obtain comparisons of approaches, different models are estimated on the basis of the 

randomly simulated data. Model 1 is the baseline model neglecting time-varying effects altogether. 

 
12 Since the relative influence of the error term on y increases drastically in the case of the binary treatment, the 
restriction on 𝛽3 is conducted. 
13 Note, the correlation may be negative or positive. A correction of bias by means of time fixed effects works 
irrespective of the direction of the correlation. A restriction to an absolute correlation therefore suffices. 
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Model 2 is nested in model 1 and includes T-1 time-dummy variables. Model 3 is nested in model 1 

and uses smoothing time fixed effects, polynomials of the time trend with the power p up to P.14 

Modell 1: 𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝜂𝑖𝑡 

Modell 2: 𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + ∑ 𝑌𝑒𝑎𝑟𝑡 ∗ 𝜗𝑡
𝑇−1
𝑡=2 + 𝛿𝑖𝑡 

Modell 3: 𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + ∑ 𝑇𝑟𝑒𝑛𝑑𝑝 ∗ 𝜑𝑝
𝑃
𝑝=1 + 𝜇𝑖𝑡 

In the following, the simulations are carried out for a continuous (chapter 2.1) and a binary (chapter 

2.2) variable of interest 𝑥1𝑖𝑡 . The respective data generating process of 𝑥1𝑖𝑡  is introduced in the 

respective chapter as well as simulation results. 

 

Testing for the optimal order polynomial 

As model 3 is nested in the baseline model 1, standard F-tests can be implemented to determine the 

optimal order polynomial. As it is readily available, we suggest a testing procedure using a F-tests in 

order to detect the optimal order of the polynomial for smoothing time fixed effects. The procedure 

entails testing for a sequential addition of trend polynomials starting from a trend polynomial of order 

one, as long as the F-statistic rejects the null hypothesis of no explanatory power of the added 

polynomial.  

As smoothing time fixed effects imply a polynomial approximation of an unknown function and in 

practice clear-cut solutions might be rare from this condition alone, we suggest to impose two further 

restrictions to the test procedure. First, the additional polynomial should only be included if the t-

statistics of all trend coefficients individually are significantly different from zero as well. If one of these 

conditions is not met for the additional polynomial, polynomials up to the last polynomial meeting 

both conditions should be used. Second, an exception from this rule should be the first order, linear 

polynomial as curvilinear errors must not necessarily follow a linear time trend. The curvilinear error 

might rather be stationary or even perfectly stationary. In such a case the first F-test on a merely linear 

time trend as well as the individual t-test will of course be insignificantly different from zero. Such a 

setting however does not necessarily imply that no curvilinearity is apparent. Therefore, we suggest 

that if one or both tests indicate insignificant results, the quadratic polynomial should be tested as 

well. In case, both the F-test on the quadratic polynomial is significant as well as the two individual t-

 
14 If model 3 is referred to in the following, a parametric regression model with polynomial approximation is 
always meant, regardless of the order of the polynomial. The order of the polynomial can range from 1 to T-2. 
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statistics of linear and quadratic polynomials, the procedure should start from there ignoring the mere 

linear trend.15 

The testing procedure can be summarized as follows: 

Include time trend polynomials of orders 1 to p in the model. Conduct the F-test for the pth order 

polynomial and t-tests for order polynomials 1 to p. If all tests are significant repeat from the 

beginning, this time with order polynomials 1 to (p+1). The optimal order polynomial is the last 

for which all tests are significantly different from zero.  

The first order polynomial constitutes a special case: if the test procedure at stage 1 results in 

insignificant test-statistics, in any case also test for polynomials 2 to p and follow the above 

procedure. 

In the simulations we also conduct this test procedure and report the results from automatically 

choosing the indicated optimal order of the polynomial derived from the tests. Results based on the 

choice the automatic decision concerning the order of the polynomial from the test procedure are 

labelled with the suffix “optimal” in the following sections. 

 

2.1 Continuous Variable of Interest 

In this subsection, a setting with a continuous variable of interest is assumed as in this setting both 

time-dummy variables and smoothing time fixed effects can be estimated allowing for a comparison 

of their respective properties. In practice, time dummy variables are standardly included in the 

regression in this setting. The following simulations are conducted three times, one for each of the 

three postulated forms of 𝑥3𝑡 . The continuous variable of interest 𝑥1𝑖𝑡  is generated using the Cholesky 

decomposition in order to postulate the desired correlation between 𝜂𝑖𝑡 and 𝑥1𝑖𝑡 . The generated 

random time series thus obtained serves as the basis of the data generating process of 𝑥1𝑖𝑡 . 𝑥1𝑖𝑡  is 

generated to be normally distributed around the time series 𝑥1𝑡  with a standard deviation of 5  

𝑥1𝑖𝑡~N(𝑥1𝑡 , 5) , 𝑡 𝑖𝑛 [1,20]. 

The Monte Carlo approach entails the simulation of 1,000 randomly generated data sets with the given 

properties. Table 2 shows the 95-%-confidence intervals of the estimated coefficients for each model 

and each postulated 𝑥3𝑡 . An approach is considered consistent if it efficiently yields unbiased 

estimates. We consider an approach consistent if the postulated true value of the coefficient lies within 

 
15 A significance level of 𝛼 = 0.01 for both F- and t-tests was used to conduct the presented simulations. 
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the 95-% confidence interval of the empirical distribution of estimated coefficients, based on 

estimating from a sufficiently large number of randomly generated data sets. 

Table 2: 95-% Confidence intervals for the postulated shapes and each model 

Estimated model 

Postulated true form of error 

(1) 

Linear 𝑥3𝑡 

(2) 

U-Shaped 𝑥3𝑡 

(3) 

Cubic 𝑥3𝑡 

Model 1 – none (20.2872; 20.6616) (20.3189; 20.6995) (18.2042; 18.4316) 

Model 2 – dummy (14.9990; 15.0022) (14.9980; 15.0009) (14.9991; 15.0021) 

Model 3 – linear (14.9995; 15.0009) (16.3376; 16.5429) (17.6132; 17.8166) 

Model 3 – squared (14.9995; 15.0010) (14.9991; 15.0005) (15.5565; 15.6604) 

Model 3 – cubic (14.9995; 15.0010) (14.9990; 15.0005) (14.9995; 15.0009) 

Model 3 – optimal (14.9995; 15.0010) (14.9991; 15.0005) (14.9996; 15.0009) 

Continuous variable of interest: 95-% Confidence intervals of the empirical distribution of 𝑏1, the estimated coefficient for 𝛽1, 

from a Monte Carlo simulation entailing 1,000 randomly generated data sets. 

In Table 2 the confidence intervals of the respective models indicated in column 1 are shown. The true 

postulated coefficient is 𝛽1 = 15. The postulated shape of the error introduced in Figure 1 is indicated 

in row two of Table 2. The underlying true shape of the error in column (1) is linear, in column (2) the 

true curvilinear shape of the error is u-shaped and in column (3) the postulated true shape is cubic. 

The rows show results of each testing procedure. As introduced above, model 1 ignores time fixed 

effects altogether and model 2 controls for time fixed effects by means of dummy variables. Model 3 

controls for time fixed effects using smoothing time fixed effects and is estimated with four different 

approaches. The three first specifications include only a linear trend (“model 3 – linear”), a linear and 

a quadratic trend (“model3 – squared”), a linear as well as a quadratic and a cubic trend (“model3 – 

cubic”). The last row shows results from the automatically chosen order of the polynomial based on 

the test procedure described above (“model3 – optimal”). 

As bias postulated in the empirical specifications throughout, model 1, in which time fixed effects are 

neglected altogether is biased disregarding the curvilinear form in the error. As time dummy variables 

are applicable when the variable of interest is continuous, model 2 is unbiased throughout. In the 

simple case with a postulated linear error as in columns (1), smoothing time fixed effects of order 1 is 

unbiased. The order polynomial of up to 3 remains unbiased. In case of postulated quadratic errors, 

unbiased estimates are obtained as of a quadratic trend polynomial. Similarly, in case of postulated 

cubic errors, the Monte Carlo simulations result in unbiased estimates as of a polynomial of order 3. 

Model 3 with automatically chosen order of the implemented polynomials based on the test procedure 

above yields consistent estimates. 
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The Monte Carlo simulations show that both time dummy variables as well as smoothing time fixed 

effects with the right order polynomial result in unbiased estimates. Smoothing time fixed effects yield 

consistent estimates and show to be reliable in case implemented correctly. Since the setting allows 

time dummy variables, these are however clearly favorable as they are not only consistent, but also 

more flexible and its implementation needs virtually no specific attention. 

 

2.2 Binary Variable of Interest 

In case the variable of interest is binary time-dummy variables are inapplicable. The binary variable of 

interest 𝑥1𝑖𝑡  takes on a binary form 

𝑥1𝑖𝑡 = {
1 𝑖𝑓 𝑡 ≤ 10
0 𝑖𝑓 𝑡 > 10

 

Although the setting is based on cartel overcharge estimations, the general results hold for other cases 

in which the variable of interest indicates events based on time. In this setting the variable of interest 

𝑥1𝑖𝑡  now splits the dataset in half. Correlations between 𝑥1𝑖𝑡  and the unobserved 𝑥3𝑡  will almost 

automatically arise since 𝑥1𝑖𝑡  is immediately based on time and 𝑥3𝑡  is likely to change over time. Since 

the relative effect of 𝛽1 ∗ 𝑥1𝑖𝑡  on 𝑦𝑖𝑡 compared to the relative effect of 𝛽3 ∗ 𝑥3𝑡  on 𝑦𝑖𝑡 is now much 

smaller compared to the continuous case, 𝛽3 is restricted to values between 0.5 and 1.16 Again, the 

simulation was conducted using 1,000 repetitions. 

As bias postulated in the empirical specifications throughout, model 1, in which time fixed effects are 

neglected altogether. As time dummy variables are not applicable when the variable of interest is 

discrete and indistinguishable from time-units, model 2 is biased throughout. In the simple case with 

a postulated linear error as in columns (1), smoothing time fixed effects of order 1 is unbiased. The 

order polynomial of up to 3 remains unbiased. In case of postulated quadratic errors, unbiased 

estimates are obtained as of a linear trend polynomial already. Due to the postulated rather flat u-

shape in the simulation, a linear approximation of underlying time-dependent effects suffices to obtain 

unbiased estimates. In case of postulated cubic errors, the Monte Carlo simulations result in unbiased 

estimates as of a polynomial of order 3. Model 3 with automatically chosen order of the implemented 

polynomials based on the test procedure above yields consistent estimates throughout on average. 

 
16 Before, the continuous 𝑥1𝑖𝑡 had a mean of 100. Now it takes on the value 1 or 0. Hence, the relative effect of 

the error term containing 𝛽
3

∗ 𝑥3𝑡 on the variance of 𝑦𝑖𝑡  would be much higher now and the resulting bias 

would therefore be extremely high. Therefore, the restriction on 𝛽3 ensures comparability. 
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Table 3: 95-% Confidence intervals for the postulated shapes and each model 

Estimated model 

Postulated true form of error 

(1) 

Linear 𝑥3𝑡 

(2) 

U-Shaped 𝑥3𝑡 

(3) 

Cubic 𝑥3𝑡 

Model 1 – none  (22.4321; 22.6174) (21.6925; 21.8646) (16.8100; 16.8665) 

Model 2 – dummy (29.1247; 29.4824) (27.7121; 28.0374) (23.4334; 23.6579) 

Model 3 – linear (14.9627; 15.0251) (14.9441; 15.0394) (12.1302; 12.2429) 

Model 3 – squared (14.9626; 15.0250) (14.9626; 15.0250) (11.9095; 12.0074) 

Model 3 – cubic (14.9583; 15.0396) (14.9583; 15.0386) (14.9871; 15.0701) 

Model 3 – optimal (14.9624; 15.0248) (14.9651; 15.0280) (14.9869; 15.0699) 

Binary variable of interest: 95-% Confidence intervals of the empirical distribution of 𝑏1, the estimated coefficient for 𝛽1, from 

a Monte Carlo simulation entailing 1,000 randomly generated data sets. 

The Monte Carlo simulations show that time dummy variables are inconsistent in case the variable of 

interest is binary. Smoothing time fixed effects with the correct order polynomial reliably result in 

unbiased estimates in case implemented correctly. Implementing time dummy variables in such a 

setting is at least as harmful as neglecting time fixed effects altogether as is commonly done in the 

literature. 

 

2.3 Graphical Analysis 

For determining the order of the polynomial, a graphical analysis could be regarded as obvious 

approach since the dependent variable could in some cases already show a certain curvilinear form 

indicating a suitable order of the polynomial. Although this might be the case in some applications, a 

well-grounded economic analysis as well as a highly careful analysis of the empirical properties are 

inevitable. 

In this section we show that often a graphical analysis of the curvilinearity of the dependent variable 

as well as the multivariate fitted residuals can give first insight about whether or not to include 

smoothing polynomials, and an indication of the order of the polynomial.  

Figure 2 shows an example of the data generating process from section 2.2. The left hand panel shows 

the scatter plot for the dependent variable 𝑦𝑖𝑡. The scatter plot depicts the postulated linear time trend 

of the unobserved variable 𝑥3𝑡  clearly in the dependent variable. Even the corresponding residuals 

plotted on the right panel show the linear trend. In this case, the scatter plots can give a good indication 

for an unobserved linear time series that will bias the binary variable of interest. 
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Figure 2: Linear error: Scatter plots 

 

Linear error, binary variable of interest. Left panel shows scatter plot of dependent variable over time as well as bivariate 

regression line. Right hand panel shows fitted empirical residuals from a specification neglecting time fixed effects. Linear 

error graphically clearly visible. 

The example depicted in Figure 3 comes from the data generating process with postulated u-shaped 

𝑥3𝑡 . Again, the scatter plot of 𝑦𝑖𝑡 against time shows the postulated u-shaped 𝑥3𝑡 . The same is true for 

the scatter plot of the residuals from the model 1 neglecting time fixed effects.  

However, in both cases the second graph might be misleading. While the scatter plot of 𝑦𝑖𝑡 clearly 

indicates systematic differences over time, an analysis of the respective right panel scatter might guide 

the conclusion that there are no systematic time dependent differences. On the contrary, in both cases 

the OLS regression per construction attributes the unobserved time differences to the variable of 

interest.  

However, analyzing the two scatter plots of a given specification can on the one hand give an indication 

on whether or not smoothing polynomials might be appropriate and on the other hand they can give 

first insights on an appropriate order of the underlying polynomial.  

A sole graphical analysis is however by no means sufficient as such graphical analyses may not always 

give a clear indication as in the rather clear examples shown. In real world applications, a clear visually 

derivable potential curvilinear form is probably rare. In other words, solely relying on a graphical 

absence of clear (curvilinear) of systematic changes over time may considerably misguide in choosing 

a suitable specification.  



15 
 

Figure 3: Quadratic error. Scatter plots 

 

Quadratic error, binary variable of interest. Left panel shows scatter plot of dependent variable over time as well as bivariate 

regression line. Right hand panel shows fitted empirical residuals from a specification neglecting time fixed effects. U-shape 

graphically clearly visible. 

Figure 4 again shows scatter plots for 𝑦𝑖𝑡 and the residuals from model 1. The data generating process 

from chapter 2.2 has been modified for this example. First, an additional observable variable 𝑥4𝑖𝑡  has 

been included. This variable is a random variable that is normally distributed around 𝑥3𝑡  with a 

standard deviation of 10. The respective coefficient 𝛽4 however equals −1 ∗ 𝛽3. In addition, the true 

error term 𝜀𝑖𝑡 now has a standard deviation of 20 instead of 10. This setting yields to a severely biased 

coefficient of 𝛽1 = 21.86. However, due to the additional explanatory variable 𝑥4𝑖𝑡  and an increased 

influence of 𝜀𝑖𝑡, the scatter plots in Figure 4 cannot give any clear indication on whether or not to 

include smoothing polynomials and also not on the appropriate order of a polynomial. From the first 

scatter plot it can be seen that one might come to the conclusion that the unobserved variable might 

take on an inverted u-shape. The scatter plot of the multivariate residuals however, might give a hint 

on the u-shaped 𝑥3𝑡 . By and large, the scatter plots almost indicate a linear relationship. 

Nevertheless, graphical analyses should always be the first step in exploring for a model specification. 

As the minimal-examples however show, merely relying on a graphical inference is of course 

insufficient and may considerably misguide in real applications. Graphical analyses should always be 

crucially accompanied by economic rationale and formal testing.17  

 
17 The testing procedure suggests implementing a quadratic polynomial, which is the true postulated curvilinearity in the 

error, and leads to an estimate of 𝛽1̂ = 15.47 with a given true parameter 𝛽1 = 15. 
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Figure 4: Quadratic error: Scatter plots 

 

Quadratic error, binary variable of interest. Left panel shows scatter plot of dependent variable over time as well as bivariate 

regression line. Right hand panel shows fitted empirical residuals from a specification neglecting time fixed effects. Postulated 

u-shape graphically almost flat. 

 

3 Monte Carlo Simulations 

In this section, results from more in-depth Monte Carlo simulations are shown. For this purpose, a 

modified data generating process compared to chapter 2 is used. The assumption of a clear curvilinear 

form of 𝑥3𝑡  is now relaxed, such that the unobserved variable is generated randomly. 

Although the main focus is on a binary variable of interest, the setting with a continuous variable of 

interest is addressed again as well. For the simulation in the setting with a continuous variable of 

interest, the Cholesky decomposition is crucial. The data generating process is in line with chapter 2.1. 

Nevertheless, in this case instead of postulating the curvilinear form of 𝑥3𝑡 , both, 𝑥1𝑖𝑡  and 𝑥3𝑡  are 

generated by a Cholesky decomposition. Again, the mean of both, the variable of interest and the 

mean of 𝑥3𝑡  equals 100 and the standard deviations are equal to 20. Again, the correlation is set to 

vary between 0.3 and 1.18 The simulated data sets cover 10 time periods. As before, all regression 

models are estimated using OLS. 

In this standard setting the traditional time dummies are superior compared to the smoothing 

polynomials. Even though, the latter can also overcome the bias like already seen in chapter 2, the 

dispersion of estimated coefficients now is significantly larger. The mean squared error (MSE) for 

 
18 This is true for both the correlation between the underlying time series generated by the Cholesky 
decomposition and the actual correlation between 𝑥1𝑖𝑡 and 𝑥3𝑡. The latter might differ, since 𝑥1𝑖𝑡 is generated to 
be distributed around an underlying time series generated by the Cholesky decomposition. The smoothness is 
restricted to values of at least 0.6. 
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model 1 equals 422.13, the MSE for model 3 using smoothing time fixed effects with polynomials of 

optimal order equals 52.54 and for model 2 with the time dummies the MSE is 0.001.19 This shows that 

even though a very large bias has been imposed by construction within the underlying simulation, the 

time dummies are not only unbiased but also efficient. Therefore, the time dummies are rightfully the 

standard tool of every econometrician for these kinds of settings. Since this is already well known our 

contribution to the literature is the use of smoothing time fixed effects in case time dummy variables 

are not available, only the latter setting will be discussed in more depth in this chapter. 

Hence, a Monte Carlo simulation with binary variable of interest is carried out. The data generating 

process is closely linked to the data generating process in chapter 2.2. Time-series 𝑥3𝑡  is generated in 

line with chapter 2.1 and has a mean of 100 and a standard deviation of 20. Variable 𝑥1𝑖𝑡  takes on the 

following binary form: 

𝑥1𝑖𝑡 = {
1 𝑖𝑓 𝑡 ≤ 5
0 𝑖𝑓 𝑡 > 5

 

The resulting data set spans over 10 time periods. In line with the simulation in chapter 2.2 , 𝛽3 is 

restricted to only vary between 0.5 and 1. Also, the correlation between the variable of interest 𝑥1𝑖𝑡  

and the unobservable 𝑥3𝑡 is restricted to [0.3,1) in order to constitute bias by construction. The true 

coefficients 𝛽0 = 10, 𝛽1 = 15 and 𝛽2 = 2 stay the same, so do 𝑥2𝑖𝑡  and 𝜀𝑖𝑡.  

In the following, imposed restrictions on the Monte Carlo simulations will be gradually relaxed in order 

to analyze performance properties of smoothing time fixed effects. Our results show that the 

smoothness of the unobserved time series 𝑥3𝑡  and the correlation between 𝑥1𝑖𝑡  and 𝑥3𝑡  play a 

considerable role in the performance of the smoothing time fixed effects. 

Typically, economic time series are highly smooth over time. For the following analysis, the 

smoothness is measured by the lag-one autocorrelation: 

Corr(𝑥3𝑡  , 𝑥3𝑡−1). 

There are other measurements for smoothness, but the lag-one autocorrelation has the advantage 

that it allows easy statistical interpretation. A correlation close to one implies a smoothly varying time 

series, while a score around 0 implies that there is no overall linear relationship between one 

observation and the following. A score close to -1 on the other hand implies that the series regularly 

jumps around the mean in a very particular way. If one observation lies below the mean, the next one 

is likely to be above the mean by approximately the same amount.  

 
19 The simulation has been conducted using 1,000 repetitions. 
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Smoothing time fixed effects under realistic regulatory conditions 

Table 1 from section 2 shows different time series from different fields of economic research. It can be 

seen that the time series have on average a very high smoothness factor of more than 0.9 which also 

shows that typically no disruptive shocks occur. In order to analyze the properties of smoothing time 

fixed effects in a typical realistic setting, the Monte Carlo simulations are restricted such that the lag-

one autocorrelation of the unobserved time series is larger than 0.7. Furthermore, extreme 

correlations between 𝑥1𝑖𝑡  and 𝑥3𝑡  larger than 0.9 are ignored. The results are summarized in Table 4. 

Table 4:Results from Monte Carlo simulation with a realistic setting 

 𝑪𝑰𝒍 𝑪𝑰𝒖 Mean Sd MSE 

Model 1 – none 24.39 24.89 24.64 6.77 138.83 

Model 2 – dummy 29.66 30.57 30.11 12.34 380.60 

Model 3 – opt 14.82 15.33 15.08 6.97 48.64 

Model 3 – min 14.84 15.06 14.95 3.02 9.15 

Results from 2,839 data sets from the Monte Carlo simulation that are left after imposing the restrictions 𝐶𝑜𝑟𝑟(𝑥3𝑡 , 𝑥3𝑡−1) >

0.7 and 𝐶𝑜𝑟𝑟(𝑥1𝑖𝑡 , 𝑥3𝑡)  ∈  (0.3,0.9). 95-% Confidence intervals are shown. 𝐶𝐼𝑙  shows the lower bound and 𝐶𝐼𝑢 reports the 

upper bound of the confidence interval. 

It is obvious from the results that the bias of model 1 is severe since the regressions do not control for 

unobserved time changes altogether. The mean of the estimated coefficients is biased by 9.64. Due to 

the very setting with a discrete variable of interest, time dummy variables in model 2 cannot solve the 

bias due to perfect multicollinearity. The bias even increases under model 2. Smoothing time fixed 

effects yield unbiased estimates (model3 – opt). Their confidence intervals include the true coefficient, 

which takes the value 15. Here, “model 3 – opt” refers to the model for which the order of the 

polynomial has been chosen using the suggested testing procedure from chapter 2. “Model 3 – min” 

on the other hand refers to the theoretically perfect model, in which the polynomial has been chosen 

such that the bias of the estimated coefficient is minimal.20 This of course is just a theoretical approach, 

but it allows to examine the performance of the smoothing time fixed effects separated from the 

performance of the suggested test. Table 4 shows that the suggested testing procedure yields unbiased 

estimates within this setting. Nevertheless, compared to “model 3 – min”, the standard error and hence 

the MSE are significantly higher. 

 

 

 
20 Unlike in a Monte Carlo simulation, in real applications the latter is of course never observable since the true 
parameter is unknown to the researcher. 
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Table 5: Results from Monte Carlo simulation with a realistic setting II 

 𝑪𝑰𝒍 𝑪𝑰𝒖 Mean Sd MSE 

Model 1 24.96 26.13 25.55 7.20 163.03 

Model 2 31.42 33.44 32.34 12.48 459.38 

Model 3 - opt 14.72 15.72 15.22 6.16 37.93 

Model 3 - min 14.69 15.12 14.90 2.67 7.11 

Results from 584 data sets from the Monte Carlo simulation that are left after imposing the restrictions 𝐶𝑜𝑟𝑟(𝑥3𝑡 , 𝑥3𝑡−1) >

0.8 . 

Table 5 shows another realistic setting in which the restrictions regarding the correlation between 𝑥1𝑖𝑡  

and 𝑥3𝑡  is relaxed but the ssmoothness of 𝑥3𝑡  is set to be higher than 0.8. Again, both “model 3 – min” 

and “model 3 – opt” deliver unbiased estimates. Due to the higher smoothness in turn, the dispersion 

of the estimated coefficients decreases.  

 

Relaxing restrictions on smoothness 

In order to further analyze the properties of smoothing time fixed effects, the so far imposed 

restrictions regarding the smoothness of 𝑥3𝑡  are relaxed. The simulation now allows the smoothness 

parameter to vary between -1 and 1.21 Table 6 shows descriptive statistics for different smoothness 

values.  

Table 6: Estimates depending on the smoothness of 𝑥3𝑡 

Smoothness (-1,0] (0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] 

N 48,894 24,168 17,343 7,762 1,671 

𝐶𝑜𝑟(𝑥1𝑖𝑡, 𝑥3𝑡) 0.43 0.48 0.52 0.59 0.66 

Model 1- none Mean 20.96 21.64 22.18 23.10 24.15 

Sd 4.40 4.99 5.45 6.18 6.66 

Model 3 – opt Mean 23.66 20.50 18.71 17.03 15.95 

Sd 16.38 15.28 13.67 11.85 9.06 

Model 3– min  Mean 19.21 17.57 16.65 15.90 15.33 

Sd 8.34 7.63 6.52 5.30 3.94 

Results from a Monte Carlo simulation with 100,000 randomly generated data sets and the restriction 𝐶𝑜𝑟(𝑥1𝑖𝑡, 𝑥3𝑡) > 0.3. 

We refrain from showing results from time dummy variables as they are extremely biased and thus can be regarded as 

inapplicable due to the underlying setting. 

 
21 The correlation between 𝑥1𝑖𝑡 and 𝑥3𝑡 is still restricted to only vary between 0.3 and 0.9. 
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From Table 6 follows that the performance of smoothing time fixed effects crucially depends on the 

smoothness of the unobserved time series. Both specifications of model 3 result in less bias and less 

variance of the estimated coefficients the larger the smoothness parameter. Both smoothing time 

fixed effects with optimal order polynomial as well as minimal bias approximate the true parameter 

𝛽1 = 15 increasingly well the smoother the underlying bias becomes. In line with Table 4 both the 

expected value and the standard deviation for the models with tested order of polynomials is strictly 

larger compared to the model with minimal bias.22  

Furthermore, the correlation between 𝑥1𝑖𝑡  and 𝑥3𝑡  per construction increases if the smoothness of the 

unobserved time series 𝑥3𝑡  increases. Since 𝑥1𝑖𝑡  is a binary variable based on time, a smoother 𝑥3𝑡  will 

yield a larger correlation. In order to obtain an initial bias in the first place, all cases in which 𝑥3𝑡  does 

not or only changes slightly over time are eliminated. However, due to increased smoothness, bias 

correcting properties of smoothing time fixed effects overweigh the additional initial bias stemming 

from increased correlation. 

 

Relaxing restrictions on correlations 

Regarding correlations, so far only the correlation between 𝑥1𝑖𝑡  and 𝑥3𝑡  have been shown. However, 

correlations between the unobserved variable 𝑥3𝑡  and the dependent variable 𝑥1𝑖𝑡  as well as 𝑦𝑖𝑡 also 

play a crucial role for unbiased estimations of 𝛽1. Table 7 gives an overview of the means of the 

estimated coefficient for different combinations of correlations Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) and Corr(𝑦𝑖𝑡 , 𝑥3𝑡). 

With regard to the correlation between 𝑥1𝑖𝑡  and  𝑥3𝑡  it can be seen that a small correlation typically 

results in an overcorrection of the otherwise overestimation due to omitted variables bias that would 

arise from model 1, within a certain range of values for Corr(𝑦𝑖𝑡 , 𝑥3𝑡).23 A high correlation between 

𝑥1𝑖𝑡  and  𝑥3𝑡  on the other hand results in downwards corrected coefficients compared to model 1, still 

entailing a positive bias of the estimated coefficients. These two effects overlap each other. While a 

higher correlation leads to a higher omitted variables bias, which has to be overcome by time fixed 

effects, for a low correlation between 𝑥1𝑖𝑡  and 𝑥3𝑡  the bias is less pronounced and hence smoothing 

time fixed effects consume too much of the variance of 𝑦𝑖𝑡. Hence the effect of 𝑥1𝑖𝑡  is underestimated 

and the original bias overcorrected. The correlation between 𝑦1𝑖𝑡 and  𝑥3𝑡  on the other hand does not 

influence the direction but rather the intensity of the bias. For higher degrees of smoothness, for 

 
22 For either model, the confidence interval never includes the true coefficient 𝛽1 = 15. For the last column, the 
CI for the model with tested order of the polynomial approximation equals [15.51,16.38] and for the optimal 
polynomial [15.14,15.52]. 
23 Model 1 estimates a 𝛽1̂ = 23.46 for which both correlations are in the range of [0.3,0.65). 
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example at least of 0.8, all results shown in Table 7 will improve overall. 

Table 7: Mean and standard deviation of estimated coefficients depending on 𝐶𝑜𝑟𝑟(𝑥1𝑖𝑡 , 𝑥3𝑡) and 𝐶𝑜𝑟𝑟(𝑦𝑖𝑡 , 𝑥3𝑡). 

 Corr(𝑦𝑖𝑡 , 𝑥3𝑡) 

[0.3,0.65) [0.65,1] [0,1] 

Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) 

[0.3,0.65) 14.13 

(4.00) 

12.91 

(9.71) 

14.24 

(3.91) 

[0.65,1] 16.07 

(3.46) 

17.90 

(8.17) 

16.11 

(3.95) 

Overall: [0.3,1] 15.42 

(3.76) 

16.69 

(8.82) 

15.40 

(4.04) 

Monte Carlo simulation with 10,000 randomly generated data sets. Standard deviation in parentheses. Restriction to 

smoothness 𝐶𝑜𝑟𝑟(𝑥3𝑡 , 𝑥3𝑡−1) > 0.6. True parameter is 𝛽1 = 15. 

 

4. Discussion 

In this section we discuss the simulation results as well as the test procedure and implications of 

smoothing time fixed effects. Furthermore, we address selected related topics in the given context. 

 

Results from the Monte Carlo simulation 

Table 8 summarizes the results from the Monte Carlo simulations. For different combinations of 

correlations, the bounds of the confidence intervals of the estimated coefficients are shown, as well 

as the frequency of the randomly generated data sets left after imposing the respective restrictions. 

In addition, the results are presented separated by degrees of smoothness. Again, “Model 3 – opt” 

refers to the smoothing time fixed effects following the suggested testing procedure. “Model 3 – min” 

refers to the model where the order of the polynomial is chosen in terms of minimal error between 

the estimated and the true coefficient.  

It can be seen that smoothing time fixed effects can best approximate smooth changes in the 

unobserved variables. However, erratic changes and extreme shocks can be correctly controlled for up 

to a certain extent. A higher degree of smoothness leads to overall unbiased estimates, while a lower 

degree of smoothness can only partly correct the bias. For the simulations with a smoothness of the 

unobserved variable 𝑥3𝑡  that is larger than 0.8, only the estimated coefficients for simulated data sets 

with both Corr(𝑦𝑖𝑡 , 𝑥3𝑡) and Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) smaller 0.65 but higher 0.3 are biased (see Table 8). In 

addition, the estimates for Corr(𝑦𝑖𝑡 , 𝑥3𝑡) > 0.65 and small Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) are only somewhat 
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reliable, since only 4 simulated data sets remain after imposing the restriction. All in all, the 

smoothness of the unobservable 𝑥3𝑡  has a positive effect on the estimations using smoothing time 

fixed effects. Both, the overall bias and the dispersion of the estimated coefficients significantly 

decrease.  

With regard to the correlation between 𝑦𝑖𝑡 and 𝑥3𝑡  it can be seen that a higher correlation will enlarge 

the overall bias. This is very intuitive since this corresponds to a higher influence of the error term on 

the variance of 𝑦𝑖𝑡. The larger the influence, the larger the omitted variables bias will be. 

While the smoothness of 𝑥3𝑡  and the correlation between 𝑦𝑖𝑡 and 𝑥3𝑡  only impact the magnitude of 

the bias, the correlation between 𝑥1𝑖𝑡  and 𝑥3𝑡  on the other hand influences the direction of the bias. 

For small values of Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) the model with smoothing time fixed effects leads to an 

overcorrection of the initial bias. For large values of Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) the initial omitted variable bias 

from model 1 becomes very high.24 In this case, smoothing time fixed effects cannot fully correct the 

bias, such that a portion of the bias remains. Therefore, there is a trade-off. Two opposing forces that 

are related to the correlation between 𝑥1𝑖𝑡  and 𝑥3𝑡  influence the direction of the remaining bias. While 

a higher correlation enlarges the initial bias that smoothing time fixed effects have to correct, small 

values of Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) might lead to some kind of overfitting. The initially already relatively small 

bias will be typically approximated by multiple trend polynomial variables within the regression. These 

polynomials might lead to an overfit, that absorb more of the variation of 𝑦𝑖𝑡 than optimal. In this case, 

part of the effect of the variable of interested is absorbed by the approximation. This problem is more 

pronounced if the smoothness parameter of 𝑥3𝑡  is small. In this case, the polynomial approximation 

using smoothing time fixed effects is more difficult to achieve compared to an approximation of a very 

smooth 𝑥3𝑡 .  

Table 8: Summary of Monte Carlo findings. 

 Smoothness>0.6 Smoothness>0.8 

𝐂𝐨𝐫𝐫(𝒚𝒊𝒕 , 𝒙𝟑𝒕) 𝐂𝐨𝐫𝐫(𝒙𝟏𝒊𝒕 , 𝒙𝟑𝒕) Model 3 - opt Model 3 - min N Model 3 - opt Model 3 - min N 

∈ (𝟎. 𝟑, 𝟎. 𝟔𝟓] 
<0.65 (11.95;12.64) (13.98;14.29) 2,530 (11.43;13.71) (13.40;14.63) 71 

>0.65 (17.73;18.14) (15.98;16.17) 5,013 (15.08;16.13) (14.83;15.31) 402 

∈ (𝟎. 𝟔𝟓, 𝟎. 𝟏) 
<0.65 (6.11;11.91) (11.43;14.40) 164 (5.93;17.22) (11.59;15.92) 4 

>0.65 (20.05;23.06) (17.19;18.60) 514 (13.23;21.38) (13.46;16.57) 43 

Summary of the results from the Monte Carlo simulations on smoothing time fixed effects.95-% confidence intervals for several 

combinations of ranges for correlations as well as smoothness parameters are shown. 

 
24 For model 2, there is a clear positive relationship between Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) and the bias. If Corr(𝑥1𝑖𝑡 , 𝑥3𝑡) > 0 
the bias will be strictly larger than 0. The higher Corr(𝑥1𝑖𝑡 , 𝑥3𝑡), the larger the positive bias.  
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Regarding the suggested testing procedure, the results from both chapter 2 and 3 show, that the 

resulting regression is unbiased under certain regulatory conditions. However, chapter 3 also 

introduces “model 3-min” in which the order of the polynomials has been chosen to minimize the 

resulting bias (which in real application are unknown to the researcher). It can be seen that the testing 

procedure is not optimal in all ranges of possible values for smoothness and correlations, yet. While 

the bias for this model is rather small as well, the dispersion is rather high compared to “model 3-min”. 

However, as seen in Table 4 from chapter 2 the testing procedure leads to unbiased estimates for 

realistic settings. 

 

Related topics 

As the binary variable of interest divides time in two periods of event and control, systematic 

differences over time are likely to occur, potentially accompanied by a considerable correlation with 

the error term. Hence a bias due to the omission of time fixed effects is very likely to be present from 

the very setting. Against this backdrop, autocorrelated error terms extensively discussed in time series 

econometrics appear as closely related. If there are systematic differences between event and control 

periods, the error terms are likely to be autocorrelated. Hence, autocorrelation of the error terms tend 

to signal the presence of bias a bias that are likely to be solvable by time fixed effects. 

In this context we would like to refer to the literature on autocorrelation (serial correlation), 

stationarity, (co-)integration and spurious correlations. These phenomena are extensively addressed 

in time series econometrics. We show that these problems can be related to the problem of an omitted 

variables bias in the given setting. The phenomenon of spurious correlations is typically introduced in 

a similar way as it is presented in this paper and can be described as a special case in which the true 

𝛽1 equals 0. The omitted variable is a confounding factor that is common for both time series. The 

omitted variable is therefore serially correlated over time. Nevertheless, since smoothing time fixed 

effects can constitute a crucial remedy for unobserved time dependent changes of the error term. 

Lastly, we would like to discuss further frequent estimation techniques within similar contexts. In a 

setting entailing omitted variable bias, especially instrumental variable regressions are put forwards 

when dealing with the present endogeneity. In the given setting however, traditional instruments may 

usually not be applicable however, if at all, since an instrument has to meet both validity and 

relevance.25 A valid instrument in turn has to depict the time changes of the variable of interest. This 

 
25 A valid instrument has to meet two conditions. First, it has to be correlated with the variable of interest, hence 
be relevant. Second, it has to be uncorrelated to the omitted variable, hence be exogenous.  
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however may imply that a potential instrument is not exogenous since it may still be correlated to 

unobservable variables in the error term. Against this backdrop, the relevance of smoothing time fixed 

effects becomes even more pronounced, especially since smoothing time fixed effects themselves do 

not introduce additional bias. 

The easy and readily available implementation of parametrically modelled smoothing time fixed 

effects makes the suggested procedure highly appealing. Since it is applicable for parametric models 

estimated by OLS, it is easier and more straightforward to implement compared to potential 

alternative approaches such as semi-parametric estimators. 

 

5. Conclusion 

For longitudinal data time dummies are the standard method to control for unobserved time 

depending effects. However, if the variable of interest depends on time and takes on a binary form, 

these are typically no longer applicable due to multicollinearity issues. 

Although in this setting, the variable of interest is likely to be biased, the literature typically ignores 

the bias altogether, potentially due to a lack of a consistent approach to control for time fixed effects 

in this context. Our paper contributes to the literature as we introduce a simple and readily available 

parametric approach to control for time fixed effects in case time dummy variables are typically 

inapplicable. Although in some settings, smoothing time fixed effects may only imperfectly 

approximate the underlying unobserved time-dependent effects, our results suggest that neglecting 

time fixed effects altogether typically results in higher bias. 

We show that smoothing time fixed effects can mitigate and under certain regulatory conditions even 

eliminate the bias caused by omitted variables in this setting. The smoother the unobserved variable 

is, the less biased and dispersed the estimated coefficients are. We have shown that economic time 

series typically smoothly evolve over time. Under this assumption, we show that under smoothing time 

fixed effects unbiased estimates can be obtained. As the introduced approach implies testing nested 

hypotheses, a standard testing procedure enables the identification of the order of the trend 

polynomial. We show that this procedure works well under certain regulatory conditions, that we 

consider as highly realistic. 
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