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Abstract

We model aggregate credit losses on large portfolios of financial posi-
tions contracted with firms subject to both cyclical default correlation
and direct default contagion processes. Cyclical correlation is due to
the dependence of firms on common (macro-) economic factors; credit
contagion phenomena are associated with the local interaction of firms
with their business partners. We provide an explicit normal approx-
imation of the distribution of total portfolio losses, which is the key
to the measurement and management of aggregated credit loss risk.
Based on this result we quantify the relation between the variability
of global economic fundamentals, strength of local interaction between
firms, and the fluctuation of portfolio losses. In particular, we find that
cyclical oscillations in fundamentals dominate average portfolio losses,
while local firm interaction and the associated contagion processes cause
additional fluctuations of losses around their average. The strength of
the contagion-induced loss variability and hence the degree of extreme
loss risk depends on the complexity of the business partner network, a
relation that was recently confirmed by empirical studies.
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1 Introduction

One of the long-lasting discussions in economics concerns the explanation of

aggregate economic activity. In this paper we contribute to this discussion

by studying the fluctuation of aggregate credit losses on large portfolios of

financial positions. Our explicit results provide a number of significant insights

relevant to both risk measurement and management in financial institutions

and supervisory authorities.

Default rates of firms and hence credit losses vary substantially even on a

high level of aggregation [see, in particular, the regular studies of the various

credit rating agencies, for example Keenan (2000)]. One potential explanation

is easily conceived: firms’ ability to generate cash flows and hence their de-

fault proneness fluctuates with the fundamentals of the economy, such as spe-

cific factor prices, demand for manufactured goods, or production costs. The

dependence of firms’ on the general (macro-) economic environment induces

dependence between firms’ defaults. A high degree of such positive cyclical

default correlation and thus a high fluctuation in aggregate default rates and

credit losses would result from an economy-wide synchronized variation in fun-

damental variables, which is simultaneously disastrous for a large number of

firms.

In this article we emphasize the importance of the economy’s microeco-

nomic structure and argue that the effect of variations in fundamental macro-

economic variables can amplify with the appearance of direct connections be-

tween firms. These direct inter-firm links are typically associated with bor-

rowing and lending contracts or other legally binding relationships, such as

parent-subsidiary structures; they provide a channel for the direct contagion

of economic distress from one firm to other firms. A characteristic example are

interbank lending agreements, which refer to banks’ mutual claims. Provided

that these claims are neither collateralized nor insured against, the financial

distress of one institution, triggered by management failure or adverse funda-

mentals, may spread to several other institutions in the lending chain through

default on due obligations. Such bank-contagion effects are widely discussed

in the micro-economic literature, for example Allen & Gale (2000); empirical

evidence is presented in Upper & Worms (2002) and Schoenmaker (2000). A

similar contagion mechanism is also associated with non-financial firms through

the institution of trade credit, which link suppliers and buyers of goods through

a chain of obligations. For a micro-economic model see, for example, Kiyotaki

& Moore (1997). Legal networks as those related to parent-subsidiary struc-

tures are prone to contagion effects as well. Empirical evidence supporting the
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existence of contagion effects between non-financial firms is presented by Lang

& Stulz (1992).

With the existence of credit contagion phenomena a change in economic

fundamentals has two separate effects on an individual firm’s credit-worthiness,

i.e. its ability to generate cash flows and to honor its obligations. First, it acts

upon the firm directly. Second, there is an indirect effect due to the simulta-

neous influence on the financial health of associated business partners, which

might jeopardize or contribute to the fulfilment of existing obligations. The

effect of a change in fundamentals can thus amplify, basically in both positive

and negative direction. Consider some fixed part of the economy and suppose

there is an adverse change in the macro-environment. In the first place, this

deterioration may affect only a limited number of firms (due to their specific

technology, for example). However, the distress can propagate through the

business partner network and eventually affect a larger number of firms than

those initially concerned. This corresponds to an increased degree of (adverse)

fluctuation in default rates and associated credit losses relative to the fluctua-

tion due to the variability of macro-economic fundamentals. The existence of

such additional contagion-induced oscillations in default rates has been empir-

ically confirmed by Schoenmaker (2000), for example.

Excessive adverse fluctuation of default rates is typically connected with

the economic distress of lending institutions, and therefore endangers the sta-

bility of the financial system. Besides being of critical importance for individ-

ual banks’ risk management, the design of effective supervising policies and

intervention strategies calls for a thorough understanding of the variability of

aggregate losses. In this paper we study the typical and excessive fluctuation

of aggregate credit losses on large portfolios of financial positions, taking into

account both cyclical default correlation and credit contagion processes. From

a methodological point of view, this provides a reconciliation of the cyclical

correlation-based class of Bernoulli mixture models [Frey & McNeil (2001)]

and a pure credit contagion based approach, which was recently introduced by

Giesecke & Weber (2002).

Bernoulli mixture models have become a standard for the measurement

and management of credit loss risk in financial institutions. Examples include

the models put forward by KMV [Kealhofer (1998)], J.P. Morgan [Gupton,

Finger & Bhatia (1997)], Credit Suisse Financial Products [CSFP (1997)], and

McKinsey [Wilson (1997)]. For an overview of these models we refer to Crouhy,

Galai & Mark (2000). In this class of models the fluctuation of credit losses is

due to variation of economic fundamentals only, so that firms’ interdependence

is related to cyclical correlation effects only. As we have argued above and as
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suggested by recent empirical investigations [Schoenmaker (2000), in particu-

lar], such an approach typically underestimates the degree of loss fluctuation

to be expected. A pure contagion based approach, on the other hand, does

typically not explicitly account for the variation of fundamentals, but focuses

instead on the credit loss fluctuation due the local interaction of firms with

their business partners. In this paper we connect these two conceptionally dif-

ferent frameworks. In particular we will enlarge the Bernoulli mixture class

with models accommodating both global cyclical and local contagion effects.

In our model firms interact with their business partners in a lattice-type

economy. With each firm we associate a binary state variable, which designates

the firm’s liquidity state with respect to the direct interaction with its business

partners. Specifically, a firm’s liquidity account can be severely “stressed” if

business partners fail to honor due obligations. In this case the firm may not

be able to generate sufficient cash flow to invest in production opportunities

and to honor its own obligations. If the firm can buffer the adverse effects from

defaulting business partners (through sufficient reserves, for example), then its

liquidity state is considered “stable”. We suppose that the migration of a firm

from one liquidity state to another is a Poisson event with an intensity being

proportional to the number of business partners in opposite state. The idea here

is that if a stable firm’s partners default on obligations, then the probability

of this firm becoming liquidity stressed as well increases with the number of

failing partners, since at some point the available liquidity reserves will be

exhausted. Vice versa, the probability of a liquidity stressed firm to overcome

the shortage increases with the number of financially healthy partners which

honor due obligations timely.

The continuous-time Markov process describing the joint evolution of

firms’ interaction-induced liquidity state converges as time approaches infinity.

For this steady equilibrium state we describe the associated state of the macro-

economy (the business environment) by a random vector with given distribu-

tion. We can then turn to the losses a financial institution might incur from

holding financial positions with firms in the interaction-based economy. Such

positions might include straight loans, bonds, and other debt instruments, as

well as derivatives whose counterparties are subject to credit deterioration. In

our model the credit losses on positions contracted with a particular firm is a

random variable, whose distribution depends on both the macro-environment

and the firm’s individual liquidity state resulting from the local interaction with

its business partners. This allows to accommodate the global macro-economic

factors and the local contagion processes in explaining aggregate credit loss

fluctuations.
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Our main result consists of an explicit normal approximation of the dis-

tribution of aggregate losses on a large portfolio of positions, whose issuers are

subject to the macro-economic environment and credit contagion processes.

This approximation is the key to the measurement and management of the

portfolio’s aggregated credit loss risk.

In order to analyze the fluctuations of aggregate portfolio losses in compar-

ison with those implied by Bernoulli mixture models, we provide a Bernoulli

mixture type representation of our model and thereby enlarge the existing

Bernoulli mixture model class. With a view towards implementation, for this

representation of our model it is possible to exploit the estimation techniques

employed by the Bernoulli mixture models currently in use in the financial

industry. We propose an estimation strategy for the contagion parameters of

our model as well.

We find that average losses on large portfolios of financial positions are

dominated by cyclical oscillations in the economy’s fundamentals. Local firm

interaction and the associated contagion processes lead to additional fluctua-

tions of losses around their averages. This means that the existence of contagion

processes corresponds to the presence of additional loss risks on the portfolio

level, which cannot be attributed to the variability in the macro-economy. The

strength of the additional contagion-induced loss variability and hence the de-

gree of extreme loss risk depends on the complexity of the business partner

network, i.e. the degree of connectedness between firms. Specifically, the loss

variability increases and the tail of the loss distribution becomes fatter with

decreasing complexity of business partner relations. This finding was recently

confirmed empirically in the banking sector by Upper & Worms (2002).

The balance of this paper is organized as follows. In Section 2 we define

an economy where firms interact with each other within a business partner

network specified by a multi-dimensional lattice. We postulate contagion dy-

namics and analyze the long-run behavior of firms’ interaction-induced state.

In Section 3 we examine credit losses due to macro-economic fluctuations as

well as contagion effects. We specifically provide a normal approximation to

the distribution of aggregate losses. A Bernoulli mixture type representation

of our model is provided in Section 4, where we also examine the typical and

extreme fluctuation of aggregate losses. An estimation strategy for the parame-

ters is discussed in Section 5. Section 6 concludes and discusses some important

implications of our results for the regulation of financial institutions and the

control of systemic risk.
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2 Economy and Firms

Our economy consists of a collection F of firms. An arbitrary firm i ∈ F inter-

acts with a collection N (i) ⊆ F \{i} of business partners, or neighbors. Typical

business partners include suppliers of goods in the manufacturing process and

buyers of manufactured products. The firm’s creditors, such as suppliers in

trade credits, banks, shareholders, or investors in the firm’s public debt, as

well as its borrowers (think of customers which are granted a trade credit),

can also be considered as business partners. For simplicity, we assume that a

firm’s interaction with its neighbors is symmetric, in the sense that

j ∈ N (i) ⇒ i ∈ N (j).

If we connect all firms i ∈ F with their neighbors j ∈ N (i), we get an

undirected graph which characterizes the business relations of the firms. For

tractability, however, we shall assume a simple neighborhood structure and

identify firms with their location on the d-dimensional integer lattice F = Zd.

On this lattice we define the neighborhood N (i) of a firm i by

N (i) = {j : |j − i| = 1}, (1)

where | · | denotes the length of the shortest path between two firms on the

lattice. The dimension d of the lattice can be interpreted as the degree of

complexity of the business partner network. With increasing d the structure of

inter-firm connections becomes more complex. The larger d, the more business

partners has any individual firm. At the same time the number of indirect

inter-firm links of given length increases.

Having defined the structure of our interaction-based economy, let us now

consider the process of interaction in more detail. In the business partner net-

work firms are linked through a chain of obligations. If one link in this chain

does not honor obligations timely or defaults entirely, then this immediately

reduces the amount of liquidity available to this firm’s business partners. We

can here think, for example, of a temporary liquidity shortage leading to a

payment default of a buyer in a trade credit in the first place. Supposing that

the immediate liquidation value of the underlying goods used as collateral is

sufficiently low, then this default may eventually result in the supplier becom-

ing short of liquidity as well. Given the lack of liquidity, the supplier may be

prevented from investing in production opportunities and realizing the asso-

ciated returns in the future. This reduction in the supplier’s cash flow ability

may lead to the supplier defaulting on obligations with other business part-

ners, resulting in a ’chain reaction’ within the credit trade network. We will

refer to this cascading behavior as credit contagion.
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We are now going to establish a simple probabilistic model for the time

dynamics of credit contagion. To this end, let us associate with each firm i ∈ Zd

a state variable ξ(i) ∈ {0, 1}, which designates the firm’s liquidity state with

respect to the interaction with its business partners N (i). State ξ(i) = 1 means

that firm i’s liquidity reserves are stressed and might be insufficient to honor

due obligations. State ξ(i) = 0 means that firm i is financially healthy and

honors its obligations to business partners timely.

We postulate that a transition of firm i from state ξ(i) to state 1 − ξ(i)

is a Poisson event, whose intensity is proportional to the number |{j ∈ N (i) :

ξ(j) = 1−ξ(i)}| of neighboring firms in opposite state. This corresponds to the

idea that if a currently stable firm’s business partners default on obligations,

then the probability of this firm becoming liquidity stressed as well increases

with the number of failing partners, since at some point the available liquidity

reserves will be exhausted. Vice versa, the probability of a liquidity stressed

firm to overcome the shortage increases with the number of financially healthy

business partners which honor due obligations timely. Specifically, we assume

that the evolution of firms’ liquidity state over time is modeled by a continuous-

time Feller process (ηt)t≥0 with state space X = {0, 1}Zd
and transition rate c

given by

c(i, ξ) =





1
2d

∑
j∈N (i)

ξ(j) if ξ(i) = 0

1
2d

∑
j∈N (i)

[1− ξ(j)] if ξ(i) = 1
. (2)

This is known as the voter model in the theory of interacting particle systems

[Liggett (1985) and Liggett (1999)].

Having defined the contagion dynamics, we are now interested in the

asymptotic behavior of ηt as t →∞ and the equilibrium distributions of firms’

liquidity state. Throughout, we let µ denote the initial distribution of η, which

we may think of arising from general (macro-) economic conditions. We assume

that µ is translation-invariant and denote by

ρ = µ{ξ : ξ(i) = 1} (3)

the probability under µ that an arbitrary firm i is liquidity stressed. In par-

ticular, the translation-invariance of µ implies that the firms in our economy

are homogeneous with respect to ρ. While ρ is invariant under the contagion

dynamics, the economy can change drastically on the macroscopic level. The

structure of the equilibrium distributions depends on the complexity of the

business partner network.
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For a simple connectivity structure with d = 1, 2, the process η clusters :

in the long run t → ∞ the economy ends up in one of two possible extreme

scenarios. Asymptotically, with probability ρ all firms are liquidity stressed,

and with probability 1−ρ all firms are stable. Let us suppose that initially ρ is

high, so that the probability that an individual firm is liquidity stressed is high.

Then random clusters of liquidity stressed firms emerge with high probability,

while clusters of stable firms emerge only with low probability. The size of the

clusters changes through random fluctuations, but some of the clusters merge

and form large growing clusters. In the long run the entire economy is a single

cluster of firms of the same type. Since ρ is large, the probability that all firms

are finally liquidity-stressed is high.

The limiting behavior of η differs for higher dimensions d > 2. Here in the

long run the process η coexists, meaning that heterogeneity in firms’ states will

appear for ρ ∈ (0, 1). Random clusters of firms of equal state appear here only

locally; they do not persist and grow not in the same way we observed with

d = 1, 2. The equilibrium distribution of ηt for t →∞ is given by the mixture
∫

[0,1]

νρQ(dρ), (4)

cf. Giesecke & Weber (2002). Here, νρ is the extremal invariant measure of the

basic voter model in dimension d > 2 with parameter ρ ∈ [0, 1] [cf. Liggett

(1999)], and Q is the distribution of the empirical average of liquidity-stressed

firms 1 in the whole economy:

lim
n→∞

|Λn|−1
∑
i∈Λn

ξ(i) = ρ̄, (5)

where Λn = [−n, n]d. In general, ρ̄ is not deterministic, but random. The

empirical average of the number ρ̄ of firms in state 1 and its distribution Q

are invariant under the contagion dynamics. Nevertheless, interaction between

firms strongly effects the correlation between the states of different firms. For

any finite number of firms, the probability to find many firms in the same

state is higher than in the case of independent firms; the equilibrium state

distribution exhibits heavy tails.

3 Portfolio Losses

In this section we examine the fluctuation of aggregate losses on a portfolio of

debt contracts written by firms subject to the contagion processes described in

the previous section. Throughout, we suppose that the economy is in a steady
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equilibrium state, in the sense that the distribution of firms’ interaction based

state is invariant. The steady state distribution of the liquidity configuration

will be denoted by

µ =

∫

[0,1]

νρQ(dρ). (6)

We consider a financial institution holding a portfolio Λn = [−n, n]d of

financial positions contracted with the firms in the interaction-prone economy.

The parameter n ∈ N determines the portfolio’s size, i.e. the number |Λn| =

(2n + 1)d of firms in the portfolio. The market value of a portfolio position is

subject to the credit quality, or ability to generate future cash flows, of its issuer

or counterparty. Such positions can include not only loans, bonds, or other debt

instruments, but also derivatives written by default-prone counterparties. Due

to adverse changes in a counterparty’s credit quality the market valuation of

the corresponding positions can be severely reduced. Risk measurement aims

at evaluating the potential losses induced by credit quality deterioration of

firms in portfolio Λn. Denoting the losses on positions contracted with firm

i ∈ Λn by the random variable U(i), we are thus interested in the distribution

of aggregated portfolio losses

Ln =
∑
i∈Λn

U(i). (7)

In the subsequent Section 3.1 we model the probabilistic properties of the

position losses, which then allows us in Section 3.2 to study the distribution

of aggregate losses Ln in detail.

3.1 Position Losses

The loss U(i) the financial institution incurs from positions contracted with

firm i ∈ Λn will depend on the credit quality of the firm, i.e. its ability to

generate the required cash flows in the future. In our model, this cash flow

ability is not only determined by the firm’s liquidity state resulting from the

interaction with its business partners, but also by the state of the general

macro-economy (the business environment) in which the firms operate. In this

sense both ”global” business cycle fluctuations and ”local” interaction-induced

contagion processes corresponding to the economy’s micro firm structure affect

credit losses. This is in fact an important conceptual advancement over the ex-

isting Bernoulli mixture models [Frey & McNeil (2001)], which have become

a standard for credit risk measurement and management in financial institu-

tions. The key assumption of Bernoulli mixture models is that credit losses
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are conditionally independent given the macro-economic state. Dependence

between losses on firms’ positions arises through the dependence of firms on

the common macro-state variables. Here firms’ interdependence is related to

cyclical correlation effects only; effects stemming from direct firm interaction

are not captured. Our model, in contrast, captures both cyclical and contagion

effects.

For the specification of the probabilistic properties of the position losses

U(i) we note first that for the credit contagion process being in some tuned

steady equilibrium state, we know the joint distribution (6) of firms’ interaction-

induced liquidity state. The state of the general (macro-) economy prevailing

in the steady state will then described by some random vector K ∈ Rp with

given distribution κ. The vector K is common to all firms and captures the

economy’s business environment. Elements of K may include indicators of the

stage of the business cycle, commodity and factor prices, inflation rates, or

interest rates. We can think of K as systematic factors which may affect dif-

ferent firms to a different degree. For example, a highly levered firm is more

affected in a high interest rate environment then a firm with low debt load.

Now our key assumptions on the probabilistic structure of the U(i) are

as follows. Conditional on the macro-economic state K ∈ Rp and the liquidity

profile ξ ∈ {0, 1}Zd
, losses are independent. The conditional loss distribution

of a firm is denoted by Mk,x; it depends only on the economy-wide macro-

economic state k and the firm-specific liquidity state x. For technical reasons,

we assume that the mapping
{
Rp × {0, 1} → M1(R+)

(k, x) 7→ Mk,x

is measurable. Here, M1(R+) denotes the space of Borel probability measures

on the positive real line with the weak topology. Moreover, we will suppose

that all measures Mk,x with (k, x) ∈ Rp × {0, 1} are supported in a common

interval [0, c] for some c > 0.

Given k and x we denote the expected losses conditional on these states

by

lx(k) :=

∫
uMk,x(du),

and assume that for every k ∈ Rp the inequality l0(k) < l1(k) holds.

3.2 Distribution of Portfolio Losses

Having specified the position loss distributions, let us turn to the distribution

of portfolio losses. Recall that κ is the distribution of the macro-economic
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factor and that µ given by (6) governs firms’ equilibrium liquidity state. In

terms of mixtures of the position loss distributions Mk,x the firms’ joint loss

distribution β can be written as

β(dw) =

∫ ∫ (⊗i∈ZdMk,ξ(i)

)
(dw)µ(dξ)κ(dk), w ∈ RZd

+ .

We are interested in the law of aggregated losses Ln under the measure β.

As for average losses in the whole economy, by law of a large numbers

lim
n→∞

Ln

|Λn| = ρ̄ · l1(K) + (1− ρ̄) · l0(K), (8)

β-almost surely. The random variables K and ρ̄ are independent and dis-

tributed according to κ and Q, respectively. It appears that in the limit all

loss fluctuations due to the fluctuation in the conditional position losses Mk,x

are averaged out; only their expectations lx(k) given the interaction state

x ∈ {0, 1} and the macro-factor k ∈ Rp enter average losses.

In order to get a more detailed picture about the fluctuation of losses and

their relation to the state of the economy and the interaction between firms,

we will now provide a normal approximation of aggregate losses. To this end

we introduce the function

l̃ :

{
Rp → [0, 1]2

k 7→ (l0(k), l1(k))

and define

ψ̃d,a(r; ρ, k) := ψd,a(r; ρ, l̃(k)),

where, letting Φ denote the standard normal distribution function,

ψd,a(r; ρ, l0, l1) = Φ

(
r1/2m(ρ, l0, l1)− r−1/2a

(l1 − l0)σ(d, ρ)r1/d

)
, a > 0, r > 0.

Here

m(ρ, l0, l1) = ρ · l1 + (1− ρ) · l0 (9)

and σ2 = σ2(d, ρ) is the constant given by

σ2 = ρ(1− ρ) · γd · d
2d+3πd/2

· Γ
(

d− 2

2

)
·
∫

[−1,1]d

∫

[−1,1]d

1

‖x− y‖d−2
2

dxdy, (10)

where Γ is the Gamma-function and γ = γd is given by

1

γ
= (2π)−d

∫

(−π,π)d

(
1− 1

d

d∑
m=1

cos xm

)−1

dx.
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Numerical values of γd can be found in Kondo & Hara (1987) for various

dimensions d. We are now ready to approximate aggregate losses Ln. The

proof of the theorem is given in the Appendix.

Theorem 3.1. Let d > 2, and assume that Q({0}) = Q({1}) = 0. For a large

portfolio, the distribution of the losses Ln can uniformly be approximated, i.e.

the following inequalities hold:

sup
a∈R

∣∣∣∣β(Ln ≥ a)−
∫ ∫

ψ̃d,a(|Λn|; ρ, k)Q(dρ)κ(dk)

∣∣∣∣

= sup
a∈R

∣∣∣∣β(Ln ≥ a)−
∫ ∫

ψd,a(|Λn|; ρ, l0, l1)Q(dρ)κl̃(d(l0, l1))

∣∣∣∣
≤ εn,

where εn → 0 as n → ∞. Here, κl̃ = κ ◦ l̃−1 is the distribution of l̃ under the

measure κ.

For r > 0 we define the function

Ψd,a(r) =

∫ ∫
ψd,a(r; ρ, l0, l1)Q(dρ)κl̃(d(l0, l1)). (11)

Heuristically, interpolation between sizes of portfolios implies that Ψd,a(r) ap-

proximates the probability of a loss larger than a ∈ R+ for portfolio size r > 0

sufficiently large. We observe that the distribution κ of the macro-factor K

enters the approximation only via the image measure κl̃ = κ ◦ l̃−1. That is,

random fluctuations of the conditional position losses U(i) around their means

given the interaction state ξ(i) and the macro-factor K are averaged out in

the normal approximation; all that matters are the expected position losses

l̃ = (l0, l1) under the distribution κ of the macro-economic factor K.

The shape of the approximate loss distribution depends on the size of the

contagion parameter d. Contagion induces additional fluctuations of the losses

in large portfolios around their random means which are determined by the

macro-economic factor K and the average number of liquidity-stressed firms

ρ̄. It will be instructive to re-parameterize the model in terms of the variables

m, ∆, ρ where

m = ρ · l1 + (1− ρ) · l0, (12)

∆ = l1 − l0. (13)

The variable m describes the average loss in the whole economy which is almost

surely defined by the limit

lim
n→∞

Ln

|Λn| = m. (14)
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∆ is given by the difference between the expected losses l1(k) and l0(k).

The distribution κ of the macro-economic factor and the distribution Q of

the average liquidity-state induce a joint distribution of the triple (m, ∆, ρ). For

simplicity, we assume that Q is a Dirac measure concentrated on 1
2

and denote

the joint image law of (m, ∆) by υ(dm, d∆). We remark that the influence of the

distribution Q on the contagion effect resembles qualitatively the implications

induced by the distribution of m which we will discuss in detail below.

From (11) we obtain the approximate probability of a loss larger than

a ∈ R+ for a portfolio of size r > 0 in terms of the new parameters:

Ψd,a(r) =

∫
Φ

(√
r ·m− a/

√
r

∆ · σ(d, ρ) · r1/d

)
υ(dm, d∆) (15)

We will investigate the contagion effect on the shape of the approximate loss

distributions for different specifications of the measure υ, namely the three

cases:

(a) ∆ fixed, m random;

(b) ∆ random, m fixed; and

(c) ∆, m both random.

For each of the choices for the law of m we will compare the contagion effect

for degrees of connectedness of the economy equal to d = 3, 4, 5.

We focus first on the case (a) in which m is the only random parameter.

The contagion effect depends crucially on the shape of the distribution of m. By

assumption (a) the distribution υ equals a product measure. Letting ∆ = 0.5,

υ is thus given by

υ(dm, d∆) = χ(dm)⊗ δ0.5(d∆) (16)

In Figures 1, 2, and 3, we plot the approximate loss densities for the interaction

cases d = 3, 4, 5 for a portfolio of size r = 10000 choosing

χ = δ0.5, χ =
1

5
· (δ0.3 + δ0.4 + · · ·+ δ0.7), χ = unif [0.3, 0.7],

respectively.

For χ = δ0.5 (Figure 1) portfolio losses fluctuate around their mean r ·m =

5000. For a low degree of connectedness d losses fluctuate more excessively

when compared with higher values of d. The difference of the contagion effect

for varying degrees of interaction d is quite significant in the case in which the

support of χ is small. Observe that in terms of loss probabilities the size of the

contagion effect is given by the area between the density curves.

13
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Figure 1: Approximate loss density, varying the degree of con-

nectedness d (r = 10.000, ρ = 0.5, ∆ = 0.5, and χ = δ0.5).

In Figure 2 we illustrate the contagion effect for χ being a convex combi-

nation of Dirac measures. In this case strong interaction of firms corresponding

to low values of d induces additional fluctuations around the random means

r · ρ = 3000, 4000, . . . , 7000 - leading to a smoother loss density with less

prominent peaks. At the same time the tail of the distribution becomes slightly

fatter when d decreases, but this effect is less significant than in Figure 1. Ob-

serve that the ordinate axis in Figure 2 is differently scaled than in Figure 1.

Hence, the size of the contagion effect corresponding to the area between the

density curves is indeed considerably smaller.

The approximate loss densities for χ = unif [0.3, 0.7] are shown in Figure

3. For χ having large support, fat tails due to contagion are not very strong,

and the approximate loss distributions do not differ much for various degrees of

interaction. We emphasize again that the ordinate axis in Figure 3 is differently

scaled than in Figures 1 and 2. The area between the density curves is smallest

for χ being uniform.

The properties of the distribution χ influences the size of the contagion

effect significantly. Let us now look at case (b) investigating the relationship

between ∆ and the shape of the losses. It is apparent from (15) that ∆ is a

factor in the denominator of the argument of the cumulative normal distri-

bution function. Hence, multiplying ∆ by a constant factor is equivalent to

rescaling the difference of the losses from the mean r ·m by a constant factor.

For both low and high degree of interaction the fluctuations around r ·m are

multiplied by the same factor. If ∆ is random, loss distributions are simply

14
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Figure 2: Approximate loss density, varying the degree of con-

nectedness d (r = 10.000, ρ = 0.5, ∆ = 0.5, and χ =
1
5
· (δ0.3 + δ0.4 + · · ·+ δ0.7)).

superpositions of normal variables with mean r · m. Nevertheless, contagion

effects are qualitatively the same for non-random and random ∆; i.e. for low

degrees of connectedness of the economy fluctuations around the mean r ·m
are more excessive than for high degrees of connectedness.

If m and ∆ are both random as in case (c), the size of the contagion effect

depends on the marginal distribution of m. If the marginal distribution of m is

close to a uniform distribution, the contagion effect is small. Conversely, if the

marginal distribution of m is dominated by peaks, contagion smoothes the loss

distribution. If the marginal distribution of m has small support, the contagion

effect is strongest. While the contagion effect is determined by the marginal

distribution of m, the actual shape of the loss distribution for given contagion

parameter d is governed by the joint distribution of m and ∆. Observe finally

that for given d approximate loss distributions can be very similar for different

specifications of the joint distribution of m and ∆; nevertheless, if the marginal

distributions of m differ considerably, the size of the induced contagion effects

might be quite different when varying d.

Let us finally emphasize that the effect of contagion on the distribution of

aggregate losses depends critically on the degree d of complexity of the business

partner network. Specifically, with increasing complexity d the contagion effect

decreases and the tail of the loss distribution becomes lighter. This relation

is consistent with the micro-economic bank contagion model of Allen & Gale

(2000), for example; it was recently empirically confirmed by Upper & Worms
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Figure 3: Approximate loss density, varying the degree of con-

nectedness d (r = 10.000, ρ = 0.5, ∆ = 0.5, and χ =

unif [0.3, 0.7]).

(2002). The intuitive idea is that the more complex the connectivity structure

of the economy, the lower is the probability of observing persistent and growing

clusters of firms in the same liquidity state (see Giesecke & Weber (2002) for

more details).

4 Bernoulli Mixture Representation

The class of existing Bernoulli mixture models has proven to be useful in prac-

tice to model loss distributions in the context of cyclical correlations between

losses on individual portfolio positions. We have argued, however, that the

disregard of contagion effects between positions may lead to an underestima-

tion of extreme fluctuation of portfolio losses. In this section we provide a

Bernoulli mixture type specification of our model, and thereby enlarge the ex-

isting Bernoulli mixture class with a model accommodating both cyclical and

contagion effects.

The key to the Bernoulli mixture type representation lies in a particular

specification of the conditional distribution Mk,x of position losses U(i) for a

firm i ∈ Λn in interaction-based liquidity state x ∈ {0, 1} when the state of

the macro-economy is k ∈ Rd. We put

Mk,x =

{
1 with probability Px(k)

0 with probability 1− Px(k)
(17)
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so that, conditionally on (k, ξ), the position loss is a Bernoulli random variable

with parameter Px(k), and we have l̃(k) = (P0(k), P1(k)). The probability

Px(k) is supposed to depend on x and k in a measurable way. We can interpret

Px(k) as the probability of default for a firm in interaction state x when the

economy is in state k, which results in a loss of one unit of account. Since

position losses are conditionally independent given (k, ξ) by assumption, the

particular specification (17) leads to our model becoming one of the Bernoulli

mixture class.

Given the Bernoulli mixture representation of our model, we can take

advantage of the existing estimation models for the mixing distribution. Taking

into account the homogeneity of firms in our economy, some of these models

are outlined in the examples below.

Example 4.1 (Bernoulli regression model). Let F : R → [0, 1] be some

strictly increasing continuous function, and let α1, α2, α3 be regression param-

eters with α2 > 0. We let K ∈ R be one-dimensional with given distribution

and put

Px(K) = F (α1K + α2x + α3).

For different choices of the regression relationship we refer to Joe (1997).

The one-factor regression model may not be flexible enough; we can generalize

to higher dimensions of the macro-factor vector K. We start with a choice

corresponding to the CreditRisk+ model structure.

Example 4.2 (Gamma model). Let α = (α1, . . . , αp) ∈ Rp
+, and γ1, γ2 > 0

be factor weights. Let K ∈ Rp be a p-dimensional iid-Gamma vector and put

Px(K) = 1− exp

(
−

p∑
i=1

αiKi − γ1x− γ2

)
.

Example 4.3 (Probit normal model). Let α = (α1, . . . , αp), γ1 > 0, and γ2

be factor weights. Let K ∈ Rp be a p-dimensional normally distributed random

vector and put

Px(K) = Φ

(
−

p∑
i=1

αiKi + γ1x + γ2

)
.

This model is closely related to the one exploited in KMV and Cred-

itMetrics. The assumption of normality of the factors is not essential; other

distributions such as the t-distribution or more general mean-variance mixtures

are possible, see Frey & McNeil (2001). The following specification is similar

in spirit to the CreditPortfolioView model.
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Example 4.4 (Logit normal model). Let α = (α1, . . . , αp), γ1 > 0, and γ2

be factor weights. Let K ∈ Rp be a p-dimensional normally distributed random

vector and put

Px(K) =

(
1 + exp

(
−

p∑
i=1

αiKi + γ1x− γ2

))−1

.

We now investigate the approximate loss distribution (11) for the specifi-

cation (17) of our general model under various assumptions on the dependence

between firms. This allows to evaluate the effects of cyclical default correlation

and credit contagion on the fluctuation of aggregate losses in the context of

the Bernoulli mixture model class. The results indicate that contagion can in-

deed be a significant factor, as it can lead to (potentially severe) fluctuations

in losses in addition to that related to fluctuations in the macro-environment.

In order to focus on the effects of firm dependence, we assume that Q = δρ:

the average proportion (5) of firms in interaction-induced liquidity state 1 is

equal to the constant ρ. It remains to specify a model for the default probability

Px(K) = lx(K) together with the distribution of the macro-factor K. We

choose a one-factor version of the Probit normal model of Example 4.3, which

parallels the models of KMV and CreditMetrics:

Px(k) = Φ (−αk + γ1x− γ2) (18)

We set α = 1, γ1 = 2, and γ2 = 3, considering different choices for the law of

the macro-economic factor K.

Under our current assumptions, for a portfolio of size r > 0 the function

(11) uniformly approximating the probability of aggregate losses being larger

than a > 0 becomes

Ψd,a(r) =

∫
Φ

(√
rm(ρ, l0(k), l1(k))− a/

√
r

(l1(k)− l0(k))σ(d, ρ)r1/d

)
κ(dk), (19)

where lx(k), m, and σ are given by (18), (9), and (10), respectively. For com-

parison, we shall also study the case where the firms do not interact with their

business partners, meaning that contagion effects are not present. In this situa-

tion we replace the extremal invariant distribution νρ of firms state in (4) with

a product πρ of Bernoulli measures with density ρ. For the loss approximation

we then obtain

Ψπ
d,a(r) =

∫
Φ

(√
rm(ρ, l0(k), l1(k))− a/

√
r

σ̃(k, ρ)

)
κ(dk), (20)
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Figure 4: Approximate loss distribution in the one-factor Pro-

bit normal model (18) when the macro-parameter K is certain

and set equal to zero, for d = 3 and the independence case

(r = 10.000 and ρ = 0.5).

with limiting variance σ̃2(k, ρ) given by

σ̃2(k, ρ) = (1− ρ) · var (Mk,0) + ρ · var (Mk,1) + ρ(1− ρ) · (l1(k)− l0(k))2,

where, in the current setup, var (Mk,x) = Px(k)(1− Px(k)).

We now consider a portfolio of size r = 10000, where the probability ρ

of an individual firm to be liquidity stressed is equal to 50%. In Figures 4, 5

and 6 we plot the approximate loss distribution for different specifications of

the law of the macro-parameter K. That is, we assume K to be distributed

according to

(d) a Dirac measure placing mass one on the value 0 (Fig.4);

(e) a Gaussian distribution with mean 0 and variance 1 (Fig.5); and

(f) a Gaussian distribution with mean −4 and variance 0.05 (Fig.6).

In the figures we compare the case where firms are independent (corresponding

to (20)), and where firms do interact in an economy with degree of complexity

d = 3 (corresponding to (11) and (19)). In contrast to Figures 1, 2 and 3 we

do not plot densities, but excess probabilities; thus, the size of the contagion

effect is measured by the difference between the two functions in Figures 4, 5

and 6, respectively.
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Figure 5: Approximate loss distribution in the one-factor Pro-

bit normal model (18) when the macro-parameter K is stan-

dard normally distributed, for d = 3 and the independence

case (r = 10.000 and ρ = 0.5).

In cases (d) and (f) a considerable contagion effect is present with fatter

tails for contagion-prone than for independent firms (Fig. 4 and 6). In case

(e) the difference between the excess loss probabilities has almost disappeared

and no significant contagion effect is visible (Fig. 5). The different size of the

contagion effects can easily be understood if we re-parameterize the model in

terms of the variables m and ∆ given in (12) and (13) and if we recall our

discussion of the cases (a), (b) and (c) from Section 3.2. The contagion effect

is governed by the marginal distribution of m which can be derived from Figure

7. In the upper half of Figure 7 the variables m and ∆ are shown as a function

of k for the one-factor Probit normal model (18) and the given parameter

values. The lower half displays the densities of the Gaussian distributions of

factor K in the case (e) and (f), respectively.

Due to the low variance of the Gaussian factor distribution in case (f)

K takes values close to its expectation with very high probability. Close to

the expected value −4 of the factor K, the slope of k 7→ m(k) is not very

large. Hence, the law of m is close to a Dirac measure. Consistent with our

discussion in Section 3.2 we observe in Figure 6 a significant contagion effect.

Figure 7 shows that for low values of k the variable m takes values close to

one corresponding to a bad macro-environment. Conversely, in case (d) K is

deterministic and equal to 0 giving rise to a low deterministic value for m which

corresponds to a good macro-economic environment. As expected, comparison
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Figure 6: Approximate loss distribution in the one-factor Pro-

bit normal model (18) when the macro-parameter K is nor-

mally distributed with mean −4 and variance 0.05, for d = 3

and the independence case (r = 10.000 and ρ = 0.5).

of Figures 6 and 4 shows considerably higher losses in case (f) than in case (d).

Let us now investigate the cases (d) and (e) in which the macro-economic

factor K has the same expectation 0 but different variance. If K is determinis-

tic, m is deterministic. By our discussion from Section 3.2 we expect a visible

contagion effect as confirmed by Figure 4. In contrast, if the law of K is a

centered Gaussian with large variance, Figure 7 shows that the distribution

of m is atomless placing considerable mass on an interval of significant size.

This property of the law of m corresponds to a small contagion effect (Fig. 5)

as we have already noticed in the case of a uniform distribution of m in our

discussion in Section 3.2 (see also Figure 3).

5 On Estimating the Model

In the last section we compared properties of the loss distribution for differ-

ent model specifications and degrees of connectedness of the economy. In this

section we outline the estimation of the model from historical data.

We suppose we are given a sufficiently large set of historical default and

loss data. Possible sources include the default and recovery data frequently

published by the public credit rating agencies, such as Moody’s or Standard

& Poor’s, as well as data collected internally in financial institutions on pro-

prietary portfolio positions. In a first step we discriminate the entities in the
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Figure 7: Upper half: Expected loss difference ∆(k) and aver-

age loss in the whole economy m(k) as functions of the macro-

parameter k. Lower half: Densities of Gaussian variables with

parameters (−4, 0.05) and (0, 1).

data in “liquidity-stressed” and “liquidity-stable” firms, which correspond to

the states x ∈ {0, 1}. For this we can use, for example, the external or internal

credit rating of a firm, or balance-sheet and cash-flow data if available.

The next step consists of choosing the conditional distribution Mk,x of

position losses on a firm in liquidity state x ∈ {0, 1} when the state of the

economy equals k ∈ Rp. Because of its practical relevance, we will consider the

generalized Bernoulli mixture specification (17), i.e. we put

Mk,x =

{
1 with probability Px(k),

0 with probability 1− Px(k).
(21)

Px(k) can be interpreted as the probability of default for a firm in liquid-

ity state x when the economy is in state k. Following a parametric estimation

strategy, we will fix some parametric model for Px(k) together with a distri-

bution for the macro-factors k. Standard industry-examples as discussed in

Section 4 include the Gamma model, the Probit model, and the Logit model,

together with the appropriate factor distribution κ.

Note that in contrast to standard models which neglect contagion, we

separated the data into two pools depending on the liquidity state of the indi-

vidual firms. In particular, from this the empirical distribution of the default

probabilities conditional on the state x ∈ {0, 1} of the firms can be obtained.

Hence, we can estimate the parametric models P0(K) and P1(K), respectively.

In contrast to standard industry practice, in a contagion-based approach P0(K)
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and P1(K) must be estimated under the restriction that in both cases the same

parameters are chosen.

In a next step, we estimate the distribution Q of the average number

of liquidity-stressed firms ρ. For each point in time, the average number of

liquidity-stressed firms can be calculated from the data, allowing to estimate

Q.

Taking the parameter d as given, we are now in a position to calculate

approximate loss distributions for large portfolios from (11). With the general-

ized Bernoulli specification, we have in fact that the approximate probability

of aggregate losses exceeding a > 0 for a portfolio of size r ∈ R+ is given by

Ψd,a(r) =

∫ ∫
Φ

(√
r(ρP1(k) + (1− ρ)P0(k))− a/

√
r

(P1(k)− P0(k))σ(d, ρ)r1/d

)
Q(dρ)κ(dk), (22)

where σ(d, ρ) is given by (10). Heuristically, by interpolation between various

degrees of interaction we may and will actually assume that d is not necessarily

a natural number, but can take on any real value larger than 2.

The parameter d stands for the degree of complexity of the business part-

ner network; as discussed in Section 3 it governs the size of the contagion effect

present in the economy. Given a homogeneous portfolio of firms, we need to

determine its degree of connectedness d if we wish to calculate its loss dis-

tribution. To do so, we introduce contagion indicators and contagion rating

classes C = {c1, . . . , cm}. Contagion indicators can for example be the num-

ber of business partner relations or the number of trade credit relationships

an individual firm possesses on average. We will assume that we can assign a

contagion rating to a homogeneous portfolio via the indicators.

With every contagion rating class c ∈ C we will associate a contagion pa-

rameter d using our historical data. For a contagion class c ∈ C, the historical

loss distribution can estimated. Comparison with the loss distribution gener-

ated by the model for various degrees of connectedness d allows us to estimate

the contagion parameter d related to any rating class in C. We emphasize that

in the choice of d we can allow for real numbers larger than 2.

Finally, suppose we have estimated the model and we are interested in

predicting the loss distribution for some given actual credit portfolio. The

contagion indicators can be used to obtain the contagion rating of the portfolio,

which in turn corresponds to a contagion parameter d that was obtained by

our calibration procedure. By (22), we can now calculate the approximate loss

distribution of the portfolio.
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6 Conclusion

A thorough understanding of aggregate credit loss risk associated with large

portfolios of financial positions is of critical importance for the management of

financial institutions and the regulatory authorities supervising financial mar-

kets. In aggregating individual risk exposures the dependence between losses on

positions is the most significant factor. In that respect the standard Bernoulli

mixture models widely applied in the financial industry focus exclusively on

cyclical correlations between firms’ positions, which are due to the depen-

dence of firms on the common macro-environment. Because of its ignorance of

the empirically well-documented default contagion processes [see Schoenmaker

(2000), for example], such an approach typically underestimates aggregate loss

risks. In response to that, in this paper we model the local interaction of firms

with their business partners and the associated contagion processes, in addi-

tion to cyclical correlation effects. We explicitly approximate the distribution

of aggregate credit losses on large financial portfolios.

With the loss distribution at hand we are able to quantify the relation

between the variability of global (macro-) economic fundamentals, strength

of local interaction between firms, and the fluctuation of portfolio losses, i.e.

the degree of aggregated credit loss risk. We find that cyclical oscillations in

economic fundamentals dominate average portfolio losses, while local firm in-

teraction and the associated contagion processes cause additional fluctuations

of losses around their average. These additional fluctuations correspond to ad-

ditional loss risks, which are not due to the cyclical dependence between firms.

As recently confirmed by empirical studies, the strength of the contagion-

induced loss variability and hence the tail properties of the loss distribution

depends on the degree of complexity of the business partner network, i.e. the

degree of connectedness between firms in the economy.

For regulatory authorities our results have significant implications. First,

credit contagion phenomena cause typically additional loss risks, which are

not accounted for by the standard industry models. The potential underesti-

mation of total credit loss risk can lead to capital provisions which may prove

to be insufficient to buffer actual losses. Second, the effects of credit conta-

gion are less severe in an economy in which firms operate within a complexly

structured business partner network. Regulatory policy supporting complexity

and diversity in business relations among firms thus helps to mitigate adverse

credit contagion effects and reduce the degree of systemic risk in the financial

market.
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A Normal Approximation

Proof of Theorem 3.1. Assume first that Q = δρ and κ = δk for ρ ∈ (0, 1)

and k ∈ R+. In this case, the approximation reduces to the case of Theorem

4.4. of Giesecke & Weber (2002), and we get that

sup
a∈R

∣∣∣β(Ln ≥ a)−Ψd,a(|Λn|; ρ, l̃(k))
∣∣∣ ≤ εn, (23)

where εn → 0 as n →∞.

For given k and ρ, the distribution of

|Λn|− d+2
2d (Ln − |Λn| ·m(ρ, k))

under the measure
∫

(⊗i∈ZdMk,ξ(i))(dw)νρ(dξ), w ∈ RZd

+

will be denoted by ςn
ρ,k. We define the quantity

δn
ρ,k := sup

n′≥n
sup
z∈R

∣∣∣∣ςn′
ρ,k([z,∞))− Φ

(
− z

(l1(k)− l0(k)) · σ(ρ)

)∣∣∣∣ ,

where Φ is the Gaussian distribution function.

Inequality (23) implies that δn
ρ,k converges to 0 for all ρ ∈ (0, 1) and k ∈ Rp

as n →∞. Observe that (ρ, k) 7→ δn
ρ,k is measurable. For ε > 0 we can therefore

define measurable sets

An
ε = {(ρ, k) ∈ (0, 1)× Rp : δn

ρ,k < ε}.

Then An
ε ⊆ An+1

ε , and (Q ⊗ κ)(An
ε ) ↗ 1 as n → ∞. Choose n0 large enough

such that

(Q⊗ κ)(An0
ε ) ≥ 1− ε.

Let (ρ, k) 7→ z(ρ, k) be a measurable mapping. Then for all n ≥ n0 we get

∣∣∣∣
∫ [

ςn
ρ,k([z(ρ, k),∞))− Φ

(
− z(ρ, k)

(l1(k)− l0(k))σ(ρ)

)]
Q(dρ)κ(dk)

∣∣∣∣
≤ 2(1− (Q⊗ κ)(An

ε ))

+ sup
(ρ,k)∈An

ε

sup
z′∈R

∣∣∣∣ςn
ρ,k([z

′,∞))− Φ

(
− z′

(l1(k)− l0(k))σ(ρ)

)∣∣∣∣

≤ 3ε
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Let a ∈ R be arbitrary, and let n ≥ n0. We can choose

z(ρ, k) = |Λn|− d+2
2d (a− |Λn|m(ρ, k)).

It follows that for any a ∈ R and n ≥ n0 the following inequality holds
∣∣∣∣
∫ ∫

νρ(Ln ≥ a)Q(dρ)κ(dk)

−
∫ ∫

Φ

( |Λn|1/2m(ρ, k)− |Λn|−1/2a

σ(ρ)|Λn|1/d

)
Q(dρ)κ(dk)

∣∣∣∣ ≤ 3ε.
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