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ABSTRACT: This paper studies the oscillatory properties of solutions of linear

scalar stochastic delay differential equations with multiplicative noise. It is shown

that such noise will induce an oscillation in the solution whenever there is negative

feedback from the delay term. The zeros of the process are a countable set; the

solution is differentiable at each zero, and the zeros are simple. The addition of such

noise does not alter the positivity of solutions when there is positive feedback.
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1. INTRODUCTION

Delay differential equations are widely used to model systems in ecology, physics,

and economics. Very often, interest focusses on solutions of such equations which

are oscillatory, as these could plausibly reflect cyclic motion of a system around an

equilibrium. Over the last thirty years, an extensive theory of oscillatory solutions of

deterministic equations has developed. However, the effect that random perturbations

of Itô type might have on the existence— creation or destruction— of oscillatory

solutions of delay differential equations seems, at present, to be absent from the

literature. In this paper, we study the oscillation of solutions about the equilibrium

position of (autonomous) linear scalar stochastic delay differential equations.

In the deterministic (and stochastic) case, the oscillations in the solutions of first

order delay differential equations are generated by the delayed argument, as first or-

der ordinary differential equations (and scalar stochastic differential equations) do

not possess oscillatory solutions about their equilibrium. In particular, the presence

of noise does not induce an oscillation about the equilibrium, if the equilibrium is a

strong solution of the stochastic differential equation. In order to observe an oscilla-

tion in a scalar stochastic delay differential equation, therefore, we must consider the

joint effects of the delayed argument and the stochastic perturbation.

The main result of the paper is that while nonoscillatory solutions can exist

in the deterministic case when there is a small negative feedback from the delay



term, this can never happen under the presence of a multiplicative noise. On the

other hand, when there is positive feedback from the delay term, and the initial

function always has the same sign, the solution retains its sign, even in the presence

of multiplicative noise. These results motivate the title of the paper: oscillation is

induced in a previously nonoscillatory system by the presence of noise.

We also show that the zero set of the solution is a countable set of points, and

that the process, which is in general non-differentiable, is differentiable at its zeros;

in fact each zero is simple.

2. MOTIVATION AND BACKGROUND MATERIAL

In this section, we introduce the notion of oscillation of a stochastic process (subsec-

tion 2.1) and indicate mechanisms which cause the oscillation of solutions of ordinary

and stochastic differential and delay differential equations (subsection 2.2). We also

refer to those results from the theory of oscillation of solutions of deterministic delay

differential equations which we require for our analysis, and sketch how those results

enable us to prove the oscillation of solutions of stochastic delay differential equations

(in subsection 2.3).

2.1. Oscillation of stochastic processes

We say that a non-trivial (i.e. y(t) = 0 for all t ≥ t1 for some t1 ≥ t0 is excluded)

continuous function y : [t0,∞)→ R is oscillatory if the set

Zy = {t ≥ t0 : y(t) = 0}

satisfies supZy = ∞. A function which is not oscillatory is called nonoscillatory.

We extend these notions to stochastic processes in the following intuitive manner: a

stochastic process (X(t, ω))t≥t0 defined on a probability triple (Ω,F ,P) with contin-

uous sample paths is said to be almost surely oscillatory (a.s. oscillatory hereafter)

if there exists Ω∗ ⊆ Ω with P[Ω∗] = 1 such that for all ω ∈ Ω∗, the path X(·, ω) is

oscillatory. A stochastic process is a.s. nonoscillatory if there exists Ω∗ ⊆ Ω with

P[Ω∗] = 1 such that for all ω ∈ Ω∗, the path X(·, ω) is nonoscillatory.

2.2. Oscillation of scalar linear evolutions

One of the important characteristics of the sample paths of solutions of (Itô) scalar

stochastic differential equations is that there are, in general, no points at which the

path is differentiable.



Consequently, it might be thought that the oscillation of the solutions of such

equations about equilibrium is a generic phenomenon. However, as for scalar differ-

ential equations, one must distinguish between cases which are perturbed by terms

which vanish at equilibrium, and those which do not.

To motivate this observation, let us first consider the ordinary scalar differential

equation x′(t) = ax(t), which admits the equilibrium solution x(t) ≡ 0. For x(0) 6= 0,

solutions of this equation do not oscillate about the equilibrium solution. Consider

now two perturbations of this equation, namely

x′(t) = ax(t) + bx(t), t ≥ 0, (1)

for b 6= 0, and

x′(t) = ax(t) + p(t), t ≥ 0, (2)

where p is a continuous non-trivial T -periodic function which satisfies
∫ T

0
p(s) ds = 0.

If x(0) 6= 0, solutions of (1) do not oscillate about the equilibrium solution zero.

However, for equation (2), all solutions oscillate about zero, provided a < 0. The

perturbation in (1) preserves x(t) ≡ 0 as equilibrium solution, while x(t) ≡ 0 is not a

solution of (2). In this case therefore, the oscillation arises from a perturbation which

does not vanish at equilibrium.

The same phenomenon can be seen for linear stochastic differential equations.

We consider two (Itô) stochastic perturbations of x′(t) = ax(t), namely

dX(t) = aX(t) dt+ σX(t) dB(t) (3)

and

dX(t) = aX(t) dt+ σdB(t), (4)

where σ is a positive constant, and (B(t))t≥0 is standard one–dimensional Brownian

motion.

Again, (3) has X(t) ≡ 0 as an equilibrium solution, and, for X(0) 6= 0, (3) has

the solution

X(t) = X(0) · exp((a− σ2/2)t+ σB(t)),

which does not oscillate around the equilibrium solution. The solution of (4) is given

by

X(t) = eatX(0) + σeat
∫ t

0

e−asdB(s).

Whenever a < 0, one can use the martingale time change theorem and the law of the

iterated logarithm to prove that

lim sup
t→∞

X(t)√
2 log t

=
σ

√

2|a|
, lim inf

t→∞

X(t)√
2 log t

= − σ
√

2|a|
, a.s.,



so the continuity of the sample paths of (4) ensures that every solution of (4) is

a.s. oscillatory. In this case, X(t) ≡ 0 is not an equilibrium solution.

Therefore, we see that oscillation for scalar linear differential equations relies on

non-equilibrium preserving perturbations, and that no oscillation can occur about

equilibrium if the perturbation preserves the equilibrium of the unperturbed system.

Indeed, the presence of “noise” alone is not sufficient to cause oscillation about an

equilibrium for scalar stochastic differential equations.

Of course, it is possible for systems of linear differential equations to oscillate

about an equilibrium solution, if the system (or equation) is of order two or greater.

This is well-known for deterministic systems, but stochastic systems also exhibit this

phenomenon. Stochastic oscillators are considered, e.g. in Mao, 1997. As an example,

consider the system

dX1(t) = σX2(t) dB(t), dX2(t) = −σX1(t) dB(t).

The solution of this equation is

X1(t) = e
σ2

2
t (cos(σB(t))X1(0) + sin(σB(t))X2(0)) ,

X2(t) = e
σ2

2
t (− sin(σB(t))X1(0) + cos(σB(t))X2(0)) .

Consequently, if the initial conditions are deterministic, we see that both X1 and X2

oscillate about zero, almost surely.

The presence of a delay term in a scalar linear delay differential equation is,

however, sufficient to induce the oscillation about zero of its solutions under certain

conditions. This holds even when zero is a solution of the problem. Indeed, although

the equation x′(t) = bx(t) does not have oscillatory solutions for b < 0, it transpires

for b < 0 that all non-trivial solutions of

x′(t) = bx(t− τ), t ≥ 0 (5)

are oscillatory provided −beτ > 1, while nonoscillatory solutions of (5) exist if −beτ ≤
1 (this result can be found in Proposition 1.3.2 in Gopalsamy, 1992. Therefore, all

solutions are oscillatory if the delay is sufficiently long, but nonoscillatory solutions

can still exist for small delay (or small intensity b). In the case when b > 0, solutions

are positive (and therefore nonoscillatory) if the initial function defined on [−τ, 0]
is strictly positive. It is now natural to ask: what are the oscillatory properties of

solutions of a stochastic (but equilibrium preserving) perturbation of (5), e.g.,

dX(t) = bX(t− τ) dt+ σX(t) dB(t). (6)

It is this problem, and closely related problems, which we seek to address in this

paper. It transpires for b < 0 that all solutions of (6) are a.s. oscillatory, so it is no



longer possible to have nonoscillatory solutions, even for small delay (or small feedback

intensity b), and an oscillation is induced by the noise perturbation. When there is

positive feedback from the delay term (for b > 0), solutions are a.s. positive, provided

the initial function on [−τ, 0] is strictly positive, as for those of (5); therefore, noise

does not appear to induce oscillation in solutions in the presence of positive feedback

from the past.

2.3. Statement of the problem; background theory

This paper studies the a.s. oscillatory and nonoscillatory nature of solutions of the

scalar stochastic delay differential equation

dX(t) = (aX(t) + bX(t− τ(t))) dt+ σX(t) dB(t) (7a)

X(t) = ψ(t), −τ ≤ t ≤ 0, (7b)

where τ(t) ≤ τ is a continuous function satisfying some additional conditions, and ψ

is a continuous function in C([−τ , 0]). We will frequently remark on the case when

τ(t) = τ , i.e. problem (7) has a constant delay.

The solution of (7) is a stochastic process (X(t, ω))t≥t0 defined on a probability

triple (Ω,F ,P). We will denote deterministic functions by small letters, stochastic

processes by capital letters, for ease of notation we will sometimes suppress the de-

pendence on ω. Often we are interested in comparing the oscillatory properties of the

solutions of this problem to those of the corresponding deterministic one. For (7a)

we compare with

x′(t) = ax(t) + bx(t− τ(t)), t ≥ 0. (8)

with the same initial function ψ.

Our strategy for proving the existence of a.s. oscillatory solutions involves writing

the solution of equation (7a) in terms of the (continuously differentiable) solution of

a scalar random delay differential equation of the form

Y ′(t) = −P (t)Y (t− τ(t)) (9)

where P is a random, non-negative function. (In the deterministic case a reduction

of (8) to a pure delay equation can be easily obtained by setting x(t) = y(t)eat to

find y(t) = be−aτ(t)y(t − τ(t)).) Then one can invoke (on a path-wise basis) some of

the extensive existing deterministic theory of oscillatory solutions of delay differential

equations (we refer the reader to the monographs of Gopalsamy, 1992 or Ladde et al.,

1987. A short summary of the results we use follows.

The following result on oscillatory solutions can be found in Theorem 2.1.3] in

Ladde et al., 1987, it is a special case of Theorem 2 in Staikos and Stavroulakis, 1977.



Proposition 1. Suppose that p(·) is a continuous, nonnegative function defined on

[t0,∞) which satisfies

lim sup
t→∞

∫ t

g(t)

p(s) ds > 1

where g : [t0,∞) → R+ is a non-decreasing continuous function satisfying g(t) < t,

g(t)→∞ as t→∞. Then all solutions of

y′(t) = −p(t)y(g(t)) (10)

are oscillatory.

It is also possible to obtain nonoscillatory solutions of (10). The following result

can be found in Gopalsamy, 1992 as Theorem 1.3.5.

Proposition 2. Suppose that p(·) is a continuous, nonnegative function defined on

[t0,∞) which satisfies
∫ t

g(t)

p(s) ds ≤ 1

e

for all t > T , where g : [t0,∞) → R+ is a non-decreasing continuous function

satisfying g(t) < t, g(t)→∞ as t→∞. Then (10) has a nonoscillatory solution.

We show in Section 3 that whenever g (with g(t) = t−τ(t)) satisfies the hypothe-
ses of Proposition 1, and b < 0, the solution of (7) is a.s. oscillatory for any choice of

(deterministic) initial function ψ. Using Proposition 2, however, we remark that in

the deterministic case equation (8) can have nonoscillatory solutions for sufficiently

small negative b.

In the case of constant delay, the behaviour of the solutions of (8) can be char-

acterized, using Proposition 1.2.10 in Gopalsamy, 1992, which goes back to a result

of Driver et al., 1973.

Proposition 3. Let τ(t) = τ, τ constant, b < 0, −be−aτeτ < 1. Then the solution

of (8) satisfies

lim
t→∞

x(t)e−λ0t =
1

1 + λ0τ

(

ψ(0) + λ0τ

∫ 0

−τ

e−λ0sψ(s) ds

)

,

where λ0 is a real negative root of

λ− be−aτe−λτ = 0.



3. OSCILLATION OF SOLUTIONS

In this section, we establish the oscillatory and nonoscillatory properties of solutions

of (7). We assume that τ(·) is a bounded continuous function which satisfies

0 < τ < τ(t) ≤ τ <∞, (11)

together with

t 7→ t− τ(t) is non-decreasing. (12)

Introduce the process (Φ(t))t≥−τ which satisfies Φ(t) = 1 for t ∈ [−τ , 0] and Φ(t) =

exp((a− σ2/2)t+ σB(t)) for t ≥ 0, i.e., it is the solution of the stochastic differential

equation

dΦ(t) = aΦ(t) dt+ σΦ(t) dB(t). (13)

Also define for t ≥ −τ the process Y (t) = X(t)/Φ(t), where X(t) is the solution of (7)

(Y is well-defined, as Φ is a strictly positive process). Using (stochastic) integration

by parts, we see that Y satisfies

Y (t) = Y (0) +

∫ t

0

b Y (s− τ(s)) Φ(s− τ(s)) Φ(s)−1 ds, t ≥ 0. (14)

Consequently, (X(t))t≥0 satisfies

X(t) = Φ(t)

(

ψ(0) +

∫ t

0

b X(s− τ(s)) Φ(s)−1 ds

)

. (15)

Returning to (14), we see that the continuity of the integrand on the right–hand side

implies that Y ∈ C1((0,∞);R). Differentiating (14) yields

Y ′(t) = b Φ(t− τ(t)) Φ(t)−1Y (t− τ(t)). (16)

Another way of obtaining a random differential equation to represent the solution of

a stochastic differential equation is given in Lisei, 2001.

For b > 0 it is not difficult to show that all solutions of (7) are a.s. positive (and

hence a.s. nonoscillatory) if the initial function ψ ∈ C([−τ , 0],R+).

Proposition 4. Let b > 0 and ψ(t) > 0 for all −τ ≤ t ≤ 0. Then (7) has an

a.s. positive solution on [0,∞), where τ satisfies (11).

Proof. Let Ω∗ ⊂ Ω be the almost sure event on which Y obeys (16). Let ω ∈ Ω∗. Since

Y (t, ω) = ψ(t) > 0 for all t ∈ [−τ , 0], we may define t∗(ω) = inf{t ≥ 0 : Y (t, ω) = 0}.
Indeed, as ψ is positive, t∗(ω) > 0. By definition, we must have Y ′(t∗(ω), ω) ≤ 0.

Since τ is a positive function Y (t∗(ω)− τ(t∗(ω)), ω) > 0, as Y (t, ω) > 0 for t < t∗(ω).

Therefore, as Φ is a positive process, and b > 0, we see from (16) that Y ′(t∗(ω), ω) > 0,

a contradiction. Therefore Y (t, ω) > 0 for all t ≥ 0. By construction, therefore,

X(t, ω) > 0 for all t ≥ 0, and so X is almost surely positive.
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Figure 1: dX(t) = {0.35X(t) + 0.1X(t − 1)}dt + σX(t)dW (t), ψ ≡ 1, σ = 0 (left) and

σ = 0.8 (right).
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Figure 2: dX(t) = {0.35X(t) + 0.1X(t− 1)}dt+ σX(t)dW (t), ψ ≡ 1, σ = 0.8, a zoom of

the trajectory above.

Figures 1 and 2 illustrate the behaviour of solution trajectories under the conditions

of Proposition 4.

We now show that solutions of (7) are a.s. oscillatory, no matter what the choice

of ψ, whenever b < 0 and σ 6= 0.

Proposition 5. Let b < 0, and τ satisfy (11) and (12). Then for any continuous

function ψ, Equation (7) has an a.s. oscillatory solution on [0,∞).

Proof. Since Y (t) = X(t)/Φ(t), the set

Z = {t ≥ 0 : X(t) = 0}

satisfies supZ =∞ a.s. if and only if the set

Z̃ = {t ≥ 0 : Y (t) = 0}

satisfies sup Z̃ = 0 a.s.. Define for t ≥ 0, and ω ∈ Ω,

P (t, ω) = −b Φ(t− τ(t), ω) Φ−1(t, ω),



Then, on [0,∞), P (·) is an a.s. positive, continuous function. Note now that Y

satisfies

Y ′(t, ω) = −P (t, ω)Y (t− τ(t), ω) for t > 0. (17)

Suppose there exists Ω∗ ⊂ Ω such that

Ω∗ = {ω ∈ Ω : lim sup
t→∞

∫ t

t−τ(t)

P (s, ω) ds > 1}, and P[Ω∗] = 1,

then as P and g(t) = t− τ(t) satisfy the conditions of Proposition 1, for each ω ∈ Ω∗,

it follows that the path Y (·, ω) is oscillatory, so that the path X(·, ω) is oscillatory,

and hence, as Ω∗ is an a.s. event, the solution of Equation (7) is a.s. oscillatory.

Observing that

∫ t

t−τ(t)

P (s) ds

=

∫ t

t−τ(t)

−b exp(−(a− σ2

2
)τ(s)) exp(−σ(B(s)−B(s− τ(s)))) ds

≥ −b max(1, exp(−(a− σ2

2
)τ))

∫ t

t−τ(t)

exp(−σ(B(s)−B(s− τ(s)))) ds,

we see that, if

lim sup
t→∞

∫ t

t−τ(t)

exp(−σ(B(s)−B(s− τ(s)))) ds =∞, a.s., (18)

then Ω∗ as prescribed above exists, and the theorem is proved. We state the validity

of (18) in the following Lemma 1. The proof of this result is relegated to Appendix

A.

Figure 3 shows a solution and a sample trajectory of the solution of Equations

(8) and (7) under the conditions of Proposition 5.
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Figure 3: dX(t) = {0.35X(t) − X(t − 1)}dt + σX(t)dW (t), ψ ≡ 1, σ = 0 (left) and

σ = 0.8 (right).



The crucial condition in Proposition 5 which ensures oscillation is (18). We see

that in the non-stochastic case (where σ = 0)
∫ t

t−τ(t)

exp(−σ(B(s)−B(s− τ(s)))) ds = τ(t),

and so (18) cannot hold, as τ is bounded. Moreover, if τ is sufficiently small, the inte-

gral in (18) in the deterministic case may be sufficiently small so that the conditions in

Proposition 2 hold. In this instance, the deterministic equation has a nonoscillatory

solution: however, as Lemma 1 below reveals, (18) must always hold in the stochastic

case where σ 6= 0, and so all solutions must be a.s. oscillatory.

Lemma 1. Suppose that τ ∈ C(R+,R+) satisfies (11). If σ 6= 0 then

lim sup
t→∞

∫ t

t−τ(t)

exp(−σ(B(s)−B(s− τ(s)))) ds =∞, a.s. (19)

holds.

Remark 1. Consider the solution of (8), where τ satisfies (11) and (12). Then, letting

φ(t) = eat, and y(t) = x(t)/φ(t) for t ≥ 0, by analogy with (16), we have y ′(t) =

−p(t)y(t − τ(t)) for t > τ , where p(t) = −be−aτ(s). Thus, by Proposition 2 (with

g(t) = t − τ(t)) and b < 0, then (8) has a nonoscillatory solution for a > 0 when

−bτe−aτ < 1/e, and for a < 0 when −bτe−aτ < 1/e. Hence Proposition 5 implies that

the addition of a non-zero noise term to (8) to form the stochastic delay differential

equation (7a) removes the possibility of a nonoscillatory solution. We provide an

illustrative example in Figure 4.
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Figure 4: Left: dX(t) = {0.35X(t) − 1/eX(t − 1)}dt + σX(t)dW (t), ψ ≡ 1, σ = 0 and

σ = 0.8. Right: A zoom of the trajectory for σ = 0.8.

Remark 2. In the constant delay case (τ(t) = τ), we can see that not only do nonoscil-

latory solutions exist when b < 0, −be−aτeτ < 1, but that they are very prevalent.

By Proposition 3 if the initial function ψ satisfies

ψ(0) + be−λτ

∫ 0

−τ

e−λsψ(s) ds 6= 0,



the solution of (8) with τ(t) = τ and with initial function ψ is nonoscillatory. Thus,

the set of initial functions in the deterministic case for which the solution is nonoscil-

latory is “large” for sufficiently small b < 0. In contrast, for the corresponding

random system (7) with the same initial function ψ, the solution is a.s. oscillatory,

by Proposition 5.

4. PROPERTIES OF THE ZERO SET

In this section, we consider the properties of the zero set of the process (X(t))t≥0

given by (7). We give some motivating discussion, and then establish results on the

topology of the zero set ZX on almost all paths.

4.1. Discussion

The zero set of (X(t))t≥0 given by (7) is defined by

ZX = {(t, ω) ∈ R+ × Ω : X(t, ω) = 0}.

We concentrate on the zero set for fixed ω ∈ Ω, and show that this has the same

topological structure for almost all ω ∈ Ω. To this end, we introduce

ZX(ω) = {t ∈ R+ : X(t, ω) = 0}.

As almost all paths of X are non-differentiable almost everywhere, one might form

the naive impression that the structure of ZX would be very similar to that of the zero

set of the standard Brownian motion (B(t))t≥0 — for instance, in the terminology of

this paper, B is an a.s. oscillatory process. Indeed, one might expect that the zeros

of X would not be isolated, as those of Brownian motion are. The following result,

found for example as Theorem 2.9.6 in Karatzas and Shreve, 1991, indicates some of

the remarkable properties of the zero set of Brownian motion

ZB = {(t, ω) ∈ R+ × Ω : B(t, ω) = 0}.

Proposition 6. Define for fixed ω ∈ Ω the zero set of B(·, ω):

ZB(ω) = {0 ≤ t <∞ : B(t, ω) = 0}.

Then for P-a.e. ω ∈ Ω, the zero set ZB(ω)

(i) has Lebesgue measure zero,

(ii) is closed and unbounded,



(iii) has an accumulation point at t = 0,

(iv) has no isolated point in (0,∞), and therefore

(v) is dense in itself.

We think of Brownian motion as having typical sample path level sets, and in par-

ticular, sample path zero level set, of Itô processes. In the introduction, we observed

that the nondelay version of (7) with multiplicative noise is strictly positive when

it has a positive initial condition, so questions relating to its zero set do not arise.

Instead, for instance, consider the version of (7) without delay and with additive noise

given by

dX(t) = aX(t) dt+ σ dB(t). (20)

In the introduction, we noted that for a < 0 this process is a.s. oscillatory. When

X(0) = 0, the stochastic differential equation has explicit solution

X(t) = eat
∫ t

0

σe−as dB(s)

so the zero set of the path X(ω) coincides with the zero set of M(ω) where M =

{M(t);FB
t ; t ≥ 0} is the martingale given by

M(t) =

∫ t

0

e−as dB(s).

This martingale has square variation

〈M〉(t) =
∫ t

0

e−2as ds =
1

−2a(e
−2at − 1).

By the martingale time change theorem (see for example, Theorem 3.4.6 in Karatzas

and Shreve, 1991, there exists a standard Brownian motion W such that M(t) =

W (〈M〉(t)). Therefore the zero set of M , and hence of X, the solution of (20), have

the same properties as the zero set of a standard Brownian motion.

We also believe that the zero set of almost all sample paths of the additive noise

version of (7) viz.,

dX(t) = (aX(t) + bX(t− τ(t))) dt+ σ dB(t) (21)

has the same properties as the zero set of sample paths of Brownian motion, or the

non-delay version of this equation, namely (20) above. Our belief is reinforced by

Proposition 9 below, which shows that the zero set has an accumulation point at the

time of the first zero.



In contrast to the complicated topology of ZB, or the zero set of the solution

of (20) or (21), consider the zero set of an arbitrary continuously differentiable and

oscillatory function y defined on R+ which has zero set

Zy = {t ≥ 0 : y(t) = 0},

and suppose moreover that y′(t) 6= 0 for all t ∈ Zy. Then, although properties (i),

(ii) of Proposition 6 are satisfied for the zero set Zy, property (iv) cannot hold, so all

the elements of Zy are isolated. This observation enables us to show that while the

paths of X given by (7a) are nowhere differentiable, the zero set of X resembles that

of y above, rather than that of B or the solutions of either (20) or (21). This holds,

for example, if the initial function in (7b) is strictly positive.

4.2. Results on the zero set

We now present some results which give information on the structure of the zero set

of X.

Proposition 7. Let X(·, ω) be a realisation of the process which is the solution of

(7a) with initial function ψ ∈ C([−τ , 0];R+), where the function τ satisfies (11). If,

in addition, b < 0 and σ 6= 0, then for P-a.e. ω ∈ Ω the zero set ZX(ω) has the

following properties:

(i) it has Lebesgue measure zero,

(ii) it is closed, unbounded and countable, and

(iii) every point of ZX in (0,∞) is isolated.

Moreover, ZX(ω) = {tn(ω)}∞n=1 where {tn}n≥1 is a nondecreasing sequence satisfying

t1 > 0, tn+1 > tn + τ a.s., (22)

where τ > 0 is given by (11).

Proof. Note that the function Y which satisfies (17) obeys ZX(ω) = ZY (ω) for all

ω ∈ Ω, so it suffices to study the zero set of Y . In the proof of Proposition 5, it was

shown that Y is a.s. oscillatory, so the zero set ZY is unbounded for P-a.e. ω ∈ Ω.

Therefore we can define t1(ω) = inf{t ≥ 0 : Y (t, ω) = 0} for almost all ω ∈ Ω. By the

continuity of Y and positivity of ψ, we have t1 > 0. Furthermore, since P (t) > 0 for

all t ≥ 0, it follows from (17) that Y ′(t, ω) < 0 for all t ∈ (0, t1 + τ). Since Y (t1) = 0,

we have Y (t) < 0 for all t ∈ (t1, t1 + τ), and indeed Y (t1 + τ) < 0. By defining,

t2(ω) = inf{t ≥ t1 : Y (t2, ω) = 0},



we see that t2(ω) > t1(ω) + τ . To prove relation (22), we proceed by an induction

proof. Suppose we can define successively tn(ω) = inf{t ≥ tn−1 : Y (t, ω) = 0},
for n ≥ 2, and further suppose that tn > tn−1 + τ . Without loss of generality, take

Y (t) > 0 for t ∈ (tn−1, tn). Then

Y (t) = −
∫ t

tn

P (s)Y (s− τ(s)) ds < 0, t ∈ (tn, tn + τ ].

Therefore, as Y is continuous, we must have tn+1(ω) > tn(ω) + τ , which proves the

induction hypothesis. Therefore ZY = {tn > 0 : n ∈ N}. The property of the

sequence (tn)n≥1 establishes statements (i)-(iii) in the proposition for the zero set ZY ,

and therefore for the zero set ZX .

Figures 5, 6 and 7 illustrate the behaviour concerning the discussion and propo-

sitions above of trajectories of the solution of (7a), (23) and (20), respectively. The

same realisation of the Wiener process, i.e. the same set of increments, has been

used for all three Figures. All pictures have been obtained with the Euler-Maruyama

method and a step-size of 5/256.
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Figure 5: Left: dX(t) = {−0.35X(t)−X(t− 1)}dt+0.8X(t)dW (t), ψ ≡ 1. Right: A zoom

of the trajectory.
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Figure 6: Left: dX(t) = {−0.35X(t)−X(t− 1)}dt+ 0.8dW (t), ψ ≡ 1. Right: A zoom of

the trajectory.
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Figure 7: dX(t) = −0.35X(t)dt+ 0.8dW (t), X(0) = 1 .

There is one further point of note about the zero set ZX which is interesting in

the context of the non-differentiability of the path at almost all points: the process

(X(t))t≥0 is differentiable at t = t∗ if t∗ ∈ ZX . This largely explains the properties of

the zero set of X.

Proposition 8. Suppose the conditions of Proposition 7 are satisfied. Then there

exists Ω∗ ⊂ Ω with P[Ω∗] = 1 such that for all ω ∈ Ω∗ and t∗ ∈ ZX(ω), we have that

t 7→ X(t, ω) is differentiable at t = t∗. Moreover, X ′(t∗) 6= 0.

Proof. Let Ω∗ ⊂ Ω be such that the solution of (7) is well–defined, and that the

function Φ(·, ω) is continuous and strictly positive on R+, and the function Y (·, ω)
is continuously differentiable on R+, respectively. Suppose further that X(·, ω) is

oscillatory for ω ∈ Ω∗. Then Ω∗ is an almost sure event.

Let t∗ ∈ ZX(ω) for ω ∈ Ω∗. Hereafter, we suppress ω-dependence. Using the fact

that X(t∗) = Y (t∗) = 0, for t 6= t∗, we have

X(t)−X(t∗) = Φ(t)Y (t)− Φ(t∗)Y (t∗) = Φ(t)Y (t) = Φ(t)(Y (t)− Y (t∗)).

The continuity of t 7→ Φ(t) and differentiability of t 7→ Y (t) on R+ yields

lim
t→t∗

X(t)−X(t∗)

t− t∗
= lim

t→t∗
Φ(t)

Y (t)− Y (t∗)

t− t∗
= Φ(t∗)Y ′(t∗).

Therefore t 7→ X(t, ω) is differentiable at t = t∗. To show X ′(t∗) 6= 0, suppose to the

contrary X ′(t∗) = 0: then Y ′(t∗) = 0, as Φ(t) > 0 for all t ≥ 0. But this implies

t̃ = t∗− τ(t∗) ∈ ZY , so t̃ ∈ ZX . Hence t̃− t∗ = τ(t∗) < τ . But this is in contradiction

of Proposition 7, which states that the members of ZX are separated by distances

greater than τ .

The differentiability of the path at a zero, and the fact that the zeros are isolated

points are properties which are not shared by the additive noise delay-differential

equation. We prove this in the following result.



Proposition 9. Let τ be a positive and bounded function with τ(t) ≤ τ and ψ ∈
C([−τ , 0];R) be a strictly positive function. Let σ 6= 0 and consider the equation

dX(t) = (aX(t) + bX(t− τ(t))) dt+ σ dB(t) (23a)

X(t) = ψ(t), −τ ≤ t ≤ 0. (23b)

Then the path X(·, ω) : [0,∞)→ R : t 7→ X(t, ω) is nowhere differentiable for P-a.e.
ω ∈ Ω.

Moreover, suppose θ = inf{t > 0 : X(t) = 0} is an almost surely finite stopping

time, and define the set

Zθ
X(ω) = {t ∈ [0,∞) : X(θ + t, ω) = 0}.

Then for P-a.e. ω ∈ Ω.

(i) Zθ
X(ω) has an accumulation point at zero, so

(ii) θ(ω) ∈ Zθ
X(ω) is not an isolated member of Zθ

X(ω).

The proof of this result is sketched in Appendix A. The oscillation of solutions of

such additive noise delay-differential equations is not the main focus of this paper: we

present Proposition 9 in order to contrast the behaviour of the zero set of solutions of

additive noise delay-differential equations with that of the solutions of multiplicative

noise delay-differential equations.

5. CONCLUDING REMARKS

Certain modifications of these results are possible to include the effect of two or more

constant delays, or non-autonomous equations, but no new ideas are involved. An

interesting question which remains is whether the deterministic theory which exists

to prove the oscillation of solutions of non-linear delay differential equations can be

used in this framework to establish corresponding results for the non-linear stochastic

system. A further open question is the extent to which the above linear theory admits

a corresponding linearisation theory about the zero equilibrium.
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with small delay, American Mathematical Monthly, 80 (1973) 990–995.

[2 ] K. Gopalsamy, Stability and oscillations in delay differential equations of

population dynamics, Kluwer Academic Publishers, Dordrecht, 1992.



[3 ] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus,

Springer, New York, 1991.

[4 ]G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation theory of

differential equations with deviating arguments, Marcel Dekker, New York, 1987.

[5 ]H. Lisei, Conjugation of flows for stochastic and random functional differential

equations, Stochastics and Dynamics, 1(2) (2001) 283–298.

[6 ]X. Mao, Stochastic differential equations and their applications, Horwood

Publishing Limited, Chichester, 1997.

[7 ]V. Staikos and I. Stavroulakis, Bounded oscillations under the effect of retar-

dations for differential equations of arbitrary order, Proceedings of the Royal

Society of Edinburgh, 77 (1977) 129–136.

APPENDIX A

This Appendix contains a proof of the crucial technical Lemma 1, which was earlier

deferred, and also the proof of Proposition 9, which we have relegated from the main

text.

Proof of Lemma 1. If σ < 0, let σ̃ = −σ. If σ > 0, note that B̃(t) = −B(t) is also a

standard Brownian motion, so it suffices to show, for σ̃ > 0 that

lim sup
t→∞

∫ t

t−τ(t)

exp(σ̃(B(s)−B(s− τ(s)))) ds =∞, a.s.

Let τ1 = τ/2, so that τ(t) > τ1, and define, for t > τ1 + τ and α > 0 the sets

Ct,α = {ω ∈ Ω : min
t−τ1≤s≤t

B(s, ω)− max
t−τ1−τ≤s≤t−τ

B(s, ω) > α},

and

Dt,α = {ω ∈ Ω : B(s, ω)−B(s− τ(s), ω) > α for all t− τ1 ≤ s ≤ t}.

As τ satisfies (11), we have

max
t−τ1≤t≤t

B(s− τ(s), ω) ≤ max
t−τ1−τ≤s≤t−τ

B(s, ω).

Hence, for ω ∈ Ct,α and t− τ1 ≤ s ≤ t, we have

B(s, ω)−B(s− τ(s), ω) ≥ min
t−τ1≤s≤t

B(s, ω)− max
t−τ1−τ≤s≤t−τ

B(s, ω) > α,



so that ω ∈ Dt,α. Thus Ct,α ⊆ Dt,α for all α > 0. Next define

U(t) =

∫ t

t−τ(t)

exp(σ̃(B(s)−B(s− τ(s)))) ds.

Then, for ω ∈ Ct,α, we have

U(t, ω) ≥
∫ t

t−τ1

exp(σ̃(B(s)−B(s− τ(s)))) ds ≥
∫ t

t−τ1

eσ̃α ds = τ1e
σ̃α.

Thus

P[U(t) > τ1e
σ̃α] ≥ P[Ct,α]. (24)

Next, let an be an increasing sequence of positive numbers satisfying an+1 − an ≥ τ ,

and define Vn = U(a2n). Since for m 6= n, Vn and Vm are functionals of increments

of Brownian motion which are non-overlapping, it follows that Vn, n = 1, 2, . . . is a

sequence of independent, non-negative random variables. Thus, by the second Borel-

Cantelli Lemma

lim sup
n→∞

Vn =∞, a.s., (25)

if and only if, for every β > 0

∞
∑

n=1

P[Vn > β] =∞. (26)

Therefore the assertion is proved if (26) (and in turn (25)) is proved, as

lim sup
t→∞

U(t) ≥ lim sup
n→∞

U(a2n) = lim sup
n→∞

Vn =∞, a.s.

Moreover, with β = τ1e
σ̃α by (24)

P[Vn > β] ≥ P[Ca2n,α],

so proving
∞
∑

n=1

P[Ca2n,α] =∞ (27)

establishes (26).

To show this, note now that we can write

min
a2n−τ1≤s≤a2n

B(s)− max
a2n−τ1−τ≤s≤a2n−τ

B(s)

= min
a2n−τ1≤s≤a2n

(B(s)−B(a2n − τ1)) + (B(a2n − τ1)−B(a2n − τ))

+ min
a2n−τ1−τ≤a2n−τ

(B(a2n − τ)−B(s)),



and that the right hand side has the same distribution as the random variable

W = min
0≤s≤τ1

W (1)(s) +W (2)(τ1) + min
0≤s≤τ−τ1

W (3)(s)

where W (1), W (2), W (3) are independent standard Brownian motions. Thus

P[Ca2n,α] = P[W > α],

so establishing P[W > α] > 0 for all α > 0 is sufficient to prove (27), and hence

the theorem. However, using the independence of the Brownian motions W (1), W (2),

W (3), for any α > 0, we have

P[W > α]

≥ P[ min
0≤s≤τ1

W (1)(s) > −α/4,W (2)(τ1) > 3α/2, min
0≤s≤τ−τ1

W (3)(s) > −α/4]

≥ P[ min
0≤s≤τ1

W (1)(s) > −α/4]× P[W (2)(τ1) > 3α/2]

×P[ min
0≤s≤τ−τ1

W (3)(s) > −α/4]
> 0,

so we are done.

We now turn to the proof of Proposition 9.

Proof of Proposition 9. Without loss, suppose σ > 0, and consider the continuous

solution of (23), which is finite on [0,∞). To prove the a.s. nowhere differentiability

of the paths of X, we appeal to a result of Dvoretzky (see for example, Karatzas and

Shreve, 1991, Chapter 2.11, p.123) which says that there is a universal constant c > 0

such that

lim sup
h→0+

|B(t+ h)−B(t)|√
h

≥ c for all t ≥ 0, a.s.

For every t ≥ 0, h > 0, we have

X(t+ h)−X(t)

h
=

1

h

∫ t+h

t

aX(s) + bX(s− τ(s)) ds+ σ
B(t+ h)−B(t)

h
.

The continuity of t 7→ X(t) along with Dvoretzky’s result therefore yields

lim sup
h→0+

|X(t+ h)−X(t)|
h

=∞ for all t ≥ 0, a.s.

so almost all paths are nowhere differentiable.

To prove the second part of the result, suppose t > 0. Since X(θ) = 0

X(θ + t) =

∫ θ+t

θ

aX(s) + bX(s− τ(s)) ds+ σ(B(θ + t)−B(θ)).



Since ψ is deterministic, the natural filtration for B is also that for X. Therefore,

θ is an almost surely finite stopping time for the natural filtration of B, where B =

{B(t);Ft; t ≥ 0}. Then, by Theorem 2.6.16 in Karatzas and Shreve, 1991, the process

W = {W (t);FW
t ; t ≥ 0} given by W (t) = B(θ + t) − B(t) is a standard Brownian

motion independent of Fθ+. Hence

X(θ + t)

t
=

1

t

∫ θ+t

θ

aX(s) + bX(s− τ(s)) ds+ σ
W (t)

t
.

where W is a standard Brownian motion independent of Fθ+. As t 7→ X(t) is contin-

uous on [−τ ,∞) almost surely, the Law of the Iterated Logarithm (see for example,

Theorem 2.9.23 in Karatzas and Shreve, 1991) gives

lim inf
t→0+

X(t+ θ)

t
= −∞, lim sup

t→0+

X(t+ θ)

t
=∞, a.s. (28)

Hereinafter, we restrict attention to the almost sure subset of Ω on which (28) holds

and for which θ ∈ (0,∞); we call this set Ω̃. On Ω̃ we may define Y : [0,∞) → R :

t 7→ Y (t) := X(t+ θ). Then if one can show that the event

Ω∗ = {ω ∈ Ω̃ : t 7→ Y (t, ω) has infinitely many zeros

in any time-interval [0, ε], for any ε > 0}.

is almost sure, we have (i), and as a direct consequence, (ii). To prove that Ω∗ is

almost sure, it is enough to show that the event

Ωn = {ω ∈ Ω̃ : t 7→ Y (t, ω) has infinitely many zeros in [0, 1/n]}

is almost sure for all n ∈ N, as Ω∗ = ∩∞n=1Ωn. To do this, suppose there is an n ∈ N
such that

Ωn = {ω : t 7→ Y (t, ω) has finitely many zeros in [0, 1/n]}

is a set of positive probability. A contradiction to the fact that P[Ωn] > 0 yields

that Ωn is almost sure, and therefore proves the result. Now, let ω ∈ Ωn. The

hypothesis implies that for each ω ∈ Ωn there is a Tn(ω) with 0 < Tn(ω) < 1/n such

that Tn(ω) = inf{0 < t < 1/n : Y (t, ω) = 0}. Hence either Y (t, ω) > 0 for all

t ∈ (0, Tn(ω)) or Y (t, ω) < 0 for all t ∈ (0, Tn(ω)). Therefore, for all t ∈ (0, Tn(ω))

inf
0<s<t

Y (s, ω)

s
> 0 or sup

0<s<t

Y (s, ω)

s
< 0,

so

lim inf
t→0+

Y (t, ω)

t
≥ 0 or lim sup

t→0+

Y (t, ω)

t
≤ 0

for all ω ∈ Ωn. But as Ωn is assumed to be a set of positive probability, this is

inconsistent with (28), and we have the desired contradiction.


