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Abstract

We exploit the variation in admission cutoffs across colleges at a leading Indian

university to estimate the causal effects of enrolling in a selective college on cognitive

attainment, economic preferences, and Big Five personality traits. Using a regression

discontinuity design, we find that enrolling in a selective college improves university

exam scores of the marginally admitted females, and makes them less overconfident and

less risk averse, while males in selective colleges experience a decline in extraversion

and conscientiousness. We find differences in peer quality and rank concerns to be

driving our findings.
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1 Introduction

Cognitive ability, completed years of schooling, and test scores have long been considered

important determinants of success in life (Hanushek & Woessmann, 2008; Oreopoulos & Sal-

vanes, 2011). However, there is now increasing evidence that suggests economic preferences

and socioemotional traits like self-control, risk appetite, and competitiveness to be as impor-

tant in determining educational attainment, labor market outcomes, and overall well-being

(Almlund et al., 2011; Buser et al., 2014; Jaeger et al., 2010).

College is an important milestone that is believed to develop both cognitive and socioemo-

tional aspects of an individual’s human capital. Consequently, there is great emphasis on

enrolling in selective colleges that are expected to provide high-achieving peers, better teach-

ers, stronger alumni networks, and serve as a signal for higher ability. Experiencing such an

environment for 3-4 years is likely to shape one’s broader skill set. The existing literature

on school and college quality reports both positive and non-significant effects of exposure

to a more selective educational institution on academic outcomes (e.g., Abdulkadiroğlu et

al., 2014; Ajayi, 2014; Jackson, 2010; Lucas & Mbiti, 2014; Pop-Eleches & Urquiola, 2013;

Rubinstein & Sekhri, 2013; Saavedra 2009). Interestingly, it remains mostly silent on the ac-

companying behavioral responses and underlying mechanisms that may explain these mixed

results. For instance, being in a more selective educational institution can also present a chal-

lenge for students who have a low ordinal rank relative to their peers. Students’ perceptions

of self-abilities based on relative rank could lead to behavioral responses that may dilute or

negate the overall gains from attending a more selective educational institution (Elsner &

Isphording, 2017; Murphy & Weinhardt, 2018; Pop-Eleches & Urquiola, 2013).

The objective of this paper is to examine the returns from exposure to a selective college on

academic outcomes, as well as on measures of risk taking, competitiveness, overconfidence,
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and Big Five personality traits.1 To the best of our knowledge, this is the first paper

in the literature to causally identify the effects of enrolling in a more selective college on

socioemotional and behavioral aspects of human capital accumulation. In doing so, we use

rich student-level data in a regression discontinuity design to address the selection problem

arising from sorting, i.e., high-achieving students self-select into more selective colleges while

low-achieving students sort into less selective colleges.

We analyze data from the University of Delhi (DU), one of the top public universities in

India, to estimate the returns to college quality across a range of colleges with varying levels

of selectivity that are all within the same educational context. Admission into colleges within

the DU system is based on the incoming cohorts’ average scores on the high school exit exam.

This gives rise to college-discipline-specific admission cutoffs that determine an individual’s

eligibility to enroll in a specific discipline in a college. We exploit students’ inability to

manipulate this admission cutoff, and compare outcomes of students just above the cutoff

to those just below the cutoff to estimate the causal impact of enrolling in a more selective

college.

Value-added models of learning will predict better academic and non-academic outcomes for

students just above the cutoff enrolled in more selective colleges. The company of more able

peers can allow richer learning opportunities, provide a more dynamic environment for group

interactions and serve as a motivation to work harder to keep up with the competition (Jain

& Kapoor, 2015; Feld & Zolitz, 2017). However, the marginal students, i.e., those just above

the cutoff are also the worst-off relative to their peer group (‘small fish in a big pond’), while

those just below the cutoff are relatively better than their peers (‘big fish in a small pond’).

1That personality is malleable in adolescence and young adulthood is now well accepted (Borghans et al.,
2008; Specht et al., 2011). While cognitive ability, typically measured by IQ, is relatively stable after age 10,
there is evidence that negative and positive experiences can impact behavior and personality (e.g., Chuang
& Schechter, 2015; Schurer et al., 2018). A recent literature finds that socioemotional skills measured after
varying lengths of program exposure (8-36 months), can in fact be shaped by soft skills interventions (e.g.,
Acevedo et al., 2018; Adhvaryu et al., 2018; Campos et al., 2017).
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The marginally admitted student has a lower relative rank among her peer group that could

lower her ‘academic self-concept’ resulting in a detrimental or zero impact on not just her

future academic performance but also her behavior and personality (Marsh et al., 2008).2

Therefore, students above the cutoff face tradeoffs between the positive effects of higher

ability peer environments and negative effects of low relative rank (Cicala et al., 2018; Elsner

& Isphording, 2017, 2018; Fabregas, 2018; Murphy & Weinhardt, 2018). Consequently, the

net effects of enrolling in a more selective college could go in either direction.3

We combine data from a series of incentivized tasks and socioeconomic surveys administered

to over 2000 undergraduate students at different colleges of DU to examine the returns to

enrollment in more selective college environments. The first outcome of interest is academic

attainment as measured by scores on standardized university-level exams. Next we examine

impacts on economic preferences such as competitiveness, overconfidence, and risk elicited

using incentivized tasks. The final set of outcomes deals with the Big Five traits (Openness to

experience, Conscientiousness, Extraversion, Agreeableness, and Emotional stability), which

is a broadly accepted taxonomy of personality traits.4

2The evidence on rank effects being more prevalent in more heterogeneous student ability environments
is not conclusive. In the education psychology literature, Marsh et al. (2008) show that rank concerns are
likely to prevail across different settings, and even in groups of gifted students. In economics, Elsner and
Isphording (2017) find that ordinal rank concerns hold in cohorts with both high and low variance in ability.
These results could also be linked to the literature on the effect of heterogeneity in peer ability on student
achievement and effort, and the findings appear mixed. For example, Carrell et al. (2013) and Booij et al.
(2017) find student achievement to be higher in low variance peer ability settings. On the other hand, Lyle
(2009) finds that high variance in peer ability increases student achievement.

3This could also explain the mixed evidence on peer effects in education with some studies finding positive
peer effects and others documenting non-linear or no effects (Sacerdote, 2011).

4These preferences and traits have been identified to explain a range of labor market outcomes. Com-
petitiveness can explain gender gaps in wages (Niederle & Vesterlund, 2007). Overconfidence affects en-
trepreneurial entry (Koellinger et al., 2007). Recent work from developing countries also shows a link
between these skills and indicators of labor force participation, performance, and skill accumulation (Das-
gupta et al., 2015; Nordman et al., 2019; Sharma & Tarp, 2018). Finally, a spate of recent papers also finds
that soft skills embedded training programs can influence labor market performance (through effects on so-
cioemotional traits). Adhvaryu et al. (2018) find an on-the-job soft skills training program for Indian female
garment workers to have led to gains in worker productivity, possibly through improvements in extraversion
and forward-looking behavior. Acevedo et al. (2018) find that a soft skills embedded vocational training
resulted in higher levels of soft skills and higher employment for females in the Dominican Republic. Campos
et al. (2017) find that a psychology-based personal initiative program for microenterprise owners in Togo
led to higher profits and adoption of business practices.
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Several interesting findings emerge from our analysis. First, enrollment in a selective college

leads to gains in scores on standardized university-level exams for marginally admitted fe-

males, and their higher attendance rates are possibly driving this effect. Second, exposure

to more able peer environments in these selective colleges makes females less risk averse and

less overconfident. Third, we find that marginally admitted males experience a significant

decline in extraversion and conscientiousness as compared to their counterparts in less se-

lective colleges, representing ‘small fish in a big pond’ effects. Fourth, we find suggestive

evidence that the returns to enrolling in selective colleges vary by college quality, with males’

personality traits being more susceptible to concerns over low relative-ranks at the top end

of the college quality distribution. Finally, we do not find significant variation in measures

of teacher quality across colleges implying differences in peer quality and rank concerns to

be driving our results.

Our findings are consistent with recent work on related topics. For instance, Murphy and

Weinhardt (2018) exploit idiosyncratic variation in cohort composition among primary school

children in the UK to find that students with the same ability but higher relative rank

perform significantly better in secondary school. Applying a similar identification strategy

to US data, Elsner and Isphording (2017) find that students with higher ordinal rank are more

likely to complete high school and enter and graduate from college. Elsner and Isphording

(2018) also find that low relative rank increases the likelihood of engaging in risky and

violent behavior, and they attribute this to diminished future expectations and perceived

status arising from lower ordinal rank. Fabregas (2018) using data from Mexico City middle

schools also finds that students who are just above the cutoff express lower perseverance

and aspirations to attend college. Interestingly, the effects we observe for behavior and

personality traits are larger than those for standardized university exam scores. This is in

line with findings in Sacerdote (2011) wherein the peer effects in higher education are greater

on social outcomes related to memberships in sorority/fraternity, smoking and drinking
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than on academic achievement. Overall, our findings contribute towards understanding the

gender-differentiated cognitive and non-cognitive returns to post-secondary education.

The rest of the paper is organized as follows. The institutional setting and college admissions

process at the University of Delhi, sampling strategy, and data are described in Section 2. The

empirical strategy is outlined in Section 3. All results and robustness checks are presented

in Section 4. Concluding remarks follow in Section 5.

2 Background and Data

University of Delhi (DU) is one of India’s top public universities that offer three-year under-

graduate education to approximately 160,000 full-time students. DU consists of 79 colleges,

each offering degrees in multiple disciplines such as science, commerce, arts, and humanities.

Each college is an independent entity such that it has its own campus, faculty, students,

and teaching is conducted within the colleges. However, the curriculum and all exams for

each discipline are determined centrally by DU and are identical across all colleges. Teacher

salaries are also the same across colleges in DU. These are unique features of DU as in most

settings, these factors vary across educational institutions.

2.1 College Admissions Process

College admissions for most disciplines in DU are based on the student’s high school exit

exam score computed as the average of best of four out of five subjects, including language.5

5In India, after a common high-stakes exam in grade 10, in the last two years of high school, students
select into one of the following academic tracks, each of which has four subjects and a language: science,
commerce, and humanities. At the end of grade 12, they write the high school exit exam which varies by
track. College admissions often require a certain high school track. For example, students applying for
undergraduate degrees in science should have had a science track. Commerce and economics disciplines
require applicants to have studied mathematics in their high school tracks.
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In the first two weeks of June each year, students apply using a Common Pre-Admission Form

where they state their high school exit exam scores, and select the colleges and the disciplines

within the colleges they wish to apply to. The application costs INR 100 (approximately 1.5

USD). Further, this form can be purchased and submitted at multiple centers across Delhi,

thereby minimizing any time costs arising from traveling to several colleges.

After the applications period is complete, based on capacity constraints and the incoming

cohort’s average score, each discipline within a college announces the cutoff scores that de-

termine admission into the specific college and discipline.6 All applicants above the cutoff

in the discipline are eligible to take admission in the college-discipline. Since there is excess

demand for high-quality colleges, the cutoffs for these colleges are significantly and systemat-

ically higher than the low-quality colleges. If there are vacancies, colleges announce a second

list with lower cutoffs. This process continues for several rounds as colleges gradually lower

their cutoffs until all spots are filled.7 As expected, the more selective colleges fill their seats

within the first couple of rounds while the less selective ones sequentially lower their cutoffs,

taking at times up to 10 rounds to fill their seats. As a result, the DU college admission pro-

cess creates an environment where students who enroll in more selective colleges are exposed

to high-achieving peers as compared to students enrolled in less selective colleges.

2.2 Sampling Strategy

Our study was conducted during January-March 2014. We constructed our sample in the

following manner. First, to ensure representativeness along the distribution of college quality,

we obtained the list of all 79 colleges affiliated with DU. Second, we drew a list of 58

6These cutoffs are publicly available at http://www.du.ac.in/index.php?id=664.
7As cutoffs drop between admission rounds, it is possible for students to move ‘up’ to colleges where they

are now eligible. In our sample, 26.5% of the students switched colleges during the admission process, of
which 94% moved to a more selective college. We discuss this further in Section 4.3.
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colleges that offer disciplines in commerce and/or economics.8 These 58 colleges can be

further categorized into daytime coeducational colleges (32), daytime women-only colleges

(17), and evening coeducational colleges (9). Of the 32 daytime coeducational colleges,

we further exclude 7 colleges that offer too few disciplines or use any criteria other than

high school exit exam scores for admissions, resulting in a list of 25 target colleges. After

considering admission cutoffs for each of these 25 colleges for three years (2011-13) and

budget constraints, we identified 18 colleges that had consistently ranked cutoffs across the

three years for economics and commerce, of which we could implement our study in 15

colleges with varying cutoffs.

We focus on the two disciplines of economics and commerce for a number of reasons, in

addition to cost considerations. First, enrollment in economics and commerce is usually

higher than in most other disciplines. For example, in DU in 2011, the total enrolment in

the first year for economics and commerce was over 10,200 students, accounting for 28% of

total student intake for honors disciplines.9 Second, economics and commerce have higher

cutoffs across all colleges as compared to other popular disciplines such as history, political

science, mathematics, and English. To illustrate, in our sample of 15 colleges, in 2011, the

average cutoff for commerce and economics is 91%. On the other hand, the average cutoffs

for other disciplines are: history (74%), political science (75.8%), mathematics (82.8%), and

English (77.13%). Third, and importantly, admissions into economics and commerce are

based solely on high school exit exam scores, facilitating the regression discontinuity design,

while for some other disciplines, the admission process entails a combination of written

8The remaining 21 colleges offer only specialized disciplines such as pharmacy, nursing, homeopathy,
physical and sports education, and art, etc.

9A concern with focusing on economics and commerce may be that of discipline-specific gender-based
selection effects. Based on data obtained under the Right to Information Act, we calculate the share of
female students across all colleges within DU enrolled in the first year in 2011 in a variety of disciplines
(Table A1 in the Online Appendix). The share of females exceeds 50% in the arts disciplines and is just
below 50% in the science disciplines. This is consistent with previous evidence in the literature on gender-
based selection across disciplines (see Buser et al., 2014 and papers cited therein). Notably, we do not find
the share of female students in economics and commerce to be outliers, implying that discipline-specific
selection effects at the time of entry into DU are unlikely to be a pressing concern for our analysis.
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entrance exams, high school exit exam scores, and interviews.

We also examine whether colleges in our sample are representative of the remaining colleges

in DU in terms of their selectivity. Figure A1 in the Online Appendix shows that the

distribution of cutoffs in economics and commerce in our sample of 15 colleges are overlapping

with those of the remaining 43 of the 58 colleges, and the Kolmogorov-Smirnov tests do not

reject the null of equal distributions (p-value = 0.922 and 0.941 for economics and commerce

respectively), suggesting that our sample of colleges is representative of the remaining colleges

in DU.

Further, a wealth of evidence suggests that colleges in DU are among the most favored

choices for economics and commerce. India Today, a well-known Indian magazine, publishes

an annual ranking of the top fifty colleges across the country for various disciplines. This list

is based on a perceptions-based survey and factual survey. In 2011 and 2012 (the years of

admission for the sample of students in our survey), for the categories of commerce and arts

(economics falls within arts category), several colleges of DU feature in the top fifty colleges

across India.10 Similarly, the National Institutional Ranking Framework (NIRF), a recent

initiative by the Indian Ministry of Human Resource Development ranks higher education

institutions across the country on a range of parameters. According to the latest data for

2019 for undergraduate programs in arts and commerce, eleven out of top twenty colleges

are in DU.11

In the region of Delhi and neighboring states, DU is the leading university offering these non-

technical disciplines. Other public universities in the area offering similar disciplines are quite

few, much smaller, and are not considered as reputable (Borker, 2018). Private universities

10The survey methodology is available at: https://www.indiatoday.in/india/best-colleges/story/
best-colleges-in-india-2012-methodology-105020-2012-06-08. 2011 rankings available at: https:

//www.indiatoday.in/bestcolleges/2012/compare-college/2011-commerce-arts. 2012 rankings at:
https://www.indiatoday.in/bestcolleges/2012/compare-college/2012-commerce-arts.

11NIRF 2019 rankings are available at https://www.nirfindia.org/2019/CollegeRanking.html.
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are substantially more expensive than DU and not as competitive. In the NIRF, none of the

other high-ranking colleges in Delhi are non-DU and no other high-ranking colleges are in

close proximity of Delhi. It is also expensive to relocate to a different city, especially as most

colleges have limited on-campus housing facilities.12 Further, nationally representative data

such as the Indian Census and National Sample Surveys show that migration among youth is

low for education and accounts for only a small share of the migrant stream. Most migrants

move within-state (Chandrasekhar and Sharma, 2014). This suggests that among those who

narrowly fail to get admitted into more selective DU colleges, a less selective college in DU is

likely to be preferable to attending other universities in Delhi and surrounding states.13

2.3 Data

We collected data on approximately 2000 second and third year students enrolled in eco-

nomics and commerce disciplines in these 15 colleges. To conduct the surveys during class

hours, we obtained approval from the college principals, and collaborated with teachers at

the 15 colleges to determine the specific session timings. Upon arriving in the classrooms,

teachers introduced the research team, and students were told that we would be conducting

a decision-making study and survey, that participation was voluntary, and that they would

be monetarily compensated for their time.

In the first part of the study, we conducted incentivized experiments to elicit economic

preferences. First, to capture subjects’ competitiveness and overconfidence, we used a simple

number-addition task (similar to Bartling et al., 2009). After a practice session, participants

had to predict their performance in advance, and also choose between a piece-rate and

12Borker (2018) finds that 72% of DU students are from Delhi and live with their parents. In 2016,
almost 80% of applicants to DU were from Delhi and the neighboring states of Uttar Pradesh and Haryana:
https://www.hindustantimes.com/delhi/50-delhi-university-aspirants-from-delhi-this-year/

story-oWvwZH76uFK7DpgWP0OlCP.html.
13We conducted a survey of approx. 300 grade 12 students across 11 high schools in Delhi in 2019, to find

that DU is the top choice for over 93.3% of them.
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tournament compensation scheme. Under the piece-rate scheme, INR 10 was paid for every

correct answer. Under the tournament scheme, INR 20 was paid for every correct answer if

the subject out-performed a randomly selected student of DU who had solved the questions

earlier.14 We define competitiveness as a dummy that takes a value 1 if the subject chose

the tournament compensation scheme and 0 if the subject chose the piece-rate compensation

scheme. As in Dasgupta et al. (2017), we define overconfidence as the ratio of the predicted

performance to the student’s performance in the actual task.15

Second, to measure risk preferences, we used the Gneezy and Potters (1997) investment

task. In this, subjects allocated a portion of their endowment (INR 150) to a risky lottery

and set aside the remainder. If they won the lottery based on a roll of a dice, the invested

amount was tripled and they also got any amount they set aside. Conversely, if they lost

the lottery, they only received the amount that was set aside. We define risk preference as

the proportion allocated to the risky lottery in the investment game.

In the second part of the study, we implemented a socioeconomic survey that collected

details on family background characteristics, school and college information, academic per-

formance, and participation in extra-curricular activities. To measure cognitive attainment,

we collected data on standardized university exam scores.16 To measure personality traits,

we administered the 10-item Big Five inventory (Gosling et al., 2003) that consists of the

following traits. Openness to experience captures a tendency to be open to new aesthetic,

cultural, or intellectual experiences. Conscientiousness refers to a tendency to be orga-

14We implemented a pilot version of this game where forty students from DU had participated, and their
performance is used for comparison in the tournament wage scheme.

15Our measure of overconfidence falls in the category of overestimation (Moore and Healy, 2008). Our
competition design as well as the non-incentivized belief elicitation is similar to Dasgupta et al. (2015),
Dasgupta et al. (2017), and Kamas and Preston (2012). Further, since we were already paying for the real
effort task, we did not incentivize the belief elicitation in line with Karni and Safra (1995).

16We also administered a 10-item Raven’s (progressive) matrices test, which is acknowledged as a measure
of fluid intelligence (e.g., see review in Dean et al., 2019). We find a strong positive and significant relationship
between performance on Raven’s test and university exam scores ruling out concerns about these exams
reflecting rote-learning skills alone. See Table A2 in the Online Appendix.

10



nized, responsible, and hard working. Extraversion relates to an outward orientation of

one’s interests and energies oriented towards the outer world of people, characterized by

sociability. Agreeableness is related to the tendency to act in a cooperative and unselfish

manner. Emotional stability (opposite of Neuroticism) is predictability and consistency in

emotional reactions with absence of rapid mood changes.

Overall, we conducted 60 sessions with approximately 35 subjects per session. Each session

lasted about 75 minutes. No feedback was provided between or after the tasks. All subjects

received a show-up fee of INR 150. The average additional payment was INR 230. All

subjects participated only once in the study. To minimize wealth effects, additional payments

were based on one of the randomly chosen incentivized tasks. Instructions for the incentivized

tasks are available upon request.

3 Empirical Specification and Sample Description

3.1 Empirical Specification

For estimating the returns to college quality, we first group colleges based on their relative

selectivity. We use admission cutoffs, as exogenously announced by the individual colleges,

as the criteria to sort the 15 colleges in our sample into four ordered categories ranging from

1 (highest rank) to 4 (lowest rank). As a result, colleges with similar cutoffs appear under

the same group/rank. In Table A3 in the Online Appendix, for each of the four ranks, we

present the means and standard deviations of cutoffs within each rank. As expected, the

average cutoffs are greater in the higher ranked colleges. Further, the cutoffs appear to

show greater dispersion as one moves down the ranks. This is not surprising as less selective

colleges are likely to have more heterogeneity than more selective colleges. A similar pattern

emerges if we examine the means and standard deviations of high school exit exam scores
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within a rank. Overall, Table A3 shows that students who perform similarly in high school

exit exams are grouped within each rank.

Next, for each rank we compute the minimum score required for admission into the group.

These cutoffs vary by student type where students differ in their current discipline (commerce

and economics), academic track in high school (science, commerce, and humanities), year

of entry (2011 and 2012), and gender (male and female). For example, a student seeking

admission into economics, having studied science in high school faces a different cutoff from

a student who studied commerce in high school. Thus, for each rank of colleges we get a set

of cutoffs that define the minimum score required by each student type for admission into

that college rank.

We then combine the cutoffs, ranks, and student data. For our analysis, from an initial

sample of approximately 2000 students we exclude all those students whose admissions were

not based on their high school exit exam scores. This includes students belonging to histori-

cally disadvantaged backgrounds (Scheduled Castes, Scheduled Tribes, and Other Backward

Classes) for whom affirmative action policies mandate a fixed number of seats (29.3%); stu-

dents admitted on the basis of excellence in sports or other extra-curricular activities (4.8%);

those who transferred across colleges after enrollment or switched disciplines within a college

(0.3%); and those providing insufficient information (1.3%). These exclusions leave us with

1331 students.

Since we are interested in estimating the returns to enrollment in a more selective college

group, we now construct three samples using our sample of 1331 students. In the first con-

structed sample, colleges in rank 1 are assigned to the treated group/more selective colleges

and the remaining colleges (in ranks 2, 3, and 4) are assigned as comparison group/less

selective colleges. In the next sample, colleges in ranks 1 and 2 are assigned to the treated

group and the remaining colleges (in ranks 3 and 4) are assigned to the comparison group.
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Finally, a third sample is constructed where colleges ranked 1, 2, and 3 are assigned to the

treated group and colleges in rank 4 are in the comparison group. Following Abdulkadiroğlu

et al. (2014), Jackson (2010) and Pop-Eleches and Urquiola (2013), we construct our final

analysis sample by ‘stacking’ the three samples together, and estimate a single average treat-

ment effect measuring the impact of enrollment in a relatively selective college. The stacking

method has two advantages. First, it allows us to estimate the effect of enrolling in a more

selective college over the distribution of college quality. Second, this methodology increases

the sample size and consequently power. Note that stacking our sample can plausibly make

a student appear at most three times in the data. However, as we only use observations

near the cutoff for our analysis (i.e., within a 5-percentage point window), it results in 868

students appearing more than once in the final analysis sample of 2393 observations.

Of course, enrollment in a more selective college is endogenous, as not all students who

are eligible to enroll do so.17 To account for this, we use a fuzzy regression discontinuity

(RD) design where enrollment is instrumented by eligibility to enroll in a more selective

college (Lee and Lemieux, 2010). In particular, we estimate the following set of instrumental

variable (IV) regressions where the first-stage regression is:

TRij = α0 + α1Tij + α2dij + α3d
2
ij + α4dijTij + α5d

2
ijTij +

K∑
l=6

αlXlij + ηj + δm + εij (1)

and the corresponding second-stage regression is:

Yij = δ0 + δ1TRij + δ2dij + δ3d
2
ij + δ4dijTRij + δ5d

2
ijTRij +

K∑
l=6

δlXlij + ηj + δm + µij (2)

where Yij in equation (2) is the outcome variable of interest for student i of type j. Equation

17Similarly, we also have a few instances where students who are ineligible for a more selective college are
admitted to that college. Overall, in the stacked sample used in the analysis, only 0.37% of the subjects who
have a negative distance from the cutoff are enrolled in a more selective college, and approximately 8.85%
of the subjects who have a positive distance from the cutoff are enrolled in a less selective college.
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(1) is a linear probability model where TRij takes the value 1 if student i of type j is treated,

i.e., enrolled in a more selective college. The running variable, dij, is computed as the differ-

ence between student i′s high school exit exam score and the relevant college rank-specific

cutoff faced by her type j. The instrument is a dummy variable for eligibility, Tij, that takes

a value 1 if dij is non-negative, 0 otherwise. We allow for non-linearity in the relationship

between the outcomes and the running variable by including a quadratic specification in the

running variable as well as allow the returns from college quality to vary on each side of

the cutoff by allowing interactions between the TR dummy and di and d2
i . Our regressions

also include cutoff fixed effects (ηj) where the cutoffs vary by student types. This allows us

to obtain the relevant counterfactual for a student enrolled in the high-quality college - a

student of the same type (i.e., currently enrolled in the same discipline, with the same high

school academic track, same gender, and same year of admission) who marginally missed the

relevant cutoff. To account for variation in the timing of the surveys, we also include survey

month fixed effects (δm). We also include a vector of predetermined characteristics (Xs)

such as mother’s education, father’s education, private school enrollment, age, household

income, and religion in the regressions, to improve the precision of our estimates. Finally,

µij and εij are iid error terms.

The coefficient estimate on TR in equation (2) gives us the local average treatment effect

(LATE) of being enrolled in a more selective college. As the literature on the effects of

school and college quality documents significant heterogeneity by gender (e.g., Hastings et

al., 2006; Jackson, 2010; Kling et al., 2005), we also report our results for males and females

separately.

Since the running variable is discrete, following Lee and Card (2008), we cluster our standard

errors with respect to 0.25 bins of the running variable. The choice of the bandwidth is

an important issue in RD analysis. Since we have various outcome variables, we fix the

bandwidth to be 5 percentage points for the main analysis. In Section 4.3, we show that our
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results are robust to using outcome-specific optimal bandwidths.

As we wish to estimate the effects of enrolling in a more selective college, the ideal sample

would comprise students/DU applicants who strictly prefer more selective colleges to the less

selective ones such that a score above (below) the relevant cutoff would lead to admission

in a more (less) selective college. As explained in Section 2.1, DU follows a decentralized

admission process wherein applicants fill in a common form to indicate the college-disciplines

they wish to apply to.18 This process does not gather the preferences of the applicants

over colleges and/or disciplines, and all we observe is the current college-discipline that

the student is enrolled in, her high school exit exam score, and the cutoffs at the time of

admission. Nonetheless, with a fixed supply of seats, the higher cutoffs at colleges are a

reflection of excess demand for those seats. It is then reasonable to assume that the average

student prefers admission into a college with higher cutoffs than one with lower cutoffs. We

discuss this further in Section 4.3.

3.2 Summary Statistics

In Table 1, we present descriptive statistics for our sample. In Panel A, we see that average

score on standardized university-level exams, our measure of academic attainment during

college, is 70% with no significant gender differences. In Panel B, we summarize choices in

the incentivized tasks: competitiveness, overconfidence, and risk. Thirty-one percent of the

subjects are considered competitive as they choose the tournament payment scheme. The

average student is overconfident as the ratio of the expected number of correct answers to

the number correctly solved in the actual task is 1.6, significantly higher than 1. These

18The student allocation mechanism in DU is different from the more commonly observed centralized
mechanisms such as the Boston school choice mechanism (Abdulkadiroğlu et al., 2014), the student or
college proposing deferred acceptance mechanisms, or the top trading cycle mechanism (Sönmez and Ünver,
2011), where students indicate preference rankings over disciplines and colleges and a central body allocates
students.
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findings are also supported by other papers that find that about one-third of subjects choose

the tournament wage scheme, and often irrationally overestimate their own abilities (e.g.,

Dasgupta et al., 2015; Niederle & Vesterlund, 2007). Finally, the average investment of

46.6% in the risky asset is in the range of 44.67-70.86% observed for student populations

(Charness & Viceisza, 2016). The significant gender differences in competitiveness and risk

aversion are in accordance with previous work (see Niederle, 2016 for a review).

In Panel C, we summarize subjects’ Big Five personality traits. Subjects report a higher score

on agreeableness, conscientiousness, and openness to experience than they do for extraversion

and emotional stability. Females are more extrovert, conscientious, and agreeable, and less

emotionally stable than males. Schmitt et al. (2008) note similar gender differences in

personality traits across several cultural contexts. Finally, in Panel D, we present descriptive

statistics on background characteristics. The average age of the students is close to 20. Over

90% are Hindus (the dominant religion in India), 85% attended a private high school, and

75-78% have either a highly educated mother or father (college degree or higher). A third

of the sample comes from low-income households (those earning less than INR 50,000 per

month or INR 600,000 per year).19

3.3 Testing Validity of the RD Design

The RD model relies on two assumptions: (a) there is no precise manipulation of the assign-

ment variable around the cutoff, and (b) the probability of being enrolled in a more selective

college is discontinuous at the cutoff.

Features of the DU admission process rule out manipulation related concerns. First, ad-

19According to the nationally representative India Human Development Survey of 2011-12, the average
yearly income for upper caste households is approximately INR 180,000 (appropriate reference group for
our analysis). This indicates that students in our sample belong to households with a relatively higher
socioeconomic status, and thus not representative of the overall population.
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mission depends on scores on high school exit exams that follow a double-blind grading

procedure, making manipulation difficult, if not outright impossible. Second, at the time of

application to DU colleges, students are not aware of the precise cutoffs that will determine

admissions that year. Based on historical trends, students may have an estimate of the cut-

off range, but it is only after students apply to the colleges that cutoffs are determined and

announced. Since the rule for determining these cutoffs is not public knowledge, students

cannot perfectly predict future cutoffs. Overall, it is virtually impossible for students to

precisely manipulate the side of the college cutoff they will ultimately fall on.20 This in-

ability to control the assignment variable around the cutoff also implies that pre-treatment

variables would be similar around the cutoff. We next formally check for discontinuities in

predetermined (pre-treatment) background characteristics such as mother’s education, fa-

ther’s education, private high school enrollment, age, income, and religion by estimating the

following reduced form regression:

Xij = β0 + β1Tij + β2dij + β3d
2
ij + β4dijTij + β5d

2
ijTij + ηj + δm + υij (3)

Where X is the vector of predetermined background characteristics and the right-hand side

variables are as defined in equations (1) and (2) above. The results from these regressions are

presented in Table 2. We find that the impact of the treatment indicator, i.e., being eligible

to enroll in a more selective college on the predetermined variables is mostly small and never

significantly different from zero, confirming the validity of the RD design for the pooled

sample (Panel A), males (Panel B), and females (Panel C). The corresponding graphical

representations are provided in Figures A2 - A4 in the Online Appendix. However, as we do

not have student-level panel data, we are unable to rule out discontinuities in pre-treatment

outcome variables around the cutoff.

20We also conducted the density test proposed by Cattaneo et al. (2017) and do not reject the null
hypothesis that the density is smooth around the cutoff (p− value = 0.13).
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Next, we check if the probability of enrollment in a more selective college is indeed discontin-

uous at the cutoff. This is also proof of a strong first-stage regression, necessary for obtaining

valid estimates in the second stage. In Figure 1, we plot the proportion of students enrolled

in a more selective college in each 0.25 bin against the distance from the cutoff. This is done

for the pooled sample and then separately for males and females. In all three sub-figures, we

see a clear discontinuity in the probability of enrolling in a more selective college at the cut-

off, indicating the appropriateness of the RD design. A formal estimation of the first-stage

relationship between enrollment in a selective college and eligibility is provided in Table 3.

We find that on average, students who are eligible to enroll in a selective college are 68%

more likely to do so, indicating a strong revealed preference for more selective colleges. We

find similar strong effects of the eligibility to enroll in a selective college for both males and

females. As expected, compliance is not perfect, and hence, we use a fuzzy RD design and

in the sections that follow, present results from the corresponding IV specification discussed

in equations (1) and (2) above.

4 Results

4.1 Effects on Cognition, Economic Behavior, and Personality

Using the fuzzy RD design discussed in Section 3.1, we first examine discontinuity in average

peer quality in Table 4. We find that the marginally admitted student is surrounded by peers

whose average score on the high school exit exam is 2.5 percentage points higher than peers

of a comparable student who just missed the cutoff (first row of Column 1). Columns 2 and

3 show that both males and females in more selective colleges are surrounded by significantly

high-achieving peers. This systematic difference in average peer ability is also evident when

we consider performance on another pre-treatment achievement test. Students in India also
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write a similar high-stakes exam at the end of grade 10. An analysis of our sample’s grade 10

scores in Table 4 also points towards the higher peer quality experienced by the marginally

admitted student. Figure 2 depicts the corresponding difference in peer quality. Note that

in addition to the increase in average peer quality, the marginal student also has a lower

ordinal rank in her peer ability distribution.

Next, in Table 5, we present the impacts of enrollment in a more selective college on cog-

nitive attainment (in Column 1), economic preferences (in Columns 2-4), and personality

traits (in Columns 5-9) for the pooled sample, males, and females in Panels A, B, and C

respectively. While curriculum and exams are the same within a discipline across colleges

of DU, marginal admission into a more selective college exposes students to high-achieving

peers and changes their relative position in the peer ability distribution. Looking at the

effects on the standardized university-level exam scores for the pooled sample in Column 1

of Panel A, we find that compared to students in less selective colleges, marginally admitted

students in more selective colleges experience a 1.127 percentage point increase in their av-

erage university exam scores. Upon further examining these effects by gender, it is apparent

that this overall impact is driven by the significant effects on females’ test scores with no

statistically significant effect for males (Column 1, Panels B and C). In particular, females

in more selective colleges on average score 2.8 percentage points higher on the university

exams relative to females in less selective colleges, resulting in about 4% improvement over

the comparison group’s mean of 69%. Our finding that females make significant academic

gains from exposure to more able peer environments with little or no accompanying effects

on males has also been found in other studies (e.g., Angrist et al., 2009; Hastings et al.,

2006; Jackson, 2010). Further, we show later in Section 4.2 that females (but not males)

enrolled in more selective colleges are almost 32 percentage points more likely to have higher

attendance rates than their counterparts in less selective colleges. This gender difference in

attendance rates is likely to explain the observed gender gap in academic returns to more
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selective college and peer environments.

We also estimate the returns to enrollment in a selective college on three measures of economic

preferences: competitiveness, overconfidence, and risk preference. The results are reported

in Columns 2-4 of Table 5. Pooled results indicate that the marginally admitted student

experiences a decline in overconfidence with no significant effects on competitiveness and

risk preferences. On disaggregating the sample by gender, we observe overconfidence among

marginally admitted females reduces by 0.53 SD. Our results for overconfidence show that

marginal females in the more selective colleges experience a decline in overconfidence, and

conversely, females below the cutoff, who are relatively high-achieving compared to their

peers, become more overconfident. We hypothesize that the marginal female students in

more selective colleges who are the ‘small fish in a big pond’ may update their beliefs about

their ability as they are surrounded by peers who are academically higher-achieving than

them.21

We also find that females enrolled in more selective colleges invest 0.66 SD more in the

investment game, thereby being less risk averse than their female counterparts in the less

selective colleges. To the extent that females are more risk averse than males, and this

gender gap in risk preferences has implications for occupational choice and other economic

decision-making, this result suggests that enrollment in more selective colleges may result in

a narrowing of this gender gap. Specifically, as per the expected utility theory framework,

and given the nature of the investment task (Gneezy & Potters, 1997) used to elicit risk

preferences, in this task, only a risk-neutral person, or a person behaving under the Expected

Value Maximization (EV) criteria should choose to invest his/her entire endowment into the

risky lottery. However, a risk-averse decision-maker depending on his/her risk parameter

would invest less than the full amount in the lottery. Consequently, a decrease in risk averse

21Note that this does not necessarily imply that those at the top of the distribution will also start over-
estimating their ability and become overconfident to the same extent. Therefore, conceptually it does not
imply that there is a zero-sum game within a college for overconfidence.
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behavior, i.e., allocating a greater proportion of the endowment to the risky asset, can be

interpreted as subjects getting closer to a risk-neutral behavior, and/or choosing according to

the EV criteria in the task. Since overconfidence is positively and risk aversion is negatively

related to competitiveness, a decline in risk aversion and overconfidence could plausibly

explain why we do not observe any significant effects on competitiveness. Further, we find

no significant effects on males’ behavior.

The last set of estimates pertains to personality: Big Five traits of openness to experience,

conscientiousness, extraversion, agreeableness, and emotional stability (see Columns 5-9, Ta-

ble 5). In the pooled sample, we find that enrollment in a more selective college negatively

affects extraversion by 0.28 SD with no effect on other traits. Extraversion and conscientious-

ness among marginally admitted males reduces by 0.48 SD and 0.56 SD, respectively. Taken

together, these estimates for male students suggest a diminished self-concept stemming from

their lower academic position within their college rank, resulting in negative effects on eco-

nomically valuable personality traits, capturing ‘small fish in a big pond’ effects. Murphy

and Weinhardt (2018) also find males to be influenced more significantly on account of rank

concerns. We find similar results using alternative measures. In results reported in Table A4

in the Online Appendix, membership in college-level societies, another measure of extrovert

behavior, is also lower among males enrolled in more selective colleges. Similarly, we also find

that males at the margin of admission in more selective colleges report lower grit, which is

highly correlated with conscientiousness. We also observe a decline in openness to experience

and agreeableness for males, though neither is statistically significant. In light of findings

that show that conscientiousness and extraversion matter for academic performance (Lund-

berg, 2013), the adverse effects on these personality traits for the marginally admitted males

might explain why we observe no gains in exam scores for them.22 Lastly, it is also possible

22Due to a modest sample size, some of our coefficients are imprecisely estimated and we are unable to
reject the null of equality in coefficients between males and females. Gender differences are significant for
outcomes related to risk preferences (p − value = 0.002) and conscientiousness (p − value = 0.012), but
not for university exam scores (p − value = 0.131), overconfidence (p − value = 0.365), and extraversion
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that exposure to being in a selective college may affect some socioemotional skills with a lag

and become prominent only in the long run, such that our effects are underestimated.

It is possible that impacts on measured outcomes differ by length of exposure. To examine

this, we allow for the effects of college quality to vary by student cohorts (second and third

year), and find that the main results in Table 5 do not vary by cohort. These results are

reported in Table A5 in the Online Appendix.

4.2 Pathways

Owing to the design of the admissions process in colleges at DU, we have so far shown and

argued that differences in peer quality and relative rank in the peer distribution are driving

our main results. In this section, we explore a variety of other potential channels that could

explain our main findings.

In Column 1 in Table 6, we examine differences in attendance rates.23 We construct a binary

variable for high attendance that takes a value 1 if subjects report having class attendance

rates of 75% and higher, and 0 if attendance is below 75%. We find that while there is

no significant difference for males in the probability of high attendance, females enrolled in

selective colleges have a greater probability of high attendance than females in less selective

colleges. This indicates that they are present in class more often and therefore have an

opportunity to learn from and engage with their peers, making it one of the competing

explanations for gains on cognitive and behavioral outcomes. This finding fits in with the

general observed pattern of females having better study habits (Angrist et al., 2009; Hastings

et al., 2006).

(p− value = 0.571).
23Since attendance is self-reported, presence of random measurement error in this outcome variable is

likely to bias the standard errors upwards.
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Next, we examine attendance of subjects relative to their classmates. In Column 2, we

construct an outcome variable that takes the value 1 if the subject attended classes less

often than their classmates. We find that marginally admitted males are more likely to skip

classes than their classmates in less selective colleges. This points towards weakened self-

concept among males on account of their lower academic position in the college, potentially

indicating higher mental or psychic costs of investing effort. Elsner and Isphording (2017)

also find a similar effect in that students with lower ordinal rank are more likely to be absent

from classes.

Subjects could also experience learning gains due to complementary investments in education

in the form of external private tutorials and remedial classes. These can improve test scores

independent of the college and peer environment. However, as shown in Column 3 of Table

6, we do not find any discontinuity in the probability of using external tutorials for either

males or females.

Differences in indicators of teacher quality and presence could also matter for students’

academic and non-academic outcomes (e.g., Hoffmann & Oreopoulos, 2009; Jackson, 2018).

As a measure of teacher presence, we asked students if teachers frequently cancelled classes.

Results in Column 4 show no discontinuity in the probability of classes being cancelled.

Finally, results in Column 5 indicate that student-teacher ratio, an additional measure of

teaching quality, also does not vary around the cutoff.

Finally, there might be unobserved differences across colleges in student-teacher interactions

(such as informal in-class tests and levels of teacher attention and feedback) that may affect

students’ perception about their ability and rank. It is difficult to get information on these

nuanced student-teacher interactions. Even if we assume these to be more prevalent in more

selective colleges, it is not clear if the feedback re-affirms or mitigates students’ concerns

about relative rank. Thus, the net effect of such unobserved student-teacher interactions is
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ambiguous.

4.3 Robustness

In this section, we discuss a number of robustness checks. A crucial concern relates to sample

selection bias such that applicants who narrowly fail to get admitted into selective colleges in

DU may withdraw from DU to seek admission in other non-DU colleges/universities instead

of taking admission in a less selective DU college. Thus, those who remain and choose a

lower-ranking college in DU may be systematically different in terms of their behaviour and

socioemotional skills from those who exit from DU, inducing selection into the comparison

group. In the absence of data on applications, that could have plausibly allowed us to identify

such attrition during the admissions process (i.e., discouraged applicants at the margin), we

surveyed 298 grade 12 students across 11 schools in New Delhi in 2019, who were on the

verge of entry into higher education, and collected information on their intentions for higher

education such as colleges/universities they are interested in applying to and attending, the

Big Five traits and background characteristics. We use this survey to conduct bounding

exercises.

We find DU to be the top choice for an overwhelming share (93.3%) of the high school

sample. Among these students who intend to apply to DU (our pool of potential applicants

to DU), only 4% are potential attritors, i.e., they state that if they do not get admission into

the top rank colleges, they will also decline admissions to lower-ranking DU colleges, and

seek admission elsewhere. Importantly, we find that the decisions to not apply to DU and to

exit DU in the event of not getting into one’s preferred college are not correlated with any

of the Big Five personality traits (see Table A6 in the Online Appendix).

Nevertheless, we construct bounds for our treatment effects by modifying the procedure of

Lee (2009) in the RD context. To construct the lower (upper) bounds on the treatment we
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trim the top (bottom) 4% of the dependent variable in the treatment colleges and re-run our

main regressions. These results are reported in Online Appendix Tables A7 and A8 for males

and females respectively. Our estimated treatment effects calibrated using the 4% attrition

rate in the school survey are similar to the main results reported in Table 5.24

The second concern relates to the possibility of Type I error that increases with the number

of outcomes tested. We use the method in Anderson (2008) to correct the standard errors

for multiple hypotheses testing, by families of outcomes. Our results are largely robust to

this correction, and the sharpened q-values are reported in square brackets in Table 5.

Third, the presence of differential participation in our study around the cutoff would bias

our estimates. Using administrative data on class sizes obtained under the Right to Infor-

mation Act, we calculate the share of students who participated in our study. The average

participation rate is 58% in our sample. We find no evidence of differential participation

around the cutoff, thereby alleviating participation-related selection concerns (Table A9 in

the Online Appendix).

Fourth, students who move across colleges during the admissions process could be system-

atically different from those who could have potentially moved, but did not, i.e., those with

high school exit exam scores exceeding the required cutoff, but currently enrolled in a com-

parison college, raising selection related concerns. We find no difference between movers and

potential movers in terms of the predetermined characteristics, with movers being negligibly

older (Table A10 in the Online Appendix), attenuating the aforementioned concerns.

Fifth, while we have some differences in sample sizes across regressions in Table 5 due to

24We thank the editor for this suggestion. We also conduct bounding exercises assuming 7, 10, and 15%
attrition to examine the sensitivity of our estimates. As shown in Online Appendix Tables A7 and A8, the
lower bounds are statistically significant for all male and female outcomes at 7, 10, and 15% attrition rate
(except for exam score for females). While we present both upper and lower bound estimates, the lower
bounds may be more relevant for us if the “marginally disappointed” individuals (with higher cognitive ability,
extraversion, conscientiousness, overconfidence, and risk) were more likely to seek out non-DU alternatives
for college admission creating sample selection in the comparison group.
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non-response (in the range of 0.1-2% across all outcomes), our results are robust to limiting

the sample to those respondents for whom we have data on all the outcomes (see Table A11

in the Online Appendix).25

Sixth, we show that the LATE estimates reported earlier in Table 5 are robust to: (i)

excluding the predetermined controls; (ii) using triangular weights that assign greater weights

to observations closer to the cutoff instead of rectangular weights; (iii) using outcome-specific

optimal bandwidths as prescribed by Calonico et al. (2014); (iv) two-way clustering of the

standard errors at student and bin level, as in Cameron et al. (2011), to also account for

the unobserved correlation present within students appearing more than once in our sample

(see Tables A13, A14, and A15 in the Online Appendix).

Next, another concern could be that the pools of applicants might have been different across

treatment and comparison colleges during the admissions process. In the survey, we also

collected data on the colleges students had applied to. We provided students with a list of

17 colleges (of which 15 were our sample colleges), and asked them to indicate all colleges

they had applied to. While this may be subject to recall bias since at least 2 years had

elapsed since admission, we use this data in the following manner. We construct a variable

applicant that takes a value 1 for all students currently enrolled in treatment colleges as well

as for any student from the comparison college who also applied to the treatment college,

0 otherwise. We find that 87.6% of individuals enrolled in the comparison colleges had also

applied to the treatment colleges. Our main results in Table 5 are robust to limiting the

sample to these “applicants” (Table A16 of the Online Appendix).

Finally, in estimating the returns to college quality, we also implicitly assume that students

prefer being in a more selective college to a less selective one. We now show that our results

are largely robust to relaxing this assumption. In the survey, we asked students to rank a

25We also find the probability of missing data on the outcomes is not systematic around the cutoff except
for males’ overconfidence (Table A12 of the Online Appendix).
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subset of the sample colleges as they would have at the time of admission. Note that there

is bound to be some recall error. We use this data in the following way. While constructing

each of our RD samples, we limit our sample to students who strictly rank all the treated

colleges higher than the comparison colleges and do not rank any of the comparison colleges

at least as high as any of the treated colleges. While the sample now is limited, we find that

the effects on most economic preferences and personality traits continue to hold (Table A17

in the Online Appendix).

4.4 Heterogeneity

The existing literature has mainly studied effects of enrollment in top educational institutions

(e.g., Abdulkadiroğlu et al., 2014; Hoekstra, 2009) or average effects of enrolling in relatively

more selective institutions using data from a range of institutions (e.g., Jackson, 2010; Lucas

& Mbiti, 2014: Pop-Eleches & Urquiola, 2013). However, returns to educational quality may

be non-linear and vary across the quality distribution. For example, Hoekstra et al. (2018)

examine schools of varying selectivity in China and find effects stemming from enrollment

present in only the most elite schools.

In a similar vein, in Table 7 we examine if behavioral responses to college and peer environ-

ments differ depending on how selective the college is. For this purpose, we re-estimate our

regressions separately examining (i) the effect of enrolling in a rank 1 (most selective) colleges

in Panels A and B, and (ii) the effects of enrolling in ranks 2 and 3 (less selective) colleges,

that is, excluding rank 1 college cutoffs in Panels C and D. The returns to college quality

may vary across these two samples as the scope for improvement based on peer learning may

be lower in rank 1 colleges. Further, the adverse effects of lower relative rank on academic

self-concept may be more acutely felt in the more selective colleges.

We find that enrolling in a rank 1 college reduces conscientiousness, openness to experience,
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and overconfidence among marginally admitted males, and increases risk taking and reduces

overconfidence for females. In contrast, we find that excluding rank 1 college cutoffs only

reduces extraversion for males and increases risk taking among females. Overall, the results

suggest that males are more likely to be susceptible to relative rank concerns in the most

selective colleges which results in negative effects on personality and behavior reported in

Panel A compared to Panel C, Table 7. On the other hand, for females, the results in Panels

B and D remain largely similar. However, these results should be interpreted with some

caution as we lack the statistical power to conduct a finer analysis.

5 Conclusion

The existing empirical work on the returns to college quality has largely focused on test scores

as outcomes of human capital, and generated mixed evidence. Scant attention has been paid

to underlying economic preferences and socioemotional traits – facets of human capital that

recent research has documented as being important for one’s economic progress.

In this paper, our aim has been to fill this critical gap by examining the effects of college

selectivity on cognitive, behavioral, and socioemotional outcomes, using data collected from

a large sample of students at a leading Indian university. Exploiting the variation in college

admission cutoffs, we compare students just above the cutoff with those just below the cutoff

to determine the causal impact of enrollment in a selective college, where they are surrounded

by relatively high-achieving peers and have a lower relative rank in their peer group. We find

that marginally admitted female students in more selective colleges experience improvements

in scores on standardized university exams. In terms of behavior and personality, we find

that females just above the cutoff become less risk averse and less overconfident. On the

other hand, males in these colleges experience declines in extraversion and conscientiousness

pointing towards a weakened self-concept due to a lower relative rank in their peer group,
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capturing ‘small fish in a big pond’ effect. Further, we are also able to show that variations in

college qualities stem mainly from variations in peer qualities (and rank) with no differences

in teacher presence or student-teacher ratios around the cutoff.

Some caveats remain. First, while our study shows that the effects of selective colleges are

not unequivocally positive for the outcomes we consider in the short-run, it is important to

bear in mind that in the long-run, elite colleges are still likely to lead to higher wages, access

to well-connected alumni networks, and better marriage prospects. Second, it is possible that

exposure to being in a selective college may impact some socioemotional skills only in the long

run, such that our effects are underestimated. Third, while our study does not encompass

the entire population of DU students, to the extent the admissions process is similar to

that for economics and commerce, our overall framework on peer quality and rank concerns

should matter in a similar way for other disciplines as well. However, it should be noted that

as DU is one of the premier universities in India, its students are not representative of the

average Indian college student. Although this study is unable to comment on the long-run

effects on personality traits and labor market outcomes, it should encourage follow-up work

that can can shed light on longer-term impacts of such peer effects.
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Figures and Tables

Figure 1: First-stage Relationship
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Notes: This figure plots residual terms obtained by regressing average peer quality on
cutoff fixed effects against distance from the threshold.

Figure 2: College Quality and Peers
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Table 1: Summary Statistics

Full Sample Males Females Difference
(1) (2) (3) (4)

Panel A: Cognitive attainment
University exam score 70.44 70.19 70.64 -0.45

(7.39) (7.43) (7.36)

Panel B: Economic preferences
Competitiveness 0.31 0.41 0.24 0.17***

(0.46) (0.49) (0.43)
Overconfidence 1.64 1.66 1.63 0.03

(1.22) (1.20) (1.24)
Risk preference 46.59 49.88 43.99 5.89***

(19.08) (21.71) (16.24)

Panel C: Personality traits
Extraversion score 4.77 4.69 4.83 -0.14**

(1.43) (1.43) (1.42)
Agreeableness score 5.20 4.97 5.38 -0.41***

(1.16) (1.16) (1.12)
Conscientiousness score 5.31 5.20 5.40 -0.20***

(1.26) (1.29) (1.23)
Emotional stability score 4.54 4.65 4.45 0.20***

(1.38) (1.40) (1.36)
Openness to experience score 5.42 5.44 5.41 0.03

(1.12) (1.10) (1.14)

Panel D: Background characteristics
Age 19.66 19.69 19.65 0.04

(0.86) (0.86) (0.86)
Religion 0.92 0.92 0.93 -0.01

(0.27) (0.28) (0.26)
Private School 0.85 0.85 0.84 0.01

(0.36) (0.36) (0.36)
Income 0.30 0.30 0.31 -0.01

(0.46) (0.46) (0.46)
Mother’s Education 0.75 0.73 0.77 -0.04**

(0.43) (0.44) (0.42)
Father’s Education 0.78 0.78 0.79 -0.00

(0.41) (0.41) (0.41)

Notes: Religion is an indicator variable for being a Hindu; income is an indicator variable for monthly

family income being below Rs. 50,000; mother’s and father’s education are indicator variables for tertiary

education; private school is an indicator variable for graduation from a private high school. Personality

traits’ scores range from 0-7. For second and third year students, we have the average exam scores based

on 3 semesters and 5 semesters respectively. Sample restricted to +/- 5 window around the cutoff. * sig-

nificant at 10%,** significant at 5%,*** significant at 1%.
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Table 3: First-stage Discontinuity

Full Sample Males Females
(1) (2) (3)

Without controls 0.680∗∗∗ 0.698∗∗∗ 0.626∗∗∗

(0.066) (0.086) (0.078)
With controls 0.681∗∗∗ 0.702∗∗∗ 0.629∗∗∗

(0.063) (0.082) (0.074)
Observations 2368 1043 1325

Notes: This table shows the first-stage discontinuity results us-

ing a flexible second order polynomial described in the text. We

control for mother’s education, father’s education, private school

enrollment, age, income, and religion in all specifications (see

notes in Table 1 for variable definitions). All regressions also

include cutoff and month of survey fixed effects. Standard er-

rors clustered at 0.25 bins of the centered high school exit exam

score level are reported in parentheses. * significant at 10%,**

significant at 5%,*** significant at 1%.
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Table 4: Average Peer Quality

Full Sample Males Females
(1) (2) (3)

Av. grade 12 score 2.477∗∗∗ 2.461∗∗∗ 2.713∗∗∗

(0.244) (0.334) (0.369)
Observations 2368 1043 1325

Av. grade 10 score 2.932∗∗∗ 2.597∗∗∗ 3.371∗∗∗

(0.291) (0.440) (0.422)
Observations 2361 1041 1320

Notes: This table reports instrumental variable estimates using

the flexible second order polynomial described in the text. We con-

trol for mother’s education, father’s education, private school en-

rollment, age, income, and religion in all specifications (see notes

in Table 1 for variable definitions). All regressions also include

cutoff and month of survey fixed effects. Standard errors clus-

tered at 0.25 bins of the centered high school exit exam score level

are reported in parentheses. * significant at 10%,** significant at

5%,*** significant at 1%.
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Table 6: Pathways

Student Response Teachers

High
Attendance

Relatively
Less

Attendance

External
Tutorial

Class
Cancelled

Student-
Teacher
Ratios

(1) (2) (3) (4) (5)

Panel A: Males
Enrolled in a selective college -0.128 0.322∗∗∗ 0.032 0.136 0.205

(0.086) (0.090) (0.095) (0.123) (0.538)
Observations 1043 1043 1043 1043 1043

Panel B: Females
Enrolled in a selective college 0.315∗∗ -0.110 -0.018 0.019 -0.539

(0.126) (0.136) (0.108) (0.150) (0.967)
Observations 1325 1325 1325 1325 1325

Notes: This table reports instrumental variable estimates using the flexible second order polynomial described in the

text. We control for mother’s education, father’s education, private school enrollment, age, income, and religion in all

specifications (see notes in Table 1 for variable definitions). All regressions also include cutoff and month of survey

fixed effects. Standard errors clustered at 0.25 bins of the centered high school exit exam score level are reported in

parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Appendix A: Figures and Tables

Figure A1: Distribution of Admission Cutoffs
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Table A1: Share of Females across Disciplines in Delhi University

Discipline Percentage of Females

Bachelor’s in Arts (Honors) 59.76
Economics 58.04

History 52.05
Political Science 56.26

English 72.53
Hindi 54.25

Bachelor’s in Commerce (Honors) 51.86
Bachelor’s in Science (Honors) 48.34

Notes: This table uses data from first year students in Delhi University

during 2011-12.
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Table A2: Relationship between Raven’s Test Score and Academic Performance

University Exam
Score

Grade 12 Exam
Score

Grade 10 Exam
Score

Panel A: Without Controls

Raven’s Test Score 0.421∗∗∗ 0.446∗∗∗ 0.766∗∗∗

(0.093) (0.068) (0.103)
Observations 1314 1329 1327

Panel B: With Controls

Raven’s Test Score 0.330∗∗∗ 0.314∗∗∗ 0.556∗∗∗

(0.095) (0.064) (0.096)
Observations 1300 1314 1312

Notes: Controls include mother’s education, father’s education, private school enrollment, age, income, and religion. See

notes in Table 1 for variable definitions. Robust standard errors in parentheses. * significant at 10%, ** significant at

5%, *** significant at 1%.
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Table A3: Summary Statistics on Cutoffs and High School Exit Exam Scores

Cutoffs High School Exit Exam Score

Mean Standard deviation Mean Standard deviation
(1) (2) (3) (4)

Rank 1 95.74 1.74 95.09 0.93
Rank 2 92.40 2.20 92.73 1.57
Rank 3 90.14 3.01 89.90 2.16
Rank 4 83.99 3.95 84.52 4.41

Notes: The means within each rank are computed by taking the average over student type that varies by

college and within a college by discipline, year of entry, academic track in high school, and in some cases

also gender.
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Table A4: Returns to College Quality: Other Related Outcomes

Full Sample Males Females
(1) (2) (3)

College Societies -0.192∗∗ -0.284∗∗ -0.137
(0.083) (0.132) (0.089)

Observations 2368 1043 1325

Grit (z-score) -0.306∗ -0.528∗∗ -0.189
(0.183) (0.266) (0.238)

Observations 2278 1011 1267

Notes: This table reports instrumental variable estimates us-

ing the flexible second order polynomial described in the text.

Controls include mother’s education, father’s education, private

school enrollment, age, income, and religion. See notes in Ta-

ble 1 for variable definitions. All regressions include cutoff and

month of survey fixed effects. Standard errors clustered at 0.25

bins of the centered high school exit exam score level are re-

ported in parentheses. * significant at 10%, ** significant at

5%, *** significant at 1%.
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Table A6: Attrition Decision and Big Five Personality Traits

Not apply to DU Decline lower
quality DU college

(1) (2) (3) (4)

Extraversion 0.020 0.019 -0.016 -0.016
(0.017) (0.017) (0.010) (0.010)

Agreeableness 0.012 0.013 -0.010 -0.009
(0.015) (0.016) (0.013) (0.012)

Conscientiousness -0.020 -0.018 0.010 0.012
(0.016) (0.017) (0.010) (0.011)

Emotional stability 0.013 0.010 0.012 0.009
(0.012) (0.013) (0.013) (0.012)

Openness to experience 0.011 0.015 0.014 0.014
(0.016) (0.017) (0.012) (0.012)

Female -0.035 -0.023
(0.032) (0.023)

Age -0.013 0.012
(0.026) (0.026)

Low income -0.021 -0.004
(0.024) (0.025)

Father’s education 0.039 -0.051
(0.024) (0.040)

Mother’s education -0.006 0.018
(0.028) (0.034)

Constant 0.004 0.207 0.076∗ -0.087
(0.010) (0.418) (0.045) (0.413)

School FE Yes Yes Yes Yes
Observations 298 298 278 278
R-squared 0.086 0.096 0.063 0.079

Notes: This table is based on a sample of high school students across 11 schools.

The Big Five personality traits are standardized with respect to the sample mean.

Robust standard errors in parentheses. * significant at 10%, ** significant at 5%,

*** significant at 1%.
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Table A7: Lee Bounds: Males

Baseline 4% attrition 7% attrition 10% attrition 15% attrition

Upper Lower Upper Lower Upper Lower Upper Lower

Panel A: Cognitive attainment
University exam score -0.654 -0.342 -1.103 -0.315 -1.317 -0.420 -1.719 -0.357 -2.123

(1.401) (1.556) (1.518) (1.530) (1.517) (1.512) (1.552) (1.717) (1.604)
Observations 1030 1008 1010 992 994 976 978 949 953

Panel B: Economic preferences

Competitiveness 0.191 0.231 -0.013 0.236 -0.139 0.257 -0.418∗ 0.325 -0.509∗∗

(0.259) (0.261) (0.267) (0.259) (0.260) (0.255) (0.246) (0.269) (0.256)
Observations 1043 1022 1021 1005 1004 989 988 963 961

Overconfidence -0.135 -0.077 -0.185 -0.040 -0.198 0.004 -0.212 -0.000 -0.276
(0.224) (0.223) (0.215) (0.231) (0.205) (0.257) (0.209) (0.254) (0.215)

Observations 1035 1013 1013 998 997 982 980 955 953

Risk preference -0.256 -0.066 -0.403 -0.057 -0.504∗ 0.002 -0.594∗∗ 0.161 -0.739∗∗

(0.262) (0.249) (0.269) (0.244) (0.280) (0.247) (0.293) (0.259) (0.295)
Observations 1038 1016 1016 1001 999 985 983 959 956

Panel C: Personality Traits

Extraversion -0.487∗∗ -0.390∗∗ -0.621∗∗∗ -0.316∗ -0.645∗∗∗ -0.281 -0.643∗∗∗ -0.199 -0.714∗∗∗

(0.194) (0.183) (0.219) (0.179) (0.223) (0.181) (0.215) (0.186) (0.236)
Observations 1021 999 999 983 983 967 967 942 940

Agreeableness -0.016 0.121 -0.038 0.165 -0.132 0.184 -0.123 0.325∗ -0.303∗

(0.188) (0.197) (0.183) (0.182) (0.179) (0.182) (0.177) (0.179) (0.182)
Observations 1013 991 991 975 975 959 960 932 935

Conscientiousness -0.562∗∗ -0.457∗∗ -0.526∗∗ -0.418∗∗ -0.525∗∗ -0.303∗ -0.674∗∗∗ -0.302∗ -0.739∗∗∗

(0.221) (0.227) (0.209) (0.213) (0.214) (0.177) (0.228) (0.169) (0.227)
Observations 1029 1007 1007 991 992 974 975 948 948

Emotional stability -0.012 0.094 -0.114 0.224 -0.124 0.375 -0.133 0.345 -0.273
(0.250) (0.223) (0.252) (0.247) (0.244) (0.275) (0.241) (0.270) (0.220)

Observations 1018 996 996 980 980 966 964 940 938

Openness to experience -0.045 0.074 -0.057 0.084 -0.164 0.229 -0.263∗∗ 0.300∗∗ -0.321∗∗∗

(0.119) (0.135) (0.128) (0.134) (0.126) (0.155) (0.129) (0.151) (0.110)
Observations 1018 998 996 983 980 967 964 941 938

Notes: This table reports Lee (2009) bound estimates for the baseline results for males reported in Panel B, Table 5. We control for mother’s education,

father’s education, private school enrollment, age, income, and religion in all specifications. See notes in Table 1 for variable definitions. All regressions

also include cutoff and month of survey fixed effects. Standard errors clustered at 0.25 bins of the centered high school exit exam score level are reported

in parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A8: Lee Bounds: Females

Baseline 4% attrition 7% attrition 10% attrition 15% attrition

Upper Lower Upper Lower Upper Lower Upper Lower

Panel A: Cognitive attainment
University exam score 2.790∗∗ 2.854∗∗ 2.215∗ 2.996∗∗ 1.642 3.190∗∗ 1.520 3.351∗∗∗ 0.741

(1.279) (1.280) (1.317) (1.326) (1.335) (1.346) (1.355) (1.288) (1.408)
Observations 1316 1289 1289 1269 1269 1248 1248 1215 1216

Panel B: Economic preferences

Competitiveness 0.083 0.095 -0.083 0.105 -0.213 0.137 -0.226 0.197 -0.253
(0.226) (0.227) (0.224) (0.231) (0.235) (0.239) (0.229) (0.255) (0.223)

Observations 1322 1295 1295 1274 1274 1254 1254 1221 1221

Overconfidence -0.533∗ -0.466 -0.665∗∗∗ -0.416 -0.688∗∗∗ -0.407 -0.683∗∗∗ -0.376 -0.717∗∗∗

(0.295) (0.299) (0.257) (0.307) (0.257) (0.303) (0.256) (0.310) (0.252)
Observations 1300 1273 1273 1254 1253 1234 1233 1201 1200

Risk preference 0.662∗∗∗ 0.689∗∗∗ 0.565∗∗∗ 0.759∗∗∗ 0.558∗∗∗ 0.842∗∗∗ 0.475∗∗∗ 1.001∗∗∗ 0.452∗∗

(0.193) (0.191) (0.191) (0.192) (0.184) (0.187) (0.184) (0.185) (0.187)
Observations 1321 1294 1294 1273 1273 1253 1253 1222 1221

Panel C: Personality Traits

Extraversion -0.287 -0.170 -0.312 -0.111 -0.405 -0.055 -0.416∗ 0.058 -0.424∗

(0.252) (0.254) (0.255) (0.251) (0.248) (0.254) (0.233) (0.260) (0.236)
Observations 1310 1283 1283 1263 1263 1243 1243 1210 1210

Agreeableness 0.057 0.155 0.017 0.194 0.018 0.270 -0.032 0.285 -0.105
(0.242) (0.231) (0.251) (0.230) (0.250) (0.232) (0.244) (0.229) (0.255)

Observations 1305 1278 1278 1258 1258 1238 1238 1204 1204

Conscientiousness 0.077 0.162 0.057 0.236 0.070 0.279 0.045 0.434∗ -0.089
(0.258) (0.250) (0.257) (0.259) (0.256) (0.264) (0.253) (0.249) (0.277)

Observations 1311 1284 1284 1264 1264 1244 1244 1211 1210

Emotional stability 0.380 0.471∗ 0.295 0.535∗∗ 0.258 0.500∗ 0.228 0.681∗∗ 0.123
(0.263) (0.264) (0.260) (0.265) (0.267) (0.268) (0.263) (0.281) (0.265)

Observations 1311 1284 1284 1264 1264 1244 1244 1210 1210

Openness to experience -0.026 0.064 -0.013 0.213 -0.120 0.238 -0.173 0.318 -0.171
(0.358) (0.345) (0.356) (0.349) (0.357) (0.342) (0.358) (0.349) (0.359)

Observations 1310 1283 1283 1263 1263 1243 1243 1211 1211

Notes: This table reports Lee (2009) bound estimates for the baseline results for females reported in Panel C, Table 5. We control for mother’s education,

father’s education, private school enrollment, age, income, and religion in all specifications. See notes in Table 1 for variable definitions. All regressions also

include cutoff and month of survey fixed effects. Standard errors clustered at 0.25 bins of the centered high school exit exam score level are reported in

parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A9: Differences in Survey Participation Rates

Full Sample Males Females
(1) (2) (3)

Enrolled in a selective college -0.023 -0.030 -0.049
(0.020) (0.028) (0.055)

Observations 2368 1043 1325

Notes: This table reports instrumental variable estimates using the flexible

second order polynomial described in the text. Controls include mother’s ed-

ucation, father’s education, private school enrollment, age, income, and reli-

gion. See notes in Table 1 for variable definitions. All regressions include cut-

off and month of survey fixed effects. Standard errors clustered at 0.25 bins

of the centered high school exit exam score level are reported in parentheses.

* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A10: Differences in Background Characteristics between Movers and Potential Movers

Potential Movers Movers Difference
(1) (2) (3)

Age 19.59 19.70 -0.11*
(0.72) (0.77)

Mother’s Education 0.81 0.80 0.01
(0.39) (0.40)

Father’s Education 0.82 0.85 -0.03
(0.39) (0.36)

Religion 0.93 0.90 0.04
(0.25) (0.30)

Private School 0.82 0.87 -0.05
(0.38) (0.34)

Income 0.29 0.26 0.03
(0.45) (0.44)

Observations 212 623 835

Notes: Movers are students who move across colleges during the admissions

process. Potential movers are those who could have potentially moved, but

did not, i.e., those with high school exit exam scores exceeding the required

cutoff, but currently enrolled in a comparison college. See notes in Table

1 for variable definitions. * significant at 10%,** significant at 5%,*** sig-

nificant at 1%.
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Table A11: Returns to College Quality: Restricting the Sample to Students with Data on
all Outcomes

Full Sample Males Females

Panel A: Cognitive attainment
University exam score 1.093∗ -1.219 3.505∗∗∗

(0.611) (1.164) (1.251)
Observations 2172 945 1227

Panel B: Economic preferences
Competitiveness -0.057 -0.074 -0.000

(0.227) (0.264) (0.246)
Observations 2172 945 1227

Overconfidence -0.371∗∗∗ -0.234 -0.592∗

(0.140) (0.220) (0.306)
Observations 2172 945 1227

Risk preference 0.099 -0.229 0.514∗∗∗

(0.172) (0.245) (0.159)
Observations 2172 945 1227

Panel C: Personality Traits
Extraversion -0.347∗∗ -0.477∗∗ -0.405

(0.159) (0.233) (0.271)
Observations 2172 945 1227

Agreeableness 0.113 0.056 0.138
(0.126) (0.163) (0.258)

Observations 2172 945 1227

Conscientiousness -0.255 -0.537∗∗∗ 0.080
(0.192) (0.207) (0.248)

Observations 2172 945 1227

Emotional stability 0.204∗ 0.103 0.340
(0.111) (0.257) (0.250)

Observations 2172 945 1227

Openness to experience -0.026 0.052 -0.065
(0.149) (0.134) (0.348)

Observations 2172 945 1227

Notes: This table reports instrumental variable estimates using the flexible second or-

der polynomial described in the text. The sample is restricted to students with non-

missing data on all outcomes. Controls include mother’s education, father’s education,

private school enrollment, age, income, and religion. See notes in Table 1 for variable

definitions. All regressions include cutoff and month of survey fixed effects. Standard

errors clustered at 0.25 bins of the centered high school exit exam score level are re-

ported in parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A12: Robustness Check: Probability of Missing Outcomes

Full Sample Males Females

Panel A: Cognitive attainment
University exam score -0.005 0.006 -0.021

(0.013) (0.016) (0.021)
Observations 2368 1043 1325

Panel B: Economic preferences
Competitiveness -0.003 0.000 -0.007

(0.004) (.) (0.008)
Observations 2368 1043 1325

Overconfidence -0.042∗∗ -0.040∗∗∗ -0.048
(0.019) (0.014) (0.030)

Observations 2368 1043 1325

Risk preference 0.008 0.015 0.003
(0.005) (0.010) (0.005)

Observations 2368 1043 1325

Panel C: Personality Traits
Extraversion 0.013 0.004 0.021

(0.014) (0.023) (0.012)
Observations 2368 1043 1325

Agreeableness -0.006 -0.021 0.011
(0.013) (0.024) (0.018)

Observations 2368 1043 1325

Conscientiousness -0.000 0.002 -0.004
(0.010) (0.017) (0.012)

Observations 2368 1043 1325

Emotional stability 0.012 0.013 0.014
(0.016) (0.032) (0.013)

Observations 2368 1043 1325

Openness to experience 0.018 0.022 0.012
(0.014) (0.025) (0.009)

Observations 2368 1043 1325

Notes: This table reports the reduced form estimates using the flexible second order

polynomial described in the text. The dependent variable takes a value 1 if the outcome

is missing, and 0 otherwise. Controls include mother’s education, father’s education,

private school enrollment, age, income, and religion. See notes in Table 1 for variable

definitions. All regressions include cutoff and month of survey fixed effects. Standard

errors clustered at 0.25 bins of the centered high school exit exam score level are re-

ported in parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A13: Robustness Checks: Cognitive Attainment and Economic preferences

University
Exam
Score

Economic preferences

Competitiveness Overconfidence Risk Preference

(1) (2) (3) (4)

Panel A: Full Sample
Without controls 1.118 0.119 -0.297∗∗ 0.107

(0.797) (0.217) (0.130) (0.164)
Triangular wt. 0.731 0.132 -0.275∗∗∗ 0.065

(0.789) (0.237) (0.106) (0.225)
CCT Bandwidth 1.221∗∗ 0.155 -0.292∗∗∗ -0.006

(0.603) (0.195) (0.108) (0.209)

Panel B: Males
Without controls -0.446 0.211 -0.137 -0.315

(1.512) (0.278) (0.222) (0.246)
Triangular wt. -0.583 0.152 -0.024 -0.334

(1.627) (0.265) (0.233) (0.271)
CCT Bandwidth -0.583 0.333 0.257 -0.422

(1.641) (0.324) (0.362) (0.277)

Panel C: Females
Without controls 2.580∗∗ 0.054 -0.553∗ 0.636∗∗∗

(1.301) (0.228) (0.283) (0.210)
Triangular wt. 2.306∗ 0.188 -0.708∗∗ 0.678∗∗∗

(1.286) (0.220) (0.344) (0.168)
CCT Bandwidth 2.708∗∗ 0.137 -0.588 0.562∗∗∗

(1.266) (0.222) (0.403) (0.195)

Notes: All estimates are from instrumental variable regressions using the flexible second order polynomial de-

scribed in the text. We control for mother’s education, father’s education, private school enrollment, age, in-

come, and religion in all specifications. See notes in Table 1 for variable definitions. All regressions also include

cutoff and month of survey fixed effects. CCT bandwidth refers to the optimal bandwidth detailed in Calonico

et al. (2014). Standard errors clustered at 0.25 bins of the centered high school exit exam score level are re-

ported in parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A14: Robustness Checks: Personality Traits

Personality Traits

Extraversion Agreeableness Conscientiousness Emotional
Stability

Openness
to

Experience
(1) (2) (3) (4) (5)

Panel A: Full Sample
Without controls -0.274∗ -0.005 -0.244 0.122 -0.031

(0.151) (0.117) (0.228) (0.115) (0.136)
Triangular wt. -0.303∗ 0.063 -0.324 0.228 0.098

(0.160) (0.096) (0.202) (0.139) (0.140)
CCT Bandwidth -0.108 -0.013 -0.302 0.184 -0.039

(0.128) (0.106) (0.201) (0.121) (0.132)

Panel B: Males
Without controls -0.454∗∗ -0.053 -0.483∗∗ -0.117 -0.061

(0.207) (0.185) (0.243) (0.276) (0.131)
Triangular wt. -0.689∗∗∗ -0.072 -0.541∗∗ -0.070 -0.033

(0.172) (0.201) (0.231) (0.263) (0.120)
CCT Bandwidth -0.706∗∗∗ -0.009 -0.470∗ -0.035 -0.074

(0.210) (0.234) (0.279) (0.271) (0.120)

Panel C: Females
Without controls -0.237 0.031 0.025 0.358 0.019

(0.304) (0.249) (0.276) (0.247) (0.367)
Triangular wt. 0.017 0.210 -0.016 0.696∗∗ 0.325

(0.336) (0.295) (0.267) (0.326) (0.585)
CCT Bandwidth 0.019 0.082 -0.039 0.797∗∗ 0.633

(0.302) (0.351) (0.270) (0.365) (0.672)

Notes: All estimates are from instrumental variable regressions using the flexible second order polynomial described in the

text. We control for mother’s education, father’s education, private school enrollment, age, income, and religion in all speci-

fications. See notes in Table 1 for variable definitions. All regressions also include cutoff and month of survey fixed effects.

CCT bandwidth refers to the optimal bandwidth detailed in Calonico et al. (2014). Standard errors clustered at 0.25 bins

of the centered high school exit exam score level are reported in parentheses. * significant at 10%, ** significant at 5%, ***

significant at 1%.
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Table A15: Robustness Check: Clustering at Student and Bin Level

Full Sample Males Females
(1) (2) (3)

Panel A: Cognitive attainment
University exam score 1.127 -0.654 2.790∗∗

(0.726) (1.684) (1.174)
Observations 2346 1030 1316

Panel B: Economic preferences
Competitiveness 0.116 0.191 0.083

(0.211) (0.278) (0.205)
Observations 2365 1043 1322

Overconfidence -0.288∗ -0.135 -0.533∗

(0.154) (0.306) (0.274)
Observations 2335 1035 1300

Risk preference 0.153 -0.256 0.662∗∗∗

(0.186) (0.278) (0.171)
Observations 2359 1038 1321

Panel C: Personality Traits
Extraversion -0.285∗∗ -0.487∗∗ -0.287

(0.132) (0.216) (0.221)
Observations 2331 1021 1310

Agreeableness 0.037 -0.016 0.057
(0.108) (0.208) (0.223)

Observations 2318 1013 1305

Conscientiousness -0.262 -0.562∗∗ 0.077
(0.202) (0.231) (0.242)

Observations 2340 1029 1311

Emotional stability 0.166 -0.012 0.380
(0.108) (0.255) (0.241)

Observations 2329 1018 1311

Openness to experience -0.034 -0.045 -0.026
(0.123) (0.153) (0.325)

Observations 2328 1018 1310

Notes: This table reports instrumental variable estimates using the flexible second

order polynomial described in the text. Controls include mother’s education, father’s

education, private school enrollment, age, income, and religion. See notes in Table 1

for variable definitions. All regressions include cutoff and month of survey fixed ef-

fects. Standard errors clustered at student and 0.25 bins of the centered high school

exit exam score level are reported in parentheses. * significant at 10%, ** significant

at 5%, *** significant at 1%.
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Table A16: Robustness Check: Applicant Sample

Full Sample Males Females
(1) (2) (3)

Panel A: Cognitive attainment
University exam score 1.436∗ -0.216 2.854∗∗

(0.850) (1.466) (1.425)
Observations 2204 969 1235

Panel B: Economic preferences
Competitiveness 0.082 0.258 -0.073

(0.237) (0.252) (0.279)
Observations 2222 981 1241

Overconfidence -0.251∗∗ -0.124 -0.481
(0.124) (0.242) (0.316)

Observations 2194 973 1221

Risk preference 0.083 -0.276 0.524∗∗∗

(0.232) (0.310) (0.176)
Observations 2217 977 1240

Panel C: Personality Traits
Extraversion -0.254∗∗ -0.315∗ -0.383

(0.122) (0.188) (0.258)
Observations 2188 959 1229

Agreeableness -0.068 -0.039 -0.136
(0.104) (0.190) (0.251)

Observations 2175 951 1224

Conscientiousness -0.291 -0.576∗∗∗ 0.035
(0.207) (0.207) (0.267)

Observations 2197 967 1230

Emotional stability 0.135 0.069 0.241
(0.126) (0.254) (0.197)

Observations 2189 958 1231

Openness to experience -0.104 -0.018 -0.184
(0.140) (0.104) (0.302)

Observations 2185 956 1229

Notes: This table reports instrumental variable estimates using the flexible second or-

der polynomial described in the text. We limit the sample to students in the compar-

ison colleges who had also applied to the treated colleges. Controls include mother’s

education, father’s education, private school enrollment, age, income, and religion. See

notes in Table 1 for variable definitions. All regressions include cutoff and month of

survey fixed effects. Standard errors clustered at 0.25 bins of the centered high school

exit exam score level are reported in parentheses. * significant at 10%, ** significant

at 5%, *** significant at 1%.
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Table A17: Robustness Check: Imposing Preferences

Full Sample Males Females
(1) (2) (3)

Panel A: Cognitive attainment
University exam score 0.516 -0.775 1.344

(0.952) (1.742) (1.508)
Observations 1472 640 832

Panel B: Economic preferences
Competitiveness 0.108 0.060 0.193

(0.210) (0.289) (0.207)
Observations 1480 645 835

Overconfidence -0.365∗∗ -0.267 -0.659
(0.158) (0.263) (0.417)

Observations 1464 641 823

Risk preference 0.197 -0.166 0.700∗∗

(0.147) (0.222) (0.304)
Observations 1479 642 837

Panel C: Personality Traits
Extraversion -0.345 -0.348 -0.613

(0.250) (0.296) (0.418)
Observations 1456 630 826

Agreeableness -0.076 -0.036 -0.146
(0.121) (0.232) (0.257)

Observations 1454 626 828

Conscientiousness -0.421∗ -0.564∗∗ -0.222
(0.216) (0.245) (0.297)

Observations 1468 638 830

Emotional stability 0.039 -0.087 0.137
(0.116) (0.240) (0.337)

Observations 1463 631 832

Openness to experience 0.005 0.018 -0.024
(0.178) (0.151) (0.358)

Observations 1452 627 825

Notes: This table reports instrumental variable estimates using the flexible second or-

der polynomial described in the text. We limit the sample to students who ranked all

treatment colleges higher than the comparison colleges. Controls include mother’s ed-

ucation, father’s education, private school enrollment, age, income, and religion. See

notes in Table 1 for variable definitions. All regressions include cutoff and month of

survey fixed effects. Standard errors clustered at 0.25 bins of the centered high school

exit exam score level are reported in parentheses. * significant at 10%, ** significant

at 5%, *** significant at 1%.
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