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Summary.

Most dimension reduction methods based on nonparametric smoothing are highly sensitive to

outliers and to data coming from heavy tailed distributions. We show that the recently proposed

MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively

straightforward way that preserves all advantages of the original approach. The best of the

proposed robust modifications, which we refer to as MAVE-WMAD-R, is sufficiently robust

to outliers and data from heavy tailed distributions, it is easy to implement, and surprisingly, it

also outperforms the original method in small sample behaviour even when applied to normally

distributed data.

Keywords: nonparametric regression, dimension reduction, minimum average variance esti-

mator, robust estimation, median absolute deviation, L1 regression

1. Introduction

In regression, we aim to estimate the regression function, which is the expectation of a

dependent variable y ∈ R conditional on explanatory variables X ∈ R
p. This expectation,

E(y|X = x), can be, without prior knowledge, modelled nonparametrically. An increasing

number of explanatory variables makes nonparametric estimation suffer from the curse of

dimensionality. There are two main approaches to deal with high dimensional X variables:

we can either assume a simpler form of the regression function, for example its additivity, or

we can try to reduce the dimension of the space of explanatory variables. The latter, more

general approach received a lot of attention recently, see Li (1991) and Xia et al. (2002),

for instance, and it is also in the focus of our interest here.
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A dimension-reduction regression model can be written as

y = g(B>
0 X) + ε, (1)

where g is an unknown smooth link function, B0 represents a p×D orthogonal matrix, D ≤ p

and E(ε|X) = 0 almost surely. For D = p, we obtain the standard regression model with

all explanatory variables X entering independently. Provided that D < p, the regression

function depends on X only through D linear combinations of explanatory variables X .

Hence, to explain the dependent variable y, the space of p explanatory variables X can be

reduced to a space given by B0 with a smaller dimension D. The vectors of B0 are called

directions in this context. The dimension reduction methods aim to find the dimension D

of the reduction space and a matrix B0 defining this space.

Recently, Xia et al. (2002) proposed a new method, the minimum average variance

estimation (MAVE), that overcomes several problems of other existing estimators, such

as sliced inverse regression (SIR), Li (1991). First, in contrast to other methods, MAVE

does not need undersmoothing when estimating the link function g in order to achieve a

faster rate of consistency. Second, MAVE can be applied to many models including time

series data. Moreover, Xia et al. (2002) show how their approach can be used to generalise

some existing methods; for example, they propose the outer product of gradients (OPG)

estimator, which extends the average derivative estimator of Härdle and Stoker (1989)

to multi-index models. Finally, Xia et al. (2002)’s experience as they indicated in their

discussed paper is that MAVE is also robust against outliers in data.

Although MAVE improves over the existing methods both from its convergence and

applicability points of view, we doubt that it might be sufficiently robust to withstand

outliers in data. The main reason is that it is based on local polynomial smoothing, that

is, on local least-squares estimation, which is highly sensitive to outlying observations. One

can naturally argue that since the estimation is done locally the estimator is not sensitive

to outlying observations in the space of explanatory variables X . On the other hand, the

local character of estimation significantly raises possible effects of outliers in the dependent

variable y, because the samples used for local estimation of the regression function are

rather small. Similar sensitivity to outliers, although in the space of explanatory variables,

was observed in the case of SIR by Gather, Hilker, and Becker (2001), who also proposed its

robust version. SIR is sensitive to outliers in the explanatory variables since it uses an inverse
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regression. Now, because of the vast range of advantages of MAVE and OPG methods, we

would like to examine their main weakness—non-robustness to outlying observations—in

more details and to propose ways to improve them without affecting their main strengths.

From now on, we mean by outliers those observations that are outlying in the dependent

variable.

The rest of the paper is organised as follows. In Section 2, we describe both the MAVE

and OPG methods and demonstrate their low robustness. Then we propose possible robust

enhancements of the methods in Section 3 and compare them by means of simulations in

Section 4.

2. Estimation of dimension reduction space

In this section, we present the MAVE and OPG methods as well as a procedure for de-

termining the effective dimension reduction by means of cross-validation. At the end of

the section, we will motivate our concerns about robustness of these methods by a small

simulation.

2.1. The MAVE method

Let d represent now the working dimension, 1 ≤ d ≤ p, where p denotes the number of

explanatory variables X . For an assumed number d of directions in model (1) and known

directions B0, one would typically minimise

min E{y − E(y|B>
0 X)}2

to obtain a nonparametric estimate of the regression function E(y|B>
0 X). The MAVE

method is based on the local linear regression, which hinges at a point X0 on linear approx-

imation

E(y|B>
0 X) ≈ a + b>B>

0 (X − X0). (2)

Now, if directions B0 are not known, we have to search their approximation B. Xia et al.

(2002) propose to plug-in unknown directions B in the local linear approximation of the

regression function and to optimise simultaneously with respect to B and local parameters a

and b of local linear smoothing. Hence, given a sample (Xi, yi)
n
i=1 from (X, y), they perform
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local linear regression at every X0 = Xi, i = 1, . . . , n, and end up minimising

min

B:B>B=Ip

aj ,bj ,j=1,...,n

n
∑

i=1

n
∑

j=1

[yi − {aj + b>j B>(Xi − Xj)}]2wij , (3)

where Ip represents the p× p identity matrix and wij are weights describing local character

of linear approximation (2) (i.e., wij should depend on the distance of points Xi and Xj).

Xia et al. (2002) call the resulting estimator of B MAVE and show that the simultaneous

minimisation with respect to local linear approximation given by aj , bj and to directions B

results in a convergence rate superior to any other dimension-reduction method. Initially,

a natural choice of weights is given by a multidimensional kernel function Kh. At a given

X0,

wi0 = Kh(Xi − X0)

/

n
∑

i=1

Kh(Xi − X0) (4)

for i = 1, . . . , n and a kernel function Kh(·), where h refers to a bandwidth. Additionally,

when we already have an initial estimate of the dimension reduction space given by B̂, it is

possible to iterate and search an improved estimate of the reduction space. Xia et al. (2002)

do so by using the initial estimator B̂ to measure distances between points Xi and X0 in

the reduced space. More precisely, they propose to choose in the iterative step weights

wi0 = Kh{B̂>(Xi − X0)}
/

n
∑

i=1

Kh{B̂>(Xi − X0)} . (5)

Repeating such iteration steps until convergence results in a refined MAVE (rMAVE) es-

timator. From now on, whenever we talk or refer to MAVE, we mean its refined version

rMAVE.

2.2. The OPG method

Based on the above described MAVE approach, Xia et al. (2002) also manage to generalise

the average derivate estimator (ADE) by Härdle and Stoker (1989) to more dimensions.

Instead of using the moment condition for the gradient of the regression function g in

model (1), E{∇g(X)} = 0, they start from the average outer product of gradients (OPG),

E{∇g(X)∇>g(X)}. By decomposing the MAVE objective function, it can be shown that

the searched dimension reduction matrix B consists of the d eigenvectors corresponding to
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the d largest eigenvalues of E{∇g(X)∇>g(X)}. Now, recalling once again that local linear

fitting solves for a given sample (Xi, yi)
n
i=1 and a given point Xj , j ∈ {1, . . . , n}

min
aj ,bj

n
∑

i=1

[yi − {aj + b>j (Xi − Xj)}]2wij , (6)

we can estimate Σ = E{∇g(X)∇>g(X)} by

Σ̂ =
1

n

n
∑

i=1

b̂>j b̂j ,

where b̂j are estimates of bj from (6). Hence, the OPG method consists in estimating Σ̂

and determining its d eigenvectors corresponding to the d largest eigenvalues. Also this

method can be iteratively refined in the same way as MAVE by determining weights wij

in (6) using the distance of observations in the reduced space once its initial estimate is

known. Similarly to MAVE, whenever we talk about the OPG method, we mean its refined

version.

The OPG method generalises the average derivate estimation, but it does not reach the

rate of consistency of the MAVE method. Apart from being an interesting generalisation,

we mention it here because it is easy to implement and to modify as we will see later.

Moreover, our initial simulations showed that it can perform as well as MAVE in small

samples and in the presence of outliers; see Section 4 for more details.

2.3. Dimension of effective reduction space

The described methods are capable of estimating the dimension reduction space provided

we can specify its dimension. To determine the dimension d, Xia et al. (2002) extend the

cross-validation approach of Yao and Tong (1994). The cross-validation criterion is defined

as

CV (d) =

n
∑

j=1



yj −
n

∑

i=1,i6=j

yiKh{B̂>(Xi − Xj)}
∑n

i=1,i6=j Kh{B̂>(Xi − Xj)}





for d > 0 and for the special case of independent y and X as

CV (0) =
1

n

n
∑

i=1

(yi − ȳ)2.

Consequently, the dimension is then determined as

d̂ = argmin0≤d≤pCV (d),
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Table 1. Estimates of the EDR dimension with one outlier. Table (a) reports frequencies

of the best EDR dimension found. Table (b) considers frequencies of the best EDR dimen-

sions only if the conditional variance of the dependent variable on the indices is lower than

the unconditional variance, otherwise zero is reported.

Outlier value

Dimension 200 400 600 800

1 21 19 14 11

2 21 21 31 29

3 34 36 31 30

4 16 12 9 7

5 5 6 3 4

6 2 2 4 2

7 1 1 2 2

8 0 1 2 0

9 0 2 3 9

10 0 0 1 6

Outlier value

Dimension 200 400 600 800

0 21 77 96 96

1 17 2 1 2

2 17 5 2 1

3 22 9 1 2

4 17 3 0 0

5 4 3 0 0

6 2 3 0 0

7 1 1 0 0

8 0 0 0 0

9 0 0 0 0

(a) (b)

where p represents the number of explanatory variables.

Using this cross-validation procedure, let us now motivate by a small simulation our

concerns regarding the robustness of the MAVE method. Consider the following nonlinear

model

yi = (X>
i b1)

2 − (0.5 + X>
i b2)

2 + 15 cos(X>
i b3) + 0.5εi,

where all random variables have the standard normal distribution in R
10 and b1 = (1, 2, 3, 0,

0, 0, 0, 0, 0, 0)/
√

14, b2 = (−2, 1, 0, 1, 0, 0, 0, 0, 0, 0)/
√

6, and b3 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1)/
√

3.

Additionally, we include one observation that has the value yi replaced by a constant be-

tween 200 and 800. The frequencies of estimated EDR dimensions for 100 repetitions and

sample size n = 100 are summarised in Table 1 (a) and (b): the former plainly reports the

best dimension found (without considering CV (0)), whereas the latter contains either the

best dimension found if the corresponding model was able to explain at least a part of the

variance of the dependent variable or zero (with the CV (0) definition employed). Appar-

ently, the further the outlier is, the more cases are not correctly identified and estimated

(zero entries in Table 1 (b) actually say that the method has not found any dependence
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between y and X variables). Moreover, one can notice that the outlier leads generally

to an upward biased EDR dimension. Hence, we see that the MAVE method and the

cross-validation based on it can be significantly influenced by a single outlying observation.

3. Robust enhacements

In the previous sections, we have argued that the MAVE and OPG methods can be highly

sensitive to outliers in data, mainly because the local linear regression is based on simple

least squares. Therefore, we would like to propose several possible enhancements of the

MAVE and OPG method that should increase their robust properties, optimally without

affecting their other qualities. There are two strategies that can be used in this case: first,

we can design weights wij in (3) depending on yi values to reduce effects of outlying obser-

vations; second, we can replace the local least squares fitting by a more robust procedure. In

this section, we describe both strategies and their variants, postponing their finite-sample

comparison to Section 4.

3.1. Robust choice of weights

The easiest way to make the discussed dimension reduction methods more robust to outliers

is certainly an adjustment of weights wij in (3), since it does not require any principal

change of the methods or the corresponding computational procedures. Let us remind that

the initial choice of weights (4) proposed by Xia et al. (2002) is given at some X0 ∈ R
p by

wi0 = Kh(Xi − X0)

/

n
∑

i=1

Kh(Xi − X0)

for i = 1, . . . , n and a kernel function Kh(·). Hence, the observations distant in the space of

explanatory variables X are downweighted by the kernel function Kh anyway and we have

to take care only about outlying observations in the direction of the dependent variable y.

A natural way to determine observations that are outlying and to downweight them

is to measure locally (at a point X0) the mean µ̂y and standard deviation σ̂y of y-values.

Then, for given values yi we can decrease weights of observations indirectly proportional

to the normalised values ti = |yi − µ̂y|/σ̂y. Optionally, we can set weights equal to zero

for observations with ti > K, where K > 0 is a suitable constant (for example, K = 3),

to avoid their influence completely. Now, although the arithmetical mean and standard
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deviation are standard measures of location and scale, their sensitivity to outliers hints that

they do not have to present a very reasonable choice. Thus, we employ their more robust

equivalents—the median and median absolute deviation (MAD)—as well; see (Hampel et

al., 1986, pp. 105, 106, 235) explaining why MAD is a suitable robust estimator of scale

when scale is a nuisance parameter. Summing up these ideas, we obtain four possible choices

of initial weights wi0 for an observation (Xi, yi), i = 1, . . . , n, and a point X0.

Weighted standard deviation without rejection (WSTD)

Let us define the weighted mean µ̂y(X0) at X0

µ̂y(X0) =

n
∑

i=1

yiKh(Xi − X0)
∑n

i=1 Kh(Xi − X0)

and the weighted standard deviation

σ̂y(X0) =

√

√

√

√

n
∑

i=1

{yi − µ̂y(X0)}2Kh(Xi − X0)
∑n

i=1 Kh(Xi − X0)
.

Then set weights to

wi0 =
Kh(Xi − X0)

∑n

i=1 Kh(Xi − X0)
· σ̂y(X0)

max{|yi − µ̂y(X0)|, σ̂y(X0)}
.

Weighted standard deviation with rejection (WSTD-R)

Using the previously defined weighted mean µ̂y(X0) and weighted standard deviation

σ̂y(X0), set

wi0 =
Kh(Xi − X0)

∑n

i=1 Kh(Xi − X0)
· σ̂y(X0)

max{|yi − µ̂y(X0)|, σ̂y(X0)}
·I{|yi− µ̂y(X0)| ≤ 3σ̂y(X0)}.

Weighted median absolute deviation without rejection (WMAD)

Let us define the weighted median µ̃y(X0) at X0

µ̃y(X0) = min
k=1,...,n

{

y(k)

∣

∣

∣

∣

∣

n
∑

i=1

Kh(Xi − X0)
∑n

i=1 Kh(Xi − X0)
· I

(

yi ≤ y(k)

)

≥ 0.5

}

,

where y(k) represents the kth order statistics of the sample {yi}n
i=1 and [·] denotes the

integer part. Analogously, define the weighted median absolute deviation

σ̃y(X0) = 1.4826 · min
k=1,...,n

{

r(k)

∣

∣

∣

∣

∣

n
∑

i=1

Kh(Xi − X0)
∑n

i=1 Kh(Xi − X0)
· I

(

ri ≤ r(k)

)

≥ 0.5

}

,
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where ri = |yi − µ̃y(X0)|. Then the weights are defined by

wi0 =
Kh(Xi − X0)

∑n

i=1 Kh(Xi − X0)
· σ̃y(X0)

max{|yi − µ̃y(X0)|, σ̃y(X0)}
.

Weighted median absolute deviation with rejection (WMAD-R)

Using the previously defined weighted median µ̃y(X0) and weighted median absolute

deviation σ̃y(X0), set

wi0 =
Kh(Xi − X0)

∑n

i=1 Kh(Xi − X0)
· σ̃y(X0)

max{|yi − µ̃y(X0)|, σ̃y(X0)}
·I{|yi− µ̃y(X0)| ≤ 3σ̃y(X0)}.

Similarly to the original MAVE and OPG methods, the robust weights can also be

interactively refined. Having an initial estimate B̂ of the dimension reduction space, we can

measure the distances between points Xi and X0 in the reduced space. Analogously to (5),

we can then define the refined weights, for example, for the WMAD weights as follows: the

weighted mean at X0

µ̂y(X0|B̂) =
n

∑

i=1

yiKh{B̂>(Xi − X0)}
∑n

i=1 Kh{B̂>(Xi − X0)}
,

the weighted standard deviation

σ̂y(X0|B̂) =

√

√

√

√

n
∑

i=1

{yi − µ̂y(X0|B̂)}2Kh{B̂>(Xi − X0)}
∑n

i=1 Kh{B̂>(Xi − X0)}
,

and the refined weights

wi0 =
Kh{B̂>(Xi − X0)}

∑n

i=1 Kh{B̂>(Xi − X0)}
· σ̂y(X0|B̂)

max{|yi − µ̂y(X0|B̂)|, σ̂y(X0|B̂)}
.

3.2. Other robust methods

A further strategy how robust properties of MAVE and OPG can be improved consists in

replacing the local least square regression by a more robust method. There are plenty of

robust regression methods and some, such as smoothed least trimmed squares by Č́ıžek

(2001), would suit MAVE and OPG methods very well. The only, but important limitation

is the speed of computation of such robust methods, which significantly limits their applica-

bility in this case (it is necessary to solve at least kdn regression problems, where typically

k > 10). Nevertheless, since we perform regression only locally, it suffices to use a method

robust only to outlying observations in the direction of the dependent variable y. Hence,
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to meet the requirements on speed and robustness, we propose to use local L1 regression

instead of local least squares; see (Hampel et al., 1986, Secs. 6.2, 6.4).

Consequently, in the case of MAVE, we try to estimate local L1 regression for a sample

(Xi, yi)
n
i=1 and X0 = Xi, i = 1, . . . , n by minimising

min

B:B>B=Ip

aj ,bj ,j=1,...,n

n
∑

i=1

n
∑

j=1

∣

∣yi − {aj + b>j B>(Xi − Xj)}
∣

∣ wij . (7)

We refer further to this method as MAVE-L1. Similarly, in the case of OPG, we estimate

local L1 regression at all points Xj , j ∈ {1, . . . , n},

min
aj ,bj

n
∑

i=1

∣

∣yi − {aj + b>j (Xi − Xj)}
∣

∣wij , (8)

and we compute Σ̂ = 1
n

∑n

i=1 b̂>j b̂j . It remains to determine the d eigenvectors of Σ̂ corre-

sponding to the d largest eigenvalues. This method is further referred to as OPG-L1.

Note that whereas the OPG-L1 can be easily implemented (it is just local L1 regression),

the computation of MAVE-L1 presents serious difficulties. The iterative process proposed

by Xia et al. (2002) for the original MAVE method relies on alternating minimisation with

respect to (aj , bj) and B. Whereas the first case, minimisation with respect to (aj , bj)

for a given directions B, is nothing but local L1 regression, the minimisation problem for

B = (β1, . . . , βd) given (aj , bj) = (aj , bj1, . . . , bjd) has to be rewritten in the following way:

min
B:B>B=Ip

n
∑

i=1

n
∑

j=1

∣

∣yi − {aj + b>j B>(Xi − Xj)}
∣

∣wij

= min
B:B>B=Ip

n
∑

i=1

n
∑

j=1

∣

∣

∣

∣

∣

yi −
{

aj +
d

∑

k=1

bjkβ>
k (Xi − Xj)

}∣

∣

∣

∣

∣

wij

= min
B:B>B=Ip

n
∑

i=1

n
∑

j=1

∣

∣

∣

∣

∣

yi −
{

aj +

d
∑

k=1

β>
k bjk(Xi − Xj)

}
∣

∣

∣

∣

∣

wij .

This represents a regression problem with n2 observations and pd variables, and thus, its

size will be enormous as the sample size increases. On the other hand, there are very fast

algorithms available for computing L1 regression in large data sets, see for example Koenker

and Portnoy (1997). We use here the implementation of L1 estimation in the statistical

environment XploRe.
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The proposed approach for computing MAVE-L1 can be also used for computing the

original MAVE method. Since our proposal differs from that of Xia et al. (2002), we

will compare MAVE computed in both ways. To differentiate, the simulations using the

algorithm of Xia et al. (2002) are referred to plainly by MAVE, whereas the simulations

using the algorithm proposed in this section are labelled MAVE-ALT.

4. Simulations

In this section, we will compare the original MAVE and OPG method with their modi-

fications proposed in Section 3 by means of simulations. First, we introduce the models

used for simulations. Next, we explain why we actually use and compare both MAVE and

OPG here in spite of the fact that results of Xia et al. (2002) show MAVE being superior

to OPG. Finally, we compare the original OPG and MAVE methods and their proposed

modifications using simulations.

4.1. Simulation models

Throughout this section, we consider the following nonlinear model (used already in Sec-

tion 2.3)

yi = (X>
i β1)

2 − (0.5 + X>
i β2)

2 + 15 cos(X>
i β3) + 0.5εi, (9)

where all explanatory variables have the standard normal distribution in R
10 and β1 =

(1, 2, 3, 0, 0, 0, 0, 0, 0, 0)/
√

14, β2 = (−2, 1, 0, 1, 0, 0, 0, 0, 0, 0)/
√

6, and β3 = (0, 0, 0, 0, 0, 0, 0,

1, 1, 1)/
√

3. To compare the robust properties of all estimators, we use three variants of this

model.

(a) The standard normal case εi ∼ N(0, 1) serves for a comparison of methods when no

outlying observations are present. Moreover, it corresponds to one of the simulation

settings used by Xia et al. (2002).

(b) The Student distributed errors εi ∼ t1 with one degree of freedom simulate case where

there is a higher probability of larger errors, but the (heavier-tailed) error distribution

is symmetric and centred around zero.

(c) The standard normal errors εi ∼ N(0, 1) are used for 95% of observations, while the

remaining 5% of observations are outliers with y-values generated from the uniform
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distribution U(−600, 600). This combination simulates a normal data contaminated

by several large outliers that are not related with the original model at all.

For the sake of brevity, we refer further to these three cases as NORMAL, STUDENT, and

OUTLIERS, respectively.

For all models in all simulations, we use sample size n = 100 and 100 repetitions (we

observed that the results for larger samples sizes, such as n = 200, are qualitatively the

same as for n = 100). Moreover, all variants of MAVE and OPG applied to these models

were created by modifying existing MAVE and OPG algorithms available in statistical

environment XploRe. The methods use the Gaussian kernel by default.

Finally, let us note that to compare the methods, we use the same distance measure of

the estimated space B̂ and the true space B0 = (β1, β2, β3) as Xia et al. (2002): m(B̂, B0) =

‖(I −B0B
T
0 )B̂‖ for d ≤ D = 3 and m(B̂, B0) = ‖(I − B̂B̂T )B0‖ for d ≥ D = 3 and (D = 3

is the true dimension of the reduced space used in our simulations, whereas d denotes the

dimension used for estimation).

4.2. MAVE vs. OPG

Let us now explain why we consider both the MAVE and derived OPG methods. The main

reason is that it is hard to argue theoretically which method will be more stable and robust

under various circumstances. For example, using the three models introduced in Section 4.1

we simulate 100 data sets, and assuming the correct dimension d = 3, estimate them by both

the (refined) MAVE and OPG methods. The average estimation errors m(B̂, B0) for various

bandwidth choices decomposed to m(β̂1, B0), m(β̂2, B0), and m(β̂3, B0) are depicted in

Figure 1, whereby OPG and MAVE are represented by solid and dashed lines, respectively.

Although the MAVE method is certainly preferable for clean data (case NORMAL), in

correspondence with the results of Xia et al. (2002), OPG seems to perform better in the

case of model OUTLIERS, although both OPG and MAVE fits are rather poor in this case.

It is hard to judge in the case of the STUDENT model. Consequently, we cannot a priori

decide, which method suits some data better. Moreover, although MAVE has a higher

convergence rate, OPG offers easy implementation and fast computation.
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Fig. 1. Average errors of MAVE and OPG for models NORMAL, STUDENT and OUTLIERS and all

parameters β1, β2, and β3 of model (9). The solid line represents OPG, the dashed line MAVE.

4.3. OPG simulations

Now, let us compare the original OPG method with all its proposed modifications. We

use again models NORMAL, STUDENT, and OUTLIERS. We generate for every model
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Table 2. Median and mean average errors of the OPG estimates of the dimension reduction

space. Mean average errors are in brackets.

Data Method Parameter

m(β̂1, B0) m(β̂2, B0) m(β̂3, B0)

NORMAL OPG original 0.0043 (0.0051) 0.1057 (0.1623) 0.2135 (0.3344)

OPG WSTD 0.0034 (0.0045) 0.1135 (0.1687) 0.2014 (0.3013)

OPG WSTD-R 0.0037 (0.0046) 0.1197 (0.1722) 0.2524 (0.3634)

OPG WMAD 0.0038 (0.0045) 0.0905 (0.1470) 0.1885 (0.3395)

OPG WMAD-R 0.0039 (0.0044) 0.1063 (0.1523) 0.3033 (0.3999)

OPG L1 0.0054 (0.0065) 0.1333 (0.1924) 0.2389 (0.3175)

STUDENT OPG original 0.0691 (0.2714) 0.5595 (0.5343) 0.6696 (0.6516)

OPG WSTD 0.0600 (0.2332) 0.5593 (0.5250) 0.6063 (0.5928)

OPG WSTD-R 0.0348 (0.1973) 0.5008 (0.5100) 0.6473 (0.5883)

OPG WMAD 0.0451 (0.2018) 0.6180 (0.5599) 0.6211 (0.5700)

OPG WMAD-R 0.0266 (0.1455) 0.5381 (0.5273) 0.6735 (0.6266)

OPG L1 0.0163 (0.0994) 0.4547 (0.4465) 0.4957 (0.5546)

OUTLIERS OPG original 0.7297 (0.7041) 0.6609 (0.6404) 0.6697 (0.6522)

OPG WSTD 0.7105 (0.6798) 0.4873 (0.5029) 0.5329 (0.5479)

OPG WSTD-R 0.5906 (0.5942) 0.4571 (0.4605) 0.5663 (0.5569)

OPG WMAD 0.0153 (0.1006) 0.4617 (0.4693) 0.5110 (0.5230)

OPG WMAD-R 0.0135 (0.1299) 0.4287 (0.4344) 0.6102 (0.5846)

OPG L1 0.0073 (0.0084) 0.1801 (0.2590) 0.3732 (0.4019)

100 samples and estimate them using OPG, OPG-WSTD, OPG-WSTD-R, OPG-WMAD,

OPG-WMAD-R, and OPG-L1; see Section 3 for the description of these methods. The

median and mean estimation errors m(B̂, B0) decomposed to m(β̂1, B0), m(β̂2, B0), and

m(β̂3, B0) are presented in Table 2.

First, we discuss results in the case of model NORMAL. In this case, methods do not

differ too much from each other. Nevertheless, it is interesting to notice that the weighted

variants of OPG, OPG-WSTD and OPG-WMAD, are slightly better than the original OPG

method. This can be an effect of relatively small samples used in this simulation (n = 100).

The worst, although the difference is not very high, is the L1 based OPG-L1 method.

Second, let us look at the simulations for the data generated from model STUDENT,
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which are by definition more scattered and may contain larger errors than data coming

from model NORMAL. In this case, the original OPG method is apparently the worst one

although the simple weighted version OPG-WSTD does not differ much. The modifica-

tions employing rejection of too distant observations, OPG-WSTD-R and OPG-WMAD-R,

perform better than the non-rejecting variants. The best method is however the OPG-L1

method, which clearly outperforms all other methods.

Third, the situation changes again once we analyse the performance of the methods for

the OUTLIERS model, which contain 5% of random noise with a large amplitude. The

original OPG method fails for all parameters (the maximum value of the error m(β̂, B0) is

one). The modifications downweighting observations using the weighted standard deviation,

OPG-WSTD and OPG-WSTD-R, are slightly better, but also unsatisfactory. On the other

hand, the methods using robust estimates of location and scale, OPG-WMAD and OPG-

WMAD-R, are able to identify the first parameter vector well and are certainly preferable

to the original OPG method. Altogether, all these methods are again outperformed by the

OPG-L1 method, which is significantly better.

Finally, we can conclude that if slightly worse performance of the OPG-L1 method in the

standard normal case does not matter, OPG-L1 provides best results when the data contain

larger errors or outlying observations. Otherwise, OPG-WMAD(-R) can be recommended

since they are easily implementable, sufficiently robust in all cases, and OPG-WMAD even

outperforms the original OPG for normally distributed data in small samples.

4.4. MAVE simulations

Let us now compare the original MAVE method with all its proposed modifications. We

use again models NORMAL, STUDENT, and OUTLIERS. We generate for every model

100 samples and estimate them using MAVE, MAVE-WSTD, MAVE-WSTD-R, MAVE-

WMAD, MAVE-WMAD-R, MAVE-ALT, and MAVE-L1; see Section 3 for the descrip-

tion of these methods. The median and mean estimation errors m(B̂, B0) decomposed to

m(β̂1, B0), m(β̂2, B0), and m(β̂3, B0) are presented in Table 3.

As we can see, the results are qualitatively similar to those for OPG. Most importantly,

the original MAVE method is outperformed by its modifications in all cases NORMAL,

STUDENT, and OUTLIERS. MAVE-WMAD and MAVE-WMAD-R can be considered the
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Table 3. Median and mean average errors of the MAVE estimates of the dimension reduction space. Mean

average errors are in brackets.

Data Method Parameter

m(β̂1, B0) m(β̂2, B0) m(β̂3, B0)

NORMAL MAVE original 0.0051 (0.0128) 0.1038 (0.1587) 0.1205 (0.2204)

MAVE WSTD 0.0042 (0.0084) 0.0734 (0.1203) 0.0999 (0.1777)

MAVE WSTD-R 0.0042 (0.0083) 0.0903 (0.1497) 0.0953 (0.2191)

MAVE WMAD 0.0032 (0.0069) 0.0608 (0.1315) 0.0818 (0.1928)

MAVE WMAD-R 0.0031 (0.0121) 0.0752 (0.1301) 0.0804 (0.1876)

MAVE ALT 0.0055 (0.0305) 0.0536 (0.1088) 0.0736 (0.1585)

MAVE L1 0.0059 (0.0212) 0.0888 (0.1722) 0.1499 (0.3050)

STUDENT MAVE original 0.1790 (0.2984) 0.4245 (0.4416) 0.5415 (0.5273)

MAVE WSTD 0.0707 (0.2049) 0.4277 (0.4620) 0.5606 (0.5449)

MAVE WSTD-R 0.0778 (0.2464) 0.4385 (0.4485) 0.5332 (0.5333)

MAVE WMAD 0.0622 (0.1597) 0.4989 (0.4973) 0.5155 (0.5268)

MAVE WMAD-R 0.0989 (0.1921) 0.4360 (0.4571) 0.4265 (0.4546)

MAVE ALT 0.4151 (0.4053) 0.4286 (0.4411) 0.5364 (0.5122)

MAVE L1 0.0944 (0.1872) 0.2805 (0.3551) 0.3977 (0.4625)

OUTLIERS MAVE original 0.7424 (0.7075) 0.6688 (0.6405) 0.7124 (0.6801)

MAVE WSTD 0.7002 (0.6707) 0.4856 (0.4931) 0.6904 (0.6709)

MAVE WSTD-R 0.6397 (0.6233) 0.4474 (0.4723) 0.7072 (0.6688)

MAVE WMAD 0.0487 (0.1159) 0.3616 (0.3691) 0.3505 (0.3879)

MAVE WMAD-R 0.0476 (0.1153) 0.2350 (0.3154) 0.3621 (0.4004)

MAVE ALT 0.6858 (0.6805) 0.7187 (0.6859) 0.7479 (0.6847)

MAVE L1 0.0595 (0.1814) 0.1863 (0.2677) 0.2267 (0.3243)
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best ones from methods using the original algorithm by Xia et al. (2002) since they perform

well in all three cases. One has to realize, however, that the sample size is n = 100. We

expect the difference between MAVE and its modifications to disappear with an increasing

sample size for the NORMAL model.

It is also interesting to compare MAVE and MAVE-ALT, since MAVE-ALT performs

better than MAVE for the NORMAL model (assuming the same number of MAVE re-

finements in both cases). On the other hand, MAVE-ALT is slightly worse when applied

to contaminated data (OUTLIERS and STUDENT cases). A debate which algorithm is

preferable in practice is very easy to decide—the computational method by Xia et al. (2002)

is typically 20–30 times faster than MAVE-ALT.

Finally, let us look at the performance of MAVE-L1. Similarly to OPG, MAVE-L1 does

not excel in the case of the NORMAL model, although the difference between MAVE-L1 and

other methods is relatively small. On the other hand, it performs better than all the other

methods once applied to contaminated data (the STUDENT and OUTLIERS models).

In the case of MAVE, its L1 modification is unfortunately disadvantaged by rather slow

computation and high memory demands (it uses the same algorithm as MAVE-ALT).

Consequently, we can conclude that, the difference between MAVE-WMAD-R and

MAVE-L1 being significant, but not extremely large, the MAVE-WMAD-R is probably

the best recommendation for everyday use.

4.5. MAVE vs. OPG revised

Let us now compare the MAVE and derived OPG methods in the same way as in Sub-

section 4.2, but this time considering their best modifications. Thus, we compare OPG-

WMAD-R and OPG-L1 with MAVE-WMAD-R (MAVE-L1 is excluded because of its im-

practically high computational demands). Using the three models NORMAL, STUDENT,

and OUTLIERS introduced in Section 4.1 we simulate 100 data sets, and assuming the

correct dimension d = 3, estimate them by all three methods. The average estima-

tion errors m(B̂, B0) for various bandwidth choices decomposed to m(β̂1, B0), m(β̂2, B0),

and m(β̂3, B0) are depicted in Figure 2, whereby OPG-WMAD-R, OPG-L1, and MAVE-

WMAD-R are represented by thin solid, thick dashed, and thin dashed lines, respectively.

First, a general observation is that the OPG method is slightly better in determining
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NORMAL, m(b1,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

STUDENT, m(b1,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

OUTLIERS, m(b1,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

NORMAL, m(b2,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or
STUDENT, m(b2,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

OUTLIERS, m(b2,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

NORMAL, m(b3,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

STUDENT, m(b3,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

OUTLIERS, m(b3,B0)

0 0.25 0.5 0.75 1

Bandwidth

0
0.

2
0.

4
0.

6
0.

8

E
rr

or

Fig. 2. Average errors of MAVE-WMAD-R, OPG-WMAD-R, and OPG-L1 for models NORMAL, STU-

DENT and OUTLIERS and all parameters β1, β2, and β3 of model (9). The thin solid line represents

OPG-WMAD-R, the thin dashed line MAVE-WMAD-R, and the thick dashed line represents OPG-L1.

the first direction, see the graphs of m(β̂1, B0) in Figure 2, whereas the MAVE method

estimates the remaining directions with (often substantially) smaller errors, see for example

the graphs of m(β̂2, B0)) for the STUDENT model and of m(β̂3, B0) for the NORMAL

model in Figure 2. This observation is consistent with results of Xia et al. (2002). Overall

performance of MAVE measured by m(B̂, B0) is typically better than that of OPG.

Second, MAVE-WMAD-R is clearly preferable for clean data (case NORMAL) and it

outperforms the modifications of OPG in all cases when we take into account estimation
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errors for all directions. Thus, MAVE-WMAD-R proves to be sufficiently robust both to

outliers and to data from heavy tailed distributions. Combined with the superior perfor-

mance of MAVE-WMAD-R for clean data (it even outperforms the original MAVE method

in small samples), MAVE-WMAD-R is the best modification of MAVE proposed here. Ad-

ditionally, the fact that it can be computed in the same way as the original MAVE method

by Xia et al. (2002), and is thus easy to implement, makes it attractive for practical use.

Finally, let us note that also OPG methods might be a good choice if a fast computation

is highly desirable, since computing OPG is usually several times faster than the equivalent

MAVE method for the same data. Moreover, OPG-L1 might be preferred when data are

supposed to come from an exponential-type distribution.

5. Conclusion

In this paper, we address the robustness properties of dimension reduction methods. Most

dimension reduction methods that are based on some kind of nonparametric smoothing are

highly sensitive to outliers and to data coming from heavy tailed distributions. Although it

is in general non-trivial to make dimension reduction methods more robust, we show that

the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them

robust in a relatively straightforward way that preserves all advantages of Xia et al. (2002)’s

approach. Theoretically, the MAVE-L1 modification might be most appealing, especially

because of its robustness, but it is handicapped by a very slow computation. Therefore,

from the practitioners’ point of view, we find that MAVE-WMAD-R is the best of the

proposed MAVE and OPG modifications: it is sufficiently robust to outliers and data from

heavy tailed distributions, it is easy to implement, and surprisingly, it even outperforms the

original MAVE method in small sample behaviour for normally distributed data.
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Härdle, W. and Stoker, T. M. (1989) Investigating smooth multiple regression by method

of average derivatives. Journal of American Statistical Association, 84, 986–995.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. (1989) Robust Statistics,

The Approach Based on Influence Functions. United States: John Wiley & Sons.
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