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The Effect of Inventory on Purchase Incidence:

Empirical Analysis of Opposing Forces of Storage and Consumption

Abstract

Behavioral studies and recent empirical research suggest higher levels of inventory on

hand can lead consumers to increase consumption. Inventory on hand is therefore posited

to exert two countervailing forces on the probability of purchase incidence. First, higher

levels of inventory reduce the likelihood of purchase as the consumer feels less pressure

to buy. At the same time however, theory suggests higher levels of inventory may drive

up the rate of consumption, thereby increasing the probability of incidence.

We develop an empirical model that explicitly captures these two effects. The elas-

ticity of purchase incidence with respect to inventory derived from the model is shown to

capture these opposing forces in a simple and intuitive way. The analytical expression

allows calculation of a threshold below (above) which the net effect is positive (neg-

ative). The model is estimated on ten product categories from the Stanford Market

Basket database and is shown to fit better than both the standard nested logit approach

and an alternative formulation developed by Ailawadi and Neslin (1998). The threshold

values have plausible magnitudes and are intuitive across categories: butter, margarine

and crackers have relatively low thresholds implying that inventory build up does not

drive consumption; ice cream and soft drinks have relatively large thresholds (below

which the inventory pressure to consume more outweighs the effect to delay purchase).

Implications for retail management are discussed.

Key Words: Choice Models, Consumption, Inventory, Purchase Incidence
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1 Introduction

In recent years managers have expressed interest and faith in an important intuition about

consumer behavior: Greater volumes of product on hand can lead to higher overall levels

of consumption. This phenomenon — the inventory effect — occurs not only for products

where it might be expected ex ante (such as ice cream and soft drinks), but also in seemingly

mundane consumption-invariant categories such as dryer softeners.1 Marketing academics

have provided theoretical, experimental and empirical support for this conjecture. Assunção

and Meyer (1993) show that higher levels of inventory and consumption is a rational response

to price promotion and Ho, Tang and Bell (1998) prove that consumption increases rationally

with price variation (over a mean-preserving spread). Experimental work (e.g., Folkes, Martin

and Gupta 1993; Raghubir and Krishna 1999; Wansink 1994; Wansink and Deshpandé 1994)

shows that package size, package shape, task elaboration, and perceptions of (lack of) scarcity

can all have a positive effect on consumption.

In an empirical study that motivates our paper, Ailawadi and Neslin (1998), hereafter AN,

find that consumption of yogurt increases when consumers have more inventory on hand. Sun

(2004) provides a dynamic structural model to offer a behavioral underpinning for the condi-

tions under which stockpiling is rational, and how such an effect can be identified in secondary

data. She develops a number of substantive insights including: The effect of promotion on

consumption is greater for stronger brands, and the general phenomenon may be behind the

well-known lack of a “post promotion dip.”

Chandon and Wansink (2002) develop a conceptual framework and terminology that fur-

ther refines our understanding of this kind of inventory effect. They introduce and distinguish

the notions of exogenous and endogenous inventory effects on consumption — concepts that

will be very helpful in interpreting our empirical findings. An exogenous effect occurs when

consumers use more of the product simply because they have excess inventory on hand. Chan-

don and Wansink conjecture that food products such as juices and cookies might be susceptible

to such an effect. An endogenous effect occurs because of an anticipated increase in household

1This particular example was communicated to the authors by a brand manager at Proctor and Gamble in

Toronto who was able to drive consumption of dryer softening sheets by selling them in larger boxes. His lay

theory was that consumers with larger inventories (as a result of buying greater volumes) were less “frugal”

in their use of his product.
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demand. They claim and show the endogenous effect could occur for both food and non-food

products. For example, hosting a party leads to an increased need for food products; addi-

tional household guests or a promise to launder the clothing for a partner’s rugby team leads

to an increased need for detergent. Using scanner panel data they show exogenous effects for

juices and cookies only — having more detergent on hand does not lead one to use it at a

faster rate. All three categories do however show significant endogenous effects. An important

implication is that stockpiling is necessary but not sufficient for exogenous effects to occur.

The cross-category differences reported in Bell, Chiang and Padmanabhan (1999) can also

be reassessed in light of this new work by Chandon and Wansink (2002). In particular, one

would now predict that the “stockpiling only” categories (e.g., detergents and paper towels)

might exhibit endogenous effects, but will not show exogenous effects. Conversely, the so

called “consumption categories” (e.g., soft drinks) might be expected to show both.

It is important to note that econometric work in which the effect of inventory on consump-

tion is estimated directly is relatively scarce — AN and Sun (2004) represent the exception

rather than the rule. It is also critical to note that the ultimate dependent variable is not

consumption itself, but an observable outcome such as purchase incidence. All prior studies

using scanner panel data that model purchase incidence and employ a proxy for consumption

as an individual-level covariate assume this measure is constant over time. A sample of papers

include Bucklin and Lattin (1991), Bucklin, Gupta and Siddarth (1998), Chiang (1991) and

Chintagunta (1993). An important consequence of these formulations is that the elasticity of

purchase incidence with respect to average consumption is always positive, and the elasticity

with respect to some estimate of current inventory is always negative.2 That is, the higher

the average consumption, the greater the probability of purchase incidence and the higher the

level of inventory the lower the probability of incidence. What these models do not capture is

the relationship between inventory and consumption itself, and the effect of this relationship

on the purchase incidence probability.

The two key contributions of our paper are as follows. First, we develop a very parsimo-

nious and easily interpretable model to capture the relationship between inventory, consump-

tion and purchase incidence. While AN demonstrate the existence of the inventory effect, the

complex and highly non-linear relationship between this construct and the purchase incidence

2This assumes that the parameters for these variables have the theoretically correct signs and are statisti-

cally different from zero, a condition which holds in all these studies.
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probability implied by their model makes interpretation relatively more difficult.3 We for-

malize the countervailing effects of inventory on purchase incidence by deriving the elasticity

of purchase incidence with respect to inventory. Unlike prior studies, we capture both the

traditional negative effect and also the additional positive effect. The former occurs because

everything else equal, the more inventory the household has, the less pressure there is to re-

plenish. However, consumer behavior theory tells us the more inventory on hand, the greater

the likelihood of spontaneous consumption (an exogenous effect) and also that the household

is preparing for a period of higher than usual demand (an endogenous effect).

Second, while we are not able to directly separate whether the inventory effect is for

exogenous or endogenous reasons, we estimate the net influence of inventory for ten different

product categories. This faciliates some degree of generalization and we use the results of

Bell, Chiang and Padmanabhan (1999) and the Chandon and Wansink (2002) framework to

help organize and interpret the empirical findings. The cross-category results are intuitively

plausible: Beginning at relatively low levels of inventory, butter, margarine and crackers all

show a net negative effect of inventory on the probability of purchase incidence. This implies

that on average, the consumption rates in these categories are mostly invariant to the level

of inventory on hand.4 Conversely, for hot dogs, ice cream and soft drinks the positive effect

of inventory on consumption is present (and outweighs the negative effect of inventory on

purchase incidence) even at relatively high stock levels. In other words, the pressure to

consume more for both exogenous and endogenous reasons is high for these goods. Finally,

like Chandon and Wansink (2002) we find evidence consistent with endogenous consumption

effects for two categories that are frequently stockpiled: Laundry detergent and paper towels.

The remainder of the paper is organized as follows. Next, we describe the purchase inci-

dence model, the relationship between inventory and consumption, and the analytics for the

net effect of inventory on incidence probabilities. Section 3 presents the data and section 4

reports the empirical findings and summarizes the implications for management practice.

3We discuss this in the next section.
4This result is also consistent with the findings in Bell, Chiang and Padamanabhan (1999, p. 511).
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2 Model

We begin with the specification of the purchase incidence probability and proceed to the

formalization of the relationship between inventory and consumption. The proposed model is

compared to AN and the net effect of inventory on purchase incidence probabilities is derived

as the elasticity of incidence with respect to inventory.

2.1 Purchase Incidence

The dependent variable of interest is a binary indicator of purchase incidence. The probability

that household h purchases in a given product category at time t is modeled as binary logit

P h
t (inc) =

exp(V h
t )

1 + exp(V h
t )

, (2.1)

where V h
t represents the deterministic component of a reduced form purchase incidence utility

that is household and time-dependent. It is standard in the literature (e.g., AN, Bucklin and

Lattin 1991; Chintagunta 1993) to specify V h
t as a linear-in-parameters function as follows

V h
t = γ0 + γ1CRh + γ2MCINV h

t + γ3CV h
t (2.2)

where:

CRh = estimated average consumption rate for household h,

MCINV h
t = relative (mean-centered) inventory for household h at time t,

CV h
t = category value for household h at time t, and

γ0, γ1, γ2, γ3 = parameters to be estimated.

The category value covariate, CV h
t , is equivalent to ln [

∑
i exp(Uh

it)] where Uh
it is a household

and time-varying deterministic component of the brand choice model for items i = 1, . . . , I

in the multinomial model of brand choice nested beneath the binary model of incidence. In

our empirical analysis we follow the standard approach and estimate the brand choice and

purchase incidence parameters simultaneously, however as brand choice is not of direct interest

in this study we relegate the details of this model to the Appendix. In the articles referenced

above (and in similar studies) the incidence parameters are signed as follows: γ0, γ2 < 0; γ1 > 0

and 0 < γ3 < 1.



5

CRh is measured using initialization data that are not included in the estimation sample.

The common approach is to compute the total volume of product purchased by household

h in (say) the first six months of the data and use this to define a daily or weekly average

usage. Having computed CRh from the data, one can then develop an estimate of INV h
t ,

a time-varying and household-specific estimate of the inventory on hand. Again, there is

a standard approach to estimating inventory and this is reported in equation (1) of AN.

Inventory in the current period is simply previous period inventory, plus any new purchases

less the consumption that has occurred in the interim.

Prior to documentation by Wansink (1994) and others of the within individual “inventory

effect” — higher inventories lead to greater rates of consumption — most empirical studies

used estimated consumption rates and inventory on hand purely to control for observed het-

erogeneity across individuals in their propensity to purchase in the category. Moreover, the

time-dependent inventory estimate was mean-centered to reflect “relative inventory on hand.”

This controls for observed heterogeneity across individuals in their usage levels. AN was the

first empirical study to modify the basic setup and reflect the possibility of inventory effects

in the underlying purchase incidence model.

2.2 Inventory and Consumption

In all empirical studies prior to AN, the rate of consumption CRh estimated from initialization

data did not vary with time and was assumed independent of the level of inventory on hand.

AN propose a time-varying inventory-dependent consumption function and investigate two

alternative forms: (1) a spline model in which the slope of the consumption line changes part

way through the consumption cycle, and (2) a “continuous nonlinear function”. This latter

function provides a superior fit to the data and is given by

CRh
t = INV h

t ·

 C

h

C
h

+ (INV h
t )f


 , (2.3)

where

CRh
t = consumption by household h at time t,

INV h
t = inventory for household h at time t,

C
h

= average consumption by household h, and
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f = flexible consumption parameter (to be estimated).

AN demonstrate that this new formulation: (1) provides a better fit to the data than a

model specified according to equation (2.2), and (2) that one can draw interesting insights

about the ability of promotions to stimulate additional demand. While these are important

contributions, the implied elasticity is highly non-linear and cross-category comparisons are

not intuitive. It is these two issues in particular that we address in our formulation. While

our model (like AN) is a reduced form approximation, we demonstrate its empirical merit

through: (1) superior model fit, and (2) intuitive cross-category comparisons.

Assume that the consumption rate behaves according to a Cobb-Douglas like formulation

CRh
t = Ch · (INV h

t )β, (2.4)

and taking logs

log(CRh
t ) = log(Ch) + β log(INV h

t ), (2.5)

so that the consumption rate is set with the average level of consumption in the initialization

period and is proportional to inventory on hand. Inserting the new consumption function into

equation (2.2), the deterministic utility for the incidence model is changed as follows

V h
t = γ0 + γ1 log(CRh

t ) + γ2MCINV h
t + γ3CV h

t

= γ0 + γ1

{
log(Ch) + β log(INV h

t )
}

+ γ2MCINV h
t + γ3CV h

t .

In order to properly identify the parameters, we reparameterize the model as

V h
t = α0 + α1 log(Ch) + α2 log(INV h

t ) + α3MCINV h
t + α4CV h

t , (2.6)

where α2 = α1 ·β so that β can be derived from α1 and α2 after estimation and the associated

standard error obtained using Kramer’s Theorem.5

5We estimate the consumption rate parameters in log form according to equation (2.6) and we set inventory

to 0.01 in instances where our estimate of inventory hits zero. We checked the number of times this occurred

for each category and found it to be very rare (less than 4% of observations for all categories). We re-estimated

the models under a condition where these observations were ignored. That is, we stopped using observations

for households once the estimate of inventory hit a very small but positive value and then only re-started

using the particular household when inventory was again replenished (by the next purchase). This resulted in

a small window of “inactivity” for the household. Under this condition our proposed model still fits the data

better than the null model (all categories) and better than AN (all categories except sugar). The statistical

significance of the results is unchanged and the quantitative effects virtually identical. We thank an anonymous

reviewer for drawing our attention to this matter.
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2.3 Inventory Elasticity and Quantitative Effects

The substantive value of equation (2.6) is evident when we compute the elasticity of purchase

incidence with respect to inventory. Dropping the household and time specific subscripts for

ease of exposition, we have

η =
dP

dINV
· INV

P
(2.7)

Again, for ease of exposition we denote the deterministic component of utility in the purchase

incidence probability as simply V . Working with the chain rule and the quotient rule we

obtain the derivative of the purchase incidence probability with respect to inventory as

dP

dINV
=

eV (α2/INV + α3)(1 + eV )− eV eV (α2/INV + α3)

(1 + eV )2

= (α2/INV + α3)P (1− P )

⇒ dP

dINV
· INV

P
= (1− P )(α2 + α3INV ) (2.8)

The final expression in equation (2.8) reveals the following. First, net elasticity can be either

positive or negative. This is because the term (1 − P ) is always positive, however the term

(α2 + α3INV ) can be positive or negative: α2 > 0 and INV ≥ 0 and α3 < 0. The sign of the

elasticity is therefore driven by relative magnitudes of the effects captured by α2 and α3 and

also the level of inventory on hand, INV . Recall that α2 = α1 · β is positive, captures the

“inventory pressure effect” and causes one to speed up the likelihood of purchase incidence.

Alternatively, α3 is negative and represents the “slowing down” effect of inventory as the

consumer with inventory on hand feels less pressure to buy in the category, all else equal. In

standard models the elasticity of incidence with respect to inventory is always negative. AN

offers an intuition similar to ours, however the expression is highly non-linear and difficult to

evaluate due to the formulation of the consumption rate according to equation (2.3).

For given parameter estimates, equation (2.8) reveals a critical level of inventory, INV ∗,

below which the net effect is positive, and above which the effect is negative. When the net

effect is negative this says that the consumer has a level of inventory that is large enough

to cause a delay in the probability of incidence even accounting for the pressure of inventory

on increased consumption. In the empirical section we compute the INV ∗ for ten differ-

ent product categories and show that not only are the effects plausible, but also consistent

with intuition about how different product categories (e.g., ice cream and paper towels) are

consumed.
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3 Data and Empirical Results

We begin with a brief description of the database and product categories used in the analysis

and then proceed to the empirical findings. Specifically, a comparison of AN and the proposed

model in terms of fit, followed by a discussion of the parameter estimates and quantitative

effects.

3.1 Database

We utilize ten product categories from the Stanford Market Basket Database. A total of 548

panelists make purchases from five separate supermarkets over a two-year period. We use the

first six months of data to initialize the average rate of consumption and other the loyalty

variables that are used in the brand choice model. The next one year of data are set aside

for model calibration. Our selection of product categories is guided by prior research (Bell,

Chiang and Padmanabhan 1999; Chandon and Wansink 2002). A priori, we would expect

relatively weak effects for bacon, butter, crackers, margarine and sugar due to perishability

and usage issues. Given the findings of Chandon and Wansink (2002) we might anticipate

inventory effects that are endogenous in detergent and paper towels. Finally, hot dogs, ice

cream and soft drinks should show the strongest effects as these categories could be subject

to both endogenous and exogenous consumption effects.

Summary statistics for the categories are provided in Table 1. In columns two through

four we report the number of brands, sizes and unique items (brand-size combinations) in

each category. Column five provides the number of households who make a choice in the

category (we include any household that makes at least one purchase in both the initialization

and calibration periods). Note that the penetration rate varies considerably across categories,

with butter and tissue being the low and high categories, respectively. Column six gives the

number of shopping trips made by the included households, while column seven reports the

total number of brand choices made by the same group.

——————————————

[Table 1 about here]

——————————————
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3.2 Empirical Findings

Model Fits . Table 2 reports a comparison of the model fits for AN and for our proposed

model. In the interests of brevity we do not include the fits for the standard model (where

the consumption rate is independent of time and inventory) but both AN and our proposed

model fit better for all categories (results are available from the authors upon request). The

number of parameters is the same for AN and our model, which provides a better fit for nine

of the ten categories (sugar is the one exception).

——————————————

[Table 2 about here]

——————————————

Parameter Estimates . Table 3 contains the parameter estimates for our proposed model.

All parameter estimates have the expected signs and are statistically different from zero (with

the exception of α3 for ice cream). AN note that purchase incidence models that do not allow

consumption to vary with inventory are likely to have downwards biased estimates for mean-

centered inventory (MCINV h
t ) and consumption (Ch). We also find evidence of this as our

estimates of α1 and α3 have larger magnitudes and smaller standard errors in our proposed

model (relative to a standard null model of equation 2.2).

——————————————

[Table 3 about here]

——————————————

Column five reports the effect of inventory on consumption, recovered as β = α2/α1. The

statistical significance of this parameter for all categories implies that consumption is not

independent of inventory, and that this manifests as a mechanism for speeding up purchase

incidence. The effect is strongest for ice cream and soft drinks — implying that inventory

pressure to consume more is particularly strong in these categories. Collectively, the cross-

category findings are consistent with the empirical work of AN and with the many behavioral

theories which suggest consumption is not independent of inventory.

Quantitative Effects. The derivation of the purchase incidence elasticity with respect to

inventory allows one to recover the critical value of inventory INV ∗ below which the elasticity

is positive. That is, the threshold value below which the pressure to consume more outweighs

the need to delay due to inventory on hand. Note that the inventory threshold values for
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bacon, butter, crackers, margarine and sugar are relatively low, both in absolute terms and

in comparison to the size of a standard package. This implies that in these categories the

consumer needs to only have a relatively small store of inventory on hand before the purchase

incidence probability is reduced. Consumers who “stockpile” these categories (if at all) will

become less likely to purchase as a consequence of inventory. They will not be induced to

consume more of the category.

Detergents and paper towels show relatively higher thresholds. This suggests that the

presence of inventory (about one standard package of detergent and four rolls of paper towels)

is likely to signal an increase in consumption. Following Chandon and Wansink (2002) we

would infer that this is for endogenous reasons — the presence of inventory signals an upcoming

period of higher than usual demand — and not for exogenous reasons (more inventory itself

leads to more consumption). The final three categories, hot dogs, ice cream and softdrinks

show relatively high thresholds. The inference is that the consumer needs to have “quite a lot”

of product on hand before the volume of inventory causes a slow down in the purchase incidence

probability. For moderate values of inventory the pressure to consume more dominates and

leads to an increase in the likelihood of purchase. Ice cream is a particularly interesting case.

The quantitative effect suggests that a consumer needs to have more than nine 16 oz containers

(a standard pack) on hand before a slowdown occurs. Because such a level of inventory is rare

the interpretation is that the presence of ice cream inventory on hand almost always causes

a speeding up in consumption and therefore the likelihood of purchase. This empirical result

suggests ice cream is a prototypical “inventory effect category.”

4 Discussion and Conclusion

Over several years, a number of authors (e.g., Bucklin and Lattin 1991; Chiang 1991; Chinta-

gunta 1993; Gupta 1988) have used scanner panel data to build models of purchase incidence.

Implicit in all this work was the notion that individual-level consumption rates vary over indi-

viduals, but not within individuals over time. At the same time analytical and experimental

studies (e.g., Assunção and Meyer 1993, Folkes et al. 1993; Ho et al. 1998; Raghubir and

Krishna 1999; Wansink 1994; Wansink and Deshpandé 1994) began to accumulate evidence

that consumption rates are not independent of inventory.
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AN is the first published empirical study to allow consumption to depend on inventory in

a model of purchase incidence. The authors specify the function given in equation (2.3) and

show a large degree of flexibility in the yogurt category and a smaller effect for ketchup. Sun

(2004) provides a structural model which finds the same kind of effect for canned tuna.

In this paper, we offer a parsimonious reduced form model to capture the effect of inventory

on consumption and the total effect of inventory on purchase incidence. Two opposing forces:

(1) the inventory pressure effect where more inventory leads to higher consumption, and (2)

the direct inventory effect – where higher levels of inventory reduce the need for purchase,

are incorporated into the model. The formulation is consistent with behavioral theories of

consumption and purchase, and the empirical findings concur with those of AN and also later

work by Sun (2004). An important outcome of the formulation is the analytical expression for

the elasticity of purchase incidence with respect to inventory. The expression given in equation

(2.8) captures the two opposing forces explicitly, and facilitates calculation of a critical value

of inventory below which consumers will feel pressure to increase consumption. Intuitively,

when inventory levels get “too high” the net effect on purchase incidence should be negative.

The empirical findings for all categories reject the assumption that consumption is inde-

pendent of inventory. The findings also reveal important differences across categories with hot

dogs, ice cream and soft drinks the categories that are most likely to be subject to exogenous

effects. That is, in all these categories higher levels of inventory — which can induce the

pressure to consume more — will have a net positive effect on the probability of purchase.

One implication is that retailers and manufacturers could fruitfully exploit this phenomenon

through a combination of price promotions and larger package sizes. For categories like deter-

gents and paper towels higher levels of inventory will likely be accompanied by higher levels

of consumption, but for endogenous reasons. Such endogenous reasons are idiosyncratic to

the household and therefore less subject to influence via price promotions. It may, however,

still be worthwhile for firms to investigate via market research, whether there is any system-

atic pattern to these reasons, and if so how they could be addressed through advertising and

communication.

Future Research. The contribution of this paper lies in the simple partitioning of the overall

effect of inventory on purchase incidence and in the cross-category results. We offer further

validation of the various behavioral theories that advance a relationship between inventory

and consumption, however, several avenues remain open for future research. First, one could
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attempt to develop more complex structural models as this kind of model is purportedly

superior for policy experiments (Sun 2004). Such experiments would allow researchers to

quantify the long term impact of an inventory-consumption relationship on primary demand.

The findings presented here point to large cross-category differences which are likely to be of

substantive interest to managers and are worthy of further exploration.

Second, we have not addressed the issue of parameter heterogeneity and there are un-

doubtedly “segments” of consumers who exhibit stronger or weaker effects. Identification of

such segments would be highly useful for targeting. It is well known that failure to account

for unobserved heterogeneity typically causes attenuation of the parameter estimates so it is

highly unlikely that our findings on the average effect are spurious.6

6AN do not consider parameter heterogeneity either. Also, the estimates for other model parameters (for

average consumption, mean-centered inventory and category value) all improve in our formulation — relative

to the standard null model.
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5 Appendix

To complete the specification of the nested logit model, we briefly describe the brand choice

component. The multinomial logit model specifies the probability of brand choice, given

purchase incidence, for household h at time t as

P h
t (i|inc) =

exp(Uh
t (i))∑

k exp(Uh
t (k))

, (5.1)

where Uh
t (i) denotes the deterministic component of utility for each alternative i. In cate-

gories where brands offer multiple sizes, each alternative becomes a brand-size combination

(Guadagni and Little 1983). To estimate the intercept portion of utility for specific brand-size

combinations, we follow the formulation given in Fader and Hardie (1996), using constants

pertaining to brands or sizes, as opposed to brand-sizes (see Table 1 for a description of

categories with multiple sizes).

The brand choice utility is:

Uh
t (i) = αi + β1BLOY h

i + β2LBP h
ti + β3SLOY h

i + β4LSP h
ti +

β5PRICEti + β6FEATit + β7DISPit (5.2)

where:

BLOY h
i = loyalty of household h to brand of brand–size i,

LBP h
it = 1 if i was last brand purchased, 0 otherwise,

SLOY h
i = loyalty of household h to size of brand–size i,

LSP h
it = 1 if i was last size purchased, 0 otherwise,

PRICEit = the actual shelf price of brand–size i at time t,

FEATit = 1 if brand–size i appeared in a feature at time t, 0 otherwise and

DISPit = 1 if brand–size i was specially displayed at time t, 0 otherwise.

We expect β1, β2, β3, β4, β6, β7, > 0 and β5 < 0. In the interests of space, these brand choice

estimates are not reported in the paper. All parameter values for all categories have the

expected sign and are statistically different from zero. Details are available from the authors

upon request.
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Category Number of Elements

Brands Sizes Items Households Observations Choices

Bacon 7 1 7 206 12,149 1442

Butter 5 1 5 163 10,048 1421

Crackers 6 1 6 170 10,277 1033

Detergent 9 4 32 243 14,742 1562

Hot dogs 10 2 16 255 14,694 1790

Ice cream 12 3 18 304 18,523 2528

Margarine 11 1 11 393 25,639 3693

Paper towels 11 1 11 430 27,598 4649

Soft drinks 7 7 29 257 15,624 3544

Sugar 7 1 7 244 13,339 1460

Table 1: Summary Statistics for Product Categories

BIC Values

AN (1998) Proposed

Bacon -5,016.15 -4,992.19

Butter -3,731.54 -3,652.02

Crackers -3,142.76 -3,079.74

Detergent -6,269.97 -6,251.50

Hot dogs -6,537.93 -6,520.81

Ice cream -8,677.96 -8,665.22

Margarine -13,694.18 -13,646.03

Paper towels -16,132.58 -15,883.42

Soft drinks -13,225.57 -12,729.89

Sugar -4,589.34 -4,603.45

Table 2: A Comparison of AN (1998) and the Proposed Model
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Category Intercept CRh
t MCINV h

t CV h
t INV h

t Threshold

(α0) (α1) (α3) (α4) (β) (INV ∗)

Bacon -2.30 0.50 -0.11 0.39 1.60 7.27 oz

-18.52 12.18 -3.18 8.93 6.29

Butter -1.20 0.60 -0.24 0.56 1.08 2.70 oz

-13.55 14.23 -6.63 14.70 6.79

Crackers -1.80 0.99 -0.37 0.49 0.26 0.70 oz

-6.76 10.30 -5.98 8.47 2.83

Detergent -3.54 0.45 -0.07 0.43 5.58 35.87 oz

-30.97 11.50 -3.99 11.62 7.50

Hot dogs -2.54 0.44 -0.13 0.32 4.66 15.77 oz

-13.98 11.24 -4.92 7.11 6.94

Ice cream -3.03 0.51 -0.01 0.32 2.98 151.98 oz

-26.34 17.50 -0.78 10.30 10.87

Margarine -1.37 0.49 -0.15 0.31 0.92 3.01 oz

-30.83 20.57 -8.43 11.93 8.00

Paper towels -2.16 0.58 -0.08 0.46 0.66 4.79 rolls

-37.53 28.23 -6.36 24.68 9.57

Soft drinks -3.09 0.41 -0.03 0.28 2.02 27.61 oz

-26.90 20.21 -3.44 9.88 11.53

Sugar -1.39 0.77 -0.04 0.32 0.57 10.97 oz

-24.23 17.89 -2.22 12.22 3.45

Table 3: Parameter Estimates, t-Statistics and Inventory Threshold


