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Abstract

We solve an N ∈ N player general-sum differential game. The opti-

mization problem considered here is based on the Uzawa Lucas model of

endogenous growth. Agents have logarithmic preferences and own two

capital stocks. Since the number of players is an arbitrary fixed number

N ∈ N, the model’s solution is more general than the idealized concepts

of the social planer’s solution with one player or the competitive equi-

librium with infinitely many players. We show that the symmetric Nash

equilibrium is completely described by the solution to a single ordinary

differential equation. The numerical results imply that the influence of

the externality along the balanced growth path decreases rapidly as the

number of players increases. Off the steady state, the externality is of

great importance, even for a large number of players.
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1 Introduction

This paper studies an N player differential game that is based on the Uzawa
(1965) and Lucas (1988) model of endogenous growth. Each player owns a
goods-producing firm and has access to educational services. The game’s time
horizon is infinite and the number of players is fixed. The goods sector technol-
ogy is Cobb-Douglas in human and physical capital while the schooling technol-
ogy is linear in human capital only. At the outset of the game, the players’ initial
endowments are identical. Their task is to simultaneously choose the optimal
consumption as well as the optimal allocation of human capital between the
two sectors. Since the goods sector productivity is influenced by the economy-
wide average level of human capital, the player has to know the decisions of his
co-players in order to optimally determine his own controls. Furthermore, the
game is symmetric in the players’ constraints and their objective functions. This
allows us to limit the set of potential solutions to symmetric Nash equilibria.

By generalizing the solution method introduced in Bethmann and Reiß
(2004), we derive the game’s open-loop solution. The main idea is to exploit the
model’s inherent homogeneity (cf. Caballé and Santos, 1993) in order to reduce
the complexity of the optimization problem. This is achieved by using the geo-
metric mean when defining the economy-wide average level of human capital.
This way we are able to subsume the information of the relevant state variables
in a weighted product, with the model’s inherent homogeneity determining the
respective weights. Following Mulligan and Sala-i-Martin (1991), the result of
this transformation is referred to as the state-like variable. The multiplicative
structure of this variable together with the logarithmic utility function allows
us to rewrite the value function of one player as the sum of the ‘value-function-
like function’ and expressions representing the influence of the N − 1 human
capital stocks of the other players on his life-time utility. The introduction of
the value-function-like function then allows us to reduce the complexity of the
player’s Hamilton-Jacobi-Bellman (HJB) equation to an implicit partial differ-
ential equation. Along the balanced growth path, we are able to state an explicit
solution to this equation. However, it is the generalization of the unstable so-
lutions to the resulting HJB equations in the social planer’s and the infinitely
many agents case (cf. Bethmann and Reiß, 2004). Nevertheless, because we
know this function we are able to determine the model’s steady state. Using
a standard transformation (cf. Bronstein and Semendjajew, 1999), we get an
equivalent explicit partial differential equation, which can be further reduced
to an ordinary differential equation by inserting the condition for a symmetric
Nash equilibrium. Finally, we use the steady state in order to determine an
initial value problem for this ordinary differential equation.

The numerical results show that the number of players indeed influences
the optimal human capital allocation of the agents. However, the influence of
N decreases very rapidly. Moreover, the strength of this phenomenon strongly
depends on the degree of the external effect of human capital on the goods
sector productivity. In fact, we show that both parameters work in opposite
directions. An increase in the degree of the external effect is similar to the effect
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of a lower number of players on the outcome of the differential game. Although
the conjecture that both effects are reciprocal seems obvious, we show that
this only holds for the steady state human capital allocation. Off the balanced
growth path, the influence of the number of players diminishes rapidly while the
degree of the external effect is still driving the agents’ decisions via its influence
on the shadow prices of the capital stocks.

The paper is organized as follows. Section 2 introduces the model. Section 3
states the differential game implied by the players’ coupled optimization prob-
lems. Section 4 presents the mathematical solution strategy. Section 5 examines
the numerical results showing the above mentioned antagonistic effects of the
two parameters. Section 6 concludes. The Appendix contains statements that
are omitted in the main paper for clarity of exposition.

2 The model

We assume a closed economy populated by N ∈ N identical and infinitely-lived
self-sustaining players. They are producing a single good and have access to a
schooling sector providing educational services. The player1 A(i), i ∈ {1, .., N},
has logarithmic preferences over consumption streams

U (i) =

∫ ∞

t=0

e−ρt ln c
(i)
t dt, (1)

where c
(i)
t is the player’s level of consumption at time t. We denote player-

specific variables and functions by upper indices. The parameter ρ > 0 is
the subjective discount rate. The logarithmic utility function implies that the
intertemporal elasticity of substitution is equal to one. Agents have a fixed
endowment of time, which is normalized as a constant flow of one unit. The

variable u
(i)
t denotes the fraction of time allocated to goods production at time t.

The fraction of time 1−u
(i)
t is spent in the schooling sector. Because agents do

not benefit from leisure, the whole time budget is allocated to the two sectors.
Hence, in any solution the condition

u
(i)
t ∈ [0, 1] (2)

has to be fulfilled. The variables c
(i)
t and u

(i)
t are the agent’s control variables.

Human capital production is determined by a linear technology in human capital

ḣ
(i)
t = B(1 − u

(i)
t )h

(i)
t , (3)

where we assume that B is positive. This technology combined with constraint
(2) implies that human capital will never decrease, i.e. the growth rate ḣ(i) is
non-negative. The schooling technology implies that the realized marginal and

average product is equal to B(1−u
(i)
t ). Note that we abstract from depreciation.

1Henceforth, we use player and agent interchangeably.
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The agent’s consumption good is produced by using a Cobb-Douglas tech-
nology in the two inputs physical and human capital. If not consumed, the good
is invested, thereby increasing the physical capital stock. The level of human
capital utilized in goods production equals the total level of the stock of human
capital multiplied by the fraction of time spent in the goods sector at time t.
Total factor productivity A is enhanced by the external effect γ of the econ-

omy’s average stock of human capital, ha,t. Hence, the player’s output y
(i)
t is

determined by

y
(i)
t = A(k

(i)
t )α(u

(i)
t h

(i)
t )1−αhγ

a,t.

The parameter α is the output elasticity of physical capital, and we assume
α ∈ (0, 1). The exponent γ is assumed to be non-negative. We assume that the
economy-wide average level of human capital is defined by the geometric mean
of the individual human capital stocks

ha =
(

N
∏

n=1

h(n)
)

1
N

. (4)

Since all agents are homogeneous, the economy’s average level of human capital
must be equal to the individual human capital levels at any point in time. Hence,

h
(i)
t = ha,t, ∀t ≥ 0, ∀i ∈ {1, .., N}, (5)

holds. The player can either consume or invest his output y
(i)
t . Since we abstract

from depreciation, his budget constraint reads as follows

y
(i)
t = c

(i)
t + k̇

(i)
t , ∀t ≥ 0.

The right-hand side describes the spending of the player’s earnings, where k̇
(i)
t

is the rate of change of his physical capital stock k
(i)
t , i.e. his net investment

in physical capital. The left-hand side represents the income streams from the

agent’s physical capital stock and from his work effort u
(i)
t h

(i)
t . We assume

that the initial values k0 and h0 are strictly positive. By consuming more than
current production, it is possible to disinvest in physical capital, i.e. the growth
rate of physical capital becomes negative.

Informational assumptions

Clemhout and Wan (1994, p.812) argue that ‘which equilibrium concept to
use should be decided on the relative realism, and nothing else‘. In order to
quantify the influence of the external effect and of the number of players on the
game’s outcome, we compute the model’s open-loop equilibrium strategies. The
open-loop equilibrium concept is characterized by the fact that agents commit
themselves at the outset of the game to entire temporal paths of human capital
allocation and consumption that maximize their discounted utility given the
decision paths of all other agents. Although this is a simplification we think
that it is justified by the long-term character of schooling decisions. The next
section discusses the optimization problem at hand as a differential game.
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3 The N-player game

We consider a non-cooperative differential game with N ∈ N players. The game
extends over the unbounded time interval [0,∞). The state of the game at each

instant t ∈ [0,∞) is described by a vector st :=
{

k
(1)
t , h

(1)
t ; ..; k

(N)
t , h

(N)
t

}

∈ R
2N
++,

where R
2N
++ is the state space of the game. The entries k(i) and h(i) denote the

physical and human capital stocks of agent A(i), i ∈ {1, .., N}. Let us define the
set S̄ as the subset of R

2N
++ with elements of the form {z, y; z, y; ..; z, y}, where

y, z ∈ R++. Therefore, the symmetric initial state of the game is a fixed vector
s̄0 =

{

k0, h0; ..; k0, h0

}

∈ S̄ ⊂ R
2N
++. At each point in time t ∈ [0,∞), each

player A(i) chooses the control variables c(i) and u(i) from his set of feasible
controls χ, with

χ =
{

(f, g) : R
2N
++ 7→ [0,∞) × [0, 1] |locally bounded and measurable

}

.

The state of the game evolves according to the differential equations

k̇
(i)
t = A

(

k
(i)
t

)α(
u

(i)
t

)1−α(
h

(i)
t

)1−α(
ha,t

)γ
− c

(i)
t ,

ḣ
(i)
t = B

(

1 − u
(i)
t

)

h
(i)
t .

These equations hold for all t ∈ [0,∞) and all i ∈ {1, .., N}. Note that the
assumption (4) allows us to rewrite the term hγ

a, which influences total factor
productivity in the goods sector, as follows

hγ
a =

(

h(i)
)

γ
N
(

∏

j 6=i

h(j)
)

γ
N

,

where j 6= i is a shortcut and stands for j ∈ {1, .., N} \ {i}. We assume
that agents make their choices simultaneously and solve the following dynamic
optimization problems (DOPs). Agent A(i) seeks to maximize lifetime utility

U (i) = max
c
(i)
t ,u

(i)
t

∫ ∞

t=0

e−ρt ln c
(i)
t dt,

subject to the state dynamics

k̇
(i)
t = A(k

(i)
t )α

(

u
(i)
t

)1−α
(h

(i)
t )1−α+ γ

N

(

∏

j 6=1

h
(j)
t

)

γ
N

− c
(i)
t , ∀ t ≥ 0,

ḣ
(i)
t = B

(

1 − u
(i)
t

)

h
(i)
t , ∀ t ≥ 0,

k
(i)
t ≥ 0 and h

(i)
t ≥ 0, ∀ t ≥ 0.

Since all these optimization problems are coupled via the values of the individual
human capital stocks h(j) for positive γ, we interpret this optimization problem
as a multiple players’ non-cooperative game Γ (t, st). Note that the above DOPs
are homogeneous in the initial conditions (cf. Bethmann and Reiß, 2004) - a
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fact that we will exploit extensively in the next section. The symmetry in
the agents’ initial endowments combined with the symmetry in preferences and
technology encourages us to look for symmetric Nash equilibria. Applying the
definition (e.g. Dockner et al. (2000), Chapter 4) to our game Γ (0, s̄0), the
policy functions u(i∗) and c(i∗) form a Nash equilibrium if

U (i)
(

(u(i∗), c(i∗)); (u(j∗), c(j∗)), j 6= i
)

≥ U (i)
(

(u(i), c(i)); (u(j∗), c(j∗)), j 6= i
)

holds for all feasible controls u(i) and c(i) and for all agents A(i). In the following
section, we assume that agents commit themselves to entire courses of action at
the game’s outset and are not allowed to revise them at any subsequent date.

4 The open-loop solution

In this section, we solve the non-cooperative game under the assumption that
the agents are not allowed to revise their action paths once they have made their
choices, i.e. we consider that agents play open-loop strategies. In Section 4.1 we
exploit the game’s homogeneity in the initial conditions in order to reduce the
Hamilton-Jacobi-Bellman equation to an implicit partial differential equation.
Along the balanced growth path, this equation is an implicit ordinary differential
equation and we are able to give an explicit solution which is indeed the agent’s
value function. However, outside this path, the application of this function
leads to non-feasible controls. In Section 4.2, we start with the implicit partial
differential equation describing the solution to our problem. We define the
symmetric Nash equilibrium and reduce the problem to an initial value problem
for a single explicit ordinary differential equation.

4.1 The Hamilton Jacobi Bellman equation

Agent A(i) defines the value function as the solution to his dynamic optimization
problem given the symmetric initial state s̄0 and given the optimal decisions of
his co-players A(j), with j 6= i:

V (i)(s̄0) := max
(c(i),u(i))∈X

{

∫∞

0
e−ρt ln c

(i)
t dt, τ = ∞

−∞, τ < ∞,

where τ denotes the stopping time τ := inf{t ≥ 0 | kt = 0}. In order to determine
the value function, we write down the Hamilton-Jacobi-Bellman (HJB) equation
for the value function V (i) := V (i)(st):

ρV (i) = max
(c(i),u(i))∈X







ln c(i) + V
(i)
k k̇

(i)
t + V

(i)
h ḣ

(i)
t +

∑

j 6=i

V
(i)

h(j) ḣ
(j)
t + V

(i)
t







(6)

Here, V
(i)
k , V

(i)
h , and, V

(i)

h(j) denote the partial derivatives with respect to the

agent’s own capital stocks k(i) and h(i) and to the other agents’ human capital
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stocks h(j). These derivatives can be interpreted as the shadow prices of relaxing

the corresponding constraints. V
(i)
t denotes the partial derivative with respect

to time t. The first order necessary conditions are:

c(i∗) = 1

V
(i)

k

, (7)

u(i∗) =

(

A(1−α)V
(i)

k

BV
(i)

h

)
1
α k(i)(

Q
j 6=1 h(j))

γ
αN

(h(i))
1−

γ
αN

. (8)

The agent chooses the consumption stream such that the marginal utility is
equal to the marginal change of wealth with respect to physical capital. The
optimal allocation of human capital between the two sectors is achieved if the
weighted marginal changes in the two sectors due to marginal shifting are equal.
The weights are the shadow prices of the state variable, which is generated in the
respective sector. Since it is obvious, that the value function V (i) is increasing
in its arguments, expression (7) ensures that the consumption rate is positive.
Equally, u(i∗) ∈ (0,∞) holds, but u(i∗) > 1 may well occur. For the moment, let
us suppose that the controls (c(i∗), u(i∗)) found above are feasible. We continue
by inserting our findings into the HJB equation (6). We obtain:

ρV (i) + 1 + lnV
(i)
k − V

(i)
t

= α
(

AV
(i)
k

)
1
α
(

1−α

BV
(i)

h

)
1-α
α k(i)

(

N
∏

n=1

h(j)
)

γ
αN

+BV
(i)
h h(i) +

∑

j 6=i

BV
(i)

h(j)(1−u
(j)
t )h(j).

The homogeneity in the initial conditions allows us to generalize Mulligan and

Sala-i-Martin’s (1991) idea to introduce the agent’s state-like variable x
(i)
t and

his control-like variable q
(i)
t . Here, we define them as follows:

x
(i)
t =

k
(i)
t

h
(i)
t

�QN
n=1 h

(n)
t

� γ/N
1−α

and q
(i)
t =

c
(i)
t

h
(i)
t

�QN
n=1 h

(n)
t

� γ/N
1−α

. (9)

The evolution of the state-like variable x(i) can be determined by taking the
derivative with respect to time and inserting the state dynamics for k(i) and
h(n) respectively, n ∈ {1, .., N}:

ẋ
(i)
t = A

(

x
(i)
t

)α(
u

(i)
t

)1−α
−q

(i)
t −

(1−α+γ−γ
N

P
j 6=iu

(j)
t )Bx

(i)
t

1−α +
(1−α+ γ

N )Bu
(i)
t x

(i)
t

1−α . (10)

We see that the evolution of x
(i)
t is completely described by three groups of

variables. First, by the state-like variable x(i) itself. Second, by A(i)’s controls
u(i) and q(i). Third, by all other agent’s human capital allocation decision paths

u
(j)
t with j 6= i. The homogeneity in the initial conditions implies that we are

led to apply the same controls ũ
(i)
t = u

(i)
t and q̃

(i)
t = q

(i)
t for any symmetric

initial state s̃0 with x̃
(i)
0 = x

(i)
0 . The only difference is that the consumption

rate c̃
(i)
t differs from c

(i)
t by the factor

h̃
(i)
0

h
(i)
0

(

N
∏

n=1

h̃
(n)
0

h
(n)
0

)

γ/N
1−α

=

(

h̃
(i)
0

h
(i)
0

)

1−α+γ
1−α

.
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Following Bethmann and Reiß (2004), we derive the symmetric solution from

the value function-like function f (i) with V (i)(s̄t) = f (i)(x(i), t;u
(j)
t , j 6= i) via

V (i)(s̄t, t;u
(j)
t , j 6= i) = f (i)(x(i), t;u

(j)
t , j 6= i) +

(1−α+ γ
N ) ln h(i)

ρ(1−α) +
γ
N

P
j 6=i ln h(j)

ρ(1−α) ,

where the semicolon indicates that we restrict the function to given time-
dependent paths of the other agents’ allocations of human capital. The deriva-
tives of V (i) with respect to the agent’s capital stocks k(i) and h(i), to the other
agents’ human capital stocks h(j) where j 6= i, and to time t can be expressed
in terms of the function f (i). Hence, we consider:

V
(i)

k(i) =
f(i)

x x(i)

k(i) ,

V
(i)

h(i) = 1−α+γ/N
1−α

(

1
ρh(i) −

f(i)
x x(i)

h(i)

)

,

V
(i)

h(j) = γ/N
1−α

(

1
ρh(j) −

f(i)
x x(i)

h(j)

)

,

V
(i)
t = f

(i)
t ,

where f
(i)
x := ∂f(i)

∂x(i) and f
(i)
t := ∂f(i)

∂t . Thus, the function f (i) determines deci-
sively the shadow prices of the two private production factors and of the other
agents’ stocks of human capital. The introduction of the state-like variable x(i),
of the control-like variable q(i), and of the value function-like function f (i) allows
us to rewrite the first order necessary conditions (7) and (8):

q(i∗)(x(i)) =
(

∂f(i)

∂x(i)

)−1
(11)

u(i∗)(x(i)) =
(

(1−α)2A

B
(

1−α+ γ
N

)(

1

ρf
(i)
x

−x(i)
)

)
1
α

x(i). (12)

Let ua,t denote the arithmetic mean of all other agents’ decisions of allocating
their stocks of human capital (A(j), j 6= i), i.e. we define the co-players’ optimal
average human capital allocation decision at date t as follows:

u∗
a,t := 1

N−1

∑

j 6=i

u
(j∗)
t .

Using this definition combined with the first order necessary conditions and the
above shadow prices, we rewrite the HJB equation as follows:

f (i)−
B(1−α+γ−γu∗

a,t
N-1
N )

ρ2(1−α) +
1−f

(i)
t +ln f(i)

x

ρ =
B(1−α+γ−γu∗

a,t
N-1
N )x(i)f(i)

x

ρ(1−α)

[

(

f(i)
x ϕt

1
ρ−x(i)f

(i)
x

)

1-α
α −1

]

with

ϕt := 1−α
1−α+ γ

N

(

αα(1−α)A

B
(

1−α+γ−γu∗
a,t

N-1
N

)α

)
1

1−α

.

Note that we have reduced the HJB equation to an implicit partial differential
equation in the variables x(i) and t. The parameter ϕt is strictly positive. In a
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first step, we only look for the balanced growth path solution, where the state-
like variable x(i) and the controls q(i) and u(i) remain constant over time. In
this case, we set the exogenous value u∗

a,t equal to a constant u∗
a ∈ [0, 1] such

that the coefficients of the reduced HJB-equation are time-independent. We

then look for time autonomous solutions f (i). In this case f
(i)
t = 0 holds and

we obtain:

f (i)−
B(1−α+γ−γu∗

a
N-1
N )

ρ2(1−α) +
1+ln f(i)

x

ρ =
B(1−α+γ−γu∗

a
N-1
N )x(i)f(i)

x

ρ(1−α)

[

(

f(i)
x ϕ

1
ρ−x(i)f

(i)
x

)

1-α
α −1

]

,

where the parameter ϕ is given by:

ϕ := 1−α
1−α+ γ

N

(

αα(1−α)A

B
(

1−α+γ−γu∗
a

N-1
N

)α

)
1

1−α

.

Now we consider an implicit ordinary differential equation, where ϕ is strictly
positive. We claim that a solution to this equation is given by:

g(i)(x(i)) =
B(1−α+γ−γu∗

a
N-1
N )

ρ2(1−α) + ln ρ−1
ρ + 1

ρ ln(x(i) + ϕ). (13)

Indeed, we have g
(i)
x = 1/(ρx(i) + ρϕ) and 1/ρ − x(i)g

(i)
x = ϕg

(i)
x . Hence:

g(i) −
B(1−α+γ−γu∗

a
N-1
N )

ρ2(1−α) +
1+ln g(i)

x

ρ = 0 and
(

g(i)
x ϕ

1
ρ−x(i)g

(i)
x

)

1−α
α

= 1.

The controls derived from g(i) are given by:

u(i∗) =
(

(1−α)2A
B(1−α+ γ

N )ϕ

)
1
α

x(i) and q(i∗) = ρ
(

x(i) + ϕ
)

.

The insertion of these findings into the dynamics equation (10) for the state-like
variable xt gives us the following quadratic equation:

ẋ
(i)
t = a

(

x
(i)
t

)2
+
(

aϕ − ρ
)

x
(i)
t − ϕρ with a :=

B(1−α+γ−γua
N−1

N )

αϕ . (14)

A search for the steady states of x(i) shows that on the positive axis, ẋ
(i)
t only

vanishes for the value:

x(i)
ss =

ρ

a
= ρ(1−α)

B(1−α+ γ
N )

(

α(1−α)A

B(1−α+γ−γu∗
a

N-1
N )

)
1

1−α

.

Linearizing the right hand side of equation (10) at x(i) = x
(i)
ss shows that x

(i)
ss is

locally unstable:

ẋ
(i)
t ≃ (ρ + aϕ)

(

x
(i)
t − x(i)

ss

)

, with ρ + aϕ > 0.

Therefore, we infer that g(i) yields the unstable solution branch in the phase
diagram. Unfortunately, an analytic expression for the stable solution branch
is unknown. The steady state controls implied by f (i) are as follows:

u(i∗)
ss = ρ(1−α)

B(1−α+ γ
N ) and q(i∗)

ss = ρϕ
B

αρ+B(1−α+γ−γu∗
a

N-1
N )

1−α+γ−γu∗
a

N-1
N

. (15)

We stress that g(i) determines u
(i∗)
ss independently of u∗

a, so that the steady state

is unique. As a result, u∗
a = u

(i∗)
ss holds along the balanced growth path.

9



4.2 The symmetric Nash equilibrium

By symmetry, u(i∗) = u∗ and c(i∗) = c∗ do not depend on the agent A(i). In
particular the average human capital allocation rule satisfies ua = u(i∗). Hence,
the agent’s lifetime utility U (i) only depends on his own controls, u(i) and c(i),
and on the average decision rule u∗

a concerning the optimal allocation of human
capital ha. Thus, u∗ and c∗ satisfy the Nash condition if

U
(

(u
(∗)
t )t≥0, (c

(∗)
t )t≥0, (u

∗
a,t)t≥0

)

≥ U
(

(ut)t≥0, (ct)t≥0, (u
∗
a,t)t≥0

)

holds for all feasible controls (ut)t≥0 and (ct)t≥0. Note that from now on we
drop the superscript (i) in the notation. Furthermore, we restrict our attention
of the HJB-equation to the homogeneous form G(t)(x, fx(x, t), ft(x, t)) with:

G(t)(x, p, d) :=
B(1−α+γ−γu∗

a,t
N-1
N )

ρ2(1−α) + d−ln p
ρ +

B(1−α+γ−γu∗
a,t

N-1
N )xp

ρ(1−α)

[

ϕ
1-α
α

t

( 1
ρp−x)

1-α
α

−1

]

,

where we have defined

ϕt := 1−α
1−α+γ/N

(

αα(1−α)A

B
(

1−α+γ−γu∗
a,t

N-1
N

)α

)
1

1−α

.

The function G(t) equals up to an additive constant and to the factor ρ the
Hamiltonian of the transformed DOP. Consequently, p(x, t) := fx(x, t) solves
the partial differential equation:

p = G(t)
x + G(t)

p px + G
(t)
d pt,

where the respective derivatives of the homogeneous form G(t) are given by

G(t)
x (x, p, d) =

B(1−α+γ−γu∗
a,t

N-1
N )p

ρ(1−α)

[

ϕ
1-α
α

t ( 1
ρp + 1−2α

α x)

( 1
ρp−x)

1
α

− 1
]

,

G(t)
p (x, p, d) =

B(1−α+γ−γu∗
a,t

N-1
N )x

ρ(1−α)

[

ϕ
1-α
α

t ( 1
αρp−x)

( 1
ρp−x)

1
α

− 1
]

− 1
ρp ,

G
(t)
d (x, p, d) = 1

ρ .

Note that the dynamics equation (10) for the state-like variable xt combined
with the restated first order necessary conditions in (11) and (12) imply that

ẋt = ρG
(t)
p holds along the optimal control path. From economic theory, we

immediately infer that xt converges monotonically to its steady state value xss

such that ẋt = ρG
(t)
p 6= 0 holds off the balanced growth path. Denoting the

inverse function of t 7→ xt by x 7→ t(x) we put p̃(x) = p(x, t(x)) for x > 0 and

x 6= xss. From G
(t)
d = G

(t)
p ẋ−1

t we thus infer

p̃(x) = G(t)
x + G(t)

p

(

p̃′(x) −
(

t′(x) − ẋ−1
t

)

pt

)

= G(t)
x + G(t)

p p̃′(x),

10



where G(t) means obviously G(t(x)) along the solution path. We know from the
Nash condition that ua,t = u∗(xt) holds, which we can now insert to obtain the
ordinary differential equation p̃ = Gx + Gpp̃

′ with

Gx(x, p) =
B(1−α+γ−γ N-1

N u(p,x))p

ρ(1−α)

[

(

ϕ(p, x)
)

1-α
α ( 1

ρp − x)
-1
α

(

1
ρp + 1−2α

α x
)

−1
]

,

Gp(x, p) =
B(1−α+γ−γ N-1

N u(p,x))x

ρ(1−α)

[

(

ϕ(p, x)
)

1-α
α
(

1
ρp − x

)
-1
α
(

1
αρp − x

)

−1
]

− 1
ρp .

Here, the notation ϕ(p, x) reflects that ϕt depends on u(p, x), which is itself
derived from formula (12), where

u(p, x) =

(

(1−α)2A

B(1−α+ γ
N )( 1

ρp−x)

)
1
α

x. (16)

Hence, the co-players’ optimal average decision u∗
a,t is replaced by (16), which

stresses the fact that the agents commit themselves to time dependent control
paths (ut)t≥0 at the outset of the game. The differential equation is now explicit
with

p̃′ =
p̃ − Gx

Gp
.

Because q = p̃−1 and hence q′ = −p̃−2p̃′ holds, we can now rewrite this equation
in terms of the optimal control-like variable such that the following explicit
ordinary differential equation has to be solved:

q′ = q
1−

B(1−α+γ−γ N-1
N u(q,x))

(1−α)ρ

[

(

ϕ(q, x)
)

1-α
α ( q

ρ −x)
-1
α

(

q
ρ + 1−2α

α x
)

−1
]

q
ρ −

B(1−α+γ−γ N-1
N u(q,x))x

(1−α)ρ

[

(

ϕ(q, x)
)

1-α
α
(

q
ρ − x

)
-1
α
(

q
αρ − x

)

−1
] . (17)

This fraction is indeterminate at xss:

q′(x) =
K (x, q(x))

L (x, q(x))
and K (xss, q(xss)) = L (xss, q(xss)) = 0.

In order to obtain determinacy at xss, we use L’Hôpital’s rule, which gives

q′(xss) =
Kx(xss, q(xss)) + Kq(x

ss, q(xss))q′(xss)

Lx(xss, q(xss)) + Lq(xss, q(xss))q′(xss)
.

This leads us to a quadratic equation in q′(xss). One solution of this equation,
we already know from g, namely q′(xss) = ρ. Therefore, there exists exactly
one other possible solution of q′(xss) which is given by

q′(xss) = −Kx(xss,q(xss))
ρLq(xss,q(xss)) .

As a result, the fraction is now determinate with

q′(xss) =

(

αρ+B(1−α+γ−γ N-1
N uss)

)(

(1−α+γ)uss+(1−α)(1−α+γ−γ N-1
N uss)(1+ 1−α+γ

1−α+γ/N
)
)

(

1−α2
)(

1−α+γ−γ N-1
N uss

)

+α
(

1−α+γ
)

uss
.

(18)
The Appendix states some intermediate results that we obtained when deter-
mining this expression. Note that only a simple initial value problem remains
to be solved, which is done in next section.
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Figure 1:
Phase diagrams for q(x) with γ = 0.25 and γ = 0.5.
Left: 2 players. Right: 1000 players.

5 Numerical results

In this section, we apply the findings of the preceding section and determine
the model’s solutions numerically. We examine the influence of the number
of players, N , and the influence of the degree of the external effect, γ, on the
outcome of the differential games. Our analysis focuses on the agents’ two policy
rules, and we consider the following typical calibration of the parameter values

A = 1, B = 1
10 , ρ = 1

20 , and α = 1
3 . (19)

Figure 1 contains the phase diagrams for the players’ control-like variables q(x)
where we have set the degrees of the external effect γ equal to 0.25 and 0.5,
respectively. The left diagram displays the solutions for the two-player economy
and the right diagram refers to the economy with 1000 players. The linear lines
are derived from the unstable solutions (13) to the HJB-equations, with the
parameters ua set equal to their steady state values (15). The concave lines,
which start in the origin are the optimal controls q derived from the true value
functions V , that is the numerical solutions of the initial value problems given
in equations (17) and (18). Both the stable and the unstable solution branches
meet in the respective saddle points (xss, qss). In the N = 1000 case, the
relatively low appreciation of human capital leads to higher steady-state values
of x compared to the corresponding values in the left diagram where N = 2.
For increasing γ, however, we observe a shift of the steady states to the left,
demonstrating that the N -effect and the γ-effect work in opposite directions.

The left diagram of Figure 2 shows the steady state ratios of consumption
to physical capital for various economies2. These ratios depend on the external
effect: The higher the degree of the external effect, the higher the ratio of
consumption to physical capital. This relationship increases oppositely to the
size of the economy, because the smaller the economy the more influence a single
agent has on the evolution of the average level of human capital. The stronger

2These ratios are also represented in the phase diagrams (Figure 1) by the angles between
the x-axis and the straight lines between the steady state (xss, qss) and the origin.
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Figure 2:
Steady state of c/k = q/x and u with respect to γ and N .
Left: Steady state ratio qss

xss
. Right: Steady state allocation uss.

the influence on ha, the less is the appreciation of physical capital, so that the
steady state ratio of consumption to capital is higher. Since all costs and returns
are internalized in the N = 1 player economies, the steady state consumption of
physical capital is higher than in economies with more than one player. The right
diagram of Figure 2 refers to the model’s second control variable and displays
the corresponding steady state allocations of human capital to the goods sector.
Here, the internalization of all costs and returns in the N = 1 player economy
leads to lower steady state values than in economies with more than one player.
A similar reasoning holds for arbitrary economies with N and N ′ players, where
N < N ′. The higher marginal returns of the agents’ human capital stocks
in the N player cases lead to lower steady state values of u compared to the
N ′ player cases. While in the left diagram, we observe a remaining influence
of the external effect γ on c/k even for large values of N , the right diagram
indicates that γ plays no role for the steady state human capital allocations for
large vales of N . If we consider N = ∞, the intuition of this becomes clear.
Along the balanced growth path, an agent benefits from a high degree of the
external effect via a higher growth rate of total factor productivity. Thus he can
afford sustainable higher consumption rates than in cases with a lower γ. For
the optimal human capital allocation, however, the non-cooperative character
of our games ensure that agents treat the evolution of ha as exogenously given.
Thus, the allocation decisions are completely independent of γ.

Figure 3 shows the optimal human capital allocation u in the (x, γ) space
as a surface. As in the first figure, the left diagram represents the two-player
economy and the right diagram the economy with N = 1000. The black lines
correspond to the respective steady-state values uss. Since for N = 2, an agent
has more influence on the evolution of the average human capital stock, his
valuation of human capital is higher than that of an agent in the N = 1000
player games. This explains why for a positive γ and N = 2, the allocation
of human capital to the goods sector is always smaller than the corresponding
values of u in the right diagram where N = 1000 holds. For small values of x
and γ, agents in both economies would like to set u larger than one. There we
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Figure 3:
Optimal time share u in (x, γ) space.
Left: 2 players. Right: 1000 players.

have to set u = 1 and solve for the optimal consumption rates of the remaining
one sector growth models. Note that for fixed values of γ, the fraction of time
allocated to goods production decreases when x increases. High values of x
indicate that an economy’s endowment of human capital is low. This leads to
high marginal returns of human capital in goods production and thus to high
opportunity costs of schooling. Arbitrage reasoning implies that the marginal
productivity of human capital in the schooling sector must also be high3. Hence
a high fraction of human capital is attracted by the schooling sector and we
observe a low optimal value of u. Arbitrage can also explain the negative slope
of the surface with respect to γ. An increase in the number of players causes
the influence of a single player on the average level of human capital to decline.
Thus the optimal human capital allocation is decreasing in N .

At first glance, one may conjecture that considering different numbers of
players is equivalent to a rescaling of the γ-axis, so that the surface is stretched
like a rubber blanket (see also Figure 6 in the Appendix). In the following
two figures, we study the interplay of γ and N and show that although they
work in opposite directions their influence is not reciprocal. It is shown that the
fraction γ/N is not sufficient to determine the allocation of human capital off the
balanced growth path. Thus, we need to know both parameters explicitly. This
is in contrast to the steady state allocation, where γ/N is a sufficient statistic.

Keeping the above conjecture in mind, we now consider optimal allocations
along the transition paths towards the steady states. The diagrams of Figure 4
refer to the optimal human capital allocation if the state-like variable is fixed
and equal to a constant. The two constants in the figure refer to the steady
state of the state-like variable in the case where the external effect is zero4.
For illustrational purposes, we consider half the value of the steady state (a)
in the left diagram and twice the value of the steady state (a) in the right
diagram. Consider two economies of size N and N ′ with N < N ′. Suppose
that γ/N = γ′/N ′ holds. Then the degree of increasing returns is the same in

3The opportunity costs of schooling are also determined by the shadow prices of the agent’s
capital stocks, cf. first order necessary condition (8).

4The absence of the external effect entails this value to be the steady state for all N .
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Figure 4:
Optimal time share u(x) with respect to γ and N , for x ∈ {a, a}.
Left: For x = a. Right: For x = a.

both economies. However, because of 1/N > 1/N ′, the agents’ influence on the
evolution of total factor productivity in the N case is relatively larger than in
the N ′ case. Thus, the relationship between the shadow prices of the two capital
stocks is shifted towards physical capital in the N -case. Hence, the opportunity
cost of schooling must be higher and agents in the N economy engage in more
schooling activities than agents in the N ′ economy. As a consequence, the
optimal allocation of human capital in the two cases cannot be identical. Thus,
we have disproved our initial idea that the influences of the degree of the external
effect and the number of players are reciprocal when fixing the state-like variable.

Finally, we examine if the influences of the two parameters are reciprocal
when considering relative deviations of the state-like variables from their re-
spective steady state. Figure 5 shows the values of u when considering the
state-like variable to be far away from the steady state of the respective econ-
omy. In the left diagram, we consider x = 1/2xss. This corresponds to a
relative scarcity of physical capital, thereby implying a relatively low marginal
productivity of human capital in goods production. Interestingly, we find an
increasing influence of the degree of the external effect on the optimal human
capital allocation for economies with a larger number of players. In contrast,
u is decreasing in γ for small economies. Let two games be given. In the first
game, the parameter γ is larger than in the second game. Furthermore, suppose
that the number of players N is relatively large. As a consequence, we can
neglect the agents’ influence on the economy-wide average human capital stock.
If we assume firstly that the individual levels of the capital stocks and secondly
that the growth rates of the average human capital stocks are the same in both
games, the agents know that the total factor productivity of goods production
will be higher in the next moment for the economy with the larger γ. Conse-
quently, agents would like to consume more in the large γ case. Thus, agents
allocate more human capital to the goods sector in order to compensate the
higher consumption rate. In other words, for large economies the relationship
between the shadow prices of the two capital stocks is shifted towards human
capital if the parameter γ increases. Furthermore, the original assumption that
the average stock of human capital grow in both cases at equal rates does not
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Optimal time share u(x) with respect to γ and N .
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2xss. Right: For x = 2xss.

hold. As a result, they cannot be symmetric Nash equilibria, at least in one of
the two games considered. We conclude that the average stock of human capital
grows faster in the high γ economy if the agents’ influence on ha is negligible. In
the right diagram, x = 2xss holds, i.e. we consider a relative scarcity of human
capital. This causes the productivity of human capital in the goods sector to be
very high. When disregarding the respective shadow prices, it follows that the
opportunity cost of schooling is also very high. Therefore, the players optimal
allocation of human capital to the goods sector has to be relatively small in
order to balance the marginal productivity of human capital in the two sectors.
Obviously, the larger the parameter γ and the smaller the size of the economy,
the more distinct this effect becomes.

6 Conclusion

In this paper, we have derived the open loop solutions of symmetric differential
games with logarithmic objective functions. The focus on time dependent con-
trol paths and symmetric Nash equilibria has permitted to solve the differential
games for an arbitrary number of players N . We have shown that the games’
solutions are completely described by an initial value problem for an ordinary
differential equation. Since the allocation of human capital between the two
production sectors is crucial for our understanding of the transitional dynam-
ics (cf. Mulligan and Sala-i-Martin, 1993), we have examined the influences of
the number of players, N , and of the degree of the external effect, γ, on the
agents’ optimal choices of u. Although the fraction γ/N is a sufficient statistic
to determine the steady state value of the optimal human capital allocation, we
have demonstrated that we need to know both parameters when searching for
the optimal u outside the steady state.

Finally, future research will have to investigate the game’s Markovian out-
come. The Markovian equilibrium concept requires that at each point in time
players are able to observe the state of the game and commit to an optimal
state-dependent decision rule. While this concept also captures the strategic
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externality that arises from the other players’ feedback on an agent’s human
capital allocation decision, the open-loop concept only captures the cost ex-
ternality due to changes in the opportunity cost of schooling. The difference
in the two equilibrium concepts, therefore, quantifies the strategic externality.
This externality provides an upper bound of the inaccuracy introduced by the
simplifying open-loop equilibrium concept.
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Appendix

The initial value q′(xss)

Note that the derivatives of ϕ(q, x) at q = q(xss) and x = xss are found to be

ϕx =
ϕss

a αγ(N−1)ux

(1−α)[N(1−α+γ)−γ(N−1)uss] and ϕq =
ϕss

a αγ(N−1)uq

(1−α)[N(1−α+γ)−γ(N−1)uss] .

The respective derivatives of (16) are given by

ux = uss
B(1−α+γ−γ N−1

N uss)+ρ

αρϕ and uq = uss

ρϕss
a

.

Let K(q(xss), xss) and L(q(xss), xss) denote the numerator and denominator

of the differential equation (17). Since q′(xss) = −Kx(q(xss),xss)
ρLq(q(xss),xss) holds for the

second root of the quadratic equation we nedd the following two derivatives:

Lq(x
ss, q(xss)) = 1−α2

α + (1−α+γ)uss

1−α+γ−γ N-1
N uss

Kx(xss, q(xss)) = −ρqss

αϕ

{

(1−α+γ)(1−α)
1−α+γ/N +

(1−α)2(1−α+γ−γ N-1
N uss)

(1−α+γ/N)uss

(

1+ 1−α+γ
1−α+γ/N

)}

.

This implies the expression given in equation (18).
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Figure 6: Optimal time share u in (x, γ) space, where N ∈ {1, 10, 100, 1000}.
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Figure 6 shows similar plots as Figure 2 above. In Figure 6, we have set the
number of players, N , equal to 1, 10, 100, and 1000. Indeed N causes the surface
to rise and one might conjecture that it is stretched like a rubber blanket.
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