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“I don’t believe in psychology. I believe in good moves.” (Bobby Fischer)

1 Introduction

Traditionally, economists have focused on a rational decision maker – the “homo eco-

nomicus” – to model human behavior. The observation of various deviations of behavior

from the benchmark of optimizing rational decision making has motivated an entire field,

behavioral economics. Research in this field has identified a plethora of different, partly

distinct and partly interacting, behavioral biases, which are related to cognitive lim-

itations, stress, limited memory, preference anomalies, and social interactions, among

others. These biases are typically established by comparing actual behavior against a

theoretical benchmark, often in simplistic, unrealistic, or abstract settings that are unfa-

miliar to the decision makers. Field evidence for behavioral biases among professionals is

still scarce, mostly because of the difficulty to establish a rational benchmark in complex

real-world settings. Consequently, most contributions focus on documenting a behav-

ioral deviation in one particular dimension. This makes it often difficult to compare

the behavioral biases documented in the literature. Moreover, deviations from rational

behavior are usually seen as being related to suboptimal performance. However, this

connotation often rests on a priori reasoning or value judgments because it is typically

even harder or impossible to identify the consequences of deviations from the rational

benchmark than the deviations themselves.

This paper breaks new ground in the documentation of behavioral deviations from the

rational benchmark, as well as of their causes and consequences, by investigating the

behavior of professional chess players. Conceptually, chess is ideally suited to address the

research question about the typology and emergence of behavioral deviations from the

rational benchmark. First, chess provides a clean and transparent decision environment

that allows observing individual choices in a sequential game of perfect information.

Second, chess players are typically seen as the prototypes of rational, forward-looking

strategic behavior. This is even more the case for professional chess players participating
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in tournaments with high stakes and incentives to win a game. Third, chess provides a

unique source of information about behavior at extremely high resolution and accuracy.

Fourth, the availability of chess engines makes it possible to construct a clean rational

benchmark for behavior.

We develop a new methodology for identifying deviations from rational behavior as

well as their implications for performance that makes use of artificial intelligence tech-

niques embodied in modern chess engines. This methodology is based on the fact that

chess engines provide a detailed quantitative and objective evaluation of a given config-

uration of pieces on the board in terms of the associated winning odds for each player,

and of the complexity of a decision in terms of a precise measure of the difficulty of

identifying the optimal move in a given configuration. Importantly, the logic of chess

engines is based on the notion of mutually best responses, thus applying rational de-

cision making. Using this, we compare the actual moves of human decision makers to

the best conceivable move in the respective configuration. This best conceivable move

is determined by a “super chess engine” whose performance exceeds that of the best

humans by far. To construct a rational benchmark, we also replicate each configuration

observed in a large data set of chess games and determine the decision of a “restricted

chess engine” that still plays mutual best response, but that is comparable in terms of

playing strength to human players and simulates play against another chess engine of

similar strength. Like the human decisions, these replicated decisions of the restricted

chess engine are then evaluated in comparison to the moves suggested by the super chess

engine. This makes it possible to identify deviations of human behavior from the ratio-

nal benchmark, as well as the consequences of these deviations for performance using

within-person variation at the level of individual moves.

The comparison of the relative performance of humans to that of a comparably strong

chess engine identifies deviations from fully rational behavior by decision makers that

are experts in the respective decision environment. This methodology allows us to

investigate the exact circumstances and factors that lead individual players to deviate

from rational behavior. In particular, the detailed information about the evaluation of
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a given configuration, the time left for decision making, complexity, and the time used

for a given move provides a unique possibility to decompose different candidates for

behavioral biases within the same person and game. Moreover, the difference between

the relative performance of humans in comparison to the super chess engine and the

relative performance of the restricted engine in comparison to the super chess engine

shed light on the consequences of the behavioral deviations on performance. This allows

us to investigate not only whether humans behave differently, but whether they perform

better, compared to the rational benchmark, and under which circumstances.

The results document several systematic deviations of human behavior from the ra-

tional benchmark. These deviations can be related to different behavioral biases that

have been discussed in the previous literature. In particular, we find systematic devia-

tions of human behavior from the rational benchmark in relation to the current standing

reflected in terms of an advantage or disadvantage. Being in a better position induces

deviations from the rational benchmark that are associated with worse performance than

stipulated by the rational benchmark, while being in a worse position is associated with

more deviations that are associated with higher performance. A smaller remaining time

budget in the game leads to more frequent deviations and worse performance, suggestive

of the detrimental effects of time pressure. We also find evidence for the role of fatigue

over the course of a game, which reduces the likelihood of deviations with better perfor-

mance. Stress induced by cognitive limitations in the context of complex configurations

leads to more frequent deviations from the rational benchmark but not to a systematic

deterioration in performance.

When investigating the mechanisms, we find no systematic differences in the causes

and consequences of behavioral deviations from the benchmark between weaker and

stronger players. Strategic interactions or psychological factors, as reflected by the

remaining time of the opponent, seem of limited importance. An analysis of decision

times reveals that faster decisions are associated with more frequent deviations from the

rational benchmark, but at the same time are associated with better performance. The

evidence is suggestive of a superior assessment of humans, which is presumably related
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to intuition and experience.

Contribution to the Literature. The results of this paper contribute to a substantial

literature that has used chess as the prime example of how to think about and model

rational behavior. Analyses of optimal strategic behavior in chess laid the grounds of

game theory, with early proofs of the existence of winning strategies by Zermelo (1913)

and equilibrium by von Neumann (1928); see Schwalbe and Walker (2001) for an infor-

mative overview. Chess players have a long history as subjects of studies in psychology,

starting with the work of de Groot (1946). Chase and Simon (1973) and Simon and

Chase (1973) contain early discussions of theories of cognition derived from the study of

chess players. Work in psychology on expert performance regularly uses chess players as

subjects of study (Ericsson, 2006; Moxley et al., 2012). The view of professional chess

players as the prototypes of rational decision makers led several empirical or experimen-

tal tests of rational behavior in economics to focus on chess players as subjects of interest.

Examples include experiments with chess players to investigate the empirical relevance

of subgame perfection and backward induction (Palacios-Huerta and Volij, 2009; Levitt

et al., 2011), rational learning in repeated games (Gerdes and Gränsmark, 2010), or

emotions and psychological factors (González-Diaz and Palacios-Huerta, 2016). To our

knowledge, this is the first study to analyze move-by-move behavior of chess players rel-

ative to a rational benchmark provided by a chess engine of comparable chess strength

to human players.

Data from chess tournaments have also been used to analyze various other research

questions. These include, in particular, gender differences in patience (Gerdes et al.,

2011), gender effects in competitiveness (Backus et al., 2016), gender and attractiveness

(Dreber et al., 2013), self-selection and productivity in tournaments (Bertoni et al., 2015;

Linnemmer and Visser, 2016), consequences of political ideology (Frank and Krabel,

2013), collusion (Moul and Nye, 2009), cheating (Barnes and Hernandez-Castro, 2015;

Haworth et al., 2015) and indoor air quality (Künn et al., 2019). Recent work used chess

data to compare the relative performance and strength of chess players in different time
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periods (Guid and Bratko, 2011; Alliot, 2017). Anderson and Green (2018) use chess

data at the game level to investigate the role of personal peak performance in the past

in terms of ratings, as reference points for performance. Strittmatter et al. (2020) use

game-level data over the past 125 years to estimate the productivity potential over the

life cycle and its dynamics over time and across cohorts. While the existing work in this

literature typically analyzes human performance at the game level and sometimes uses

a chess engine that vastly outperforms human chess players to benchmark behavior, the

methodology developed here allows us to identify deviations from a rational benchmark

of comparable strength on a move-by-move basis, as well as the performance implications

of these deviations.

The comparison of behavior to an objective benchmark in terms of the quality of a

given move relative to the best possible move in a given configuration allows us to explore

the empirical relevance of several behavioral biases identified in the literature within a

single and comparable research design, as well as their implications for performance.

Our results thereby complement findings of the detrimental effects of time pressure on

the quality of decision making (Kocher and Sutter, 2006) and relate to findings of het-

erogeneous effects of time pressure in loss and gain domains (Kocher et al., 2013). Our

findings also contribute to the literature that has emphasized the role of choking under

pressure (Baumeister, 1985; Cohen-Zada et al., 2017; Dohmen, 2008; Genakos et al.,

2015) or limited attention (Föllmi et al., 2016) among professionals. The heterogeneity

in the results for deviations from rational behavior depending on the current positional

standing in the game in terms of advantage or disadvantage is also reminiscent of find-

ings of reference dependence (Bartling et al., 2015) and observations from risk taking in

tournaments (Cabral, 2003; Genakos and Pagliero, 2012). Likewise, the results add to

the literature investigating the role of complexity and cognitive load for individual per-

formance (Deck and Jahedi, 2015) and on the relationship between cognitive limitations

and behavioral biases (Oechssler et al., 2009).

By identifying behavioral deviations from rationality that not necessarily imply worse

performance but that can even lead to better performance than the benchmark, our

5



evidence contributes to recent theoretical work on the behavioral foundations of devi-

ations from a rational decision benchmark. For a long time, chess players have been

thought to play according to intuition or heuristics rather than following rational opti-

mizing strategies (e.g. Simon and Chase, 1973), but to our knowledge there exists no

clear evidence on the implications of these deviations for performance. Our results con-

tribute evidence in line with predictions of recent theoretical work that has considered

the optimal speed and accuracy of decisions in settings in which the relative evaluations

of decision alternatives are unknown; the results of this work show that decision accu-

racy may actually decrease with longer decision time (Fudenberg et al., 2018). Likewise,

the result that deviations from the rational benchmark can be associated with better

performance is consistent with predictions of models of focusing and selective memory

(Gennaioli and Shleifer, 2010; Bordalo et al., 2020) or case-based decision theory (Sahm

and von Weizsäcker, 2016).

The remainder of the paper is structured as follows. Section 2 contains a description

of the data collection and measurement. Section 3 develops the empirical approach.

Section 4 presents the empirical results. Section 5 concludes.

2 Data and Measurement

2.1 Data from Professional Chess Players

In the terminology of game theory, chess is a two-person, sequential, zero-sum game with

perfect information and alternating moves, for which the optimal strategy is strictly

determined.1 The data used in the empirical analysis have been collected from an

internet platform that broadcasts all professional over-the-board chess tournaments

(www.chess24.com) and contains detailed information for more than 100,000 moves

from around 2,000 games that were played in 97 single round-robin tournaments during

the years 2014-2017. All games were played at regular time controls that allocate a time

1See Schwalbe and Walker (2001) for details and a discussion of the historical background.
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budget of a minimum of 2 hours thinking time to each player to conclude the game.2

Appendix Table A1 provides an overview of the tournaments contained in the data set.

The data contain detailed information about the players, including their performance

statistics in terms of their ELO number.3 We restrict our baseline analyses to games

between professional players with an ELO number of at least 2,500 at the time of the

game. Appendix Table A2 shows summary statistics on the game level.

In addition to the remaining time budget and time consumed for each move, the

move-by-move data comprises information about the exact configuration of pieces on

the board. We use this information to compute an evaluation of this configuration in

terms of the relative standing of each player, an evaluation of the complexity of the

configuration, and an evaluation of move quality, as explained in more detail below. For

the computation of performance, we exclude the first fifteen moves of each player in a

game from our analysis. These are usually so-called “book moves”, which are studied

intensively by players in the preparation of the game and are typically the result of

routine openings.

2.2 Measuring Performance in Chess

To construct a benchmark for rational behavior, we make use of a chess engine, Stock-

fish 8, which is an open-source program that computes the best possible move for a

given configuration of pieces on the chessboard. This engine is considered to be one of

2According to the regulations by the International Chess Federation FIDE, for a game to be rated each
player must have a minimum of 120 minutes, assuming the game lasts 60 moves per player. The
standard time control regime suggested by the International Chess Federation FIDE is 90 minutes
per player per game plus 30 seconds added to each player’s time budget for each move played;
additional 30 minutes are added to each player’s time budget after each player has played 40 moves
(see https://handbook.fide.com, last accessed May 12, 2020). Tournaments that are not officially
organized by FIDE use slight variations of the official FIDE time control regime.

3The ELO number constitutes a method for calculating the relative playing strength of players
(invented by the Hungarian mathematician Arpad Elo). The ELO number increases or de-
creases depending on the outcome of games between rated players. After every game, the
winning player takes points from the losing player, while the total number of points remains
fixed. According to international conventions, an ELO number of at least 2,500 is a require-
ment for being awarded the title of an international grandmaster (this requirement has to be
fulfilled once during the career, but does not have to be maintained to keep the title, see
https://handbook.fide.com/chapter/B01Regulations2017, last accessed April 20, 2020).
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the best available programs. The version we use has an estimated ELO rating of approx-

imately 3150 points (in comparison, the incumbent World Champion Magnus Carlsen

had an ELO rating of 2872 points in January 2020 according to the official rating list

by the International Chess Federation FIDE).4 This engine can be restricted, such that

the strength of play of the engine corresponds closer to the strength of play of human

players. To find an objective benchmark for human players, we use engines with different

strengths of play in the analysis as described in detail below.

An engine behaves exactly like a fully rational agent in standard game-theoretic set-

tings. This delivers a clean and transparent benchmark to evaluate human behavior.

Figure 1 illustrates the decision algorithm solved by the engine. For each configuration,

the engine creates a game-tree for all possible moves by white and black for a pre-

specified length of n moves ahead, the so-called search depth. Then, the configurations

at the respective end-nodes are evaluated in terms of pieces left on the board, safety of

the king, mobility of pieces, pawn-structure and so on. Based on this evaluation, the

engine then determines the best move using backward induction under the assumption

of mutually best responses.5 Modern engines like Stockfish 8 calculate approximately

10-100 million nodes per second on standard personal computing hardware.

We use the chess engine to compute three measures that are central to the empirical

analysis. First, the engine delivers a measure of the relative standing for a given config-

uration of pieces on the board, which reflects an evaluation of the current position of a

player and represents a proxy of the winning odds. The evaluation of the current posi-

tion is the result of the engine computing, for each configuration observed in the data

4We limit Stockfish 8 to a search depth of 21 moves to economize on computing costs. The un-
constrained version of Stockfish 8 has an ELO of approximately 3300 points (http://ccrl.
chessdom.com). Based on an approximation by Ferreira (2013), the ELO strength of Stockfish 8
with search depth of 21 corresponds to approximately 3150 points.

5Modern chess engines are almost exclusively based on domain-specific algorithmic heuristics that
were developed specifically to search the sequential game-tree arising from a given configuration.
Current chess engines use an enhanced version of the min-max algorithm that disregards branches of
the search tree that have already been found to be dominated. This reduces the search-space with-
out impacting the final choice of the best move by the engine (https://www.chessprogramming.
org/Alpha-Beta, last visited March 17, 2020). Only very recently more general machine learning
techniques in the form of neural networks have been embodied in chess engines such as Google’s
non-public AlphaZero (Silver et al., 2018).
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Figure 1: Backward Induction by Chess Engines
Note: Illustration of the decision algorithm built into a chess engine. For a given search depth
(number of moves until the end node is reached), the engine calculates evaluations of different
alternative moves under the assumption of mutually best response and determines the move that
delivers the highest evaluation on the end node.

set, the best continuation. The relative standing is measured in so-called pawn units,

where one unit approximates the advantage of possessing one more pawn.6 Second, we

compute a measure of performance, in terms of the quality of play of a given player, by

comparing the actual move made by the respective player to the best move suggested by

the chess engine. This move is not necessarily the absolute best move that is possibly

conceivable but on average the move suggested by the engine is better than conceivable

by any human player. In the data, relative performance can be measured by a binary

indicator of whether a player makes the optimal move (or one of the optimal moves

in case of several moves with equal winning odds) as suggested by the chess engine in

a given configuration. Alternatively, one can construct a measure of the quality of a

move by computing the deviation of player i’s move (in terms of pawn units) from the

best move identified by the chess engine.7 Third, we use the engine to compute, for

6This measure is relative and indicates an advantage for the player with white pieces for positive
numbers, and for the player with black pieces for negative numbers. For example, if the evaluation
is -1.00 pawn units, black is better “as if one pawn up.”

7Concretely, we configure the engine to computes the corresponding evaluations for the six moves
that it evaluates as best in a given configuration. Further increasing the number of moves that are
evaluated comes at a prohibitively large computational cost. If the actual move played is one of these
six moves, the performance is calculated as the difference in evaluation between the best and the
actual move played. If the move played is not among the six best moves, we compute performance
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Figure 2: Computation of Performance Measures: An Example

Note: The engine evaluates the configuration shown on the board as +0.95 (i.e., an advantage for
white of almost one pawn unit) if Black plays Knight to b4 as the next move. Instead, Black played
Queen takes b2, which the engine judges as a slight mistake, with the consequence of an evaluation of
+1.14 for White after this move. Hence, the quality of Black’s move is computed as -0.19, i.e., Black
played a move that resulted in the loss of 0.19 pawn units compared to the evaluation resulting after the
move suggested by the engine. In this example, the engine needed 3.87 seconds to reach a search-depth
of 21 moves, which corresponds to the measure of complexity of the configuration.

each observed configuration, a measure of complexity of the configuration. The more

complex the configuration, the longer the engine needs to search the game-tree. The

time consumed by the engine to compute the best strategy for the next n moves ahead

can therefore be used as a measure of the complexity of a given configuration.8 Figure

2 contains a concrete illustration of how these measures are computed.

Appendix Table A3 documents the descriptive statistics of the move-by-move data

used in the analysis.

as the difference in the evaluation right before and right after the respective move of the player.
8As baseline measure of complexity, we use the computation time needed by the super chess engine to
reach a search-depth of 21 moves. Alternatively, we use the number of branches (nodes) of the game-
tree that the engine has to calculate to reach a search-depth of 21 as a measure of the branching
factor and thus complexity of a given configuration. The (unreported) results are qualitatively
similar and available upon request.
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3 Empirical Strategy

3.1 Conceptual Approach

We denote by Pic the performance of a move by human player i in a given configuration

c of pieces relative to the optimal benchmark suggested by the super chess engine. This

benchmark is based on the backward induction algorithm described before and consti-

tutes a first natural piece of information for isolating deviations from rational behavior.

The relative performance measure Pic is not sufficient for isolating the role of subjective

factors that lead to behavioral deviations from the rational benchmark, however, be-

cause the measure does not account for the fact that the super chess engine is superior

to human players in terms of strength of play. Thus, the objective human evaluation of a

given configuration and the resulting optimal human move under rationality might differ

systematically from the suggested optimal move of the super chess engine as a result of

cognitive limitations, but not necessarily as a result of human psychological factors.

To address this issue, the empirical strategy applies a difference-in-differences logic

that compares the performance of humans to the performance of an equally strong but

fully rational benchmark where, in both cases, performance is measured relative to the

best possible move based on the assessment of the super chess engine. To construct such

a directly comparable benchmark of rational behavior with similar playing strength as

humans, we replicate each decision problem faced by humans (for each configuration

c observed in our data set) using a restricted chess engine that is calibrated to have

approximately the same strength of play as the humans observed in the data set. This

implies that, for each observed configuration c, we construct a benchmark measure that

reflects performance under fully rational behavior for a strength of play comparable to

that of the human players (with ELO numbers between 2500 and 2880) relative to the

best possible move suggested by the super chess engine.9

By construction, the restricted engine plays rational (best response) strategies such

9In particular, we restrict Stockfish 8 to a search depth of 12 moves, which corresponds to a play
strength equivalent to an ELO of around 2700 when comparing performance differences between
human players and the restricted engine (see Appendix Figure A1).

11



that the move played by the restricted chess engine only depends on objective, move-

specific characteristics related to the configuration on the board, but not on subjective

player-specific or game-history-related factors. Deviations of performance of this re-

stricted engine from the best possible move suggested by the super engine can thus

be due only to differences in strength of play, but not due to deviations from ratio-

nal behavior. The relative performance of the restricted chess engine delivers a valid

performance benchmark under fully rational behavior against which the performance of

humans can be compared. Notice that a plain comparison of moves between humans

and the restricted chess engine would not be sufficient, because it would not be possible

to evaluate the direction – and thus the performance consequences – of these differences.

This is only achieved by the comparison to the best possible move suggested by the

super chess engine.

3.2 Parameters of Interest

To illustrate the identification strategy, let the potential relative performance under no

behavioral deviation in configuration c be denoted by P ∗c . This is a potential variable that

is not observed; we only observe the realized relative performance Pic in the data, which

might differ from P ∗c because of behavioral deviations. Performance differences due to

behavioral deviations are defined by Dic = Pic−P ∗c , where Dic = 0 implies no behavioral

deviation from the rational benchmark. Notice that also Dic is a potential variable that

is unobserved. For ease of notation, define the dummy variable DE
ic = I{Dic 6= 0}, with

I{·} being the indicator function, as an indicator of any deviation from the rational

benchmark.

The goal of the empirical analysis is to identify subjective (psychological) factors Xic

that can be associated with deviations from the rational performance benchmark. The

conditional expectation of behavioral deviations from rationality is

E[Dic|Xic = x] = E[Dic|DE
ic = 1, Xic = x] · p(x), (1)

12



where p(x) = Pr(DE
ic = 1|Xic = x) denotes the conditional probability of a deviation

from the rational benchmark. The right hand side of equation (1) makes use of the

discrete law of iterated expectations and the fact that E[Dic|DE
ic = 0, Xic = x] = 0. The

marginal effects of subjective factors Xic on behavioral deviations can be decomposed

into effects along the extensive and intensive margin conditional on deviation, since

∂E[Dic|Xic]
∂Xic︸ ︷︷ ︸

Total Effect

= E[Dic|DE
ic = 1, Xic] ·

∂p(Xic)
∂Xic︸ ︷︷ ︸

Extensive Margin

+ ∂E[Dic|DE
ic = 1, Xic]

∂Xic︸ ︷︷ ︸
Intensive Margin

·p(x). (2)

Deviations from the rational benchmark in terms of performance differences as re-

flected by Dic are sensitive to the respective metric in which they are measured (e.g.,

pawn units). The extensive margin effects have the advantage to not depend on the

particular metric of Dic. To explore the consequences of behavioral deviations at the

extensive margin, we denote positive deviations, i.e., deviations from the rational bench-

mark that are associated with better performance than the rational benchmark, by

DP
ic = I{Dic > 0}. Likewise, negative deviations, i.e., behavioral deviations from the

benchmark that are related to worse performance are denoted by DN
ic = I{Dic < 0}.

Furthermore, we denote the conditional probability of a behavioral deviation from the

benchmark that implies better performance by pP (x) = Pr(DP
ic|Xic = x) and the

conditional probability of a behavioral deviation that implies worse performance by

pN(x) = Pr(DN
ic |Xic = x), with p(x) = pP (x) + pN(x). The partial effects along the

extensive margin can then be decomposed into partial effects on the probabilities of be-

havioral deviations associated with positive and negative consequences for performance,

∂p(Xic)
∂Xic

= ∂pP (Xic)
∂Xic︸ ︷︷ ︸

Positive Consequences

+ ∂pN(Xic)
∂Xic︸ ︷︷ ︸

Negative Consequences

.

3.3 Identification

We now sketch an identification strategy that allows identifying the parameters of in-

terest. Let P r
c denote the relative performance in configuration c by the restricted chess
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engine (with strength of play similar to that of humans) in comparison to the perfor-

mance under an optimal move suggested by the super engine. Furthermore, we denote

the difference between the relative performance of humans and the restricted chess engine

by ∆ic = Pic − P r
c .

As a first step in the identification of the effects of subjective factors Xic, we focus on

the effects along the extensive margin. For this purpose, we construct a binary measure

of whether the relative performance of a human player differs from the restricted chess

engine, ∆E
ic = I{∆ic 6= 0}. This binary measure represents the observable analogue toDic

and the identification of the effects along the extensive margin relies on the assumption

that

E[∆E
ic −DE

ic|Xic = x] = 0 . (3)

This assumption is fundamentally not testable, because deviations from the rational

performance benchmark, DE
ic, are unobservable. The assumption implies that the condi-

tional probability that human players deviate from the restricted engine is equal to the

conditional probability that human players deviate from the rational performance bench-

mark, which is a natural assumption in our setting. In the data, 60% of all moves exhibit

the same relative performances for humans and the restricted chess engine. Accordingly,

there is a mass point in the distribution of ∆ic, which is otherwise a continuously dis-

tributed variable. Notice that the exact calibration of the strength of the restricted

engine might influence the results by influencing the empirical measure of ∆E. However,

as discussed below, extensive robustness tests show that the results are insensitive to

variations in the calibration of the restricted engine.

Under assumption (3), the marginal effect of a subjective (psychological) factor Xic

on the probability of observing a deviation from the rational benchmark is given by10

∂E[∆E
ic|Xic]

∂Xic

= ∂p(Xic)
∂Xic

.

10This follows from

E[∆E
ic|Xic = x] = E[∆E

ic −DE
ic|Xic = x] + E[DE

ic|Xic = x] = E[∆E
ic −DE

ic|Xic = x] + p(x),

and noting that E[∆E
ic −DE

ic|Xic = x] = 0 under assumption (3).
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This effect corresponds to an effect along the extensive margin and contains no infor-

mation about the performance implications of this deviation.

Next, consider the marginal effects on the probability of behavioral deviations that

imply better or worse performance than the benchmark, respectively. For this purpose,

define ∆P
ic = I{∆ic > 0} and ∆N

ic = I{∆ic < 0}. Under the assumption E[∆P
ic−DP

ic|Xic =

x] = 0, the marginal effects of factors X on ∆P correspond to marginal changes in the

probability of behavioral deviations with better performance,

∂E[∆P
ic|Xic]

∂Xic

= ∂pP (Xic)
∂Xic

.

Similarly, under the assumption E[∆N
ic − DN

ic |Xic = x] = 0, the marginal effects on

changes in the probability of behavioral deviations with worse performance are given by

∂E[∆N
ic |Xic]

∂Xic

= ∂pN(Xic)
∂Xic

.

Using the categorical measure ∆C
ic = sgn(∆ic) · (1 − I{∆ic = 0}), these insights can

be combined to obtain the net effect on the probability of deviations with positive and

negative performance consequences,

∂E[∆C
ic|Xic]

∂Xic

= ∂pP (Xic)
∂Xic

− ∂pN(Xic)
∂Xic

,

provided that the previous assumptions hold.11

Finally, reconsider the total marginal effect of the subjective factors Xic as described

in equation (2). Using the performance measure ∆ic, this effect can be identified under

the assumption E[P ∗c − P r
c |Xic = x] = 0, such that

∂E[∆ic|Xic]
∂Xic

= ∂E[Dic|Xic]
∂Xic

,

11Note that the assumptions E[∆P
ic − DP

ic|Xic = x] = 0 and E[∆N
ic − DN

ic |Xic = x] = 0 together are
somewhat stronger than assumption (3).
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which is a combination of the effects along the extensive and intensive margin.12 The

the intensive margin effects of the subjective factors Xic conditional on deviation are

identified under the assumption that (3) and E[P ∗c − P r
c |Xic = x] = 0 both hold.13

Then,
∂E[∆ic|∆E

ic = 1, Xic]
∂Xic

= ∂E[Dic|DE
ic = 1, Xic]

∂Xic

.

The interpretation of the intensive margin effects conditional on deviation is problematic,

however, because the subjective factors affect the performance consequences of deviations

and the probability of observing a deviation at the same time, thus giving rise to a sample

selection problem (see, e.g., Heckman, 1979).

3.4 Estimation

In practice, we use move-by-move data with an observation for the positional configu-

ration of pieces on the board c faced by individual player i in game g. The estimation

model is then given by

∆′gic = Xgicβ + φig + ugic , (4)

with the error term ugic. ∆′gic denotes the different performance measures (∆E
gic, ∆P

gic,

∆N
gic, ∆C

gic, ∆gic) described above. All specifications include interacted player-game fixed

effects φig (where ig indicates the player-game-level) to account for systematic variation

in style of play, environmental factors related to the game, or strategic aspects related to

particular pairings. Inference is based on game-level clustered standard errors to account

12In particular,

E[∆ic|Xic = x] =E[Pic − P ∗
c |Xic = x] + E[P ∗

c − P r
c |Xic = x]

=E[Dic|DE
ic = 0, Xic = x] · (1− p(x)) + E[Dic|DE

ic = 1, Xic = x] · p(x)
=E[Dic|DE

ic = 1, Xic = x] · p(x),

which follows from applying the discrete law of iterated expectations similarly as in (1).
13In particular,

E[∆ic|∆E
ic = 1, Xic = x] = E[∆ic|Xic = x]

Pr(∆E
ic = 1|Xic = x)

= E[Dic|Xic = x]
p(x) = E[Dic|DE

ic = 1, Xic = x] .

The first and last equalities follow from the discrete law of iterative expectations. The second
equality holds under E[P ∗

c − P r
c |Xic = x] = 0 (numerator) and assumption (3) (denominator).
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for interdependencies in the performances of both players.

The parameter vector β represents the partial effects of different subjective (psycho-

logical) factors Xgic, β = ∂E[∆′gic|Xgic]/∂Xgic. In view of earlier work, we primarily

focus on four subjective (psychological) factors Xgic that might affect deviations from

rational behavior: stress related to the current standing (being in a better or worse

position), time pressure (remaining time budget), fatigue (number of moves played by

each player before the current move), and complexity (related to cognitive limitations).

4 Empirical Results

4.1 Main Results

Table 1 contains the results of multivariate regression analyses of the empirical model in

equation (4) for different dependent variables. Column (1) shows coefficient estimates

for regressions with the binary measure of any deviation from the benchmark, ∆E,

as dependent variable. Compared to an approximately balanced positional standing,

human players are more likely to deviate from the rational benchmark when being in

a better position relative to their opponent. In contrast, they are not more likely to

deviate in a worse position. The results for remaining time reveal a positive but only

marginally significant effect on the probability to deviate from the rational benchmark.

This suggests that players deviate more often from the rational benchmark if they have

more time available, rather than under greater time pressure. Contradicting intuition

regarding a potential influence of fatigue, the probability to deviate from the benchmark

is smaller later on in the game. Greater complexity of the configuration is associated

with a higher probability to deviate from the rational benchmark.

Columns (2) and (3) present the results for the binary measures of deviations from the

benchmark that also contain information about the direction in terms of the associated

consequences for performance, ∆P and ∆N . Here, a somewhat richer picture emerges.

Whereas being in a better position is not associated with human players deviating in a

way that their performance is better than the benchmark (Column (2)), the effect on
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Table 1: Behavioral Deviations from Rational Behavior: Multivariate Regression Results

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0796∗∗∗ 0.0006 0.0790∗∗∗ −0.0784∗∗∗

(0.0060) (0.0043) (0.0048) (0.0069)
Worse position (<-0.5 pawnunits) 0.0057 0.0306∗∗∗ −0.0248∗∗∗ 0.0554∗∗∗

(0.0061) (0.0046) (0.0050) (0.0075)
Time Pressure
Remaining time (hours) 0.0136∗ 0.0390∗∗∗ −0.0254∗∗∗ 0.0643∗∗∗

(0.0072) (0.0051) (0.0057) (0.0081)
Fatigue
Num. previous moves −0.0019∗∗∗ −0.0018∗∗∗ −0.0001 −0.0016∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0012∗∗∗ 0.0015∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine (super
engine and restricted engine). The variable Num. previous moves is calculated as the number of
previous moves per player. Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05,
∗∗∗: p < 0.01.

deviations that imply worse performance than the benchmark is positive and significant

(Column (3)). A possible explanation for this finding is that human players might

decide to play sub-optimal moves that are associated with lower risk or complexity, but

also worse performance, when in a better position. The opposite picture emerges when

players are in a worse position. In this case, humans are more likely to make deviations

that imply better performance than the benchmark (Column (2)), but are less likely to

make deviations that imply worse performance than the benchmark (Column (3)). This

finding is consistent with stronger incentives for higher performance, for instance due

to loss aversion relative to a reference point of a balanced position. As a consequence,

humans might become less focused or more adventurous when they are in a better

position, but they excel when they are in a worse position.
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The picture also becomes richer regarding the influence of time pressure. More re-

maining time increases the likelihood of deviations with better performance than the

benchmark (Column (2)), whereas the likelihood of deviations with worse performance

declines (Column (3)). This provides evidence that deviations with worse performance

become more frequent with less remaining time, consistent with the hypothesis of choking

under time pressure. These opposite effects for deviations with different consequences

for performance also explain why remaining time only has a weakly positive effect on the

probability of any deviation (Column (1)). Likewise, a clearer picture emerges regarding

fatigue, proxied by the number of moves that have already been played during a game.

In particular, later in the game, deviations from the benchmark that are associated with

better performance become less frequent, whereas there is no significant effect on the

likelihood of deviations that are associated with worse performance. Finally, the hy-

pothesis that complexity affects deviations from the rational benchmark is supported

by significant effects on deviations with both, higher and lower performance than the

rational benchmark. This is consistent with the conjecture that it is harder for human

players to determine the rational continuation in more complex settings. However, this

does not necessarily imply strictly worse performance.

Column (4) of Table 1 presents results for the categorical measure ∆C as dependent

variable. This measure allows making inference on the difference between the effects ob-

tained for ∆P and ∆N . In particular, the estimates confirm the findings that players in

a better position are more likely to exhibit worse performance than the rational bench-

mark, whereas players that are in a worse position are more likely to deviate with better

performance than the rational benchmark. Also the result for time pressure becomes

more pronounced, indicating that less remaining time is associated with more frequent

deviations and worse performance. Fatigue continues to imply more frequent deviations

from the benchmark with performance deteriorating later in the game. Finally, the effect

of complexity is significantly negative in the estimates for the categorical variable, but

quantitatively small.

These results complement existing work by documenting the prevalence of various

19



deviations from the rational benchmark that are related to reference points (see, e.g.

Bartling et al., 2015), time pressure (see, e.g. Kocher and Sutter, 2006; Kocher et al.,

2013), complexity-related stress (see, e.g. Dohmen, 2008), fatigue, or cognitive load (see,

e.g. Oechssler et al., 2009; Deck and Jahedi, 2015) within a single framework. In addition

to identifying deviations, the results also point at the performance implications and, in

particular, the possibility of enhanced performance as consequence of a deviation from

the rational benchmark. This is consistent with the predictions of models of selective

memory (Bordalo et al., 2020) or experience-based intuition (Moxley et al., 2012; Sahm

and von Weizsäcker, 2016).

4.2 Robustness

Alternative Model Specifications. The results are broadly similar when considering

specifications without player-game fixed effects (see Appendix Table A4). Moreover,

controlling for the subjective factors in univariate specifications confirms the robustness

of the main findings (Appendix Table A5 shows this exemplarily for the categorical

variable (∆C)). The pattern of the main results remain similar when we exclude moves

in positions that the engine evaluates as exactly equal for both players, presumably

because the optimal continuation results in a repetition of moves (see Appendix Table

A6).

The estimation results obtained with a more flexible specification of the effect of

relative positional standing, allowing for non-linear effects, confirm the main findings

and does not reveal evidence for pronounced non-linearities in the effect (see Appendix

Table A7). Figure 3 shows results for more flexible specifications of the subjective

factors graphically (exemplarily for the dependent variable ∆C). Figure 3(a) plots the

estimates from a more flexible specification with respect to current relative standing.

The results confirm the main findings of Table 1, which reports the results relative to

balanced positional standings. Performance is worse for a positive evaluation of the

current position compared to a balanced position, but relatively better for negative

evaluations. As in the main analysis, the identification of these effects relative to the
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Figure 3: Deviations from Rational Behavior – Categorical Measure (∆C)

Note: OLS results of more flexible specifications. Dependent variable is ∆C and the specification
contains player-game fixed effects as in the specification in (4). Variables depicted on the horizontal
axis are split into equal spaced intervals. Dots report point estimates and whiskers report 95% confidence
intervals. The variable Num. previous moves is calculated as the number of previous moves per player.

benchmark of the restricted engine rules out that this finding is driven by mechanical

effects such as reversion to the mean. Figure 3(b) suggests laxer time budget lead to

more frequent deviations with better performance, especially early in the game. Figure

3(c) and (d) confirm that fatigue and complexity lead to worse performance.

Alternative Measures for the Subjective Factors. To investigate the robustness of the

results, we also replicated the analysis with alternative proxy measures for the various

dimensions of behavioral deviations. These include, in particular, relative standing

measured in terms of a continuous measure (in pawn units), time pressure in terms of
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proximity to time control when additional time is added to players’ time budget, fatigue

as proxied by elapsed time, and complexity in terms of the distance of the second-best

move to the first-best move (in terms of pawn units). The results confirm the main

results (see Appendix Table A8). In comparison to the baseline results, players in a

worse position when using a continuous evaluation measure of relative standing are here

even significantly less likely to deviate from the benchmark along the extensive margin

(for ∆E), but still exhibit better performance when using the categorical measure ∆C .

Calibration of Restricted Chess Engine. Another potential concern regarding the

empirical strategy is the calibration of the restricted chess engine. In particular, since

identification relies on different assumptions that involve a comparison between human

behavior and the rational benchmark of the restricted engine, the results might be

sensitive to the particular calibration as it might induce measurement error in ∆′gic. The

empirical specification already accounts for this by including interacted player-game fixed

effects that capture potential measurement error that enters at the player-game level,

e.g., because a particular player has a systematically higher or lower strength of play

than the restricted chess engine. Moreover, the analysis is based on a fairly homogeneous

sample of players with ELO ratings between 2,500 and 2,880 points. As discussed above,

the results are robust even when the player-game level fixed effects are omitted (see

Appendix Table A4). Furthermore, measurement error in the response variable does not

lead to bias in the coefficient estimates of β when it is statistically independent of the

regressors, but might increase the variance (see, e.g., in Wooldridge, 2010, the discussion

about classical measurement error). Accordingly, statistically independent measurement

error may lead to conservative inference.

The most direct evidence for the insensitivity of the results with respect to the cali-

bration of the restricted engine emerges from estimates conducted with subsamples for

players with different strength of play. The results from the corresponding robustness

checks document that the results are not sensitive to players with different strength of

play or the exact specification of the chess engine. In particular, we find that the overall
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pattern of results is identical when including weaker players (with ELO ratings above

2000 instead of restricting to players with ELO ratings above 2,500), or when restricting

to players with ratings between 2,400 and 2,600, or between 2,600 and 2,800 (Appendix

Tables A9, A10 and A11).

Alternative Chess Engine. To assess the robustness of the results with respect to the

particular chess engine, we also replicated the analysis for an alternative engine to con-

struct the rational benchmark. This engine (Komodo) is considered to have a different

playing style than Stockfish 8.14 To the extent that alternative engine exhibits a

different playing style, it also potentially introduces different measurement error in the

dependent variables ∆′gic than Stockfish 8, because it uses different computational

heuristics. The results obtained with the alternative engine reveal similar patterns as

the baseline results (see Appendix Table A12).

Total Effect/Intensive Margin. The analysis so far focused on the extensive margin

effects. To obtain estimates of the total effects and of the intensive margin effects con-

ditional on deviation as in equation (2), we also estimate the model using a continuous

performance measure as dependent variable. In particular, we consider deviations from

the rational benchmark using the measure ∆ in terms of pawn units. Since the distri-

bution of pawn units is substantially skewed and since we consider a semi-continuous

variable with a mass point at 0, we construct deviations from the rational benchmark in

terms of log-modulus transformed performance, ∆L.15 Recall that identification relies on

the assumption that the conditional expectation of the relative performance of humans

under rational behavior is equal to the conditional expectation of the relative perfor-

mance of the restricted engine, E[P ∗c − P r
c |Xic = x] = 0. This implies a reliance on the

14We use Komodo 9, which is also considered to be among the world’s strongest chess engines. Ko-
modo’s playing style is typically referred to as being more positional, focusing more on long-term
strategic planning, than that of Stockfish. According to http://ccrl.chessdom.com (archived on
September 10, 2019) it is estimated to have an ELO of 3235 in its unconstrained version. To replicate
moves for the benchmark, we also restrict Komodo to a search depth of 12.

15In particular, we compute ∆L as ∆L
gic = sgn(∆gic) · ln(|∆gic| + 1), where ∆gic = Pgic − P r

c is the
difference in performance measured in pawn units.
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particular metric used for measuring performance (here pawn units), in contrast to the

identifying assumption for effects along the extensive margin stated in (3). The latter

stipulates that the conditional probability of deviations of the relative performance of

human players from the benchmark of the restricted chess engine is equivalent to the

conditional probability of deviations from the rational performance benchmark, which

does not rely on a particular metric. Moreover, the size of the estimated effects depends

on the particular metric used, which effectively determines the scope of the intensive

margin effect.

Nevertheless, for completeness, we report the estimates of the total effect and the

effect along the intensive margin conditional on deviation (see Appendix Table A13

Columns (1) and (2), respectively). In terms of interpretation, the total effect is an

alternative measure for the overall performance consequences of behavioral deviations.

Comparing the results accordingly to the baseline results for the dependent variable ∆C

reveals mostly the same patterns for the total effect as for the categorical measure ∆C

(see Appendix Table A13 Column (1)). The only exception in this pattern refers to the

effect of being in a worse position, which exhibits a significantly negative total effect

on performance. This effect is quantitatively smaller than the effect for being in a bet-

ter position but of opposite sign compared to the extensive margin effect of being in a

worse position. This suggests that being in a worse position increases the probability of

deviations associated with better performance (in terms of ∆C), but the negative perfor-

mance effects along the intensive margin associated with worse performance dominate

when using the log-modulus transformed performance measure. The other results are

qualitatively comparable; complexity has no significant impact on the total effect. The

results for the intensive margin effects conditional on deviation are also in line with the

findings obtained of the categorical measure ∆C (see Appendix Table A13 Column (2)).

The exception is again the effect of worse position, which is negative but quantitatively

small and only marginally significant. The intensive margin effect for complexity is pos-

itive and significant, but also quantitatively small. These patterns are confirmed when

using the alternative engine to construct the rational benchmark (see Columns (3) and
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(4) of Appendix Table A13).

In light of the more restrictive identification assumptions, the reliance on a particular

performance metric, and the difficult interpretation because of sample selection (see,

e.g., Heckman, 1979), we view these findings as reassuring for the overall pattern of

results. We conclude that the main insights of the analysis are obtained from the quali-

tative results along the extensive margin, which have the advantage of a straightforward

interpretation and of not relying on a particular performance metric. However, these

findings also cast a note of caution regarding the interpretation of various and sometimes

diverging findings in the literature, which might not be directly comparable as they re-

sult from different outcome measures and thus constitute estimates of effects that are

not necessarily fully comparable.

4.3 Behavioral Heterogeneity

To shed light on the underlying behavioral mechanisms, we estimated various alterna-

tive specifications that allow for interactions between the factors that lead to behavioral

deviations with time pressure, or for heterogeneity in the effects of the subjective factors.

Time pressure in terms of less remaining time tends to amplify the probability of any

deviations (in terms of ∆E) associated with better or worse positions, but do not affect

the deviations associated with fatigue or complexity. However, time pressure seems not

to amplify the consequences of behavioral deviations on performance (in terms of ∆C),

except for complexity where less remaining time is associated with more frequent devi-

ations and even worse performance (Appendix Table A14). These results complement

earlier findings for asymmetric effects of time pressure (Kocher et al., 2013).

A conjecture that has been raised repeatedly in psychology is that stronger players

benefit from better intuition (Simon and Chase, 1973; Moxley et al., 2012). To test this

conjecture, we explore whether there is any heterogeneity in the effects of the subjec-

tive factors on deviations from the rational benchmark with respect to player strength,

measured by ELO ratings. The results reveal no systematic patterns except that the

deviations from rational behavior associated with time pressure are less pronounced for
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stronger players (see Appendix Table A15).

To study the potential role of reference dependence based on ex-ante odds along the

lines of earlier work (e.g., Bartling et al., 2015) or a potential role of emotional states

as in work by (González-Diaz and Palacios-Huerta, 2016), we also test for systematic

heterogeneity in the performance of players playing with white or black pieces. Playing

with white is typically associated with an inherent first-mover advantage at the outset of

a game and therefore exhibits significantly higher ex-ante winning odds. Alternatively,

we test for heterogeneity across favorites and underdogs as defined by the relative rating

of the two players prior to the game in terms of their ELO numbers. However, in our

specification with player-game fixed effects, we find no evidence for significant differences

in behavioral deviations along these dimensions (see Appendix Table A16).

To explore the role of strategic and psychological interactions, we also investigate

the influence of the opponent’s remaining time or of the time spent on the previous

move by the opponent, which reveals no statistically significant interactions between the

opponents in terms of an impact on performance (see Appendix Table A17).

4.4 Decision Times

The results so far indicate that deviations from rational behavior do not necessarily

imply worse performance. This suggests that human intuition and experience might be

an important factor in determining a successful strategy. To explore this possibility,

we investigate the role of another dimension of choice: the time players invest in mak-

ing a decision about a move. If time allocation is determined by implicit cost-benefit

considerations, decision makers spend more time deliberating a move when the gap in

the subjective evaluation between two options is relatively small (Chabris et al., 2009).

Moreover, earlier studies found that additional time for deliberation improves perfor-

mance (Moxley et al., 2012). Recent theoretical work has considered the optimal speed

and accuracy of decisions in settings in which the relative evaluations of decision alter-

natives are unknown. This work has shown that faster decisions can also imply better

performance when decision makers already have fairly precise information and the value
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Figure 4: Deviations from the Rational Benchmark and Decision Time
Note: Panel (a) plots the binary measure of deviations from the rational benchmark (∆E) against
the time spent on the respective move. Panel (b) plots the categorical measure of deviations from
the rational benchmark (∆C) against the time spent on the respective move. Plots are in bins of
equally-spaced intervals of time spent on move (in minutes). Dots report means, whiskers report
95% confidence intervals.

of further information acquisition is low, or when decision makers face (subjectively)

simple problems where information acquisition is fast (Fudenberg et al., 2018). Our

setting allows us to provide new evidence for the relation between decision speed and

performance. Under the premise that, for certain configurations, intuition and expert

assessment based on experience lead to a fast and precise assessment of the best strategy

with little gain from additional deliberation, this gives rise to the hypothesis that faster

decisions are associated with more frequent deviations from the rational benchmark and

with higher performance.

Figure 4 plots the frequency of deviations from the rational benchmark, in terms of

the binary measure ∆E in and in terms of the categorical measure ∆C in relation to the

time spent on the respective move. The pattern in Panel (a) of the figure reveals that

longer deliberation times are associated with more frequent deviations from the rational

benchmark. Panel (b) shows that these deviations are associated with worse performance

on average. The figure also suggests that the relationship is not linear, consistent with

an important role for intuition and experience in instantaneously grasping the best move

in a particular setting.

To rule out that this pattern is driven by third factors such as playing style, competitor
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pairings or psychological factors such as position complexity or time constraints, and to

investigate the relationship between deviations and performance consequences in more

detail, we replicate the main analysis by including the time spent on making a move as

an additional explanatory variable. Panel A of Table 2 presents the estimation results

for the association of the time spent on a move with the four different measures of

behavioral deviations, the binary measures ∆E, ∆P , ∆N , and the categorical measure

∆C , as dependent variables, in specifications with player-game fixed effects. The results

support the hypothesis: spending more time on a move is associated with more frequent

deviations from the rational benchmark (Column (1)). Moreover, as shown by the

results in Columns (2) and (3), spending more time deliberating a move is associated

with more frequent deviations with worse performance compared to deviations with

better performance. This implies that, as illustrated by the findings for the categorical

variable in Column (4), spending less time and thus deciding faster is associated with

more frequent deviations from the rational benchmark that are associated with better

performance.

Panel B of Table 2 reports results for an extended specification for the effects of

subjective factors driving behavioral deviations that also accounts for the time spent

on a move as an additional control variable. The results for deliberation times are

qualitatively unchanged. Spending more time on a move is associated with more frequent

deviations from the rational benchmark and worse performance. The coefficients for the

subjective factors are qualitatively similar to the main results in Table 1 and seem to be

unaffected by including the decision time spent on a move.

Additional results reveal that the time spent on a move also interacts with the psy-

chological factors in determining deviations from the rational benchmark (see Appendix

Table A18). In particular, more deliberation time in terms of time spent on a move

tends to counteract the influence of being in a better or worse position, or of time pres-

sure (in terms of less remaining time) on the likelihood of deviating from the rational

benchmark. In terms of performance consequences, spending more time amplifies the

positive performance consequences of being in a worse position and the negative per-
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Table 2: Accounting for Decision Times

Panel A: Baseline Effect, No Subjective Factors

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Time spent on move (min.) 0.0223∗∗∗ 0.0091∗∗∗ 0.0132∗∗∗ −0.0041∗∗∗

(0.0005) (0.0004) (0.0004) (0.0006)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Panel B: Full Specification

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Time spent on move (min.) 0.0217∗∗∗ 0.0071∗∗∗ 0.0146∗∗∗ −0.0075∗∗∗

(0.0005) (0.0004) (0.0004) (0.0006)
Current Position
Better position (>0.5 pawnunits) 0.0690∗∗∗ −0.0028 0.0719∗∗∗ −0.0747∗∗∗

(0.0060) (0.0043) (0.0048) (0.0069)
Worse position (<-0.5 pawnunits) 0.0108∗ 0.0322∗∗∗ −0.0214∗∗∗ 0.0536∗∗∗

(0.0060) (0.0046) (0.0050) (0.0074)
Time Pressure
Remaining time (hours) −0.0886∗∗∗ 0.0056 −0.0942∗∗∗ 0.0998∗∗∗

(0.0077) (0.0053) (0.0061) (0.0085)
Fatigue
Num. previous moves −0.0016∗∗∗ −0.0017∗∗∗ 0.0001 −0.0017∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0026∗∗∗ 0.0012∗∗∗ 0.0014∗∗∗ −0.0002∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.

formance consequences of time pressure. Moreover, longer deliberation time on a move

tends to amplify the negative performance consequences associated with deviations from

the rational benchmark due to fatigue by inducing more errors.
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Additional results for decision time as dependent variable complement the previous

results (see Appendix Table A19). The analysis of the determinants of decision time

reveals that deliberation is most time consuming in configurations where the game is

approximately balanced; players with clearly better or worse positional standings decide

faster. This correlation is particularly strong when being in a worse position. A less

constrained time budget in terms of more remaining time at the decision makers’ disposal

is also associated with more time spent on a move. Later in the game decisions are made

faster, which might indicate shorter deliberation as a consequence of fatigue. Finally,

more complex situations induce slower decisions.

Together, these results indicate that faster decisions are associated with more devia-

tions from rational behavior and, at the same time, better performance than stipulated

by the rational benchmark. This suggests a superior positional assessment of humans,

which is presumably related to intuition and experience, and which is particularly pro-

nounced during critical phases of the game. These patterns are consistent with predic-

tions of models of salience and selective memory (Gennaioli and Shleifer, 2010; Bordalo

et al., 2020) under the assumption that chess experts have a very quick and intuitive

perception of the best continuation and of critical positions that require longer deliber-

ation times. This is also consistent with a two-step approach where decisions are taken

either according to rational considerations or intuitively on a case-by-case assessment

(Sahm and von Weizsäcker, 2016).

5 Concluding Remarks

In this paper, we provide new evidence for the pervasiveness of deviations from rational

behavior using data from professional chess players. In terms of methodology, our paper

develops a new identification strategy for deviations from rational behavior by construct-

ing a benchmark for rational behavior that utilizes the artificial intelligence embodied

in chess engines and that can be used to analyze human behavior. This methodology

might be useful for other applications in behavioral economics.
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The empirical findings of this paper have far-reaching implications. The results show

that even professional chess players deviate from the benchmark of rationality. In par-

ticular, the results indicate that time pressure, fatigue, complexity, and pressure from

being in a better or worse position induce deviations from rational behavior. However,

the results also show that these deviations do not necessarily affect performance nega-

tively, but often even entail superior performance. We also find that faster decisions are

associated with more frequent deviations from the rational benchmark and, concurrently,

better performance. In light of previous theoretical literature and additional empirical

results, this suggests that the superior performance is presumably due to experience or

intuition of experts that provides them with a fairly fast and precise assessment of the

situation and the best continuation.

While this paper contributes a new methodology to identify deviations from a rational

benchmark as well as its causes and consequences, the results are not conclusive about

the underlying mechanisms. For instance, it is possible that deviations from the rational

benchmark are entirely due to mechanisms related to cognitive processes that underly

the decisions of an individual player. It is equally possible, however, that the deviations

are part of a strategy that incorporates beliefs about likely deviations of the opponent

from rational behavior, thus incorporating the notion that rational behavior might not

be the optimal strategy, in analogy to the optimal strategy in a guessing game. Both

possibilities are consistent with the empirical approach and results presented in this

paper. A natural next step in the research agenda is to apply the methodology developed

here to investigate the respective behavioral mechanisms in more detail.
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Figure A1: Player Strength and Average Performance Difference between Human Players
and Restricted Chess Engine

Note: This figure plots the difference of the performance of a player in comparison to the perfor-
mance of the restricted chess engine. The graph is based on configurations in which human players
had more than one hour remaining time budget and hence had no binding time constraints. ELO
numbers of players’ depicted on the horizontal axis are split into equal-spaced intervals to compute
the average within the interval. Whiskers report 95% confidence intervals.
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Additional Tables

Table A1: List of Tournaments in Dataset

Games Percent
National Championships

Russian Championship 165 8.3%
U.S. Championship 114 5.8%
Ukrainian Championship 78 3.9%
French Championship 62 3.1%
Armenian Championship 60 3.0%
Other National Championships 115 5.8%

Invited Tournaments
Wijk aan Zee 450 22.7%
Norway Chess 84 4.2%
Poikovsky 81 4.1%
Shamkir 76 3.8%
Lake Sevan 69 3.5%
Danzhou 42 2.1%
Other Invited Tournaments 306 15.4%

World Chess Federation Tournaments
FIDE Grand Prix 280 14.1%
Sum 1,982 100.0%

Table A2: Descriptive Statistics – Game Level

Games Mean Std. Dev. Min Max

Player strength
Elo rating white player 1,982 2681.7 85.24 2500 2881
Elo rating black player 1,982 2681.0 85.09 2500 2881
Game result
White player wins 1,982 0.279 0.448 0 1
Draw 1,982 0.566 0.496 0 1
Black player wins 1,982 0.156 0.363 0 1
Duration
Num. moves overall 1,982 41.05 14.55 15 98
Duration game (hours) overall 1,982 3.332 1.443 0 8.113

Note: The variable Num. moves overall is calculated as the number of moves per player in game.
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Table A3: Descriptive Statistics – Move Level

Moves Mean Std. Dev. Min Max

Game characteristics
Elo rating player 106,391 2678.6 86.08 2500 2881
Elo difference between players 106,391 -0.103 71.07 -284 284
Performance measures
∆E (binary) 106,391 0.398 0.489 0 1
∆P (binary) 106,391 0.175 0.380 0 1
∆N (binary) 106,391 0.223 0.416 0 1
∆C (categ.) 106,391 -0.0479 0.629 -1 1
∆L (log-mod) 106,391 -0.0366 0.398 -6.485 5.795
Current position
Evaluation current position (pawnunits) 106,391 0.146 24.30 -327 327
Better position (>0.5 pawnunits) 106,391 0.245 0.430 0 1
Worse position (<-0.5 pawnunits) 106,391 0.213 0.409 0 1
Time pressure and time spent
Remaining time (hours) 106,391 0.665 0.528 0 2.513
Time spent on move (min.) 106,391 2.482 4.072 0 100.5
Num. previous moves 106,391 31.86 13.68 15 98
Duration game (hours) 106,391 2.763 1.409 0 8.113
Remaining time (opp.) 104,409 0.654 0.525 0 2.513
Time spent on move (opp.) 106,391 2.545 4.139 0 100.5
Complexity position
Seconds to reach fixed depth 106,391 30.33 24.14 0.00100 799.3
Distance second best move 105,733 -4.338 32.78 -654 0

Note: Descriptive statistics for the baseline sample. Evaluations of performance are based on the
Stockfish 8 chess engine. The variable Distance second best move contains missing values for config-
urations where there is only one legal move available to the player. The variable Num. previous moves
is calculated as the number of previous moves per player. The variable Remaining time (opp.) has
missing values because the remaining time of the opponent is not recorded for the final move of a game.
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Table A4: Robustness – Specifications Without Player-Game Fixed Effects

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Game characteristics
Elo player (divided by 100) −0.0090∗∗∗ 0.0055∗∗∗ −0.0145∗∗∗ 0.0201∗∗∗

(0.0028) (0.0019) (0.0022) (0.0030)
Elo difference (divided by 100) −0.0077 −0.0012 −0.0064 0.0052

(0.0063) (0.0045) (0.0049) (0.0070)
Favorite × Elo difference 0.0085 0.0008 0.0078 −0.0070

(0.0098) (0.0069) (0.0073) (0.0103)
White player (dummy) 0.0125∗∗∗ 0.0082∗∗∗ 0.0043 0.0038

(0.0034) (0.0024) (0.0027) (0.0038)
Favorite (according to Elo) −0.0109∗∗ −0.0064∗ −0.0045 −0.0019

(0.0050) (0.0035) (0.0043) (0.0061)
Current Position
Better position (>0.5 pawnunits) 0.0362∗∗∗ 0.0034 0.0328∗∗∗ −0.0294∗∗∗

(0.0050) (0.0033) (0.0039) (0.0051)
Worse position (<-0.5 pawnunits) 0.0540∗∗∗ 0.0143∗∗∗ 0.0396∗∗∗ −0.0253∗∗∗

(0.0050) (0.0035) (0.0041) (0.0058)
Time Pressure
Remaining time (hours) −0.0002 0.0183∗∗∗ −0.0185∗∗∗ 0.0368∗∗∗

(0.0041) (0.0028) (0.0033) (0.0046)
Fatigue
Num. previous moves −0.0007∗∗∗ −0.0010∗∗∗ 0.0003∗∗ −0.0013∗∗∗

(0.0002) (0.0001) (0.0001) (0.0002)
Complexity
Seconds to reach fixed depth 0.0029∗∗∗ 0.0011∗∗∗ 0.0017∗∗∗ −0.0006∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects No No No No
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A5: Robustness – Specifications with Subjective Factors in Isolation

Dependent Variable:
Performance: ∆C (categ.)

(1) (2) (3) (4) (5)

Current Position
Better position (>0.5 pawnunits) −0.0951∗∗∗ −0.0784∗∗∗

(0.0068) (0.0069)
Worse position (<-0.5 pawnunits) 0.0336∗∗∗ 0.0554∗∗∗

(0.0074) (0.0075)
Time Pressure
Remaining time (hours) 0.0862∗∗∗ 0.0643∗∗∗

(0.0072) (0.0081)
Fatigue
Num. previous moves −0.0022∗∗∗ −0.0016∗∗∗

(0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0004∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A6: Robustness – Excluding Positions with Evaluation Equal to 0.00

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0223∗∗∗ −0.0228∗∗∗ 0.0451∗∗∗ −0.0679∗∗∗

(0.0062) (0.0048) (0.0052) (0.0077)
Worse position (<-0.5 pawnunits) −0.0522∗∗∗ 0.0064 −0.0586∗∗∗ 0.0650∗∗∗

(0.0066) (0.0052) (0.0055) (0.0085)
Time Pressure
Remaining time (hours) 0.0040 0.0367∗∗∗ −0.0327∗∗∗ 0.0693∗∗∗

(0.0078) (0.0057) (0.0063) (0.0092)
Fatigue
Num. previous moves −0.0004 −0.0012∗∗∗ 0.0009∗∗∗ −0.0021∗∗∗

(0.0003) (0.0002) (0.0002) (0.0003)
Complexity
Seconds to reach fixed depth 0.0024∗∗∗ 0.0010∗∗∗ 0.0014∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 88835 88835 88835 88835
Player-Game Observations 3930 3930 3930 3930

Note: In this table, configurations that are evaluated with 0.00 by the chess engine due to a mutally
beneficial move repetition are excluded. OLS estimates. Evaluations of performance are based on the
Stockfish 8 chess engine. The variable Num. previous moves is calculated as the number of previous
moves per player. Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗:
p < 0.01.
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Table A7: Robustness – Flexible Specifications of Relative Positional Standing

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

1 Slight advantage (+/=) 0.0909∗∗∗ 0.0159∗∗∗ 0.0750∗∗∗ −0.0591∗∗∗

(0.0063) (0.0049) (0.0054) (0.0082)
2 Clear advantage (+/-) 0.1028∗∗∗ 0.0134∗∗ 0.0893∗∗∗ −0.0759∗∗∗

(0.0075) (0.0053) (0.0061) (0.0087)
3 Decisive advantage (+-) 0.1082∗∗∗ −0.0027 0.1108∗∗∗ −0.1135∗∗∗

(0.0090) (0.0062) (0.0074) (0.0102)
4 Slight disadvantage (=/-) 0.0174∗∗∗ 0.0365∗∗∗ −0.0191∗∗∗ 0.0556∗∗∗

(0.0067) (0.0051) (0.0056) (0.0083)
5 Clear disadvantage (-/+) 0.0048 0.0355∗∗∗ −0.0307∗∗∗ 0.0663∗∗∗

(0.0080) (0.0058) (0.0068) (0.0097)
6 Decisive disadvantage (-+) 0.0181∗∗ 0.0408∗∗∗ −0.0227∗∗∗ 0.0635∗∗∗

(0.0087) (0.0065) (0.0072) (0.0106)
Time Pressure
Remaining time (hours) 0.0120∗ 0.0391∗∗∗ −0.0271∗∗∗ 0.0661∗∗∗

(0.0071) (0.0051) (0.0056) (0.0080)
Fatigue
Num. previous moves −0.0019∗∗∗ −0.0017∗∗∗ −0.0002 −0.0014∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0027∗∗∗ 0.0012∗∗∗ 0.0015∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Advantages
and disadvantages are calculated based on the usual chess conventions: A configuration that is evaluated
by a chess engine as less than 0.3 pawn units better for one side is considered equal (=). A configuration
that is evaluated as between 0.3 and 0.7 pawn units better for one side is considered as a slight advantage
(+/ =) or slight disadvantage (= /−), respectively. A configuration that is evaluated as between 0.7
and 1.6 pawn units better for one side is considered as a clear advantage (+/−) or clear disadvantage
(−/+), respectively. Positions that are evaluated as 1.6 better for one side are considered as a decisive
advantage (+−) or decisive disadvantage (−+), respectively. Standard errors are clustered on the game
level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A8: Robustness – Alternative Proxies as Explanatory Variables

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Better Position (pawn units, continous) 0.0002∗∗ −0.0001 0.0003∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Worse Position (pawn units, continous) −0.0013∗∗∗ −0.0005∗∗∗ −0.0009∗∗∗ 0.0004∗∗∗

(0.0001) (0.0000) (0.0001) (0.0001)
Time Pressure
Less than 10 moves before first time control 0.0049 −0.0181∗∗∗ 0.0230∗∗∗ −0.0412∗∗∗

(0.0045) (0.0032) (0.0036) (0.0050)
Fatigue
Duration game (hours) −0.0450∗∗∗ −0.0360∗∗∗ −0.0090∗∗∗ −0.0270∗∗∗

(0.0025) (0.0017) (0.0018) (0.0024)
Complexity
Distance second best move 0.0011∗∗∗ 0.0005∗∗∗ 0.0007∗∗∗ −0.0002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 105733 105733 105733 105733
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. Better/worse position are measured in absolute
pawn units. Less than 10 moves before first time control is a dummy indicating that a player has less than 10 moves to play before reaching move
40 when additional time is added to each players’ time budget. In contrast to the variable remaining time in the main analysis, less than 10 moves
before first time control implies more time pressure. Accordingly, the sign of the coefficients for time pressure variable is expected to be opposite
of that in the baseline specification. Duration game is the overall time that both players have already spent thinking about their moves. Distance
second best move measures how far in terms of pawn units the chess engine evaluates the current configuration to be worse in case the second best
move is played compared to the best move. 658 observations are dropped compared to the baseline specification because there is no second legal
move available to the player. Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A9: Robustness – Both Players with ELO Numbers Above 2000

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0781∗∗∗ 0.0020 0.0761∗∗∗ −0.0741∗∗∗

(0.0045) (0.0031) (0.0037) (0.0052)
Worse position (<-0.5 pawnunits) 0.0077∗ 0.0306∗∗∗ −0.0229∗∗∗ 0.0535∗∗∗

(0.0045) (0.0032) (0.0038) (0.0054)
Time Pressure
Remaining time (hours) 0.0151∗∗∗ 0.0430∗∗∗ −0.0279∗∗∗ 0.0709∗∗∗

(0.0057) (0.0041) (0.0047) (0.0067)
Fatigue
Num. previous moves −0.0018∗∗∗ −0.0015∗∗∗ −0.0003∗∗ −0.0012∗∗∗

(0.0002) (0.0001) (0.0001) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0012∗∗∗ 0.0016∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 196736 196736 196736 196736
Player-Game Observations 7164 7164 7164 7164

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A10: Robustness – Both Players with ELO Numbers Between 2400 and 2600

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0876∗∗∗ 0.0045 0.0830∗∗∗ −0.0785∗∗∗

(0.0093) (0.0067) (0.0082) (0.0116)
Worse position (<-0.5 pawnunits) 0.0128 0.0354∗∗∗ −0.0226∗∗∗ 0.0580∗∗∗

(0.0088) (0.0065) (0.0074) (0.0108)
Time Pressure
Remaining time (hours) 0.0026 0.0333∗∗∗ −0.0307∗∗∗ 0.0640∗∗∗

(0.0130) (0.0096) (0.0115) (0.0167)
Fatigue
Num. previous moves −0.0022∗∗∗ −0.0015∗∗∗ −0.0007∗∗ −0.0008∗∗

(0.0004) (0.0002) (0.0003) (0.0004)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0011∗∗∗ 0.0017∗∗∗ −0.0006∗∗∗

(0.0002) (0.0001) (0.0001) (0.0002)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 45549 45549 45549 45549
Player-Game Observations 1571 1571 1571 1571

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A11: Robustness – Both Players with ELO Numbers Between 2600 and 2800

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0813∗∗∗ 0.0034 0.0779∗∗∗ −0.0746∗∗∗

(0.0080) (0.0059) (0.0061) (0.0090)
Worse position (<-0.5 pawnunits) 0.0069 0.0319∗∗∗ −0.0250∗∗∗ 0.0569∗∗∗

(0.0081) (0.0061) (0.0065) (0.0097)
Time Pressure
Remaining time (hours) 0.0128 0.0391∗∗∗ −0.0262∗∗∗ 0.0653∗∗∗

(0.0088) (0.0061) (0.0070) (0.0096)
Fatigue
Num. previous moves −0.0018∗∗∗ −0.0018∗∗∗ −0.0000 −0.0018∗∗∗

(0.0003) (0.0002) (0.0002) (0.0003)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0013∗∗∗ 0.0015∗∗∗ −0.0002

(0.0002) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 65811 65811 65811 65811
Player-Game Observations 2499 2499 2499 2499

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A12: Robustness – Rational Benchmark Constructed with Komodo-Engine

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0596∗∗∗ −0.0034 0.0630∗∗∗ −0.0664∗∗∗

(0.0053) (0.0036) (0.0042) (0.0058)
Worse position (<-0.5 pawnunits) −0.0009 0.0204∗∗∗ −0.0213∗∗∗ 0.0417∗∗∗

(0.0054) (0.0037) (0.0045) (0.0061)
Time Pressure
Remaining time (hours) −0.0034 0.0234∗∗∗ −0.0268∗∗∗ 0.0503∗∗∗

(0.0060) (0.0041) (0.0050) (0.0068)
Fatigue
Num. previous moves −0.0014∗∗∗ −0.0014∗∗∗ 0.0000 −0.0014∗∗∗

(0.0002) (0.0001) (0.0001) (0.0002)
Complexity
Seconds to reach fixed depth 0.0010∗∗∗ 0.0005∗∗∗ 0.0006∗∗∗ −0.0001

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Performance of the restricted engine is computed using the Komodo chess
engine. The variable Num. previous moves is calculated as the number of previous moves per player.
Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A13: Total Effect – Results for Semi-Continuous Performance Measure (Log-
Modulus)

Dependent Variable:
Performance: ∆L (log-mod.)

Stockfish Komodo
Total Intensive Total Intensive
Effect Margin Effect Margin

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) −0.0472∗∗∗ −0.0935∗∗∗ −0.0582∗∗∗ −0.1538∗∗∗

(0.0042) (0.0102) (0.0043) (0.0136)
Worse position (<-0.5 pawnunits) −0.0111∗∗ −0.0227∗ −0.0199∗∗∗ −0.0434∗∗

(0.0054) (0.0133) (0.0055) (0.0185)
Time Pressure
Remaining time (hours) 0.0366∗∗∗ 0.0716∗∗∗ 0.0376∗∗∗ 0.0723∗∗∗

(0.0051) (0.0137) (0.0053) (0.0181)
Fatigue
Num. previous moves −0.0018∗∗∗ −0.0050∗∗∗ −0.0020∗∗∗ −0.0071∗∗∗

(0.0002) (0.0006) (0.0002) (0.0008)
Complexity
Seconds to reach fixed depth −0.0001 0.0005∗∗ −0.0000 0.0008∗∗

(0.0001) (0.0002) (0.0001) (0.0003)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 42309 106391 28974
Player-Game Observations 3963 3904 3963 3856

Note: OLS estimates. The dependent variable is the difference in the evaluation of a move relative
to the best possible move in pawn units in terms of a log modulus transformation, such that ∆L

gic =
sgn(∆gic) · ln(|∆gic|+ 1) with ∆gic = Pgic − P r

c . Evaluations of performance are based on comparisons
to the Stockfish 8 chess engine as the super engine. In columns (1)-(2) performance of the restricted
engine is computed using Stockfish 8. In columns (3)-(4) performance of the restricted engine is
computed using the Komodo chess engine. The variable Num. previous moves is calculated as the
number of previous moves per player. Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗:
p < 0.05, ∗∗∗: p < 0.01.
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Table A14: Behavioral Heterogeneity – Interactions with Time Pressure

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.1096∗∗∗ 0.0150∗∗ 0.0947∗∗∗ −0.0797∗∗∗

(0.0091) (0.0063) (0.0075) (0.0104)
Worse position (<-0.5 pawnunits) 0.0233∗∗∗ 0.0368∗∗∗ −0.0135∗ 0.0503∗∗∗

(0.0088) (0.0065) (0.0073) (0.0108)
Better position × Remaining time −0.0453∗∗∗ −0.0206∗∗∗ −0.0247∗∗∗ 0.0041

(0.0109) (0.0075) (0.0088) (0.0121)
Worse position × Remaining time −0.0278∗∗ −0.0088 −0.0190∗∗ 0.0102

(0.0112) (0.0079) (0.0090) (0.0126)
Time Pressure
Remaining time (hours) 0.0170 0.0390∗∗∗ −0.0219∗ 0.0609∗∗∗

(0.0171) (0.0116) (0.0128) (0.0174)
Fatigue
Num. previous moves −0.0020∗∗∗ −0.0016∗∗∗ −0.0004 −0.0013∗∗∗

(0.0003) (0.0002) (0.0003) (0.0003)
Num. previous moves × Remaining time 0.0002 −0.0002 0.0004 −0.0006

(0.0004) (0.0003) (0.0003) (0.0004)
Complexity
Seconds to reach fixed depth 0.0027∗∗∗ 0.0010∗∗∗ 0.0017∗∗∗ −0.0007∗∗∗

(0.0002) (0.0001) (0.0002) (0.0002)
Seconds to reach fixed depth × Remaining time 0.0002 0.0004∗∗ −0.0002 0.0006∗∗∗

(0.0002) (0.0001) (0.0002) (0.0002)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A15: Behavioral Heterogeneity – The Role of Player Strength

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0775∗∗∗ −0.0044 0.0819∗∗∗ −0.0863∗∗∗

(0.0081) (0.0055) (0.0068) (0.0093)
Worse position (<-0.5 pawnunits) −0.0010 0.0267∗∗∗ −0.0278∗∗∗ 0.0545∗∗∗

(0.0077) (0.0058) (0.0062) (0.0093)
Better position × Elo player (divided by 100) 0.0026 0.0066 −0.0040 0.0106

(0.0068) (0.0049) (0.0056) (0.0080)
Worse position × Elo player (divided by 100) 0.0105 0.0055 0.0050 0.0005

(0.0071) (0.0055) (0.0058) (0.0088)
Time Pressure
Remaining time (hours) 0.0173 0.0491∗∗∗ −0.0319∗∗∗ 0.0810∗∗∗

(0.0108) (0.0081) (0.0087) (0.0128)
Remaining time × Elo player (divided by 100) −0.0038 −0.0110∗ 0.0073 −0.0183∗

(0.0083) (0.0062) (0.0066) (0.0097)
Fatigue
Num. previous moves −0.0017∗∗∗ −0.0015∗∗∗ −0.0002 −0.0014∗∗∗

(0.0003) (0.0002) (0.0002) (0.0003)
Num. previous moves × Elo player (divided by 100) −0.0002 −0.0003 0.0001 −0.0003

(0.0003) (0.0002) (0.0002) (0.0003)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0012∗∗∗ 0.0016∗∗∗ −0.0004∗∗∗

(0.0002) (0.0001) (0.0001) (0.0001)
Seconds to reach fixed depth × Elo player (divided by 100) −0.0000 0.0001 −0.0001 0.0002

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The variable Num. previous moves is calculated
as the number of previous moves per player. Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A16: Behavioral Heterogeneity – Accounting for Color and Favorite Status

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0966∗∗∗ 0.0031 0.0935∗∗∗ −0.0904∗∗∗

(0.0151) (0.0115) (0.0123) (0.0185)
Worse position (<-0.5 pawnunits) 0.0032 0.0289∗∗∗ −0.0256∗∗∗ 0.0545∗∗∗

(0.0098) (0.0076) (0.0080) (0.0121)
White player × Better position −0.0053 −0.0006 −0.0047 0.0041

(0.0189) (0.0141) (0.0154) (0.0226)
Favorite × Better position −0.0255 −0.0013 −0.0241 0.0228

(0.0198) (0.0147) (0.0157) (0.0230)
Favorite × White × Better position 0.0033 −0.0037 0.0070 −0.0106

(0.0248) (0.0181) (0.0197) (0.0285)
White player × Worse position 0.0007 −0.0024 0.0031 −0.0055

(0.0160) (0.0125) (0.0131) (0.0200)
Favorite × Worse position 0.0167 0.0116 0.0052 0.0064

(0.0149) (0.0112) (0.0122) (0.0181)
Favorite × White × Worse position −0.0295 −0.0139 −0.0156 0.0017

(0.0249) (0.0192) (0.0213) (0.0320)
Time Pressure
Remaining time (hours) 0.0136∗ 0.0389∗∗∗ −0.0253∗∗∗ 0.0643∗∗∗

(0.0072) (0.0051) (0.0057) (0.0080)
Fatigue
Num. previous moves −0.0019∗∗∗ −0.0017∗∗∗ −0.0001 −0.0016∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0012∗∗∗ 0.0015∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable White player is a dummy variable indicating the player that plays with white pieces. The
variable Favorite is a dummy variable indicating the player with the higher ELO number prior to the
game. The variable Num. previous moves is calculated as the number of previous moves per player.
Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A17: Behavioral Heterogeneity – Opponent’s Remaining Time and Time Spent

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0792∗∗∗ 0.0005 0.0787∗∗∗ −0.0782∗∗∗

(0.0060) (0.0043) (0.0048) (0.0069)
Worse position (<-0.5 pawnunits) 0.0015 0.0304∗∗∗ −0.0289∗∗∗ 0.0594∗∗∗

(0.0061) (0.0047) (0.0051) (0.0076)
Time Pressure
Remaining time (hours) −0.0002 0.0262∗∗∗ −0.0263∗∗∗ 0.0525∗∗∗

(0.0102) (0.0074) (0.0086) (0.0124)
Fatigue
Num. previous moves −0.0017∗∗∗ −0.0016∗∗∗ −0.0001 −0.0015∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028∗∗∗ 0.0012∗∗∗ 0.0015∗∗∗ −0.0003∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Time Opponent
Remaining time (opp.) 0.0193∗ 0.0164∗∗ 0.0029 0.0135

(0.0103) (0.0076) (0.0086) (0.0125)
Time spent on move (opp.) −0.0003 0.0002 −0.0005∗ 0.0008

(0.0004) (0.0003) (0.0003) (0.0005)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 104409 104409 104409 104409
Player-Game Observations 3954 3954 3954 3954

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A18: Time Spent Per Move – Interactions

Dependent Variable:
∆E (binary) ∆P (binary) ∆N (binary) ∆C (categ.)

(1) (2) (3) (4)

Time spent on move (min.) 0.0390∗∗∗ 0.0149∗∗∗ 0.0241∗∗∗ −0.0092∗∗∗

(0.0022) (0.0018) (0.0020) (0.0030)
Current Position
Better position (>0.5 pawnunits) 0.0780∗∗∗ −0.0009 0.0789∗∗∗ −0.0798∗∗∗

(0.0066) (0.0048) (0.0052) (0.0075)
Worse position (<-0.5 pawnunits) 0.0213∗∗∗ 0.0334∗∗∗ −0.0122∗∗ 0.0456∗∗∗

(0.0066) (0.0050) (0.0053) (0.0079)
Better position × Time spent on move −0.0042∗∗∗ −0.0009 −0.0033∗∗∗ 0.0024

(0.0011) (0.0009) (0.0009) (0.0014)
Worse position × Time spent on move −0.0044∗∗∗ −0.0004 −0.0040∗∗∗ 0.0037∗∗

(0.0013) (0.0010) (0.0011) (0.0017)
Time Pressure
Remaining time (hours) −0.0410∗∗∗ 0.0207∗∗∗ −0.0616∗∗∗ 0.0823∗∗∗

(0.0082) (0.0056) (0.0064) (0.0088)
Remaining time × Time spent on move −0.0179∗∗∗ −0.0058∗∗∗ −0.0121∗∗∗ 0.0063∗∗∗

(0.0011) (0.0009) (0.0010) (0.0015)
Fatigue
Num. previous moves −0.0014∗∗∗ −0.0015∗∗∗ 0.0001 −0.0016∗∗∗

(0.0003) (0.0002) (0.0002) (0.0002)
Num. previous moves × Time spent on move 0.0001 −0.0000 0.0001∗∗ −0.0001∗∗

(0.0001) (0.0000) (0.0000) (0.0001)
Complexity
Seconds to reach fixed depth 0.0026∗∗∗ 0.0012∗∗∗ 0.0014∗∗∗ −0.0001

(0.0001) (0.0001) (0.0001) (0.0001)
Seconds to reach fixed depth × Time spent on move −0.0000 −0.0000∗∗ 0.0000 −0.0000

(0.0000) (0.0000) (0.0000) (0.0000)

Player-Game Fixed Effects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The variable Num. previous moves is calculated
as the number of previous moves per player. Standard errors are clustered on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table A19: Time Spent on Move as Dependent Variable

Dependent Variable:
Time spent per move (min.)

(1) (2) (3) (4) (5)

Current Position
Better position (>0.5 pawnunits) −0.1857∗∗∗ 0.4894∗∗∗

(0.0599) (0.0506)
Worse position (<-0.5 pawnunits) −1.2136∗∗∗ −0.2344∗∗∗

(0.0618) (0.0470)
Time Pressure
Remaining time (hours) 5.1187∗∗∗ 4.7149∗∗∗

(0.0871) (0.0977)
Fatigue
Num. previous moves −0.0773∗∗∗ −0.0131∗∗∗

(0.0020) (0.0019)
Complexity
Seconds to reach fixed depth 0.0349∗∗∗ 0.0084∗∗∗

(0.0012) (0.0008)

Player-Game Fixed Effects Y es Y es Y es Y es Y es
R2 106391 106391 106391 106391 106391
Move Observations 3963 3963 3963 3963 3963

Note: OLS estimates. The variable Num. previous moves is calculated as the number of previous moves per player. Standard errors are clustered
on the game level. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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