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Abstract

Extensive evidence suggests that participants in the direct student-proposing
deferred-acceptance mechanism (DSPDA) play dominated strategies. In
particular, students with low priority tend to misrepresent their preferences
for popular schools. To explain the observed data, we introduce expectation-
based loss aversion into a school-choice setting and characterize choice-
acclimating personal equilibria in DSPDA. Truthful equilibria can fail to
exist, and DSPDA might implement unstable and more inefficient allocati-
ons in both small and large markets. Specifically, it discriminates against
students who are more loss averse or less overconfident than their peers,
and amplifies already existing (or perceived) discrimination. To level the
playing field, we propose serial dictatorship mechanisms as a strategyproof
and stable alternative that is robust to these biases.
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1 Introduction

The direct student-proposing deferred-acceptance mechanism (DSPDA) offers a
celebrated solution to the problem of matching prospective students to schools.
It is strategyproof, (constrained) efficient, and leads to the student-optimal stable
allocation.1 Consequently, this mechanism is implemented in many existing school
choice programs.2 In DSPDA, students can maximize the probability to get into
their most preferred school without hurting their chances of admission to other
schools. Unfortunately, growing evidence from both the field and the lab suggests
that students with low priority tend to conceal preferences for popular schools and
fake preferences for district schools despite the dominance of the truthful strategy.
Hence, potentially none of the desired properties are obtained.

We identify expectation-based loss aversion (EBLA, Kőszegi and Rabin (2006,
2007)) as a possible explanation for this puzzle. In our framework, the preference
report is a channel to manipulate expectations about the matching outcome and
these beliefs become a stochastic reference point to which final match outcomes
are compared. Because students with low priority are likely to be rejected by
popular schools, not ranking such schools highly is not very costly in terms of
the expected match utility. More importantly, reporting such a ranking mitigates
disappointment and not even trying to get into these schools shields off disap-
pointment completely. We characterize the rank-ordered lists (ROLs) that are
rationalizable as a choice-acclimating equilibrium (CPE) in DSPDA, and provide
testable predictions. This theoretical foundation of commonly observed deviations
is the first contribution of this paper.

As a second contribution, we show that these misrepresentations have negative
impact on stability and efficiency in equilibrium and, importantly, these effects do
not vanish as markets grow large. We consider a setting in which heterogeneously
loss-averse students compete for scarce seats at elite schools, and show that in
choice-acclimating Bayesian Nash equilibria (CBNE) instable and inefficient allo-
cations can emerge with non-negligible probabilities. More specifically, loss-averse
students may abstain from applying to elite schools if they are pessimistic about
their admission chances, while potentially weaker students are accepted just be-
cause their lower degrees of loss aversion or higher degrees of confidence lead to
submitting a preference for elite schools. Thus, we contribute a novel argument
to the active debate on whether such deviations matter.3

Third, we delineate how social segregation can arise if certain characteristics are

1Strategy-proofness is desirable, because reporting the true preferences dominates misrepor-
ting them, no matter what other participants report. Hence, the cost of strategizing is eliminated
such that less sophisticated players are not given a disadvantage. Stable allocations are consi-
dered fair because no student envies another student that is considered worse by her school.

2For instance, Pathak and Sönmez (2013) provide many examples.
3This depends very much on the origin of these deviations. For instance, for standard pre-

ferences, Artemov et al. (2017) derive robust equilibria, allowing for mistakes whose impact on
payoff vanishes as market size grows large. In contrast to our model, only a negligible fraction
of these mistakes are payoff-relevant in their model.
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correlated with demographics. Interestingly, reference-dependent preferences open
the door for biased beliefs as an important determinant of optimal ROLs, although
they play no role in the standard model with a dominant strategy. We establish
that DSPDA favors students who are less loss-averse or more overconfident. In-
deed, evidence suggests, for example, that overconfidence is more (Barber and
Odean, 2001; Niederle and Vesterlund, 2007) and loss aversion less (Karle et al.,
2019) pronounced among men compared to women. Moreover, DSPDA augments
the disadvantage for students who are already (or perceive to be) marginalized
when discrimination distorts priority scores, because EBLA incentivizes such stu-
dents to shy away from ranking better schools in the first place.4 In that sense,
DSPDA does not “level the playing field” entirely, voiding one of the crucial ad-
vantages prominently named by Pathak and Sönmez (2008). Our model highlights
a flaw in the empirical strategy to identify preferences reported to DSPDA as true.
Regarding affirmative action policy, this insight is important because the obser-
vation that certain students do not apply to certain schools does not necessarily
mean that they prefer other schools.

Finally, we not only point out weaknesses in DSPDA, but also investigate how
alternative mechanisms might remedy them. Under a regularity condition on
school preferences, we suggest sequential school-proposing deferred-acceptance as
an alternative to foster truthful behavior on the student side. If school preferences
are homogenous, this mechanism collapses to a very simple serial dictatorship
mechanism. Crucially, a remedy mechanism necessarily has to be sequential as we
show that no static mechanism can improve upon DSPDA. Letting students choose
sequentially allows (i) to manipulate the informational environment by revealing
previous students’ choices, and (ii) to shrink the choice set of students selecting
later and to incentivize reporting true preferences over this set.

In our model, students privately observe their match values for each school and also
privately learn their individual degree of loss aversion. Moreover, they receive a
signal about their relative priorities compared to the other students at each school.
For some of our results, we consider a particular form of this signal, i.e., each
student is endowed with a one-dimensional score and schools simply prefer students
with higher scores.5 Generally, given beliefs about the other students’ priorities
and strategies, a student’s preference report corresponds to a lottery over DSPDA
match outcomes. For instance, by swapping two schools’ ranks in the reported
ROL, match probability mass is shifted from one school to the other. With respect
to the drawn match values, truthful reporting is a dominant strategy and, thus,
induces a lottery that first-order stochastically dominates any lottery induced by

4Through differences in perceived discrimination, our model can resolve apparently contra-
dictory findings in the data. While Shorrer and Sóvágó (2017) document that students with
better socioeconomic background are more likely to deviate, Chen and Pereyra (2019) make the
opposite observation. Higher social status may lead to a more pessimistic belief about getting a
tuition waiver, but cause a more optimistic belief about getting into an elite school.

5For instance, the score may represent the result of a general assessment test, such as the
SAT or GRE. In many countries and cities, all schools use the same centralized score to rank
students. See Fack et al. (2019, Table 1)
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any other ROL. Following the CPE-framework by Kőszegi and Rabin (2007), the
chosen outcome lottery constitutes the reference point. That is, students compare
their school match with any alternative school, and each pairwise comparison
is weighted by the actual match probability determined by the report. A loss-
aversion parameter determines to what extend losses are weighted stronger than
gains.

Kőszegi and Rabin (2007) already proved that CPE allows for a preference for
stochastically dominated lotteries. That is, a sufficiently loss-averse student may
prefer to be matched with school x with certainty over being matched with the
same school x with probability (1 − ε) and being matched with an even better
school y with probability ε > 0. Intuitively, the mere possibility of getting into
y makes the realization of the more likely outcome x more painful. Not listing y
abandons all hope so that this school does not enter the stochastic reference point
and disappointment is avoided. Although a match to any school is ex-post prefer-
red over the outside option, extremely loss-averse students may even completely
stay out of the matching market for the same reason. While moderately loss-
averse students never misrepresent their preferences, only sufficiently optimistic
dominantly loss-averse students report their preferences truthfully, and students
with lower priority signals may truncate or perturb their preferences. This result
matches experimental, survey, and field data suggesting that, in contrast to high-
priority students, low-priority students are prone to deviations from the dominant
strategy.6 In contrast to other applications of CPE, where assuming “no domi-
nance of gain-loss utility” restricts attention to moderate loss aversion, we allow
for dominant loss aversion as well, which is in line with experimental evidence.7

We draw on the extensive literature on matching mechanisms, but depart from
the standard framework where preferences appear to be very general as they only
need to be ordinal. However, they are independent of mechanisms and reports
and thus cannot account for endogenous reference points. In their seminal paper,
Gale and Shapley (1962) set up the one-to-one matching problem and introduce
the deferred-acceptance mechanism as a solution to find stable matchings. They
prove that such matchings exist with respect to any preference profile. They
also establish that their mechanism, with truthful input, implements the stable
allocation optimal for the proposing side, and Dubins and Freedman (1981) and
Roth (1982) show that it is also strategyproof for this side. In addition to that,
Roth (1982) also proves that it is not strategyproof for the receiving side.8 Balinski
and Sönmez (1999) show that DSPDA is constrained efficient in the sense that no

6Basteck and Mantovani (2018) suggest that lower cognitive ability may drive this obser-
vation. However, it is also found in experiments where priorities and preferences are induced.
That is, the same individuals play a dominant or dominated strategy depending on their as-
signed score. Moreover, Hassidim et al. (2017b) observe the same pattern in a population in
which even the lower tail comes from the top of the ability distribution of the general population.
Controlling for cognitive limitations, Shorrer and Sóvágó (2017) and Artemov et al. (2017) find
a causal relationship between admission selectivity and dominated choices.

7See, for instance, Sprenger (2015) and the reference we provide after Lemma 2.
8In fact, he establishes that no stable mechanism exists that is strategyproof for both sides

of the market.
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other fair mechanism Pareto-dominates it. Our model introduces a fundamentally
different structure of incentives and questions all of these classical insights.

Combinations of behavioral theory and matching are still relatively rare. To the
best of our knowledge, the first paper to consider non-standard preferences in
matching is by Antler (2015) whose agents’ preferences are directly affected by
the reported preferences of others. Fernandez (2018) studies anticipated regret in
deferred acceptance. The point that EBLA can help explain misrepresentations
in DSPDA was recently and independently raised by Dreyfuss et al. (2019). Al-
ongside with various differences in modeling choices, they focus on the individual
decision problem and use empirical strategies to identify loss aversion in existing
experimental data. In contrast, we take a deeper theoretical approach by deriving
characterization results on rationalizable ROLs, analyzing strategic interaction,
and evaluating remedy mechanisms. We discuss the distinction to our paper more
carefully in Section A.II. Since many behavioral biases distort beliefs which are
irrelevant with a dominant strategy, we hope to ignite a literature on behavioral
matching with reference-dependent preferences where beliefs are decisive.

Hassidim et al. (2017a) gather stylized facts about the pervasive misrepresentation
of preferences in truthful mechanisms. Similar to Rees-Jones (2018) and Chen and
Pereyra (2019) who analyze survey data,9 they find that “misrepresentation rates
are higher in weaker segments of markets” and increase “when applicants expect to
face stronger competition”. In field data, misrepresentations are hard to identify
since the true preferences are subjective and private. However, Hassidim et al.
(2017b), Shorrer and Sóvágó (2017) and Artemov et al. (2017) exploit objective
rankings in their data to expose “obvious misrepresentations”,10 and they all find
the same pattern. For instance, Shorrer and Sóvágó (2017) discover that a non-
negligible fraction of these misrepresentations are costly, leaving over $3,000 on
the table on average.

Truthfulness is easier to detect in the lab where preferences are imposed by the
experimenter. Recently, the intentions behind matching experiments have shif-
ted. While the pioneers Chen and Sönmez (2006) have focused on a comparison
of different mechanisms, more recently researchers are investigating patterns in
preference manipulations. Hakimov and Kübler (2019) provide a well-structured
overview over the current state of experimental research on matching markets.
They document that rates of truthfulness in DSPDA seem to depend on multiple
factors which should not impede the dominance of the strategy and vary widely
between studies, e.g., only 38 % in the first rounds of Bó and Hakimov (fort-
hcoming) and 88 % in the zero-information treatment of Pais and Pintér (2008).
Rather than rooted in behavioral theory, the experimental studies are descriptive.

9They study the National Resident Matching Program and the Mexico City high school
match, respectively.

10They study the Israeli Psychology Master’s Match, Hungarian college admission, and Au-
stralian college admissions, respectively. Naturally, all students should prefer a school with
scholarship over the same school without scholarship, but the authors record that students forgo
tuition waivers and no-strings-attached stipends.
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For instance, Chen and Sönmez (2006) introduced the district-school bias and the
small-school bias, which capture the tendency that safe district schools are ran-
ked higher and small schools are ranked lower. We offer a theory to explain this
pattern.

A natural explanation for dominated play is that participants simply fail to identify
the dominant strategy. Indeed, Ding and Schotter (2017) find that participants
see incorrect advice as more convincing than advice to play truthfully. Li (2017)
formalizes “obvious strategyproofness” (OSP) as a stronger concept for mecha-
nisms in which the strategyproofness is more apparent, and provides experimental
evidence that OSP mechanisms indeed induce more truthfulness. However, the
OSP mechanism he tests is also robust to EBLA. Hence, it is still an open question
whether the non-truthful play in DSPDA and more truthful play in the remedy
mechanism are due to a behavioral bias (EBLA) or a cognitive limitation (diffi-
culties to verify the dominance). Our predictions are able to explain the most
common deviations documented by Li (2017). We discuss the differences between
the two concepts in Section A.III.

Since Kahneman and Tversky (1979), loss aversion has been recognized as an
integral part of human preferences. Based on their insights, Kőszegi and Rabin
(2006) developed EBLA and subsequently, in 2007, introduced and analyzed CPE,
the equilibrium concept we employ. EBLA is supported by evidence from the
field, such as Crawford and Meng (2011) or Pope and Schweitzer (2011), and from
the lab, such as Abeler et al. (2011) and Ericson and Fuster (2011). However,
also evidence contradicting EBLA exists, see, e.g. Heffetz and List (2014) or
Gneezy et al. (2017). However, Heffetz (2018) mends the conflicting evidence by
introducing an extra treatment that allows expectations to “sink in”. EBLA has
been applied to a variety of economic models.11

2 The model

Players: We consider finite sets of students, I := {A,B, . . . },12 and schools,
S := {1, . . . ,m}. Each school s ∈ S has a capacity of qs ∈ N seats for students.
If we want to allow for students to remain unmatched, we can think of school m
as a safe outside option with unlimited capacity.

Preferences: Each student i ∈ I draws a type θi = (vi,wi, λi), where each entry
of vector vi = (vi,s)s∈S represents the payoff student i receives from being matched
with corresponding school s.13 Similarly, each element of vector wi = (wi,s)s∈S

11Such as moral hazard (Herweg et al., 2010), monopoly pricing (Herweg and Mierendorff,
2013; Heidhues and Kőszegi, 2014; Carbajal and Ely, 2016), pricing with competition (Heidhues
and Kőszegi, 2008; Karle and Peitz, 2014), auctions (Lange and Ratan, 2010; Rosato, 2014; von
Wangenheim, 2017), bargaining (Rosato, 2017), and labor markets (Eliaz and Spiegler, 2014).

12More than 26 students can be accommodated by continuing the list with
AA,BB, . . . , AAA, . . . and so on.

13In order to evaluate reference-dependent utility, we must rely on cardinal utilities. Yet, our
main results will not depend on the cardinal ranking.
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represents the payoff school s receives from being matched with student i.14 Let
(vi,wi) be distributed over a compact subset of Rm × Rm for all i ∈ I. We
explain the loss-aversion parameter λi ≥ 1 in its own section later, it is discretely
distributed over a finite set {λ1, λ2, . . . }.

For some results, we consider the following relevant special case:

Assumption 1 (Homogeneous school preferences). wi,s = ωi ∀s ∈ S and ωi is
uniformly distributed15 on [0, 1].

The ordinal preference over schools corresponding to type θi is captured by a
rank-ordered list (ROL) νi. Formally, a ROL is a permutation of set S, where
a ROL (s1, s2, . . . , sm) is interpreted as school s1 being most preferred, sm least
preferred, and sk having k-th highest preference.16 We call S(S) the set of all
such permutations.

Mechanism: Our results refer to the direct student-proposing deferred-acceptance
algorithm (DSPDA) defined (with its properties) in the appendix. We assume that
schools always report their true preferences over students.17 Formally, a reporting
strategy for student i is a mapping σi : Θi → S(S) from types into ROLs. In
particular, we are interested in when the truthful strategy,

σ∗i (θi) = νi ∀i, θi, (1)

which fully reveals the true ROL, is optimal.

Information: The rules of the mechanism are fully understood. Schools know
their preferences over students. Students know their own type, schools’ capacities,
and the distributions of other students’ types.

Loss aversion: While schools always non-strategically report their true ROLs,
each student reports the preferences maximizing her expected utility. Students
are expectation-based loss averse in the sense of Kőszegi and Rabin (2006, 2007).
Hence, in addition to classical match utility vi,s the student perceives gains and
losses when comparing the realized match utility to her reference utility. For the
specification of gain-loss utility we follow most of the literature by assuming a
linear gain loss function with a kink at zero. More specifically, let

u(θi, s|r) = vi,s +

{
η(vi,s − vi,r) if vi,s ≥ vi,r,

ηλi(vi,s − vi,r) if vi,s < vi,r,
(2)

14It is not crucial that students learn their true priorities wi. It suffices that they receive a
signal inducing a belief about their priority at each school relative to the other students.

15Given iid draws from continuous distributions, this is without loss of generality. If ωi is
distributed with cdf Φ(ω) 6= ω, we can relabel the score to be ω′ := Φ(ω) which is uniformly
distributed for any Φ.

16Ties in the ROL may be broken arbitrarily. With continuous type distributions indifferences
occur with probability zero and do not affect any result in this paper.

17This assumption distinguishes school choice where local laws determine schools’ priorities
from the college admission problem where colleges are strategic actors, see, e.g., Chen and
Sönmez (2006).
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denote student i’s ex-post utility from being matched with school s, when school
r ∈ S is her reference match. The parameter λi > 1 captures the individual
degree of loss aversion, whereas η ≥ 0 is the general weight assigned to gain-loss
utility.18 Let Λi = λiη−η be the loss dominance, and we call students with Λi ≤ 1
moderately loss averse and students with Λi > 1 dominantly loss averse.

Given θi, a belief about θ−i, and all other students’ reporting strategies σ−i, each
report σi(θi) completing the strategy profile σ := (σi, σ−i) corresponds to a distri-
bution Fi = (fi,s)s∈S , where fi,s denotes the probability with which i expects to
be matched with school s. Given θi, σ−i and beliefs about θ−i, we say a lottery is
feasible for student i if there exists a report that induces it, and let Fi be the set
of feasible lotteries. We will provide more details on the origin of this distribution
in Section 3.1.1. The expected utility from a lottery Fi evaluated with respect to
some reference lottery G = (gs)s∈S is then

Ui(θi, Fi|G) =
∑
s∈S

fi,s

(∑
r∈S

u(θi, s|r)gr

)
. (3)

Equilibrium: Given some σ−i, a strategy σi is a choice-acclimating personal
equilibrium (CPE) for student i if, for all θi ∈ Θi the corresponding distribution
Fi satisfies

Ui(θi, Fi) := Ui(θi, Fi|Fi) ≥ Ui(θi, F ′i |F ′i ) := Ui(θi, F
′
i ) ∀F ′i ∈ Fi. (4)

That is, we assume expectation-based loss aversion (EBLA) according to Kőszegi
and Rabin (2007, Section IV), where the reference point is determined by the ac-
tual belief over the own matching outcome. In CPE, strategies maximize expected
utility given that the corresponding beliefs determines both the reference lottery
and the outcome lottery. For the strategic interaction we say a strategy profile σ
is a choice-acclimating Bayesian Nash equilibrium (CBNE), if every σi ∈ σ is a
CPE given σ−i for all i ∈ I.

3 Analysis

In Section 3.1, we consider the individual decision problem of a single student,
taking as given her type and the other students’ strategy profile σ−i. After some
preliminary analysis, we start with an example which provides the main intuitions
of how students with EBLA manipulate their ROLs and why the truthful strategy
may no longer be optimal. We then characterize CPE in DSPDA, and find that our
theoretical predictions can explain patterns observed in the data. In Section 3.2,
we investigate the game theoretical problem of strategic interaction and analyze
CBNE when schools have homogeneous preferences. In particular, we highlight
how DSPDA misallocates school seats in equilibrium by favoring less loss-averse
(and more optimistic) students. In Section 3.3, we propose alternative mechanisms

18Because it turns out that only parameter Λi drives behavior, all our results continue to hold
if parameters ηi are individual.
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to remedy the harmful strategic behavior that arises due to loss aversion. In
general, proofs are relegated to the appendix, Section A.IV.

3.1 The individual decision problem
As we consider the individual problem of some student i by fixing her type θi
and the other students’ strategy profile σ−i, it is convenient to drop the student’s
indices i and also, without loss of generality, relabel schools such that v1 > v2 >
· · · > vm.

3.1.1 Match probabilities and acceptability
By the nature of DSPDA, student i is rejected by school s if at some step of the
algorithm more than qs students with higher priority than i apply to school s.
Hence, student i is matched to the k-th ranked school of her ROL if the capacities
of all schools she ranked above are filled by students that these schools individually
prefer over student i. Given the others’ ROLs, we define a student as acceptable
if and only if she obtains a seat at school s when ranking it first.

Lemma 1. DSPDA assigns a student to her highest-ranked school at which she
is acceptable.

The probability of being acceptable at a school depends on the strategies of other
students and on the schools’ preferences over students, but not on the submitted
ROL by the student herself. The submitted ROL does, however, establish which
of the schools at which she is acceptable is ranked first, and hence constitutes the
student’s match. Therefore, the submitted ROL determines the match outcome
distribution F , and selecting a ROL effectively corresponds to choosing a lottery
over match outcomes.

More precisely, a student’s beliefs about other students’ types and strategies le-
ads to probabilities ps of being acceptable at school s.19 Since the student is
matched with her highest-ranked school at which she is acceptable, a reported
ROL (s1, s2, ...., sm) leads to to a lottery with match probabilities F = (f1, ..., fm),
where fsk is the joint probability that the student is acceptable at school sk but
not acceptable at schools s1, ..., sk−1. Importantly, the acceptability probabili-
ties are usually not independent, even when types are independent draws. Recall
that reporting the true ROL is a dominant strategy under standard preferences
when η = 0. Hence, choosing to report any other ROL corresponds to choosing
a first-order stochastically dominated lottery, which can be optimal as we will
demonstrate.

19Nothing in the analysis of this section relies on the presumption that beliefs are correct.
The student could be overoptimistic about her priority, hold wrong beliefs about other student’s
preferences or draw wrong inference on other student’s used strategies. Importantly, she will
choose a reporting strategy maximizing her expected utility given the beliefs she holds about
acceptability at each school.
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3.1.2 Outside options and truncated lists
In many existing implementations of DSPDA, it is allowed to submit incomplete
ROLs and sometimes participants are even restricted to such truncations. In con-
trast, experimentalists often force participants to submit full rankings. We can
include the possibility to drop a school, i.e., not listing it in the ROL, by enriching
set S with an outside option such that remaining unmatched corresponds to being
matched to a fictional school m with unlimited capacity and normalized vm = 0.
Ranking a school after the outside option corresponds to dropping it from the
ROL. Although such strategies are dominated with standard preferences, trunca-
ted ROLs are ubiquitous in data on DSPDA. We are able to explain prevalent
dropping strategies in Corollary 2.

Depending on the environment, remaining unmatched is not always the outside
option. Clearly, there can be an actual school with a large enough capacity that it
never rejects any student. Moreover, σ−i could be such that less than qs students
apply to school s for any type realization such that our student i is acceptable with
probability one. Alternatively, many school choice programs prohibit “district
schools” to reject students from their district. Our results on ROL truncation also
apply to the “district school bias” prevalent in the data.

For the individual problem, we define the most preferred school with probability
of acceptability equal to 1 as the (de facto) outside option. Evidently, the student
will never be matched with any school ranked below the outside option. Hence,
not listing a subset of schools or listing them in any arbitrary order below the
outside option is equivalent in the sense that any such list induces the same match
probabilities. To identify all equivalent lists as one, we shall henceforth work
with the convention that dropping a subset of schools is achieved by first listing
all dropped schools with index larger outside option k behind the outside option
in increasing order and then listing all dropped schools with index smaller k in
decreasing order.

3.1.3 Payoffs
For any ROL resulting in lottery F = (f1, ..., fm), we can rewrite the expected
utility in (3) as

Ui(·, F ) =
∑
s∈S

fs

(∑
r∈S

u(θi, c|r)gr

)

=
m∑
s=1

fsvs +
∑

1≤s≤r≤m

fsfrη(vs − vr) +
∑

1≤r≤s≤m

fsfrλη(vs − vr)

=
m∑
s=1

fsvs︸ ︷︷ ︸
classical utility

−Λ
∑

1≤s≤r≤m

fsfr(vs − vr)︸ ︷︷ ︸
gain-loss utility

. (5)

Since losses are weighted stronger than gains expected gain-loss utility always
enters negatively. The difference (vs − vr) is by convention positive for each r >
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s. One can think of the expected gain-loss term as the cost of uncertainty. It
is proportional to the loss dominance Λ and the average distance between two
realizations. An equal weight on gains and losses, λ = 1 results in Λ = 0 such
that students only maximize classical utility. If Λ > 1, gain-loss utility dominates
match utility which will become central soon.

3.1.4 Example
The following example illustrates the tradeoff between the gains from classical uti-
lity and the losses from expected reference-dependent utility, which provides the
incentives to misrepresent true preferences. It foreshadows our characterization
results on which ROLs EBLA can rationalize and provides intuition for compara-
tive statics in a student’s loss dominance parameter and her priority. Intuitively,
increasing Λ augments the relative weight of gain-loss utility over match utility.
Hence, reducing the exposure to sensations of loss by taming expectations becomes
a central motif.

Example 1. There are three students, I = {A,B,C}, and two schools with a
single seat such that one student will remain unmatched. By treating the outside
option as a third school with unconstrained capacity, we obtain S = {1, 2, 3} with
capacities q1 = q2 = 1, q3 = 3. Suppose that all students prefer a school seat over
being unmatched and that school 1 is expected to be the more popular school,

Pr(vi,1 > vi,2 > vi,3) = (1− ε) and Pr(vi,2 > vi,1 > vi,3) = ε ∀i ∈ I.

Schools’ preferences are determined by a single score which each student inde-
pendently draws from a uniform distribution on [0, 1], i.e., Assumption 1 holds.
We take the perspective of student A with preferences v1 > v2 > v3 and score ω.
Suppose she believes the other two students are truthful, playing σ∗−A. Table 1
provides the distribution of acceptability probabilities for ω = 1/4 and ε = 1/10.

Acceptability at 1 not at 1

at 2 ω2 = 10/160 2ω(1− ω)(1− ε) = 57/160

not at 2 2ω(1− ω)ε = 3/160 (1− ω)2 = 90/160

Table 1: Acceptability probabilites for ω = 1/4 and ε = 1/20 and ω = 1/4.

Evidently, the student is only acceptable at both schools if she has the highest
score, and acceptable at neither school if she has the lowest score. She is acceptable
at only one of the schools if she has the second highest score and the student with
highest score prefers the other school. Note that the acceptability probabilities
are interdependent, even though preferences and scores are drawn independently.

From the acceptability probabilities, the student can infer the lottery over match
outcomes for any possible ROL. For instance, the true ROL, (1, 2, 3), leads to a
match with school 1 if and only if the student is acceptable there, with school 2
if and only if she is acceptable there but not at school 1, and to no match if and
only if she is unacceptable at both schools. Table 2 presents match probabilities
for all ROLs.
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ROL f1 f2 f3

1,2,3 13/160 57/160 90/160

2,1,3 3/160 67/160 90/160

2,3,1 0 67/160 93/160

1,3,2 13/160 0 147/160

3,2,1 0 0 1
3,1,2 0 0 1

Table 2: All possible ROLs of the example and the corresponding lotteries for
ε = 1/20 and ω = 1/4.

We see that flipping 1 and 2 in the ranking shifts a probability mass of 10/160

(the probability of being acceptable at both schools) from school 1 to 2, which
decreases classical utility but also the cost of uncertainty. Similarly, dropping the
last ranked school simply shifts match probability mass from this school to the
outside option. We will exploit this structure for several of our results. Trivially,
ROLs listing the outside option first induce identical degenerate lotteries and are
therefore regarded as equivalent.

(1,2,3)

(2,1,3)

(2,3,1)
(1,3,2)

(3,2,1)
1.0 1.2 1.4 1.6 1.8 2.0

Λ0
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2

3

4

5

6

7
Expected utility

(a) Expected utility as a function of Λ with ω = 1
4 ,

(3,2,1) (2,3,1) (2,1,3) (1,2,3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Score0

5

10

15

20
Expected utility

(b) Expected utility as a function of ω with Λ = 3
2 .

Figure 1: The expected utilities induced by every ROL as a function of (a) Λ and
(b) ω, setting v1 = 100, v2 = 30, v3 = 0 and ε = 1/20.

Given the lotteries, we can calculate expected utilities for any Λ and select the
optimal ROL. Figure 1 illustrates the expected utilities induced by different ROLs.
Figure 1a demonstrates that for sufficiently small Λ the student always reports
truthfully, as the lottery corresponding to the true ROL first-order stochastically
dominates every other lottery and the positive effects on match utility dominate
the cost of uncertainty. As we increase Λ, preferred schools are optimally ranked
lower ultimately culminating in submitting an empty ROL when the perceived cost
of uncertainty is sufficiently high.20 Notably, any optimal manipulation involves a

20The fact that abstaining from the mechanism by choosing a dominated outside option is
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flipping (or dropping) of the most preferred option – ROL (1, 3, 2) is never optimal.
Intuitively, shifting probability mass from the extreme towards the expectation
will most strongly diminish uncertainty, and is therefore most likely to exceed the
losses in match utility. This insight will be generalized in our characterization
result in in Proposition 1. From Figure 1b, we learn that students tend to become
more truthful as their scores increase and they become more optimistic. Hence,
in particular the disadvantaged students are prone to untruthful reporting.

A large Λ by itself does not lead to profitable deviations from the true ROL. If
students had full information about students’ and schools’ preferences, they could
infer their match outcome for each ROL from σ−i by backwards induction, as their
acceptability is only determined by the strategy of students with higher scores.
Hence, there is no uncertainty and students have no cost of being truthful such
that DSPDA implements the student-optimal stable matching.

3.1.5 Characterization of optimal ROLs
It is well-known that DSPDA is strategyproof for students and implements the
student-optimal stable allocation with standard preferences. However, as we have
seen in Example 1, the dominance of the truthful strategy does not necessarily
carry over to a truthful CPE if loss aversion is sufficiently strong. We show that,
for any Λ > 1, a sufficiently pessimistic student will misrepresent her preferen-
ces. Conversely, Masatlioglu and Raymond (2016, Proposition 1) show that CPE
respects first-order stochastic dominance if Λ ≤ 1.

Lemma 2. The truthful strategy σ∗i is a CPE in DSPDA for student i for all
(vi,wi) and all possible beliefs if and only if Λi ≤ 1.

While many applied papers restrict attention to Λ ≤ 1, “no dominance of gain-loss
utility”,21 we allow (all or only some) students to be dominantly loss averse. There
is substantial evidence that a large fraction of the population is indeed dominantly
loss averse, and Λ > 1 also matches the conventional wisdom that “losses loom
about twice as large as gains”.22 While the possible preference for first-order
stochastically dominated lotteries that comes with this assumption may appear
counterintuitive, it is observable.23 More importantly, excluding such preferences

reminiscent of the “uncertainty effect” documented by Gneezy et al. (2006).
21This assumption was introduced by Herweg et al. (2010) as λ ≤ 2 with fixed η = 1, and later

picked up in various forms by, among many, Herweg and Mierendorff (2013), Herweg (2013),
Karle and Peitz (2014), or Rosato (2014). Rather than based on evidence, the main reason why
it is imposed seems to be that it makes problems well-behaved.

22While this rule of thumb originates from studies on riskless choices, it also seems to apply
when risk is involved, see Tversky and Kahneman (1992), Gill and Prowse (2012), Sprenger
(2015) or Karle et al. (2015). In our setting, it corresponds to 1+ηλ

1+η ≈ 2, which implies Λ ≈
1 + η > 1.

23See the discussion around Proposition 7 by Kőszegi and Rabin (2007). While the “uncer-
tainty effect” found by Gneezy et al. (2006) provides evidence in this direction, Rydval et al.
(2009) suggest it cannot be replicated. In the context of choice bracketing, Tversky and Kah-
neman (1981) and Rabin and Weizsäcker (2009) provide experimental evidence that people can
have a preference for dominated lotteries.
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would preclude us from explaining our phenomenon in which students indeed do
choose dominated lotteries.

As behavior in DSPDA under moderate loss aversion is standard, we consider
dominant loss aversion for the remainder of this section, and provide novel cha-
racterizations of non-truthful CPE. At first glance, a full characterization appears
quite arduous because of the multitude of ROLs available. Our results enable
us to reduce substantially the set of ROLs that are candidates for a CPE. Our
predictions are testable and consistent with pervasive deviations from the truthful
strategy.

Based on the following lemma, Proposition 1 allows us to restrict attention to
ROLs with certain properties when searching for a best-responding ROL given
a type, beliefs, and others’ reporting strategies. If all ROLs correspond to diffe-
rent lotteries over match outcomes, the proposition holds for any optimal ROL.
However, if some ROLs correspond to identical lotteries (and therefore identical
expected utility), it is possible that a student is indifferent between multiple ROLs
out of which at least one will satisfy the properties of the lemma.24

Lemma 3. If a strictly optimal ROL ranks school l after school n for l < n, it
ranks the schools 1, ..., l − 1, l in decreasing order.

Table 3 shows all possible ROLs for a setting with three schools and the option
to remain unmatched (“school 4”). The bold numbers are the listed schools and
schools ranked after 4 can be interpreted as “dropped from the ranking”. The
darkly shaded ROLs are redundant in the sense that they are either equivalent to
another ROL listing only one school or another ROL dropping all schools. The
light shaded ROLs are the ones never strictly optimal as characterized by Lemma
3. For instance, (1, 3, 2, 4) is not optimal as it ranks 2 after 3 but 1 before 2.
Intuitively, if the student were willing to reduce risk by shifting probability mass
from school 2 to 3, i.e., (1, 3, 2, 4) �i (1, 2, 3, 4), then she would be a forteriori
willing to shift probability mass from the more extreme school 1 downwards, i.e.,
(3, 1, 2, 4) �i (1, 3, 2, 4), so (1, 3, 2, 4) can never be strictly optimal.

An immediate consequence of Lemma 3 is the following characterization of the
structure of any optimal ROL. We define a ROL as CPE-rationalizable if it can
possibly result in a CPE, i.e., if there exist types such that this ROL is optimal.
Only a comparably small set of ROLs is CPE-rationalizable. Indeed, while for m
schools the number of ROLs is m! (or

∑m
i=1(m− i)!

(
m−1
i−1

)
=
∑m

i=1
(m−1)!/(i−1)! non-

redundant ROLs when m is an outside option), the number of ROLs as described
in Proposition 1 is just 2m−1.

24For this reason, we render ROLs equivalent for which only the ranking after the outside
option differs. Identical lotteries can also arise if a subset of schools together constitute an
outside option, making any permutation of schools ranked after them meaningless. Similarly,
the ranking of two schools at which the student is never acceptable does not matter. There are
no equivalent ROLs if for any subset of schools where acceptability is not certain the probability
of being acceptable at precisely these schools is strictly between zero and one.
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Full ROL Drop one Drop two Empty ROL
1,2,3,4 1,2,4,3 1,4,3,2 4,3,2,1
2,1,3,4 2,1,4,3 2,4,3,1 4,1,2,3
3,1,2,4 3,1,4,2 3,4,2,1 4,2,1,3
1,3,2,4 1,3,4,2 1,4,2,3 4,3,1,2
2,3,1,4 2,3,4,1 2,4,1,3 4,1,3,2
3,2,1,4 3,2,4,1 3,4,1,2 4,3,2,1

Table 3: All possible permutations with three schools and an outside option. The
darkly shaded ROLs are redundant. By Proposition 1, the lightly (and darkly!)
shaded ROLs are never strictly optimal.

Proposition 1. A strictly optimal ROL which ranks k first must rank schools
1, . . . , k − 1 in decreasing order and schools k + 1, . . . ,m in increasing order.

This characterization result is mainly a more intuitive reformulation of the pre-
ceding lemma. In particular, it implies that any manipulation of the ROL will
concern the most preferred schools, a testable prediction. As a first impression
of our theory’s predictive power, we briefly consider the experiment by Li (2017,
treatment SP-RSD). Here, each participant is privately endowed with a priority
score, an integer between 1 and 10, and is informed about how all participants
commonly value each of four prizes, random draws from a discrete distribution on
[$0,$1.25]. Next, participants simultaneously submit a ROL to a direct serial dic-
tatorship mechanism which processes the ROLs in decreasing order of the priority
scores and ties are broken randomly. Essentially, this setting is a special case of
our analysis of DSPDA.

Priority 1 2 3 4 5 6 7 8 9 10 ALL
1234 61.1% 57.1% 58.8% 67.7% 55.2% 79.0% 74.4% 85.7% 84.3% 91.3% 71.0%
other 38.9% 42.9% 41.3% 32.3% 44.8% 21.0% 25.6% 14.3% 15.7% 8.8% 29.0%

2134 1.1% 1.2% 3.8% 6.5% 12.1% 8.1% 10.3% 7.1% 5.7% 1.3% 5.3%
3214 6.7% 6.0% 7.5% 4.8% 3.4% 0.0% 0.0% 1.8% 0.0% 0.0% 3.2%
4321 17.8% 8.3% 3.8% 4.8% 1.7% 3.2% 1.3% 0.0% 2.9% 0.0% 4.9%

CPE 91.1% 77.4% 77.5% 88.7% 75.9% 91.9% 87.2% 98.2% 95.7% 93.8% 87.5%

Table 4: The first two rows indicate the shares of truthful and manipulated ROLs,
respectively. The next three rows show the most common misrepresentations and
their fraction of all submitted ROLs (most common in bold face). The final
row states the fraction of CPE-rationalizable ROLs of all submitted ROLs. The
columns represent each priority score with the last one being an aggregation over
all scores.

Table 4 documents several noteworthy observations regarding our theoretical re-
sults. Table 5 in the appendix provides more details. While the standard theory
can explain 71% of the ROLs (first row, last column), our theory can explain
87.5% of the reported ROLs (last row, last column). More importantly, the most
common misrepresentations for each priority score (in bold face) are indeed all
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CPE-rationalizable. Moreover, the rates of these misrepresentations move accor-
ding to the intuitions suggested by our model, ROL (4, 3, 2, 1) is most common
among low scores, ROL (3, 2, 1, 4) among lower intermediate scores, and ROL
(2, 1, 3, 4) among higher intermediate scores. As suggested by Example 1, high
scores are more likely to submit truthful ROLs. Although this rate does not in-
crease monotonically, there is a clear trend. The prediction relying only on the
induced values as exogenous preferences, truthful reporting as a dominant stra-
tegy, fares especially bad for low scores. From Proposition 1, we can immediately
deduce when students prefer to be truthful, Corollary 1 and Proposition 2.

Corollary 1. The true ROL is optimal if and only if it is optimal to rank school
1 first.

This insight helps us to provide necessary and sufficient conditions on the loss
parameter which determine whether a manipulation of the true ROL is profita-
ble. Based only on exogenous fundamentals, Proposition 2 gives precise bounds
on when DSPDA is incentive-compatible for loss-averse students. These bounds
are strict in the sense that for any p1 ∈ [1−1/Λ

2
, 1 − 1/Λ] the answer to whether

truthfulness is optimal depends on other acceptability probabilities and also the
cardinal utilities.

Proposition 2. Let p1 be the probability that the student is acceptable at her
most preferred school.

1. If p1 > 1− 1/Λ, the true ROL is optimal for any such θi.

2. If p1 <
1−1/Λ

2
, the true ROL is not optimal for any such θi.

The proposition immediately implies that under Assumption 1 sufficiently high
scores report truthfully whereas sufficiently low types misrepresent whenever se-
ats at their preferred school are scarce. This result is in line with the evidence
suggesting a causal relationship between priority and truthfulness mentioned in
our introduction and Table 4.

An important implication of the result is that students’ beliefs are crucial. That
is, one of the advantages of strategyproof mechanisms, namely, the irrelevance of
priors, vanishes. Importantly, we have made no assumptions on whether the be-
liefs determining the acceptability probabilities are correct. Consequently, EBLA
is a channel which renders other well-documented biases distorting the beliefs de-
cisive. For instance, an overconfident student is more likely to be truthful as she
overestimates her chances of getting into her favorite school. Hence, overconfi-
dence and loss aversion countervail each other in terms of incentive compatibility.
Indeed, Rees-Jones and Skowronek (2018) find that overconfident25 participants
are more likely to be truthful. Without our theory, this observation may ap-
pear counterintuitive as this bias usually steers behavior away from the rational

25In their online experiment, participants completed a test on logical reasoning ability and
afterwards estimated the percentage of other participants they outperformed. They deem a
participant overconfident if they overestimated their percentile rank.
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unbiased benchmark.

In a similar vein, our results have relevant ramifications for affirmative action poli-
cies. For ease of exposition, suppose some school evaluates students according to a
one-dimensional score ω, but students of a certain demographic are discriminated
in the sense that their score is reduced to ω′ = aω + b with a < 1 and b < 0.
Consequently, a discriminated student is more pessimistic about her acceptability,
and, hence, there are scores ω for which discriminated students do not reveal their
top preference for this school, while students of other demographics with the same
score would list it. Therefore, DSPDA aggravates the discrimination by discoura-
ging the respective demographic from revealing true preferences. For this insight,
it is irrelevant whether this discrimination is real or only perceived. Thus, the
reasoning that such discrimination is inconsequential because marginalized stu-
dents don’t rank discriminating schools in DSPDA is inherently flawed in models
incorporating EBLA.

Truncated lists are prevalent in the data, but they obviously constitute misre-
presentations when dropped schools are preferred over the outside option. Since
constraining the ROLs to a fixed number of schools can destroy both the strategy-
proofness and stability of DSPDA, economists advocate against such restrictions.
While prohibiting complete ROLs introduces strategic motifs into DSPDA with
standard preferences, such motifs are already present in our setting and students
may voluntarily choose to truncate their ROLs.

Because it is never optimal to list an undesirable school, i.e., one that is considered
worse as the outside option, we consider only desirable schools. By dropping such
a school from the list, a student simply forgoes the chance of being assigned to
this school in favor of matching with the outside option. We now characterize
optimal truncated ROLs. Proposition 1 implies that a student will never truncate
her true ROL from below. If an incomplete ROL is optimal, it is optimal to drop
the most preferred rather than the least preferred schools.

Corollary 2. It is never optimal to drop some desirable school k, but list some
school ` < k.

In light of Proposition 1, the intuition is straightforward. A student only listing
a single school s < (m − 1) can shift match probability from the outside option
to a preferred outcome by adding school (m− 1) to her ROL. In some sense, this
addition provides a free insurance which delivers gains over the outside option
and simultaneously reduces losses compared to school s. If the student was so
loss-averse that she prefers to forgo such insurance, she would prefer to drop
s < (m−1) as well. As a result, if a singleton ROL is optimal, it only lists the least-
preferred (desirable) school. The same intuition carries over to longer truncated
lists, implying that the true ROL is never truncated in a strict26 optimum.

26Note that a truncated true ROL could be optimal if it is equivalent to the true ROL. For
instance, a top (or overconfident) student may assign probability 1 to being admitted to one of
her first three choices such that the the order of the schools listed afterwards is irrelevant.
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The extreme form of truncation is submitting an empty ROL and thereby essen-
tially abstaining from the school-choice program. Indeed, such behavior can be
optimal. If Λ is very large, almost all such types submit an empty ROL to obtain
the outside option with certainty. Even for reasonable Λ, very pessimistic students
might optimally stay out of the matching market. Notably, such students may pre-
fer a certain match with the outside option although

∑m−1
s=1 qs ≥ |I|, i.e., although

a complete ROL would assign them to some desirable school with certainty, but
it is ex-ante uncertain which one. The reason is that the uncertainty of the match
outcome introduces scope for loss utility. Straightforwardly, no student abstains
from the matching market if there is some school s with qs ≥ |I|, because this
school essentially becomes the outside option. Similarly, a school that is listed by
no other student becomes a de-facto outside option.

3.2 Strategic interaction
In this section, we investigate strategic interaction and the structure of choice-
acclimating Bayesian Nash equilibria (CBNE). For discrete types and homogene-
ous school preferences, we derive an essentially unique equilibrium in pure strate-
gies. In addition, we rationalize the prevalent district school bias as an equilibrium
phenomenon in a setting with district and elite schools. We provide bounds for
the social cost of this bias and show that it persists as the market grows large.

To establish general existence of a CBNE, note that a CBNE is just a standard
Bayesian Nash Equilibrium, where individual utilities over actions are given by
utility function (5).27 Equilibrium existence is then implied by Theorem 1 in
Milgrom and Weber (1985).28 In general, strategic interaction between loss-averse
agents is difficult to analyze and has only been sparsely studied by now. To better
understand the structure of symmetric CBNE, we assume for the remainder of this
section that the students’ type spaces are finite and schools have homogeneous
preferences over students. Moreover, suppose further that all schools break ties
between students in the same publicly known deterministic way.

A key observation in the analysis of strategic interaction with homogeneous schools
preferences is the fact that a student’s match outcome will only be affected by the
behavior of other students with a higher score. Indeed, by the nature of DSPDA,
a student will only be rejected by a school she proposes to at some stage if this
school also has an offer from a student with a higher score. Hence, intuitively, the
existence and the structure of a CBNE follows by an iterative argument where each
student chooses her optimal ROL according to the rational beliefs she holds over

27This interpretation subtly involves some view on the interpretation of mixed strategies. We
follow, e.g., Rubinstein (1991) in his interpretation that we should either regard mixed strategies
“as the distribution of the pure choices in the population” or as “a plan of action which is
dependent on private information which is not specified in the model.” In both interpretations
the player knows his own choice of (pure strategy) action when forming her reference point.
In this interpretation we depart from Dato et al. (2017) who assume that the uncertainty of a
mixed strategy realizes only after the player chose it and formed her reference point.

28More concretely, note that compact metric spaces are complete and separable and that utility
functions are measurable for the induced Borel σ-algebra.
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submitted ROLs by students of higher scores. We say an equilibrium is essentially
unique if it is unique with respect to a public known rule determining how students
decide when indifferent between multiple ROLs.

Proposition 3. With homogeneous school preferences, there exists an essentially
unique CBNE in pure strategies.

Elite schools and the district-school bias
We now employ a simplified setting to derive the district-school bias introduced by
Chen and Sönmez (2006). Hakimov and Kübler (2019) state the phenomenon as
“the district school (or safe school) is ranked higher in the reported list than in the
true preferences” and document how prevalent it is in a wide range of matching
experiments.

Suppose for the sake of this example that there is a set E ⊂ S elite schools where
each school from this set is unambiguously preferred by each student over some
(possibly type-dependent) safe outside option which can be thought of as the local
district school where the student has top priority. To simplify, we assume that
all elite schools induce the same utility to a student. We can then normalize that
each elite school induces a match utility of v > 0 whereas the safe outside option
induces a utility of zero.

Suppose further that for each student i a score ωi is independently drawn from
a common continuous distribution with compact support. By parameterizing the
score to the respective quantile of the distribution, we can assume without loss of
generality that scores are drawn uniformly from the unit interval. Let a student’s
loss dominance Λi be independently drawn from a common distribution with dis-
crete support {Λ0,Λ1,Λ2, . . . ,Λl}. Since truthful reporting is a dominant strategy
for any Λ < 1, we can combine all loss dominance parameters in [0, 1] into Λ0

and assume, without loss of generality, Λ0 = 0 and Λ1 > 1. The following lemma
shows that we can, without loss of generality, focus on the case of only one elite
school.

Lemma 4. For any belief on the distribution of acceptability probabilities of elite
schools it is either a best response to apply to all elite schools or to apply to no
elite school.

Hence, in the following we will not think of a set E of elite schools, but rather of
one elite school with joint capacity q =

∑
s∈E qs, which is assumed to be smaller

than |I|, the number of students.

In CBNE, a representative student’s decision whether to apply for the elite school
depends on her acceptability probability f at the elite school, which is given by
rational beliefs about the probability that less than q students of higher score
apply to the elite score. Hence, the acceptability probability is a function f(ω)
which is weakly increasing in her score ω. Again, by (5), listing the elite school
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before the outside option is optimal for any ω > 0 if and only if

f(ω)v − Λf(ω)(1− f(ω))v ≥ 0 ⇐⇒ Λ ≤ 1

1− f(ω).
(6)

Consequently, for any score ω ∈ (0, 1), there is a cutoff Λ(ω) = 1
1−f(ω)

such that

applying to the elite school is a best response if and only Λ ≤ Λ(ω). Due to
the monotonicity in the cutoff structure, the CBNE can again be determined
iteratively. Students with the highest loss dominance Λl have the highest cutoff
score ω(Λl) below which they abstain from listing the elite school in their ROL.
Anticipating this behavior, any student with loss dominance Λl−1 can infer her
score cutoff below which ω(Λl−1) she drops the elite school, and so on.

Lemma 5. In the elite school problem, there is an essentially unique CBNE in
which a student with loss dominance Λ applies to the elite school if and only if
her score is above some cutoff score ω(Λ) ∈ (0, 1), which is increasing in Λ.

The red curve in Figure 2 illustrates the threshold in Λ for each score ω above which
a student does not apply to the elite school in equilibrium, when the distribution
of Λ approaches a uniform distribution on [0, 3]. The blue curve indicates the
threshold of a best response when all other students are truthful and apply. Hence,
the difference between the two curves illustrates exactly the effect of strategic
interaction. Indeed, the fact that some higher-priority students do not apply due
to their strong loss dominance makes a student more optimistic such that she is
more likely to apply herself.

Figure 2: Truthfulness in the elite-school problem with Λ ∼ U [0, 3], q = 3, n = 10.

Next, we analyze the cost of inefficiency that arises from misreporting. In par-
ticular, we show that misrepresentations remain substantial and consequential as
we let the number of students go to infinity. The fact that there are inefficiencies
in the small markets in experiments is not necessarily alarming. Unfortunately,
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misrepresentations also seem to be costly in large real-world markets, where we are
only able to identify a lower bound on these costs through obvious misrepresen-
tations. Artemov et al. (2017) and Hassidim et al. (2017b) find that 1 - 20% and
2 - 8% of obvious misrepresentations are ex-post costly, respectively, and Shorrer
and Sóvágó (2017) further estimate that the 12 - 19% costly obvious misrepre-
sentations amount to $3,000 - $3,500 on average (unconditionally $347 - $738 per
misrepresentation).

Suppose for the sake of simplicity that there are only two types of loss aversion.
A share α of students has loss dominance ΛH > 1 whereas share (1− α) has loss
dominance parameter ΛL < 1 such that they always report truthfully. Obviously,
as we increase the number of students in our setting while holding capacity q fixed,
a growing share of students manipulate their reported preferences and abstain
from applying to the elite school, as a limited capacity leaves only the very best
students with a substantial acceptability probability. As most of the deviations are
inconsequential in the sense that the manipulating students are very unlikely to be
acceptable at the school anyway, low truthfulness rates do not necessarily decrease
efficiency. A more meaningful measure for inefficiencies is the probability that the
match outcome is unstable and the share of students suffering from justified envy
relative to the capacity of the elite school. As the necessary score to be acceptable
becomes more predictable when the number of students is large one might think
that misrepresentations become unsubstantial in large markets. The following
proposition shows that this is not the case.

Proposition 4. Let q be the capacity of the elite school and α the share of students
with loss dominace ΛH > 1. Denote with Yq ∼ Γ(q, 1) a gamma-distributed
random variable with shape q and rate 1, and with Gq its cdf. As n goes to
infinity,

1. the probability of an unstable allocation is weakly above α
(
1− 1

ΛH

)
with

equality only for α = 1 or q = 1, and

2. the expected number of students exposed to justified envy is weakly above

α

(
1− 1

ΛH

)(
E
[
Yq|Yq ≥ G−1

q (1/ΛH)
]
−G−1

q (1/ΛH)
)
,

and equality, again, only for α = 1

In particular, the expected number of students who suffer from justified envy is
bounded away from zero. Intuitively, there are two countervailing effects as n
grows larger. First, the confidence intervals around the necessary cutoff score to
be acceptable become smaller. Second, the number of students with a score in
any interval becomes larger. The proposition shows that both effects are mainly
offsetting each other such that the expected number of students approaches a con-
stant above zero. Moreover, note that we are considering a stylized model where
students are fully informed about their own score and uncertainty only stems from
uncertainty about other students’ scores. In reality, another source of uncertainty
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may concern how the school evaluates abilities which is independent of market
size. In this sense, our result provides a lower bound for costs of uncertainty.

3.3 Possible remedies
We have seen that under students’ EBLA DSPDA may not implement the stu-
dent optimal stable allocation, and that truthful reporting may no longer be op-
timal. This insight motivates the obvious question whether there are other mat-
ching mechanisms to achieve these goals. We first consider static mechanisms and
then move on to two sequential mechanisms, sequential student-receiving (school-
proposing) deferred acceptance and serial dictatorship.

Static mechanisms
If we restrict to static matching mechanisms, we can provide a negative result.
A static mechanism, as formally defined in the Appendix A.I, is any mechanism
which asks students about their preferences only once without providing feedback
on other students’ preferences.

Proposition 5. For any distribution of preferences, a static mechanism that ge-
nerates the student optimal stable allocation as CBNE for all realization of prefe-
rences exists if and only if the DSPDA is truthful.

Hence, if DSPDA fails, there is no hope for remedies in the class of static mecha-
nisms. Formally, the result is an immediate implication of the revelation principle
for static mechanisms. Intuitively, if a student prefers to avoid the ex-ante risk
that comes with the implementation of the student optimal matching, she will not
reveal her preferences under any such mechanism.

Sequential school-proposing DA
Since uncertainty is the source of loss-averse students’ deviations, the use of se-
quential mechanisms may mitigate this problem. A sequential mechanism enables
feedback between different rounds, and hence has the ability to alter beliefs before
asking for reports. At first sight, it may seem surprising that the sequential use of
information enables us to go beyond what is achievable with static mechanisms,
as it seems to violate the fundamental insight of the revelation principle that any
sequential mechanism has a static direct equivalent Myerson (1979). In settings
with dynamic information and expectation-based loss averse-agents, however, the
revelation principle does not apply. As loss-averse agents evaluate outcomes with
respect to beliefs, information endogenously affects their preferences over alterna-
tives.29

For a dynamic equilibrium concept in the context of EBLA, we follow Rosato
(2014) in his straightforward extension of a CPE to dynamic situations. At each
decision node of an extensive form game, a student correctly anticipates her choices
at any point in the future. Based on the induced beliefs and using backward
induction, she selects the lottery most-preferred under the static CPE at every

29This point has been raised in the context of auctions, see von Wangenheim (2017).

22



decision node, with the reference point at each choice being her beliefs about final
match outcomes conditional on the information available at that stage.

At any stage of the mechanism, new information can be revealed that alter the
beliefs about the final match outcome, which depends on the student’s behavior in
future stages. Let Fi,k be the set of feasible lotteries given θi, σ−i and the beliefs
about θ−i conditional on the information available at node k, and let Fi,k be the
lottery corresponding to some σi. Given some σ−i, a strategy σi is an SCPE if, at
any decision node k, it selects a lottery Fi,k such that

Ui(θi, Fi,k) ≥ Ui(θi, F
′
i,k) ∀θi ∈ Θi, ∀F ′i,k ∈ Fi,k.

Accordingly, we call a strategy profile where each player’s strategy is a SCPE gi-
ven other players’ strategies a sequential choice-acclimating Bayesian Nash equili-
brium (SCBNE). We are now equipped with the tools to analyze the incentives of
loss-averse students in sequential mechanisms, and turn to the evaluation of the
sequential student-receiving (school-proposing) deferred-acceptance mechanism.

Definition 1 (Sequential student-receiving DA, SSRDA).

t = 1 All schools offer their most-preferred student a seat. All students may tem-
porarily accept one of their offers (if they have one), and reject all other
schools.

t > 1 All schools that have temporarily unfilled seats make an offer to the highest-
ranked student that has not yet rejected them yet. All students may ten-
tatively accept one of their new offers (if they have one), and reject their
current match (if they have one).

End The process terminates after the first step without rejections.

It is well known that DA is not truthful for the receiving side. Strategically
rejecting an acceptable school may trigger other students to be matched with
that school who may then leave capacities at more preferred schools. In practice,
however, and in contrast to the proposing side, strategizing on the receiving side
seems to play no major role.

Under complete information, it is known that the receiving side in DA cannot gain
from manipulations if and only if the the student-optimal and the school-optimal
stable match coincide.30 Intuitively, the stable match is unique if preferences are
sufficiently aligned between both sides of the market. For our model of incomplete
information, where students’ preferences are drawn randomly, it is convenient to
think of alignment as a condition on schools’ payoffs wi,s with respect to the drawn
values vi,s or vice versa. The following definition conveys an appropriate extension
of this notion for our setting with incomplete information.

30The reason is that under DSPDA truth telling leads to the school-optimal stable match. If
this does not agree with the student-optimal stable match, students can force it by coordinating
to only accept the school they would receive under their preferred stable match outcome.
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Assumption 2 (Aligned preferences). Preferences are aligned if for all realization
of preferences

wi,s ≥ wi,s′ ⇐⇒ vi,s ≥ vi,s′ ∀s, s′ ∈ S and ∀i ∈ I.

Under Assumption 2, we may think of the schools’ match values as a (not neces-
sarily deterministic) function of students’ match values. A possible interpretation
would be that, for instance, students who prefer law schools over economics schools
also score better in characteristics that are important to law schools.

Lemma 6. If preference are aligned, there is a unique stable match for all reali-
zations of preferences.

Hence, if preferences are aligned, for no realization of preferences students can
gain from strategizing in SSRDA. The same remains to hold under EBLA.

Proposition 6. If preferences are aligned, the truthful strategy profile is a SCBNE
in SSRDA, and the unique stable allocation is implemented for all preference
realizations.

Intuitively, a student with an offer can obtain a seat with certainty if she accepts.
A strategic rejection of an acceptable school may in general trigger an offer from a
more preferred school, but comes at the risk of receiving a worse outcome. Since
the loss parameter Λ can be interpreted as a cost parameter for uncertainty, such
strategic considerations become even less appealing for larger Λ. Hence, loss aver-
sion tends to mitigate the incentives for such misreporting. This effect is related to
the logic in Fernandez (2018), who identifies anticipated regret for the case where
manipulations don’t pay off as a possible explanation for the observed truthful
behavior in SSRDA. The following example shows that SSRDA can produce ma-
tch outcomes in equilibrium that are strictly preferred by students to the outcome
under DSPDA.

Example 2. Consider the elite-school problem under Assumption 1 with two
students and q = 1. The only stable matching in this problem is that the student
with higher score is assigned to the elite school whereas the lower-score student is
matched with a district school. SSRDA implements this allocation. Indeed, both
schools propose to the stronger student, she accepts at the elite school, leaving
the district school for the lower-score student. Under DSPDA, however, students
report their preferences truthfully only if (6). Consequently, if the score of both
students is below 1− 1/Λ, both students misrepresent their preferences, attend the
district school, and the match outcome is neither stable nor student optimal.

Serial dictatorship
Under Assumption 1, SSRDA simplifies considerably. When all schools have the
same preferences, all schools approach the same student in the first step. Then,
this student is aware that she has the highest score among all students and is
immediately accepted at the school she selects. All other schools are rejected and
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apply to the second-highest-score student who is then aware that she is now the
highest-score student of the unmatched population and that she is assigned to her
selected school with certainty, and so on. In short, SSRDA simply becomes serial
dictatorship in which homogeneous priority scores determine the order. Since
homogeneous school preferences constitute an example of aligned preferences, the
following corollary is an immediate consequence of Proposition 6.

Corollary 3. If schools have homogeneous preferences over students, the truthful
strategy is an SCBNE in SSRDA, and the unique optimal stable allocation obtains.

Li (2017) compares the outcome of DSPDA with the outcome of a sequential serial
dictatorship mechanism as induced by SSRDA in a lab experiment. He finds that
while in DSPDA 36 % of games do not end in the stable outcome as induced by the
dominant strategy, this rate drops to 7 % under SSRDA. He explains this finding
by the fact that –in contrast to SSRDA in this setting– DSPDA is not obviously
strategyproof (OSP). A mechanism is OSP if for the equilibrium strategy the worst
outcome is still weakly better than the best possible outcome from any alternative
strategy. Hence, dominance in an OSP mechanism may be easier to detect by
agents with cognitive limitations.

Ashlagi and Gonczarowski (2018) show in their Example 1 that the stable serial
dictatorship mechanism is in general OSP when the proposing side has homogene-
ous preferences. However, they show that for general preferences it is impossible
to construct an OSP mechanism which generates stable match outcomes. In par-
ticular they identify acyclicality in preferences in the sense of Ergin (2002) as a
regularity condition that enables implementation of stable matchings with an OSP
mechanism.31

In Appendix A.III, we build on Example 2 in Ashlagi and Gonczarowski (2018) to
demonstrate that a mechanism that is OSP in implementing the student optimal
stable allocation when preferences are acyclical may fail to induce stability when
students are loss averse. This example sets the two concepts apart and provides
a testable prediction which of the two biases induces observed manipulations.
Our model conveys students’ loss aversion as an alternative explanation for the
observed differences, which has nothing to do with cognitive limitation, but comes
from the optimal choice when students suffer from this behavioral bias.32

4 Conclusion

We have identified a possible reason why students play dominated strategies in the
strategyproof direct student-proposing deferred-acceptance mechanism (DSPDA).

31In our context, a preference profile for schools over students is cyclical if there are three
students A,B,C and two schools 1, 2 such that A �1 B �1 C �2 A, and it is acyclical if it is
not cyclical.

32In reality both, cognitive limitations and behavioral biases may play an important role for the
observed patterns. This is confounded by the fact that in Li (2017) the rate of misrepresenting
slightly declines with learning, but remains well above the level of misrepresentations in the
SSRDA.
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The truthful equilibrium in dominant strategies is not a choice-acclimating per-
sonal equilibrium if some students are dominantly expectation-based loss-averse
(EBLA), which is suggested by the data. Loss aversion is among the behavioral
biases that have been replicated repeatedly in numerous experimental and field
studies. The notion that students forgo small chances to get into preferred schools
to avoid disappointment is therefore plausible. Indeed, the costly deviations from
the dominant truthful strategy are most pervasive among low- and intermediate-
priority students who desire to get into competitive programs. Our theoretical
predictions fit this pattern in experimental and field data and also provide a for-
malized framework for the pervasive district-school and small-school biases.

The extensive evidence for dominated play in DSPDA calls into question the iden-
tification strategy to treat reported preferences as truthful. Regarding affirmative
action this insight is important, because the observation that people of certain
demographics do not reveal a preference for certain schools in DSPDA does not
imply that they do not want to go there. In fact, we show that groups who are
discriminated or perceive to be, indeed, are more likely to misrepresent their prefe-
rences. Moreover, we show that DSPDA in conjunction with EBLA discriminates
against loss-averse and underconfident students. Since the data suggests that
these characteristics are correlated with gender, DSPDA indirectly but inherently
implements an imbalanced allocation and amplifies discrimination against already
marginalized groups. Importantly, this misallocation problem does not vanish as
markets grow large.

We have discussed remedy mechanisms and our theory suggests that sequential
mechanisms should outperform static mechanisms in terms of truthfulness. Under
conditions on the preferences, a sequential serial dictatorship mechanism deli-
vers the unique stable allocation in dominant strategies and in a truthful choice-
acclimating equilibrium, i.e., it succeeds where the celebrated direct student-
proposing deferred-acceptance mechanism fails. Indeed, Li (2017) showed that
this mechanism outperforms its static version. While he attributes this to obvious
strategyproofness, we suggest that reference-dependent preferences drive this dif-
ference. That is, it is not obvious whether behavior is driven by a behavior bias
(loss aversion) or a cognitive impairment (difficulties to understand the dominance
of a strategy). We see the presence of at least some students with non-standard
preferences as an undeniable fact and, hence, our paper provides first steps into
understanding the former, but more experimental work is needed to disentangle
the two.

Appendix

A.I Omitted definitions of Section 2
DSPDA is defined as follows: After all students report their ROLs,

t = 1 All students apply to the top-ranked school of their submitted ROL. Each
school rejects the least-ranked students in excess of its capacity and tempo-
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rarily holds the others.

t > 1 All students who were rejected in step (t − 1) apply to the highest-ranked
school of their submitted ROL that has not rejected them yet. Each school
rejects the lowest-ranked students in excess of its capacity from the pool of
current applicants. Those who are not rejected are temporarily held.

End The process terminates after the first step without rejections.

Importantly, the mechanism is direct and then all steps are executed mechanically
based on the reported ROL.

Properties of mechanisms: An allocation M is a many-to-one mapping from
I to S such that M(i) = s denotes that student i is matched to school s and
M−1(s) = {i : M(i) = s} lists the students matched to s. Feasibility requires
|M−1(s)| ≤ qs. Let M be the set of all feasible allocations. An allocation rule
is a function α : S(S)n → M, mapping profiles of ROLs into matchings. An
allocation rule is strategyproof if

vi,α(ν)[i] ≥ vi,α(ν′i,ν−i)[i] ∀ i ∈ I,∀θ. (7)

Mechanisms that induce a strategyproof allocation rule with standard utility have
the feature that it is a dominant strategy to report preferences truthfully with
standard utility. However, the dominance of the truthful strategy may not carry
over to settings with non-standard utility as our paper demonstrates.

An allocation M is stable if there are no pair i, s such that

vi,s > vi,M(i) and ws,i > ws,i′ for some i′ ∈M−1(s), (8)

i.e., no student i prefers another school s over her match, while this school prefers
i over at least one of her matched students. A student-optimal stable matching is
a stable matching M such that

vi,M(i) ≥ vi,M ′(i) for any stable matching M ′. (9)

A school-optimal stable matching is defined accordingly.

A static matching mechanism consists of reporting spaces R = ×i∈IRi for each
student i and an allocation function o, mapping reported profiles r = (ri)i∈I ∈ R
into allocations.

A.II Relation to Dreyfuss et al. (2019)
Similar to our paper, Dreyfuss et al. (2019) find that EBLA can explain non-
truthful ROLs observed in the data. In their reduced form dynamic framework
à la Kőszegi and Rabin (2009), students enter the decision problem with a refe-
rence point given by the outside option, whereas in our decision problem students
already anticipate the choices ahead of them, which is reflected in their reference
point. Moreover, Dreyfuss et al. (2019) consider an extra period where uncertainty
resolves which gives rise to additional gain-loss utilities. The essential intuition
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how students use manipulations to shield off potential disappointment is, however,
similar in both models.

In our setup, we take the stylized approach that gains and losses are assigned
when comparing to the value of other potential outcomes (narrow bracketing).
Dreyfuss et al. (2019) take the opposite approach as they consider each school
in a separate consumption dimension and assign gains and losses separately for
each school. The reality is certainly somewhere in between, as schools may be
comparable in some aspects but not in others. We chose this modelling approach
to draw a clear comparison to the existing experimental literature, where stakes
are simply money, and values are hence fully comparable between schools.33

The uncertainty in Dreyfuss et al. (2019) stems from iid. shocks on how individual
schools asses a student’s abilities with respect to exogenuously given school stan-
dards. This reduced form approach has two implications. First, it leaves no scope
for strategic interaction between students. Second, it implies that acceptability
probabilities are independent between schools, which not the case in our model,
not even under Assumption 1 and independently drawn scores.

From the first theoretic insight that under EBLA there is scope for strategic misre-
presentations, both papers proceed quite complementarily. While Dreyfuss et al.
(2019) comprehensively reevaluate the experimental data in Li (2017) in the light
of loss aversion, we delve deeper into the theoretical implications of loss aversion,
and analyze the set of rationalizable strategies, strategic interaction, and evaluate
alternative mechanisms under loss aversion.

A.III OSP versus EBLA
This section illustrates the distinction of the notion of robustness against EBLA
and the concept of OSP. We start with the observation that robustness against
EBLA does not imply that a mechanism is OSP. By Proposition 2, a student with
EBLA preferences will report truthfully in DSPDA whenever the probability p1 of
being acceptable at her preferred school is sufficiently large. This condition cer-
tainly does not imply that DSPDA is obviously strategy proof. Indeed, whenever
acceptance probabilities are non-degenerate in the sense that p1 /∈ {0, 1} and there
is some other school m with positive acceptance probability conditional on being
not acceptable at school 1, truth telling will not always induce the most preferred
match, whereas any list (m, 1, ...) will do so with positive probability.

Building on Example 2 in Ashlagi and Gonczarowski (2018), we now provide an
example of acyclical preferences and an OSP mechanism which always implements
the student optimal stable matching, but fails to do so if students exhibit EBLA.
There are two students, I = {A,B} and two schools, S = {1, 2}. School 1 prefers
student A over B, whereas school 2 prefers student B over A. Conversely, student
A prefers school 1 over school 2 with probability (1 − ε), and student B prefers
school 2 over school A with probability of (1− ε) for some small ε > 0. Note first

33Dreyfuss et al. (2019) take a similar approach in their empirical section when they analyze
existing experiments.
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that the DSPDA is not obviously strategy proof. Indeed, if, for instance, student
1 prefers school B truth telling is not obviously dominant as it may result in a
match with A whereas listing A before B may result in a match with B with
positive probability.

Ashlagi and Gonczarowski (2018, Figure 2) propose the following OSP sequential
mechanism to obtain truth telling. First, student A is asked whether she prefers 1
or 2. If she prefers 1, she is assigned to 1 and B is assigned to 2. If she prefers 2,
B is asked for her preferences which then determine the match outcome. Because
B determines the match with certainty whenever she is asked, revealing her true
preferences is an obviously dominant strategy (and a SCPE at this final decision
node). If A prefers school 1, deviating yields her a lottery over vA,1 and vA,2
instead of a certain payoff vA,1 > vA,2 such that the truth is both an SCPE and
an obviously dominant strategy.

If A prefers school 2, misrepresenting yields her a sure payoff of vA,1 and being
truthful yields a lottery with payoff pvA,2 + (1 − p)vA,2. Because even the worst
lottery outcome from being truthful is weakly better than the best (only) outcome
from deviating, the truth is an obviously dominant strategy, making the mecha-
nism OSP. However, for any Λ > 1, truthtelling is by Proposition 2 not a SCPE
for student A if ε < 1− 1/Λ. As a result, even OSP mechanisms can fail to have a
truthful SCPE.

A.IV Proofs
Proof of Lemma 1. The claim follows immediately from the fact the DSPDA is
strategyproof for every student preference. Take an arbitrary ROL νi for some
student i and let s be the highest ranked acceptable school in νi.

Suppose that under νi the student is matched with s′ ranked before s. But then,
since she is unacceptable at s′, she would prefer ROL νi over the true ROL whe-
never s′ is her most preferred school, a contradiction to strategyproofness.

Suppose otherwise that under νi she is matched with s′′ ranked behind s. But
then, if her true ROL was νi she would prefer s to s′′ which could be achieved by a
manipulation which ranks s first, again a contradiction to strategyproofness.

Proof of Lemma 2. Sufficiency follows from Masatlioglu and Raymond (2016, Pro-
position 1). For necessity, consider a student Λi > 1. Suppose there is one other
student, and they compete for a single seat at some school which is preferred over
some safe outside option, whose utility is normalized to zero. The school has ho-
mogeneous preferences over students, and scores are independently drawn from
U [0, 1]. Hence, the student’s score ω is her acceptability probability at the school.
For a match utility v > 0 with the school by (5) applying is a CPE for the student
if and only if

ωv − Λω(1− ω)v ≥ 0.

Hence, truthfulness not a CPE if ω < 1− 1/Λ.
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Proof of Lemma 3. We start with a practical lemma which identifies when flipping
two neighboring schools in a ROL is profitable. Consider two otherwise identical
ROLs swapping two arbitrary adjacently ranked schools x < y, i.e., two ROLs
(..., x, y, ...) and (..., y, x, ...). Let the former induce lottery F = (fs)s∈S and the
latter induce lottery F = (f

s
)s∈S , and let ε denote the probability of being accep-

table at x and y but at no school which is ranked above x.

Lemma 7. U(·, F ) ≥ U(·, F ) if and only if

ε

Λ
≥ ε

(
−

x∑
s=1

fs + ε+

y−1∑
s=x+1

fs
vx + vy − 2vs
vx − vy

+
m∑
s=y

fs

)
with equality only in the case of indifference.

Proof of Lemma 7. We start by rewriting the expression for expected utility in
(3).

m∑
s=1

fsvs − Λ
∑

1≤s≤r≤m

fsfr(vs − vr) =
m∑
s=1

fsvs − Λ

( ∑
1≤s≤r≤m

fsfrvs −
∑

1≤s≤r≤m

fsfrvr

)

=
m∑
s=1

fsvk − Λ

( ∑
1≤s≤r≤m

fsfrvs −
∑

1≤r≤s≤m

fsfrvs

)

=
m∑
s=1

fsvk − Λ
m∑
s=1

fsvs

(
m∑

r=c+1

fr −
c−1∑
r=1

fr

)
Next, note that for the matching probabilities f

s
of ROL (..., y, x, ...), it must

be that fs = f
s

for s 6= x, y and f
x

= fx − ε, f
y

= fy + ε. This implies

U(·, F )− U(·, F ) ≥ 0 if and only if

0 ≤
m∑
s=1

fsvc

(
1− Λ

(
m∑

r=c+1

fr −
c−1∑
r=1

fr

))
−

m∑
s=1

f
s
vc

(
1− Λ

(
m∑

r=c+1

f
r
−

c−1∑
r=1

f
r

))

= ε(vx − vy)− Λ

[
m∑
s=1

fsvs

(∑
r>c

fr −
∑
r<c

fr

)
−

m∑
s=1

f
s
vs

(∑
r>c

f
r
−
∑
r<c

f
r

)]

= ε(vx − vy)− Λ

[ ∑
c6=x,c 6=y

fsvs

(∑
r>c

(fr − f r)−
∑
r<c

(fr − f r)

)

+vx

(
fx

(∑
r>x

fr −
∑
r<x

fr

)
− (fx − ε)

(∑
r>x

f
r
−
∑
r<x

f
r

))

+vy

(
fy

(∑
r>y

fr −
∑
r<y

fr

)
− (fy + ε)

(∑
r>y

f
r
−
∑
r<y

f
r

))]

= ε(vx − vy)− Λ

[∑
c<x

fsvs

(
−
∑
r<c

0 +
x−1∑
r=c+1

0 + ε+

y−1∑
r=x+1

0− ε+
∑
r>y

0

)

30



+

y−1∑
s=x+1

fsvs

(
−
∑
r<x

0− ε−
c−1∑

r=x+1

0 +

y−1∑
r=c+1

0− ε+
∑
r>y

0

)

+
m∑

s=y+1

fsvs

(
−
∑
r<x

0− ε−
y−1∑
r=x+1

0 + ε−
c−1∑

r=y+1

0 +
∑
r>c

0

)

+vx

(
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(∑
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0− ε

)
+ ε

( ∑
r>x,r 6=y

fr −
∑
r<x

fr + fy + ε

))

+vy

(
fy

(∑
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0− ε

)
− ε

(∑
r>y

fr −
∑

r<y,r 6=x

fr − (fx − ε)

))]

= ε(vx − vy)− Λ

[
y−1∑
s=x+1

fsvs (−2ε) + vxε

(
−fx +

∑
r>x,r 6=y

fr −
∑
r<x

fr + fy + ε

)

−vyε

(
fy +

∑
r>y

fr −
∑

r<y,r 6=x

fr − fx + ε

)]

= ε(vx − vy)− Λε

[
−

y−1∑
s=x+1

fs2vs + (vx − vy)

(
−fx + fy + ε−

∑
r<x

fr +
∑
r>y

fr

)

+(vx + vy)

(
y−1∑
r=x+1

fr

)]

dividing by (vx − vy) > 0 yields

ε− Λε

[
y−1∑
s=x+1

fs
vx + vy − 2vs
vx − vy

− fx + fy + ε−
∑
c<x

fs +
∑
c>y

fs

]
≥ 0,

which yields the result:

ε

Λ
≥ ε

(
m∑
s=y

fs + ε−
x∑
s=1

fs +

y−1∑
s=x+1

fs
vx + vy − 2vs
vx − vy

)

For the second statement, replace all inequalities with equalities.

We now prove the proposition by contradiction. Suppose there exists a ROL with
some 1 ≤ k < l < n ≤ m for which l is listed behind n but k is listed before l and
which is strictly preferred to all lists where k is ranked behind l and l behind n.
Let n be the least preferred school, i.e., the one with the highest index, for which
such a triple exists. For given n and l let k be the lowest-index school, i.e., the
most preferred one, satisfying the requirement.

Since k is ranked before l, the optimal ROL is of one of the following forms:

i) (..., k, ..., n, ..., l, ...)
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ii) (..., n, ..., k, ..., l, ...)

We make first considerations for both cases.

i) Since, by assumption, k is the lowest-index school ranked before l, the list must
be increasing from k, and eventually decreasing (possibly at l) to a number above
k. Call x the first school where the list starting from k has decreased. Now, by
choosing x appropriately in the list between k and x, we obtain in the optimal
ROL a sequence (..., x, y, ..., y, x, ...) (with possibly y = y), which is increasing
from x to y and satisfies x < x < y ≤ y.

ii) Since, by assumption, n is the highest-index school for which there exists l and
k with l behind n but k before l, the list must be decreasing from n, but eventually
increasing (possibly immediately after k) to a number below n. Call y the first
school after n where the list is increasing. Now, by choosing y appropriately in the
list between n and y, we obtain in the optimal ROL a sequence (..., y, x, ..., x, y, ...)
(with possibly x = x), which is decreasing from y to x and satisfies x ≤ x < y < y.

The next steps are identical for both cases.

Let fs be the matching probabilities as induced by the optimal ROL, and let f s be
the matching probabilites as induced by the (otherwise identical) ROL that flips
x and y.

By the rules of DSPDA, we obtain fs = f s for all s 6= x, y, and

fx = fx + ε and f y = fy + ε, (10)

where ε is the probability that the student is acceptable at x and y, but not
acceptable at any school ranked before x and y in the optimal ROL.

Since the student is not indifferent, ε > 0 such that the strict optimality of the
optimal ROL together with Lemma 7 imply

1

Λ
> −

x∑
s=1

fs + ε+

y−1∑
s=x+1

fs
vx + vy − 2vs

vx − vy
+

m∑
s=y

fs

Similarly, Lemma 7 implies

1

Λ
< −

x∑
s=1

f s + ε+

y−1∑
s=x+1

f s
vx + vy − 2vs
vx − vy

+
m∑
s=y

f s

= −
x∑
s=1

fs +

y−1∑
s=x+1

fs
vx + vy − 2vs
vx − vy

+
m∑
s=y

fs − ε.

Hence,

−
x∑
s=1

fs+ε+

y−1∑
s=x+1

fs
vx + vy − 2vs

vx − vy
+

m∑
s=y

fs < −
x∑
s=1

fs+

y−1∑
s=x+1

fs
vx + vy − 2vs
vx − vy

+
m∑
s=y

fs−ε,
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which can be rearranged to

ε+ ε+

y∑
s=x+1

fsαs +

y−1∑
s=x+1

fsβs +

y−1∑
y

fsγs < 0.

This yields a contradiction as each summand on the left hand side is positive.
Indeed, we have

αs ≡ 1 +
vx + vy − 2vs

vx − vy
=

2(vx − vs)
vx − vy

> 0,

because vx > vs as all s > x in the sum and vx > vy by definition. Next,

γs ≡ 1 +
2vs − vx − vy

vx − vy
=

2(vs − vy)
vx − vy

> 0,

because vs > vy as all s < y in the sum and vx > vy by definition. Finally,

βs ≡
vx + vy − 2vs

vx − vy
+

2vs − vx − vy
vx − vy

=
(vx − vy)(vx + vy − 2vs) + (vx − vy)(2vs − vx − vy)

(vx − vy)(vx − vy)

=
2(vs(vx − vx + vy − vy) + vxvy − vxvy)

(vx − vy)(vx − vy)
=

num

denom
,

which is positive if the numerator is positive as the denominator is positive by
definition. Because vx > vx by definition and vy < vs for all s in the sum, the
added term below is negative. Hence,

num > 2(vs(vx − vx + vy − vy) + vxvy − vxvy + (vx − vx)(vy − vs)) =

= 2((vx − vs)(vy − vy)) > 0

because vx > vs and vy > vy by assumption.

Proof of Proposition 1. The part on the decreasing order is just Lemma 3. For
the increasing part, suppose otherwise that for some k < l < n any optimal ROL
is of form (k, ..., n, ...., l, ...). This is a contradiction of Lemma 3 as for such n and
l there is an optimal ROL which ranks k behind l.

Proof of Proposition 2. 1. Suppose, by way of contradiction, that truth telling is
suboptimal. By Corollary 1, this implies that school 1 is not ranked first. Let k
be the school ranked in front of 1. Since the optimal ROL (..., k, 1, ...) must be
preferred to the list (..., 1, k, ...) where we flip school 1 and k, Lemma 7 implies

ε

Λ
< ε

(
−

1∑
s=1

fs + ε+
k−1∑
s=2

fs
v1 + vk − 2vs
v1 − vk

+
m∑
s=k

fs

)
,
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where fs are the matching probabilities as induced by ROL (..., 1, k, ...), and ε the
probability that the student is acceptable at 1 and k but no higher ranked school.
Since by full support we have ε > 0 and further v1+vk−2vs

v1−vk
= 1 − 2 vs−vk

v1−vk
< 1 this

implies

1

Λ
< −f1 + ε+

m∑
s=2

fs ≤ −f1 + f1 + (1− f1) = 1− f1 ≤ 1− p1,

hence p1 < 1− 1
Λ

, a contradiction.

2. Suppose, by way of contradiction that, truth telling is optimal. Hence U((1, 2, ...,m) ≥
U((2, 1, ...,m)), and by Lemma 7

1

Λ
≥ −f1 + ε+

m∑
s=2

fs = −f1 + ε+ (1− f1) > 1− 2f1 = 1− 2p1,

which can be rearranged to p1 > 0.5
(
1− 1

Λ

)
, a contradiction.

Proof of Proposition 3. The fact that all schools use the same deterministic tie-
breaking rule for students of same score can be interpreted as an assumption that
no two students share the same score. The existence of a pure strategy equilibrium
then follows iteratively. Start with the student with the highest possible score.
Since she has priority over all other students she infers that she will be accepted at
any school and submits (according to the fixed tie-breaking rule) a ROL that lists
her most preferred school (which certainly depends on vi) first. Next, consider the
student and her preference profiles that exhibit the second highest possible score.
If this is the same student she knows again that no other student has a higher score
and will report the same ROL. If this is another student she infers correctly the
probability that another student has a higher score and the probability distribution
over her submitted ROLs. From that she infers correctly the distribution over her
acceptability probabilities and picks her best response ROL, depending on her
type. Continuing that procedure iteratively through all possible scores gives us
a pure strategy CBNE which is unique when fixing how indifference is broken at
each decision node.

Proof of Lemma 4. By (5), a ROL which lists any subset of elite schools above
the outside option induces an expected utility of fv −Λf(1− f)v, where f is the
probability of being acceptable at at least one elite school of the subset. Since
the utility is a U-shaped function in f , it is maximized by either maximizing or
minimizing f . Hence, by either listing all or none of the elite schools above the
outside option.

Proof of Lemma 5. Suppose there are |I| = n students. The probability that
there are less than q among n− 1 students with a score above w,

P (ω) :=

q−1∑
k=0

(
n− 1

k

)
(1− ω)kωn−1−k,
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is continuously and monotonically increasing in ω from 0 to 1. Since 1 − 1/Λl ∈
(0, 1), there is by the intermediate value theorem a unique ω(Λl) such that P (ω(Λl)) =
1− 1/Λl. Hence, for any Λ ≤ Λl and any ω ≥ ω(Λl) we have Λ ≤ 1

1−P (ω)
meaning

that applying to the elite is a best response for all types with ω ≥ ω(Λl), even if
all other students apply as well. As a student of type Λl infers that all students of
score ω ≥ ω(Λl) apply she infers that for score ω ≥ ω(Λl) she has acceptability pro-
bability f(ω) = P (ω) and by construction applies if and only if her score satisfies
ω ≥ ω(Λl). Next, a student of score ω < ω(Λl) infers that she is acceptable if there
are less than q other students with either score above ω(Λl) or score in [ω, ω(Λl)]
and Λ 6= Λl. Again, this probability is strictly and continuously increasing in
ω which implies a unique cutoff ω(Λl−1) such that f(ω(Λl−1)) = 1

1−Λl−1 . Hence,

truthful reporting for type Λl−1 is optimal if and only if ω > ωΛl−1. Proceeding
this manner iteratively we obtain an essentially unique CBNE.

Proof of Proposition 4. 1. A student with ΛH and score ω applies in a setting of n
students by Equation 5 if and only if her acceptability probability Fn(ω) satisfies
Fn(ω)v − ΛHFn(ω)(1 − Fn(ω))v ≥ 0, i.e. if and only if Fn(ω) ≥ 1 − 1

ΛH . She
is acceptable if and only if the the q-th highest score of n − 1 other students is
below ω. Hence, Fn is the cdf of the q-th highest order statistic of n − 1 draws
from the uniform distribution on [0, 1] (i.e. Fn describes a beta-distribution with
parameters Beta(ω, n − q, q)). We define as ωn = F−1

n (1 − 1/ΛH) as the cutoff
score below which a student with ΛH does not apply.

Next, note that justified envy occurs if and only if the q-th highest of n scores is
below ωn and at least one of the q students with the highest score has a score below
ω and is of type ΛH , as such a student doesn’t apply but would be acceptable.
For α = 1 this is obviously the case if and only if the q-th highest score is below
ω. For α < 1 it is sufficient but not necessary that the q-th highest score is below
ω and is of type ΛH . Since the q-th highest of n scores is below ωn if and only
if q-th highest of the n − 1 scores is below ωN and an n-th additional score is
below ωn, we obtain αFn(ωn)ωN as a lower bound for the probability of justified
envy, with equality only for α = 1. Since for n → ∞ we have ωn → 1 we obtain
that the probability for a stable allocation for n → ∞ is bounded from below by
αFn(ωn) = α(1− 1

Λ
).

2. We derive a closed form formula for the ex-ante risk of a student to suffer from
justified envy. Again, this is the case if she is of type ΛH , her score is below cutoff
ω but above the q-th highest of n− 1 other scores. Hence, the ex-ante probability
for the student to suffer from justified envy is given by

Penvy = α

∫ ω

0

fn(x)(ωn − x)dx

= αFn(ωn)
(
ωn − E[Xq,n−1|Xq,n−1 ≤ ωn]

)
,

where fn is the density of Fn and Xq,n−1 is the q-th highest order statistic of n− 1
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draws. Hence, the expected number of people suffering from justified envy is

α(1− 1/ΛH)n
(
ωn − E[Xq,n−1|Xq,n−1 ≤ ωn]

)
Next we see that

lim
n→∞

n
(
ωn − E[Xq,n−1|Xq,n−1 ≤ ωn]

)
= lim

n→∞
n
(
E[1−Xq,n−1|1−Xq,n−1 ≥ F−1

1−Xq,n−1
(1/Λ)]− F−1

1−Xq,n−1
(1/Λ)

)
,

where F−1
1−Xq,n−1

is the quantile function of 1−Xq,n−1.

Now, since 1−Xq,n−1 is distributed according to Beta(q, n− q) and it holds that
limn→∞ nBeta(q, n) = Gamma(q, 1) (where equality means equality in distribu-
tion), we obtain

lim
n→∞

n
(
ωn − E[Xq,n−1|Xq,n−1 ≤ ωn]

)
=E[Yq|Yq ≥ G−1

q (1/Λ)]−G−1
q (1/Λ),

where G−1
q is the quantile function of Gamma(q, 1).

Proof of Proposition 5. Obviously, if the DSPDA is truthful, it implements the
student optimal stable allocations for all realizations of preferences. For the
converse, take any static mechanism (R, o) that implements the student opti-
mal outcome as CBNE. More precisely, for each student i there exists a strategy
σi : S(S) → Ri such that the joint strategy profile is a CBNE given o. Conse-

quently, for the associated direct mechanism
(∏

S(S), o ◦ (σ1, ..., σn)
)

truthful-

ness is by construction a CBNE, and it implements the student optimal stable
allocation. Hence, DSPDA is truthful.

Proof of Lemma 6. Suppose the stable match is not unique. Then the school-
optimal (student-pessimal) stable match Msp is different to the student-optimal
stable match Mso. For convenience of notation we rename for some representative
student in the assigned schools as sn = Mso(in) and s̃n = Msp(in). By Lemma 1
in Roth (1986) the number of vacant seats at each school is the same under any
stable match. Hence, any student i1 who is placed differently under both matches
necessarily replaces a student i2 at school s1 under Mso compared to Msp. Then,
necessarily i2 replaces some student i3 at school s2, and so on. Since the number of
students is finite, continuing iteratively this cascade necessarily generates a cycle
where in = i1 for some n. Since every student weakly prefers her match under
the student-optimal outcome and preferences are by assumption strict we have
vi,si > vi,si−1

for i ∈ {2, ..., n}. By aligned preferences this implies wi,si > wi,si−1

for i ∈ {2, ..., n}. Since, contrary, each school prefers the students under match
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Msp we obtain analogously wi,si−1
> wi−1,si−1

for all i ∈ {2, ..., n}. Together we
obtain

wi1,s1 < wi2,s1 < wi2,s2 < wi3,s2 < ... < win,sn = wi1,s1 ,

a contradiction.

Proof of Proposition 6. Fix some student and suppose that all other students be-
have truthfully in the mechanism. We start by showing that a unique change in
her the decision of accepting or rejecting a unique offer from some school at some
stage during the mechanism when she doesn’t currently hold an offer (while fixing
the strategy for all other stages) does not change the probability of receiving an
offer from a more preferred school. If the student rejects rather than accepts a
school then all students will receive weakly more proposals. Indeed, the rejected
school will potentially send an additional proposal to another student in the next
step. If she rejects the proposal the school will offer the seat yet to another stu-
dent the subsequent round. If she accepts this proposal in favor of another school
then this other school will offer the seat in the next round. By iterating this ar-
gument we can conclude due to the initial rejection all students—including the
initial student—obtain weakly more proposals. Hence, a rejection can only we-
akly increase the probability of receiving an offer from a more preferred school.
However, if this increase were strict and the student accepted all proposals by
more preferred schools then the rejection could generate a stable match outcome
which were weakly preferred by all students. Since preferences are aligned this
contradicts the uniqueness of a stable match as derived in Lemma 6. Hence, the
decision of the student to accept or reject a school can only affect acceptability
for schools that she prefers less.

Next, we iterate the above argument, and show that accepting or rejecting some
school k at some stage when currently holding or simultaneously receiving an offer
from some school ` does not change the probability of receiving an offer from
any school preferred to min{`, k}. Note that rejecting ` when it proposes and
accepting k when it proposes at a later stage induces the same match outcome as
accepting ` at first, but only rejecting it in favor of k when an offer from k occurs,
since both strategies induce the same cascade of school proposals and students
are truthful. Further, by the above finding, rejecting both schools instead does
not change the probability of proposals from schools preferred to k. From here
we apply the above finding once more and obtain the same proposal probabilities
for schools preferred to ` when accepting ` and rejecting k. Hence, the result that
accepting or rejecting k in favor of ` does not change proposal probabilities from
any school preferred to min{`, k}.

Now, suppose that truthfulness is not an SCPE for the student. Going backwards
in the decision tree of the student, take a decision node where truthfulness is
suboptimal but such that it is optimal in all possible future decision nodes. We
call k the school that offers a seat to the student at that decision node. Let
F = (f1, ..., fn) be the lottery over match outcomes if the student rejects k, and
let F̃ = (f̃1, ..., f̃n) be the respective lottery if she accepts. We distinguish three
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cases:

1. The student currently holds an offer from a school ` < k, hence rejecting
would be truthful. Since, by assumption, truthfulness is optimal in all subsequent
decision nodes and the probability of proposals from schools i < ` does not depend
on the decision about k, we have fi = f̃i for i < `, and f` =

∑k
i=` f̃i, while

fi = f̃i = 0 for i > k. Hence, according to (5), we have

U(·, F ) =
∑̀
i=1

fivi − Λ
∑

1≤i≤j≤`

fifj(vi − vj)

=
`−1∑
i=1

f̃ivi +
k∑
i=`

f̃iv` − Λ

( ∑
1≤i≤j≤`−1

f̃if̃j(vi − vj) +
∑

1≤i≤`−1

(
k∑
j=`

f̃j

)
f̃i(vi − v`)

)

≥
k∑
i=1

f̃ivi − Λ

( ∑
1≤i≤j≤`−1

f̃if̃j(vi − vj) +
∑

`≤j≤k, 1≤i≤j

f̃if̃j(vi − vj)

)
= U(·, F̃ ),

and truthfulness is optimal, a contradiction.

2. The student currently holds no offer from a school preferred to k, and vk is above
the utility of the outside option, hence accepting would be truthful. Again, since
the decision doesn’t change the match probability with more preferred schools we
have fi = f̃i for all i < k. Moreover, accepting gives a certain payoff of vk in
case no better offer occurs, whereas rejecting leaves the student with some payoff
vk+1, ..., vn in that case. Hence,

U(·, F ) =
n∑
i=1

fivi − Λ
∑

1≤i≤j≤n

fifj(vi − vj)

≤
k−1∑
i=1

fivi +
n∑

i=k+1

fivk − Λ

( ∑
1≤i≤j≤k−1

fifj(vi − vj) +
∑

1≤i≤k−1

(
n∑

j=k+1

fj

)
fi(vi − vk)

)

=
k−1∑
i=1

f̃ivi + f̃kvk − Λ
∑

1≤i≤j≤k

fifj(vi − vj)

= U(·, F̃ ),

and truthfulness is optimal, a contradiction.

3. The student currently holds no offer from a school preferred to k, and vk is below
the utility of the certain outside option, hence rejecting would be truthful. If there
is yet with certainty an acceptable to come then accepting and rejecting gives rise
to the same lottery, hence truthfulness is optimal. Otherwise, expected utility is
below the utility obtained from receiving any acceptable offer with certainty. By
going backwards through the decision tree take the first node where an offer with
utility above the outside option was received. (This must exist, as the student has
a certain outside option.) By presumption, this offer was rejected, as it is preferred
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to k. However, rejecting this offer is not in line with CPE behavior as we showed
in (ii) that in such circumstances accepting was optimal, a contradiction.

A.V Data from Li (2017)
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PRIORITY SCORES
ROLs 1 2 3 4 5 6 7 8 9 10 ALL
1234 55 61.1% 48 57.1% 47 58.8% 42 67.7% 32 55.2% 49 79.0% 58 74.4% 48 85.7% 59 84.3% 73 91.3% 511 71.0%
1243 1 1.1% 1 1.2% 1 1.3% 0 0.0% 0 0.0% 1 1.6% 1 1.3% 0 0.0% 1 1.4% 0 0.0% 6 0.8%
1324 2 2.2% 3 3.6% 2 2.5% 1 1.6% 2 3.4% 0 0.0% 1 1.3% 0 0.0% 1 1.4% 0 0.0% 12 1.7%
1342 1 1.1% 0 0.0% 0 0.0% 0 0.0% 1 1.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 3 0.4%
1423 0 0.0% 1 1.2% 0 0.0% 1 1.6% 1 1.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 3 0.4%
1432 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 1 0.1%
2134 1 1.1% 1 1.2% 3 3.8% 4 6.5% 7 12.1% 5 8.1% 8 10.3% 4 7.1% 4 5.7% 1 1.3% 38 5.3%
2143 0 0.0% 1 1.2% 3 3.8% 0 0.0% 1 1.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 6 0.8%
2314 1 1.1% 2 2.4% 2 2.5% 1 1.6% 2 3.4% 1 1.6% 0 0.0% 2 3.6% 1 1.4% 1 1.3% 13 1.8%
2341 0 0.0% 0 0.0% 0 0.0% 2 3.2% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.4% 0 0.0% 3 0.4%
2413 0 0.0% 1 1.2% 2 2.5% 0 0.0% 0 0.0% 0 0.0% 2 2.6% 0 0.0% 0 0.0% 0 0.0% 5 0.7%
2431 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.6% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 0.1%
3124 1 1.1% 2 2.4% 2 2.5% 1 1.6% 3 5.2% 0 0.0% 4 5.1% 0 0.0% 1 1.4% 0 0.0% 14 1.9%
3142 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
3214 6 6.7% 5 6.0% 6 7.5% 3 4.8% 2 3.4% 0 0.0% 0 0.0% 1 1.8% 0 0.0% 0 0.0% 23 3.2%
3241 0 0.0% 0 0.0% 1 1.3% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 0 0.0% 0 0.0% 0 0.0% 2 0.3%
3412 0 0.0% 0 0.0% 1 1.3% 0 0.0% 2 3.4% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 3 0.4%
3421 3 3.3% 2 2.4% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 5 0.7%
4123 1 1.1% 2 2.4% 1 1.3% 0 0.0% 1 1.7% 2 3.2% 1 1.3% 0 0.0% 0 0.0% 1 1.3% 9 1.3%
4132 0 0.0% 1 1.2% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 0.1%
4213 1 1.1% 1 1.2% 0 0.0% 1 1.6% 3 5.2% 1 1.6% 1 1.3% 0 0.0% 0 0.0% 0 0.0% 8 1.1%
4231 1 1.1% 2 2.4% 2 2.5% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.8% 0 0.0% 0 0.0% 6 0.8%
4312 0 0.0% 4 4.8% 4 5.0% 3 4.8% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 12 1.7%
4321 16 17.8% 7 8.3% 3 3.8% 3 4.8% 1 1.7% 2 3.2% 1 1.3% 0 0.0% 2 2.9% 0 0.0% 35 4.9%
Total 90 100.0% 84 100.0% 80 100.0% 62 100.0% 58 100.0% 62 100.0% 78 100.0% 56 100.0% 70 100.0% 80 100.0% 720 100.0%
misrep’ 35 38.9% 36 42.9% 33 41.3% 20 32.3% 26 44.8% 13 21.0% 20 25.6% 8 14.3% 11 15.7% 7 8.8% 209 29.0%
CPE 82 91.1% 65 77.4% 62 77.5% 55 88.7% 44 75.9% 57 91.9% 68 87.2% 55 98.2% 67 95.7% 75 93.8% 630 87.5%

Table 5: Absolute and relative frequency of all ROLs for each priority score in the experiment by Li (2017). The CPE-rationalizable
ROLs are marked, and the frequencies of the most common misrepresentations for each priority score are in bold.
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