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tree-based methods: a technical note 

 

Olga Takács – János Vincze  

 

Abstract 

 

The Blinder-Oaxaca decomposition was developed in order to detect and characterize 

discriminatory treatment, and one of its most frequent use has been the study of wage 

discrimination. It recognizes that the mere difference between the average wages of two 

groups may not mean discrimination (in a very wide sense of the word), but the difference 

can be due to different characteristics the groups possess. It decomposes average differences 

in the variable of interest into two parts: one explained by observable features of the two 

group, and an unexplained part, which may signal discrimination. The methodology was 

originally developed for OLS estimates, but it has been generalized in several nonlinear 

directions. In this paper we describe a further extension of the basic idea: we apply Random 

Forest (RF) regression to estimate the explained and unexplained parts, and then we employ 

the CART (Classification and Regression Tree) methodology to identify the groups for which 

discrimination is most or least severe.     

JEL codes: C10, C14, C18 
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A foglalkozáson belüli nemek közötti bérkülönbség 

Magyarországon 

 

Takács Olga – Vincze János 
 
 

Összefoglaló  

 

 

 
A Blinder–Oaxaca-dekompozíciót a diszkrimináció statisztikai vizsgálatára fejlesztették ki. 

Ennek egyik legfontosabb felhasználási területe a bérdiszkrimináció elemzése. Az módszer 

szerint pusztán két társadalmi csoport átlagbéreinek különbsége nem jelent diszkriminációt, 

hiszen lehetnek olyan releváns különbségek a két csoport tagjainak tulajdonságai között, 

amelyek a bérkülönbséget okozzák. A dekompozíció két részre bontja a bérkülönbséget: a 

csoportok megfigyelhető tulajdonságaival magyarázott, valamint egy nem magyarázott 

részre, ami potenciálisan a bérdiszkrimináció. (Természetesen a tulajdonságok különbségei is 

származhatnak – például az oktatási rendszerből eredő – diszkriminációból, de az 

elemzésben csak a bérezés terén jelentkező diszkrimináció a kérdés.) Az eredetileg OLS-

kontextusban kifejlesztett módszertant ebben a tanulmányban kiterjesztjük olyan módon, 

hogy a magyarázott és nem magyarázott részek becslésére véletlen erdő regressziót 

használunk, majd a klasszifikációs és regressziós fa technika segítségével azonosítjuk azokat a 

csoportokat, amelyek leginkább vagy legkevésbé vannak kitéve diszkriminációnak.  

 

 

JEL: C10, C14, C18 

 

 

Tárgyszavak: Blinder-Oaxaca dekompozíció, véletlen erdő regresszió, klasszifikációs és 

regressziós fa  
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Abstract 

The Blinder-Oaxaca decomposition was developed in order to detect and characterize 

discriminatory treatment, and one of its most frequent use has been the study of wage 

discrimination. It recognizes that the mere difference between the average wages of two 

groups may not mean discrimination (in a very wide sense of the word), but the difference can 

be due to different characteristics the groups possess. It decomposes average differences in 

the variable of interest into two parts: one explained by observable features of the two group, 

and an unexplained part, which may signal discrimination. The methodology was originally 

developed for OLS estimates, but it has been generalized in several nonlinear directions. In 

this paper we describe a further extension of the basic idea: we apply Random Forest (RF) 

regression to estimate the explained and unexplained parts, and then we employ the CART 

(Classification and Regression Tree) methodology to identify the groups for which 

discrimination is most or least severe.     
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1 Introduction 

Traditional statistical methods are of limited utility when there are many possible “predictor” 

variables, and when complex interactions exist in the data. To overcome these problems 

researchers have turned to “machine learning” algorithms that automatize variable and 

functional form selection. Experience in several fields have shown that these methods perform 

better as predictors for problems characterized by the above features. 

Tree-based methods make up one group of such algorithms that have gained currency 

in many applications in recent years. Below we propose a combination of two of them (CART 

and RF) for generalizing the traditional regression-based methodology of the Blinder-Oaxaca 

decomposition. The combination intends to exploit the relative strengths of these algorithms: 

RF is superior as a predictor, whereas a CART’s results have much better interpretability.  In 

Section 2 we give a short overview of tree-based methods and, in Section 3, of the Blinder-

Oaxaca decomposition. Section 4 details the new methodology which is illustrated by a wage 

discrimination example in Section 5. Section 6 gives a summary. 

 

2 Tree-based methods and their properties 

Growing a tree recursively 

To be concrete the detailed description below addresses the binary classification problem with 

negative entropy as a measure of the goodness of fit, but at the end we give the necessary 

modifications for other frameworks.  

Output data define a binary distribution over the two classes they belong to. This 

distribution has an entropy, reflecting the uncertainty one faces when wishing to classify the 

objects without the knowledge of any explanatory variables. Tree building is in essence an 

entropy reduction process. At the beginning consider each explanatory variables (features) and 

calculate by how much total entropy would be reduced if one were to split the full sample in 

two, based on the variable in question.  If a variable has many possible values then there are 

many (possibly infinitely many) splits, and one must choose the one with the highest reduction 

in entropy. After considering each variable in turn, select the one with the highest entropy 

reduction capacity, and perform the corresponding split of the sample. Graphically this is 

equivalent to forming two nodes in a tree whose parent node is the root. Geometrically a 

partition of the input space is the result. Entropy reduction can be viewed alternatively as 

purifying: the new nodes are purer than the root node, in the sense that the observations 

belonging to them are more homogeneous. Tree-growing is a recursive process. In the next step 



 

3 
 

each descendant node is considered likewise, and new nodes are added by the same procedure.  

In principle this tree-growing process can lead to perfect purification (where each final node 

contains objects belonging to the same class), but, in practice, researchers apply some stopping 

criterion when, for instance, the number of objects in the final nodes should not be below a 

certain threshold. 

For the classification problem other impurity measures can also be used, such as the 

Gini-measure. Trees can be grown to continuous response variables (the regression tree). In that 

case the most usual is to measure the goodness of fit with the mean squared error metric, but 

tree-growing can accommodate other measures as well.  Athey-Imbens, 2016 introduced causal 

trees where trees are grown focussing on maximizing causal effects. There we have a binary 

causal variable (treatment and non-treatment cases), with the average treatment effect at each 

subset of the input space defined as: average of treated – average of non-treated. A causal tree 

cuts the tree at each node by maximizing the increase at each step in the average treatment 

effect.   

It is clear that at the end we find a fully grown tree (if there is no stopping criterion) 

which gives a perfect fit, and therefore would not be very useful for prediction (an obvious case 

of overfitting).  Still tree growing provides much information since the path to the full-grown 

tree is also important, it shows an optimal way to reach that. As usual overfitting leads to high 

variance, and it must be controlled. To make tree-growing a successful predictive device the 

bias-variance trade-off must be dealt with. Different approaches have been developed to use 

trees to get a prediction that is validated.   

The CART (Classification and Regression Tree): pruning the tree 

The tree built in the above manner can be regarded as a non-parametric estimate of a two-valued 

function, where the procedure divides the input space into mutually exclusive regions, and 

assigns each observation to one of the classes depending on the region (leaf or final node) it 

belongs to. An alternative interpretation assigns a probability based on the relative frequencies 

of the corresponding region (final node), when the final nodes are not completely pure. There 

exist general theorems that assert that with a very large number of observations this estimate 

can be considered unbiased. However, it is also recognized that a very large (finely tuned) tree 

probably overfits (i.e. accommodates noise), resulting in reduced predictive abilities.  

Therefore, CART prunes the initially built tree using complexity cost pruning. In the first step 

of pruning one finds the best subtree, in the sense of least entropy or impurity, for a number of 

complexity classes, where a tree is more complex if it has more leaves. Then a validation 



 

4 
 

procedure compares the best subtrees´ generalization capabilities by cross-validation 

techniques, and the one with the best predictive score is chosen as the end product of the 

procedure. Concrete implementations may differ in the choice of complexity cost, and in the 

validation procedure. 

Using and interpreting the CART outcome 

The final tree can be interpreted as a decision tree where at each node some temporary 

classification decision is made, leading to final decisions concerning where to classify a certain 

object. This vane be taken literally, as Lewis, 2000 searches for a clinical decision rule via a 

CART analysis. For any new observation one has to find its region in the input space, and make 

the corresponding classification as a prediction. The alternative interpretation again is a 

probabilistic judgment, rather than a "yes-no" decision. For regression trees the prediction 

equals the average at each node, thus the estimator is basically a step function. 

One possible use of a tree is to evaluate the relative importance of explanatory variables. 

Intuitively one may think that it suggests that important variables are those that have many and 

closer to the root splits in them. Indeed, researchers have developed formal indicators to 

measure the relative importance of explanatory variables, based on the entropy reduction work 

they do (see Ishwaran, 2007). 

Another possible use of CART models is by varying the input space: we can include 

(suspect) variables (either deemed as relevant or irrelevant), and see how they appear in the best 

decision tree. We can adapt the idea of Granger-causality as well: does the inclusion of a 

variable significantly improve the predictive performance of the model or not? As the CART 

algorithm does not lead automatically to a better in-sample fit, after adding a new variable this 

question can (sometimes) be evaluated in a two-valued logic context, in contrast to Granger-

causality where the measure of significance depends on the validity of maintained probabilistic 

assumptions. 

Finally, CART algorithms can be applied for "audience segmentation", as they are used 

in public health applications. One can identify non-trivial segments of society by their 

homogenous behaviour, enabling policy makers to adjust interventions targeted to these 

different groups. This is similar to cluster analysis, but in a supervised learning context: we 

have a definite measure by which we judge homogeneity. 
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The Random Forest (RF) algorithm 

CART (see Breiman et al. (1984)) is a greedy algorithm, as it drives at each step to achieve 

maximal purity increase. This results in higher variance, and instability (small changes in 

samples lead to large changes in the tree).  Bagging is an extension that addresses this problem 

by growing many trees, but on bootstrap samples. Bootstrapping can be regarded as an 

alternative way of validation, and accordingly bagging does not use pruning, rather it averages 

over many large and unpruned trees.  

A Random Forest Regression (see Breiman, 2001) is also constructed from a collection 

of Regression Trees, the number of trees is a parameter set by the researcher. The prediction 

(estimate) a Random Forest regression gives is the average of the constituent trees’ predictions. 

Random Forest improves on bagging by randomizing variable choice at each cut-point, at each 

node only a random subset of explanatory variables are considered for a split. The cardinality 

of that subset is another parameter of the algorithm.  

The main advantage of Random Forests is that the random and restricted manner of 

splitting achieves de-correlation among the many trees, while unbiasedness is not jeopardized. 

(Hastie et al., 2017). Varian, 2015 proposed Random Forests for econometricians by citing 

Howard and Bowles, 2012 who asserted that Random Forests were the most successful general-

purpose predictive algorithm. Wager and Athey (2017) argue that Random Forest regression is 

similar to other traditional non-parametric regression methods (e.g. k-nearest-neighbor 

algorithms), as it delivers some weighted average of “nearby” points as the prediction, when 

both the weights and the proximity are determined in a data-driven way. All in all, with the 

presence of significant non-linearities, and with a relative abundance of explanatory variables 

Random Forest seems to be a successful and well-attested predictive methodology. 

Though an outstanding method for prediction Random Forest regression has a problem: 

the results are not easily interpretable variable-wise. The demand for assessing the separate role 

of variables (their individual explanatory power) led to the proposal of several variable 

importance measures. There exists a permutation based MSE reduction indicator, that works 

like this (see Grömping, 2009). As trees are grown from bootstrap samples a number of out-of-

the-bag (OOB) observations belong to each tree, namely those data points that are not included 

in the sample for that particular tree. One can then calculate the prediction MSE on OOB data 

for each tree. Now the idea is that if a variable is unimportant it does not matter whether the 

predictions are generated with the help of their true values, or are calculated from a random 

permutation of the true data. (The permutation shuffles only the values of the variable in 
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question.) Then one can calculate the difference between the true and the permuted SSE, which 

must be small if the variable is unimportant. By averaging all such differences over all trees 

one obtains a measure of variable importance. This measure is obviously ad hoc. One can use 

it in two ways: determining the importance ranking of variables, and by calculating relative 

importance shares for each variable. 

 

3 The Blinder – Oaxaca decomposition  

Though more generally valid for any two groups and any variable of interest, in the description 

below we refer to the two groups as males and females, and the variable of interest as wages. 

To apply the traditional Blinder-Oaxaca methodology (see Jann, 2008) one needs to run three 

linear regressions for the OLS-based Oaxaca-Blinder decomposition: one for the female and 

male subsamples, respectively, and a reference for the pooled sample. Several reference models 

have been proposed in the literature. Then we have the identity: 

𝑌̅𝑀 − 𝑌̅𝐹 = 𝑋̅𝑀𝛽𝑀 − 𝑋̅𝐹𝛽𝐹 = (𝑋̅𝑀 − 𝑋̅𝐹)𝛽𝑅 + 𝑋̅𝑀(𝛽𝑀 − 𝛽𝐹) + 𝑋̅𝐹(𝛽𝑅 − 𝛽𝐹), (1) 

 

where 𝑌̅ and 𝑋̅ are the average of groups labelled by M (male) and F (female) here. In this 

equation the first part on the right-hand side is the explained part and the rest measures the 

unexplained part. As the sample average equals the average prediction (if a constant is included 

in the regression) it is indeed a decomposition of the averages, which obviously depends on the 

reference model. To calculate the decomposition, one must calculate the raw difference (𝑌̅𝑀 −

𝑌̅𝐹) and the explained part ((𝑋̅𝑀 − 𝑋̅𝑀)𝛽𝑅), thus the determination of 𝛽𝑀 and 𝛽𝐹 are 

unnecessary.  

In some cases, the reference model is taken to be one of the group models, say M. Then 

the formula becomes simpler: 

𝑌̅𝑀 − 𝑌̅𝐹 = 𝑋̅𝑀𝛽𝑀 − 𝑋̅𝐹𝛽𝐹 = (𝑋̅𝑀 − 𝑋̅𝐹)𝛽𝑀 + 𝑋̅𝐹(𝛽𝑀 − 𝛽𝐹). 

As ((𝑋̅𝑀 − 𝑋̅𝑀)𝛽𝑅) is an inner-product the explained part, in its turn, can be decomposed 

variable-wise. Clearly a variable’s effect on the explained part is higher if it has a larger 

coefficient in the reference model, or its M and F averages are far-away. Likewise, a variable-

wise decomposition of the unexplained part is also feasible. Other things being equal a 

variable’s contribution is small if the respective coefficients in the different models are very 

close to each other.  
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4 RF and CART adapted to Blinder-Oaxaca 

To generalize the Oaxaca-Blinder decomposition we need three models: one for the female, one 

for the male subsamples, and a reference for the pooled sample. OLS and Random Forest 

Regression are run on the male and female training samples, resulting in prediction functions 

𝑃𝑀 and 𝑃𝐹, respectively. We also ran reference regressions (labelled by 𝑃𝑅) on the training 

sample.   

These prediction functions are then applied to test samples, again divided into a male 

and a female subset to check the generalizability of our estimates. The following identity holds: 

𝑎𝑣(𝑦𝑀) − 𝑎𝑣(𝑦𝐹) = 𝑎𝑣(𝑃𝑀(𝑀)) − 𝑎𝑣(𝑃𝐹(𝐹)) + 𝑏𝑖𝑎𝑠  

where the arguments M and F refer to the identity of the subsamples, 𝑎𝑣(𝑦𝑀) − 𝑎𝑣(𝑦𝐹) is the 

difference of average male and female log wages (the raw gender pay gap) and 𝑎𝑣(𝑃𝑀(𝑀)) −

𝑎𝑣(𝑃𝐹(𝐹)) is the predicted average gender pay gap. We will study the following 

decomposition:   

𝑎𝑣(𝑃𝑀(𝑀)) − 𝑎𝑣(𝑃𝐹(𝐹)) = [𝑎𝑣(𝑃𝑅(𝑀)) − 𝑎𝑣(𝑃𝑅(𝐹))] + 

[𝑎𝑣(𝑃𝑀(𝑀)) − 𝑎𝑣(𝑃𝑅(𝑀))] + [𝑎𝑣(𝑃𝑅(𝐹)) − 𝑎𝑣(𝑃𝐹(𝐹))] , 

where the first term on the right-hand side is the explained part, and the rest is the unexplained 

part. Notice that the unexplained part gives for each individual an unexplained residual, whereas 

in the case of the explained part only the averages can be compared.  Clearly, if the wage-setting 

mechanisms, approximated by the male and female prediction functions were the same, and the 

predictions unbiased, then the first term would explain fully the raw gap. If the “unexplained” 

gaps were non-zero, then we would think that the wage-setting mechanism conditional on our 

predictors works in an apparently discriminating manner. 

To interpret the results, the individually estimated unexplained parts data can be 

modelled by CART, with the same explanatory variables. The CART output can be used to 

separate segments of the input space where the unexplained part is particularly large, or small. 

 

5 An example 

The dataset used for this example is the Hungarian Wage Survey Data, hosted by the National 

Employment Office. It is a matched employer-employee database that provides annual 
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information (recorded for May of each year) on workers’ age, gender, occupation, earnings 

(disaggregated into regular pay and irregular bonuses), types of contract, and whether the 

worker was hired recently. It also contains information about the employer (sector, region, 

settlement type, size of employment). The sampling procedure of employees is based on firm 

size. Each annual sample includes all firms with more than 50 employees and a randomly 

sampled part of firms with 5-50 employees. 

 We used the logarithm of the gross monthly wage, including regular wage and bonuses, 

for the response variable. The dataset was restricted to employees working full-time in the 

private sector. Calculations were carried out for the year 2008. The training sample contained 

60 000 annual observations, and the rest made up the test sample. The raw gap was 0.1164 log-

points. 

Table 1 lists the predictors.   

Table 1 

Name Unit 

Age  Years 

Tenure Months (at current employer) 

Education 9 levels 

(levels 8 and 9 are College and University) 

New entrant dummy  0: no, 1: yes 

Share of foreign property* 4 levels  

Share of state property* 4 levels 

Firm size  Number of employees 

Settlement  Capital city (Budapest) 

Town 

Other 

Region  7 categories 

Sector NACE Rev. 2 - 2 digits 

Collective agreement on firm 

level 

0: no, 1: yes 

                                                           
 This variable is refered to be ordered in Random Forests and in CART algorithm, too.  
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Collective agreement on sector 

level 

0: no, 1: yes 

Collective agreement with more 

employers but not on sector level 

0: no, 1: yes 

Share of white collar employees 

in enterprise 

percentage 

Source: Hungarian Wage Survey 

Several reference models have been proposed in the literature: we opted for the 

Neumark, 1988 variety where gender is not included as an explanatory variable.  

The Random Forest algorithm requires the setting of several parameters. In particular, 

our forests contained 500 trees each where OBB error seemed small enough (see in Appendix). 

To control for the growth of individual trees we set the minimum node-size parameter at 5 

(default setting), and we did not limit the maximum number of nodes. At every node the number 

of randomly selected variables was 5 (out of 14 explanatory variables). 

Results 
 

Table 2 

 Raw gap in log 

points 

Explained (%) Unexplained (%) Bias (%) 

Training data 0.090 -20 121 -1 

Test data 0.089 -40 144 4 

 

The first row of Table 2 shows the results on the training data, and the second row on 

the test data set. The first column contains the raw differences in log points. The next three 

columns show the explained and unexplained parts, moreover the bias expressed as percentages 

of the raw difference. For instance -40 (second row, second column) means that according to 

the test data average wage differences explained by observable characteristics should have had 

the opposite sign (women’s wages must have been higher than men’s), having a size of 40 % 

of the raw gap. 

Figure 1 shows the tree of depth 4 (i.e. the 8 level tree after exactly three cuts). 

Figure 1 
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Source: own calculation 

 

We can look for interesting classes of people on Figure 1. For instance, we can find the 

group with the highest average unexplained residual (0.11). This group is characterized by the 

following properties: the lowest possible level of schooling (under 8 finished years in primary 

school), and working in the following branches: mining, manufacturing, electricity. This group, 

however, amounts to less than 1 % of the whole sample. The second highest unexpected residual 

can be observed for a group with 14 % of the total (0.098). This group is made up by women 

who work in the same three sectors, but in firms with more than 137 employees, and have 

medium or higher level of education. At the other extreme we look for the group with the lowest 

average unexplained residual (0.014), its features are: younger than 30 years of age, college or 

university education, and working in the sectors different from the three sectors mentioned 

above.   These results suggest that “discrimination” – in the limited sense of the term used in 

this paper - can be a sectoral and large firm phenomenon.  

6 Summary 

In this note we derived the Blinder-Oaxaca decomposition with the help of the nonparametric 

Random Forest regression. In that case we do not obtain a variable-by-variable decomposition, 

but the average explained and unexplained parts can be readily interpreted in the usual manner. 

One slight change from the traditional method is that the raw difference is not exactly equal to 
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the sum of the explained and unexplained parts, but, with an estimation method that fits well, 

the deviation must be insignificant. Insight into the structure of the relationships can be gained 

by analysis with a CART regression of the unexplained residuals, which identifies those 

subgroups that are most or least discriminated. 
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Appendix 

Figure 2 

OBB error in the case of Random Forest for female 

 

Source: own calculation 

 

 

 

 

 


