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Optimal Kidney Exchange with Immunosuppressants

Haris Aziz∗ and Ágnes Cseh†

Abstract

Potent immunosuppressant drugs suppress the body’s ability
to reject a transplanted organ up to the point that a transplant
across blood- or tissue-type incompatibility becomes possi-
ble. In contrast to the standard kidney exchange problem, our
setting also involves the decision about which patients receive
from the limited supply of immunosuppressants that make
them compatible with originally incompatible kidneys. We
firstly present a general computational framework to model
this problem. Our main contribution is a range of efficient
algorithms that provide flexibility in terms of meeting mean-
ingful objectives. We also show that these algorithms satisfy
desirable axiomatic and strategic properties.

Introduction
The deployment of centralized matching algorithms for effi-
cient exchange of donated kidneys is a major success story
of market design (Biró et al. 2019). The standard model for
kidney exchange involves information about patients’ com-
patibility with kidneys in the market. A patient can only be
given a kidney that is compatible with the patient. The goal
is to enable exchanges of kidneys via a centralized algorithm
to satisfy the maximum number of patients.

We consider a new kidney exchange model which has an
interesting feature that is informed by significant technolog-
ical advances in organ transplant. The technology concerns
immunosuppressants which if given to a patient can make
her receptive to kidneys which she is not receptive to by de-
fault (Montgomery et al. 2011). We will refer to the model
as Kidney Exchange with Immunosuppressants (KEI). Im-
munosuppressants (abbreviated as suppressants from here
onwards) have been successfully used in Japan and Korea
and increasingly being considered in other countries (Chun,
Heo, and Hong 2017), even though they are costly and may
have side effects.

In this paper, the fundamental research problem that we
explore is that of designing mechanisms for kidney ex-
∗UNSW Sydney and Data61 (CSIRO), Australia,

haris.aziz@unsw.edu.au
†Hungarian Academy of Sciences, Centre for Economic

and Regional Studies, Institute of Economics, Hungary
cseh.agnes@krtk.mta.hu

change with immunosuppressants that satisfy desirable com-
putational, incentive and monotonicity properties. A naive
way of using suppressants is to clear the classic kidney ex-
change market without using them and then give suppres-
sant to the patients who are left. However, there can be more
efficient ways of giving suppressant to particular patients
and then implementing exchanges of kidneys to facilitate as
many transplants as possible. At first sight, the two-stage and
connected process of using foresight to first giving suppres-
sants to suitable patients and then finding a matching that
satisfies suitable social objectives appears to be a complex
problem. We design a flexible algorithmic approach for the
problem.

Our contributions are as follows.

• We formalize a general model of kidney exchange
with immunosuppressants that features compatible, half-
compatible, and incompatible kidneys, and which allows
for allocations as a result of multi-way exchanges. We
then initiate a computational study of kidney exchange
with immunosuppressants. Prior mechanism design work
on the subject either only allows pairwise exchanges or
focuses on a restricted model.

• Our central contribution is modeling important KEI prob-
lems in terms of graph algorithms involving minimum
cost perfect matchings. Depending on how we set the
edge costs in the graph problem, we can find in poly-
nomial time, allocations corresponding to several impor-
tant objectives. The objectives include maximizing the to-
tal number of transplants and given that maximizing the
number of compatible transplants. Among the list of ob-
jectives captured by our algorithmic framework, we defer
the choice of the exact objective to the policy-makers.

• We then focus on the problem where there is an upper
bound on the number of suppressants that can be used. We
present a polynomial-time algorithm for maximizing the
number of transplants for a restricted model that we refer
to as the silver bullet model. In the model, once a patient
has been given a suppressant, then the patient can take any
kidney. For our general model in which certain kidneys
are inherently incompatible, we show that the problem of
maximizing the number of transplants polynomial-time



reduces to an interesting generalized matching problem
whose complexity has been open for years.

• We also study axioms for our model. If patients prefer
a transplant without potent suppressants and there is a
central budget for these suppressants, then we show that
strategyproofness, individual rationality, and a very weak
form of efficiency called unanimity are incompatible. We
also show that this impossibility disappears if we consider
coarse preferences or do not impose hard upper bounds on
the number of suppressants used.

Some of the techniques that we use such as to capture
strong individual rationality, achieve strategyproofness, han-
dle pairwise exchanges etc. are of independent interest and
can be applied to a host of other problems in matching mar-
kets.

Related Work
Kidney exchange is one of the major research topics in
matching market design (Sönmez and Ünver 2011; Abra-
ham, Blum, and Sandholm 2007; Hatfield 2005; Roth,
Sönmez, and Ünver 2005a; Biró, Manlove, and Rizzi 2009).
In many of the papers, the algorithms only allow exchange
cycles of limited size due to logistical and other constraints.
In this paper, we allow exchange cycles of any size. Note
that for any exchange cycle bounds that are three or more,
even the kidney exchange problem in the traditional model
without immunosuppressants is NP-hard (Abraham, Blum,
and Sandholm 2007).

The use of suppressants to facilitate more efficient kid-
ney exchange has been discussed in medical circles (see,
e.g. Abramowicz et al. (2018)). The two market design pa-
pers directly relevant to our work are ones where kidney ex-
change with immunosuppressants has been mathematically
modeled (Chun, Heo, and Hong 2017; Andersson and Kratz
2019). Chun, Heo, and Hong (2017) prove a couple of im-
possibility results as well as an exchange mechanism with
some desirable monotonicity properties. They assume that
once suppressants are administered to a patient, she can take
a kidney from any donor. We consider a more general model
in which half-compatibility is specific to particular patient-
donor pairs.

Andersson and Kratz (2019) consider a more general
model in which only certain donor-patient pairs can be made
compatible after giving suppressants to the patient. They fo-
cus on pairwise kidney exchange (Roth, Sönmez, and Ünver
2005b) and provide some properties of half-compatibility
priority matchings and present an efficient computational
method for finding them. They also analyze the welfare im-
plications of pairwise kidney exchange over the blood group
barrier, both theoretically and via a simulation study. Our pa-
per goes beyond the pairwise exchange model and presents
results that can use longer cycles. We also show how our
general results that do not impose restrictions on the ex-
change cycles can be adapted for the case of pairwise ex-
change.

Model and Concepts
A kidney exchange market is a tuple (P,D,C,H, I) where
P = {p1, p2, . . . , pn} is a set of n patients (agents) andD is
the set of donors. Some patients and donors come in pairs;
others come single. If a patient pi enters the market together
with her donor, then the donor di will be equipped with the
same index i.

Each patient pi partitions the donors D into sets Ci, Hi,
and Ii. The set Ci is the set of donors whom patient pi is
compatible with. The set Hi is the set of donors pi is half-
compatible with. Half-compatibility means that if a sup-
pressant is given pi, then pi can accept a kidney from any
donor in Hi. Donors in the set Ii are incompatible with pa-
tient pi even if pi is given a suppressant. These partitions at
each patient form the collections of sets C = (C1, . . . , Cn),
H = (H1, . . . ,Hn), and I = (I1, . . . , In) in the input. For
simplicity, we assume that compatible patient-donor pairs
are not present, because their transplant is arranged outside
of the system.

An allocation assigns each patient pi at most one donor
who is either in Ci or in Hi. Patients who are assigned a
half-compatible donor receive suppressants.

We consider three models.
1. BM (Baseline model): for each pi ∈ P , Hi = ∅.
2. SBM (Silver bullet model): for each pi ∈ P , Ii = ∅.
3. GM (General model).

The baseline model coincides with the traditional kidney
exchange model in which immunosuppressants are not con-
sidered. SBM is the model in which we assume that if a pa-
tient is given a suppressant then she will be able to receive
any kidney in the market. GM is the general model that also
allows for some kidneys being inherently incompatible for a
patient even if she has been given suppressants. Unless spec-
ified, we will focus on GM. In some cases, we will present
some results that hold for the silver bullet model.

As far as a patient or the social designer is concerned,
there are two types of preferences. We will treat matching
with incompatible donors to be infeasible.

1. Coarse preferences: a patient is indifferent between a
compatible donor and a half-compatible donor along with
a suppressant, and prefers both options over no transplant
at all.

2. Refined preferences: a patient prefers compatible donors
over half-compatible donors along with a suppressant,
which are preferred over no transplant at all.

Coarse preferences have the underlying assumption that a
patient has no significant cost (in terms of money or side-
effects) when receiving a half-compatible kidney.

Based on the preference relation one can define concepts
such as Pareto optimality. Chun, Heo, and Hong (2017) con-
sidered SBM and coarse preferences. They also consider re-
fined preferences when defining a monotonicity property.
Andersson and Kratz (2019) considered GM and refined
preferences.

A patient who is assigned a compatible donor or a half-
compatible donor along with a suppressant is referred to as



satisfied. Our general goal is to satisfy the maximum number
of patients while minimizing the need of suppressants. We
will consider the following feasibility condition for all al-
locations, which captures a natural individual rationality re-
quirement: either a patient donates her donor’s kidney to the
market and gets a strict improvement or she and her donated
kidney are not part of any allocation. We will refer to this
condition as strong individual rationality (S-IR). Notice that
a patient who enters the market with a half-compatible donor
improves her situation if she is assigned her own or another
half-compatible donor along with a suppressant. Also, S-IR
implies that a donor assigned to a patient will only donate
a kidney if her patient also receives one. A weaker require-
ment is individual rationality (IR) whereby no patient who
has a compatible kidney donor ends up with no transplant.
Example 1. Consider a kidney exchange problem in which
there are three patients p1, p2, p3 with corresponding donors
d1, d2, d3. No patient’s donor has a kidney compatible with
the patient. Patient p1 finds the kidney of d2 compatible,
while d3 ∈ H2 and d1 ∈ H3. The problem is captured in
Figure 1.

If immunosuppressants are not allowed, then no patient
will be able to get a kidney without violating S-IR. Suppose
the system has 2 suppressants available. In that case, one
suppressant can be given p2 and another to p3. Then p1 can
take a compatible kidney of d2, p2 takes a half-compatible
kidney of d1 and p3 takes a half-compatible kidney of d3.

p1

p2

p3

d1

d2

d3

Figure 1: A bipartite matching view of KEI. The dashed
lines indicate half-compatible edges. Solid edges indicate
compatibility edges. Dotted edges indicate a patient-donor
pair.

A general graph theoretic approach
We construct a general bipartite matching based model cap-
turing the most basic features of kidney exchange markets.
It guarantees that each donor gives at most one kidney, each
patient receives at most one kidney, and the donor in a pair
is only part of the exchange if her patient receives a kid-
ney. This framework gives us a set of feasible solutions for
the problem. Then, by adding edge weights to the graph and
finding a maximum weight matching, an optimal solution
can be calculated. We specify a set of possible edge weights
that can serve a large variety of goals of the decision maker,
such as cost-efficiency or saving as many lives as possible.

Matching model
We build a bipartite graph to the instance (P,D,C,H, I),
see Figure 2. For convenience, we distinguish between pa-
tients with and without a related donor, who will form the
sets P2 and P1, respectively. Analogously, D1 is the set of
altruistic donors, while donors in D2 enter the market along
with their related patient in P2. The vertices of our graph are
of three types.
• To each patient pi ∈ P , we construct a patient vertex pi.
• To each donor di ∈ D, we construct a donor vertex di.
• We construct a dummy donor vertex dj for each patient
pj ∈ P1.
If a donor-patient pair who applies for the scheme to-

gether, then the patient and donor and given the same index:
we refer to them as pi and di for some fixed i. Patients with-
out a donor share the same index with their dummy donor
vertex. Altruistic donors in the system do not have such a
fixed-index pair.

The edges of the graph are as follows.

• Each patient pi ∈ P2 is connected to her related donor
di ∈ D2 via a private edge.

• Each patient pj ∈ P1 is connected to her dummy donor
dj via a private edge.

• A donor di has a compatible edge to a patient pj , where i
might be equal to j, if di ∈ Ci.

• A donor di has a half-compatible edge to a patient pj ,
where i might be equal to j, if di ∈ Hi.

The three kinds of edges will play distinct roles when
assigning weights to them. Private edges represent no
transplant, while compatible and half-compatible edges
stand for compatible and half-compatible transplants taking
place. Notice that a patient and her donor forming a half-
compatible pair are connected by two parallel edges, one
private and one half-compatible.

Our goal is to calculate a P -complete matching in the
constructed graph. By P -complete, we mean that each pa-
tient needs to be matched in the matching. A matching and
the corresponding allocation are in trivial one-to-one corre-
spondence with each other. A patient matched to her dummy
donor or to her incompatible donor represents no transplant.
The matching property ensures that each patient receives
one kidney at most, and each donor also donates one kid-
ney at most. Since a patient pi ∈ P2 is only connected to
di ∪ Ci ∪ Hi, and we restrict our attention to P -complete
matchings only, pi is either satisfied or she remains un-
matched, together with di. P -completeness ensures the fol-
lowing natural consequence of S-IR: either a patient uses her
donor’s kidney and gets a strict improvement, or she and her
donated kidney are not part of any allocation.

With coarse preferences assumed, there might be restric-
tions on the compatibility of a kidney given to a patient in
a patient-donor pair who enter the market together. To en-
sure that a half-compatible pair only participates in a cross-
donation or a cycle if and only if the patient receives a com-
patible kidney, we only need to delete the edges running
from the patient to all half-compatible donors.



p1

p2

p3

p4

d1

d2

d3

d4

d5

Figure 2: Example instance for our bipartite graph. Here,
P1 = {p1}, and thus, d1 is a dummy donor. The only altru-
istic donor is d4, forming set D1. Dotted edges are private,
dashed edges mark half-compatible donations, and finally,
solid edges mark compatible donations.

Objectives
We offer a variety of different weight functions defined on
the edges of our graph. Each weight function serves a justi-
fiable goal, as we argue later.

Table 1 summarizes the options for defining the weight
function on each edge (pi, dj), depending on the type of
the edge. We assume N to be a sufficiently large integer.
In an allocation, we denote the number of patients receiv-
ing a kidney from a compatible donor by CO, the number
of patients receiving a kidney from a half-compatible donor
by HC, while the total number of patients receiving a kid-
ney by TR = CO + HC. Our objective functions are to
be maximized in the lexicographic sense, e.g. (TR,−HC)
maximizes the number of transplants in total, and subject to
this, it minimizes the number of half-compatible transplants.

Our objective functions can achieve the following.
1) The number of transplants is maximized if each pair cho-

sen for surgery contributes weight 1, while no transplant
adds no weight to the matching.

2) The number of transplants is maximized in the baseline
model, if half-compatible donations are forbidden due to
their infinitely large negative weight, and each compati-
ble donation contributes weight 1.

3) If a compatible transplant carries a larger weight than the
weight of all half-compatible transplants that can be car-
ried out, then the main goal is to maximize the number of
compatible donations. Since half-compatible donations
do carry some small weight, their number will be maxi-
mized, but only subject to the first objective.

4) Since half-compatible donations now carry a small nega-
tive weight, they are only to be planned if they enable ex-
tra compatible transplants. However, any number of half-

compatible donations are welcome if they make only one
more compatible donation happen, because we gain a lot
in our objective function by addingN just one more time
to it.

5) If compatible and half-compatible donations both carry a
large weight, but the latter ones are somewhat less prof-
itable, then the maximum number of donations will be
calculated, and subject to this, as few half-compatible do-
nations will be planned as possible.

6) The most general version is when we set an arbitrary
weight to each transplant. This weight can express the
expected utility in terms of life expectancy, risks, health-
care savings, and it can differ for each pair. A max weight
solution corresponds to a maximum utility allocation.

Our goal is to compute a maximum weight P -complete
matching in the graph. A maximum weight matching can
be computed in strongly polynomial time (Munkres 1957).
To take care of P -completeness, or equivalently, maximum
size, one only needs to apply the standard weight modifica-
tion, in which each edge gets an additional uniform weight
that is larger than the sum of the original weights. As a re-
sult, we obtain the following central result.
Theorem 1. For each of the objectives 1) to 6), there exists
a strongly polynomial-time algorithm to find an allocation
achieving those objectives.

Fix upper bound on HC
Immunosuppressants are highly useful to allow half-
compatible kidneys to be allocated. However, they are not
only extremely expensive but they also have undesirable
side-effects. Given these issues, the market designer may
wish to specify a fixed upper quota on HC = h, and wishes
to maximize transplants subject to h. We show that even with
an upper bound, we can solve the following central problem.

h-ALLKEI
Input: KEI instance G = (N,O, e,A) and integer

m.
Question:Is there an allocation satisfying all the patients

with at most h patients using immunos?

Theorem 2. h-ALLKEI can be solved in polynomial time
even for the general model.

Proof. Construct the corresponding graph as defined in
the previous section, but only keep compatible or half-
compatible edges. We want to check whether there exists
a P -complete matchingM such that |M ∩E′| ≤ h and each
patient gets a compatible or half-compatible allocation. This
question can be answered by solving a simple weighted P -
complete matching problem. In the graph with compatible
or half-compatible edges only, we give each half-compatible
edge weight 0 and each compatible edge weight 1. The
weight of any P -complete matching M is n − |M ∩ E′|.
The maximum weight matching in this instance has weight
at least n − h if and only if there is an allocation using at
most h immonosuppressants.



Objective function compatible half-compatible private
1 TR (coarse preferences) 1 1 0

2 CO (BM, where HC = 0) 1 −∞ 0

3 (CO, TR) N 1 0

4 (CO,−HC) N −1 0

5 (TR,−HC) ∼ (TR,CO) N N − 1 0

6 cost-optimal compatible gain half-compatible gain 0

Table 1: The variety of possible cost functions serving different goals.

A more general version of h-ALLKEI is the following
problem.

h-MAXKEI
Input: KEI instance (P,D,C,H, I) and integers t

and h.
Question:Is there an allocation giving at least t patients

a compatible donor with at most h patients us-
ing immunos?

Our next result is that h-MAXKEI can be solved in poly-
nomial time in the Silver Bullet Model.
Theorem 3. h-MAXKEI can be solved in polynomial time
in the Silver Bullet Model.

Proof. If we have a model that excludes incompatibility,
as the Silver Bullet Model, then a modification of the built
graph solves this problem. The modification of the graph is
as follows. The goal is to decompose each half-compatible
edge into a set of paths, and then lead these paths through
a gadget that will regulate the maximum number of used
half-compatible edges through its size. First we add this gad-
get, which consists of 2h new vertices in sets A and B,
and a set of h disjoint edges of weight 0 between them:
{(a1, b1), (a2, b2) . . . , (ah, bh)}. Then we replace each edge
(pi, dj) in the half-compatible class by a set of edges con-
necting pi to each of a1, a2, . . . , ah, and dj to each of
b1, b2, . . . , bh. The weight on these edges are set to be half
of the original weight of the replaced half-compatible edges.
The rest of the graph remains unchanged. For an example,
see Figure 3, which is a transformed version of our example
instance from Figure 2, with h = 2.

Claim 1. A maximum weight (P ∪A∪B)-complete match-
ing in the above-described graph corresponds to an allo-
cation maximizing the weight subject to HC ≤ h, if half-
compatible donations are less desirable than compatible do-
nations according to the weight function.

Proof. Due to the size of the gadget, no (P ∪ A ∪ B)-
complete matching allows more than h vertices in P to be
matched along their edges to the gadget. Moreover, the num-
ber of vertices in P that are matched to a vertex in A equals
the number of vertices in D that are matched to a vertex in
B, because a (P ∪ A ∪ B)-complete matching covers all
vertices in the gadget. These vertices in P and D will be

p1

p2

p3

p4

d1

d2

d3

d4

d5

a1

a2

b1

b2

Figure 3: Substituting all half-compatible edges by a gadget
allowing at most h = 2 half-compatible donations.

the agents participating in half-compatible donations. Due
to the assumptions of the Silver Bullet Model, any perfect
matching on them is a set of executable transplants. The rest
of the transplants are chosen based on the maximum weight
matching criterion.

Notice that it is possible that a donor and a patient are
connected via a 3-path through the gadget and via a direct
compatible edge as well, but for all weight functions where
half-compatible donations are less desirable than compatible
donations (all our weight functions except for 1 and possi-
bly 6), the path will carry the lower weight. Therefore, no
(P ∪ A ∪ B)-complete matching using such edges in the
gadget can be of maximum weight.

One can calculate a maximum weight matching among
all (P ∪A∪B)-complete matchings using the usual weight
transformation of adding a large uniform weight to all edges
incident to any vertex in P ∪ A ∪ B. This completes the
proof.

This construction in the proof of Theorem 4 answers a
question more general than h-MAXKEI. It actually decides



whether there is an allocation of weight at least twhile using
at most h suppressants.
Theorem 4. In the silver bullet model, a minimum cost S-IR
allocation can be computed in polynomial-time even if there
is an upper bound on the number of suppressants that can
be used.

Next, we identify connections of h-MAXKEI with a spe-
cial case of budgeted matching, a well-studied graph prob-
lem of unknown complexity.

UNIT-COST BUDGETED MATCHING

Input: Bipartite graph G = (A ∪ B,E), E′ ⊆ E,
edge weights, and an integer h.

Question:Find a maximum weight matching M such
that |M ∩ E′| ≤ h.

UNIT-COST BUDGETED MATCHING admits a
PTAS (Berger et al. 2011; Mastrolilli and Stamoulis
2012). Berger et al. (2011) observe that for polynomial
weights and costs (here we set the costs to be 1), BUD-
GETED MATCHING is very unlikely to be NP-hard, because
it would imply RP=NP. However, after several decades, the
problem of finding a deterministic algorithm to solve this
problem is still open.

We now show how h-MAXKEI reduces to UNIT-COST
BUDGETED MATCHING.
Lemma 1. h-MAXKEI polynomial-time reduces to UNIT-
COST BUDGETED MATCHING.

Proof. We set E′ to be the set of half-compatible edges,
while G and the upper bound h are identical in the two
problems. To make sure that the maximum weight matching
in UNIT-COST BUDGETED MATCHING is P -complete, we
modify the edge weights w(e) from h-MAXKEI as follows.

w′(e) := w(e) + n

The weight of matching M is thus w′(M) := w(M) +
n · |M |. Since w(e) ≤ 1, matchings of larger size are bound
to have a larger weight as well, thus w′(M) is maximized
by a P -complete matching. Within the set of P -complete
matchings, w′ is maximized in the maximum weight match-
ing according to w.

Notice that the weight transformation can be extended to
other objective functions as well:

w′(e) := w(e) + n · wmax(e).

Regarding parametrized complexity, our trivial parameter
is h, the number of suppressants available. If h is small, then
one can try which h half-compatible edges are used, and
then search for a maximum weight allocation in the rest of
the instance built out of compatible and private edges only.

Axioms
We consider some natural axioms for allocation algorithms
(mechanisms). A mechanism is utilitarian (UTIL) if it max-
imizes the total number of transplants (satisfied patients). A

mechanism is Pareto optimal (PO) if it returns a Pareto opti-
mal allocation among the set of feasible outcomes. A mech-
anism is strategyproof (SP), if no patient can misreport her
compatibility relation to obtain a more preferred allocation.
An extremely weak form of Pareto optimality is called una-
nimity (UNAN) that requires that a mechanism returns an
allocation that gives each agent a fully compatible kidney
whenever such an allocation exists. We discuss that our flex-
ible objective-based algorithmic approach satisfies many of
these properties.

Utilitarianism and Pareto optimality
Only objective functions 1, 2, and 5 reach UTIL, since they
are the only ones that maximize the number of transplants in
total.

PO (under coarse preferences) means that no inclusion-
wise larger allocation exists. Only objective functions 1, 2,
and 5 satisfy this.

PO (under refined preferences) means that no other allo-
cation keeps the set of compatible donations, while extend-
ing the set of donations or upgrading a half-compatible do-
nation to a compatible one. Only objective function 1 fails
this: PO (under refined preferences) is defined for refined
preferences, while objective function 1 is defined for coarse
preferences.

UNAN is implied by both PO (under refined preferences)
and PO (under coarse preferences), and thus all objective
functions satisfy it.

Strategyproofness
Next, we consider strategic properties. We identify a funda-
mental incompatibility between strategyproofness and una-
nimity when agents have refined preferences and there is an
upper bound on the number of suppressants.
Theorem 5. Even for 3 patients, the combination SP
(under-refined-preferences), UNAN, and IR are incompati-
ble. Even for 3 patients, the combination SP (under-refined-
preferences), UNAN, and S-IR are incompatible.

Proof. Consider the problem instance depicted in Figure 4.
Suppose there is exactly 1 suppressant available. Then PO
requires that all three patients are matched: 1 gets d2, 2 gets
d3 and 3 gets d1. Suppose patient 2 misreports and reports d3
as imcompatible. In that case, IR and PO imply that patient
2 gets d1 and patient p1 gets d2, which is an improvement
for p2 with respect to refined preferences.

Since UTIL implies PO (under coarse preferences), we
also derive the following statements.
Corollary 1. The combination SP (under-refined-
preferences), PO (under refined preferences), and IR
(or S-IR) are incompatible. The combination SP (under-
refined-preferences), PO (under coarse preferences), IR (or
S-IR) are incompatible.

If there is no upper bound on the number of suppres-
sants available, then PO, IR, and SP are compatible under
refined or coarse preferences. This can be proved by reduc-
ing our problem to that housing markets with trichotomous



p1

p2

p3

d1

d2

d3

Figure 4: A KEI instance for the proof of Theorem 5. The
dashed lines indicate half-compatible edges. Solid edges in-
dicate compatibility edges. Dotted edges indicate a patient-
donor pair.

preferences. Even for general weak preferences, suitable ex-
tensions of TTC achieve all the axioms(see, e.g. Saban and
Sethuraman (2013)). The agents have trichotomous prefer-
ences: fully compatible kidneys are most preferred, half-
compatible kidneys are second most preferred, and incom-
patible kidneys are least preferred.
Theorem 6. If there is no upper bound on the number of
suppressants available, then there exists an algorithm that
is PO, IR, and SP.

Our next insight is that as long as we consider strat-
egyproofness with respect to coarse preferences, we can
achieve all the objectives in conjunction with strategyproof-
ness. The key is to overlay the priority mechanism over the
algorithm that optimizes one of the global objectives while
constrained to S-IR. The result follows from similar insights
as that of Aziz (2019) and Hatfield (2005). The desirabil-
ity of the overlay of the priority mechanism is that it can
take as a black box any given algorithm that optimizes some
criterion over the set of feasible allocations. In the overall
algorithm, first, an optimal value W of a feasible matching
is computed. Then, we go over an order of agents and check
whether the agent in question can be satisfied in some opti-
mal allocation which still satisfying all the preceding agents
who could also be satisfied in some optimal allocation. It
can be proved that an agent has no incentive to misreport
her preferences in the Coarse preference model.
Theorem 7. For all the objectives in the paper, there ex-
ists an algorithm that is SP (under coarse preferences) and
meets the objective subject to S-IR and upper bound on the
number of suppressants.

Pairwise exchanges
In this section, we restrict our attention to pairwise ex-
changes. In many countries, the organ exchange programs
only consider pairwise exchanges (Andersson and Kratz
2019). In this case, a simpler model suffices. The only pos-
sible transplants are cross-donations between two patient-
donor pairs, and an altruistic donor donating a kidney to a
patient, who might come with or without a donor.

We build a simple graph for these sorts of donations. First,
we represent each patient-donor pair, each altruistic donor,

Algorithm 1 Priority Overlay
1 Construct graph G with appropriate edge weights.
2 Compute a maximum weight A-complete matching of
G. Let the weight of the matching be W .

3 Take a permutation (ordering) π of the elements in N .
Denote by π(i) the i-th element in the ordering.

4 for i=1 to n do
5 while target=false do
6 Remove from G each of pπ(i)’s edges except the

most preferred. Compute the maximum weight A-
complete matching of G. If the weight is less than
W or if there does not exist a A-complete match-
ing, then put back the removed edges but remove
most preferred edges in the graph. Otherwise set
target to true.

7 end while
8 end for
9 Compute a maximum weight complete matching M of
G. Consider the allocation x in which each patient pi ∈
P gets a donor that it is matched to in M . If pi ∈ P is
matched to a dummy donor, its allocation is null.

10 return (x(1), . . . , x(n))

and each patient without a donor as a vertex. Then we con-
nect two of these vertices if a cross-donation or an altruistic
donation, as described above, is possible, because all donors
are either compatible or half-compatible to the prospective
recipient of the kidney. The edge carries the weight of the
two transplants altogether, where transplant weights are cal-
culated based on the relevant row of Table 1. We look for a
not necessarily perfect maximum weight matching.

Conclusions
Immunosuppressants constitute one of the major develop-
ments in the transplant of organs. We have studied a gen-
eral model of kidney exchange that also models the use of
immunosuppressants. We envisage further work on both al-
gorithmic as well as market design aspects of the problem.
The most striking open question is undoubtedly to determine
the complexity of MAXKEI in the general model. By solv-
ing that problem, one might even reach progress in budgeted
matching, a long-standing open problem in matching theory.
Finally, we note that some of our insights may be usable
for other organ markets that involve lungs (Luo and Tang
2015), livers, or even a combination of these and other or-
gans (Dickerson and Sandholm 2017).
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Biró, P.; Manlove, D. F.; and Rizzi, R. 2009. Maxi-
mum weight cycle packing in optimal kidney exchange pro-
grams. Discrete Mathematics, Algorithms and Applications
1(4):499–517.
Chun, Y.; Heo, E. J.; and Hong, S. 2017. Kidney exchange
with immunosuppressants. Technical report, Vanderbilt Uni-
versity Department of Economics.
Dickerson, J. P., and Sandholm, T. 2017. Multi-organ ex-
change. Journal of Artificial Intelligence Research 60:639–
679.
Hatfield, J. W. 2005. Pairwise kidney exchange: Comment.
Journal of Economic Theory 125:189–193.
Luo, S., and Tang, P. 2015. Mechanism design and imple-
mentation for lung exchange. In IJCAI, 209–215.
Mastrolilli, M., and Stamoulis, G. 2012. Constrained match-
ing problems in bipartite graphs. In International Sympo-
sium on Combinatorial Optimization, 344–355. Springer.
Montgomery, R. A.; Lonze, B. E.; King, K. E.; Kraus, E. S.;
Kucirka, L. M.; Locke, J. E.; Warren, D. S.; Simpkins, C. E.;
Dagher, N. N.; Singer, A. L.; et al. 2011. Desensitization in
hla-incompatible kidney recipients and survival. New Eng-
land Journal of Medicine 365(4):318–326.
Munkres, J. 1957. Algorithms for the assignment and trans-
portation problems. Journal of the Society for Industrial and
Applied Mathematics 5(1):32–38.
Roth, A. E.; Sönmez, T.; and Ünver, M. U. 2005a. A kidney
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