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In coalitional games with uncertain payoffs, a deviating coalition can only form 

expectations regarding its post-deviation payoff. Classical approaches address the 

problem from the side of conservatism, expecting the worst, or by explicit 

assumptions of the emerging state of the world. We borrow the idea of risk from the 

finance literature and compare the payoff of staying with the original outcome with 

the risk of deviating. Employing this idea to the core leads to a new concept that we 

call the risk-based core. We introduce this concept and discuss its properties. We find 

an inclusion relation between cores of games with increasingly conservative players. 

The model is also suitable to study cooperative games in partition function form 

where the value of a coalition depends on the entire partition. For the cores of such 

games our main result yields many of the familiar inclusion relations as corollaries, 

while the inclusion of the optimistic core in the optimistic recursive core turns out to 

be non-robust. 
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The risk-based core for cooperative games with

uncertainty

László Á. Kóczy∗

Abstract

In coalitional games with uncertain payoffs, a deviating coalition can

only form expectations regarding its post-deviation payoff. Classical ap-

proaches address the problem from the side of conservatism, expecting

the worst, or by explicit assumptions of the emerging state of the world.

We borrow the idea of risk from the finance literature and compare the

payoff of staying with the original outcome with the risk of deviating.

Employing this idea to the core leads to a new concept that we call the

risk-based core. We introduce this concept and discuss its properties. We

find an inclusion relation between cores of games with increasingly con-

servative players. The model is also suitable to study cooperative games

in partition function form where the value of a coalition depends on the

entire partition. For the cores of such games our main result yields many

of the familiar inclusion relations as corollaries, while the inclusion of the

optimistic core in the optimistic recursive core turns out to be non-robust.

Keywords. Cooperative game theory; Core; Expectation formation

rules; Risk, Risk measures; Partition function form games

JEL codes. C71; D82; G32

1 Introduction

Cooperative game theory is built on models where the value of each coalition

is known in advance. In many real life situations, however, we may not have

a complete understanding of all circumstances and different states of the world

∗‘Momentum’ Game Theory Research Group, Centre for Economic and Regional Sciences,

Hungarian Academy of Sciences, Tóth Kálmán u. 4, H-1097 Budapest and Department of

Finance, Faculty of Economic and Social Sciences, Budapest University of Technology and

Economics, Magyar tudósok körútja 2, H-1117 Budapest. Email: koczy@krtk.mta.hu
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may yield substantially different payoffs. One can think of portfolios of assets,

for example. The value of each asset is a random variable realising different

values in different states of the world. The value of coalitions, that is, portfolios

of assets may simply be calculated additively, but one may consider diversifi-

cation effects leading the a superadditive value function or liquidity constraints

corresponding to subadditivity — or any combinations thereof. In TU games

the uncertainty is seen as exogenous, originating from mechanisms not modelled

within the game, but we assume that the change is triggered by the players. In

NTU games or games in partition function form this is more obvious as the play

of other players may influence a coalition’s payoffs. Practical applications of

games with random payoffs include linear production games with uncertain re-

source bundles, trader’s cooperation in financial markets, sequencing problems

with stochastic processing times (Suijs et al., 1999) and non-life insurance (Suijs

et al., 1998).

Along with the cooperative games tradition we assume that a particular

allocation is proposed and we are interested in proposals that are not subject to

deviations by coalitions of the players. This idea generalises the core (Shapley,

1955) to cooperative games with random payoffs.

Uncertainty about a coalition’s payoff appears in different streams of the

literature. First Charnes and Granot (1973, 1976); Granot (1977) introduced

chance-constrained games where the coalitional payoffs are not deterministic,

but random variables with known distributions. An important element of this

model is the separation of bargaining about the payoffs and their realisation.

Coalitions may make some promises to their members on the basis of the payoff

distributions, but these promises should be such that the payments can be

made once the payoffs are realised. In this sense the concepts discussed are

prior solutions. One of the problems of this approach is the assumption of

risk neutrality. Suijs et al. (1999) considers a model where coalitions have

actions leading to different random payoffs and the players have a preference-

relation to compare random payoffs with each other. Suijs et al. (1999) focus on

the particular setting where coalitional agreements specify the allocation of the

expected payoff and a separate allocation of the difference between the expected

and realised payoffs. Timmer et al. (2005) use a similar formulation, but the

different realisations of the payoff are not linked to actions by the coalition.

Bossert et al. (2005) look at games where the uncertainty is about the choice

between two TU games and correspondingly the uncertainty about the value of

a coalition corresponds to the uncertainty about the game played. More recently

Habis and Herings (2011); Habis and Csercsik (2015) introduces uncertainty in
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the dynamic model of initiated by Koutsougeras (1998) now characterised by the

weak- and strong sequential cores (Predtetchinski et al., 2002; Predtetchinski,

2007; Habis and Herings, 2010). At last, Kóczy (2002) and Konishi and Ray

(2003) consider dynamic coalitional games with foresighted players. In such

games a coalitional deviation triggers a sequence of further deviations: as often

multiple deviations are possible there is uncertainty about possible paths with

corresponding terminal coalition structures and payoff vectors.

In the theory of characteristic function form games coalitions are ‘orthogo-

nal’, that is, the value of a particular coalition can be given without reference

to other coalitions. This makes the definition of the core (Shapley, 1955) espe-

cially simple and intuitive: given a particular allocation of the value of the grand

coalition, each coalition compares its total payoff with its value and if it gets

less than the latter it blocks the allocation: it threatens to leave cooperation.

In partition function form games (Thrall and Lucas, 1963), where the value of a

coalition depends on the entire coalition structure it is embedded in, the coali-

tion does not in general know its payoff after a departure from the status quo

and possibility of different coalition structures with the corresponding different

coalitional payoffs are perceived by the players as uncertainty, too. In order

to asses the consequences of a deviation, players form assumptions about the

behaviour of the remaining players. The literature considers two types of as-

sumptions: some specify the residual coalition structure explicitly, while others

study the effect on the deviating coalitions. We briefly review these models.

Originally von Neumann and Morgenstern (1944) defined the characteristic

function using the minimax rule: here the coalition assumes that the remaining

players try to minimise its payoff. A similar idea is used by (Aumann and Pe-

leg, 1960) when defining the α-core. This conservative or prudent approach is

a common approach in economics, but this pessimism should not extend to un-

reasonable reactions (Rosenthal, 1971) and already very mild restrictions have

substantial effects on the core (Richter, 1974). This approach, however ignores

the incentives of the residual players; Chander and Tulkens (1997) were the first

to explicitly model in the γ-core best responses of residual players focussing on

individual best responses corresponding to the specific residual coalition struc-

ture where all coalitions are singletons. The δ-core of Hart and Kurz (1983)

reflects exactly the opposite: remaining players form a single coalition. Kóczy

(2007) and Huang and Sjöström (2003) generalised the idea of a rational re-

sponse by allowing arbitrary equilibrium coalition structures to form – where

the equilibrium is the same as the one applied to the original game. The result-

ing recursive core and r-core have thus a recursive definition.
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While these approaches often drastically reduce the number of residual coali-

tion structures, Kóczy (2007) still considers optimistic and pessimistic versions

depending on which residual core outcomes (and corresponding coalition struc-

tures) form. As a result, for the pessimistic recursive core, the risk of a slight loss

cancels the prospect of a substantial improvement, and, correspondingly for the

optimistic recursive core, the prospect of a slight improvement under some re-

action distracts our attention from the substantial losses under other scenarios.

Lekeas and Stamatopoulos (2011) considers oligopolistic markets and instead

of looking at extreme cases, takes a probabilistic approach, where the coalition

attaches probabilities to each possible residual partition and considers the ex-

pected payoff under these probabilities. They follow the logit quantal response

model of McKelvey and Palfrey (1995) in assuming that the probability of the

different residual partitions is proportional to their relative payoffs.

Our approach differs in at least two aspects. On the one hand the probabili-

ties we attach to possible residual strategies will be more general and differently

motivated. On the other hand we do not simply look at expected values, but

look at the risk of the deviation. Our risk concept (see Krokhmal et al., 2011,

for a recent survey) comes from the finance literature, where risk merely indi-

cates the uncertainty of a value of an asset. Therefore we compare the deviation

to a financial investment where the coalition “invests” its current payoffs into a

risky asset whose realised value depends on the state of the world manifested by

the residual partition. The value of this risky asset is measured by an appropri-

ate risk measure. In a sense the coalition’s prospects are evaluated taking both

the residual players preferences or incentives and the coalition’s conservativism

into account.

The structure of the paper is then as follows. First we introduce the basic

notions, the game form as well as risk and risk measures. We then introduce

the risk-based core and show some properties. At last we present a wide range

of further applications.

2 Preliminaries

2.1 Characteristic function form games with uncertainty

Let N denote the set of players. Subsets are called coalitions. We consider

games where the value of a coalition depends on the state of the world. Let

S = {s1, . . . , si, . . . , sS} denote a finite set of states. Then a cooperative game

with uncertainty is a tuple (N, v,S, p) where v : 2N×S → R is a state-dependent
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characteristic function and p is a probability vector: the state of nature s occurs

with probability ps ≥ 0 and
∑S
s=1 ps = 1. For each coalition C, depending

on the state s of the world the realised payoff may be different. The vector

x = v(C) ∈ RS collecting these payoffs, is referred to as the realization vector.

Consider a set X ⊆ RS of realization vectors. The vector x ∈ X represents

the coalition’s possible payoff realizations depending on the state of the world.

The amount xs is the portfolio’s payoff in state of nature s ∈ S. The inequality

y ≥ x means that ys ≥ xs for all s = 1, . . . , S. The discrete random variable

generated by p ∈ RS+ and x ∈ X is denoted by x̂.

2.2 Risk

In the following we give a general introduction of risk and risk measures trans-

lating it to our particular coalitional model. Our introduction and notation

follows Csóka et al. (2007).

We see the deviation of a coalition as an investment into a risky asset: its

own payoff after the residual players settled for a partition.

A measure of risk is a function ρ : X → R measuring the risk of a portfolio

from the perspective of the initial outcome. It is the minimal amount of cash

the investor has to add to his portfolio, and to invest in a reference instrument

today, such that it ensures that the risk involved in the portfolio is acceptable.

The measure of risk can also be negative, meaning that a portfolio remains

acceptable if a certain amount of cash is withdrawn from it. We assume that

the reference instrument has payoff 1 in each state of nature at t = 1, thus its

realization vector is 1= (1, . . . , 1) ∈ X. The reference instrument is riskless in

the “classical sense”, having no variability in its payoffs.

For the deviating coalition C the measure ρC(x) tells us how much (transfer-

able) utility to add to make it equivalent to a zero initial payoff. When the risk

measure is used to evaluate the deviation of coalition from the initial outcome

(z,P) the deviation is worthwhile if

∑
i∈C

zi < −ρC(x). (1)

The definition of coherent measures of risk can be adjusted to the discrete

case as follows.

Definition 1 (Coherent measure of risk, Artzner et al., 1999). A function

ρ : V → R is a coherent measure of risk if it satisfies the following axioms.

1. Monotonicity : for all x, y ∈ X such that y ≥ x, we have ρ(y) ≤ ρ(x).
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2. Subadditivity : for all x, y ∈ X such that x+ y ∈ X, we have

ρ(x+ y) ≤ ρ(x) + ρ(y).

3. Positive homogeneity : for all x ∈ X,h ∈ R++ such that hx ∈ X, we have

ρ(hx) = hρ(x).

4. Translation invariance: for all x ∈ X and a ∈ R such that x + a1 ∈ X,

we have ρ(x+ a1) = ρ(x)− a.

The axioms are motivated as follows.

By monotonicity if a portfolio y is always worth at least as much as x (event

by event), then y cannot be riskier than x.

Subadditivity says that if we combine two portfolios, the risk is not greater

than the sum of the risks associated with each: it captures the notion of diver-

sification. If an exchange’s measure of risk would fail to satisfy this property,

then a trader could be better off by splitting his position, opening two accounts

and decreasing the margin requirements. The same motivation applies to firms,

banks, insurance companies, etc. For instance, for the case of internal capital

budgeting, if the measure of risk satisfies subadditivity, then the head office can

be sure that by setting risk limits to the divisions, the risk of the whole firm

will be smaller than the sum of the individual risk limits. This enables the head

office to decentralize the risk constraints.

Positive homogeneity requires that portfolio size should linearly influence

risk.

Translation invariance ensures that the measure of risk is expressed in ap-

propriate units. It means that investing an amount a > 0 (or a < 0) of cash

into a units of reference instrument initially leads to the payoff vector a1 at the

end and decreases (respectively: increases) the measure of risk by a.

The four axioms above seem natural, but it is well known that the rather

popular Value-at-Risk (VaR) is not subadditive and hence it is not a coherent

measure of risk. As a byproduct checking the relevance of the coherency axioms

from a general equilibrium perspective enables us to assess this attack on VaR

as well.

Acerbi (2002) treats spectral measures of risk in case of discrete random

variables with equiprobable outcomes, that is, when p1 = · · · = pS = 1/S, as

a special case. He assumes that the domain is RS . In this paper we explicitly

want to allow for states with different (some with 0) probability, so we use the

slightly more general formulation of (Cotter and Dowd, 2006). Our model is a

generalization also in the sense that we consider a general domain X ⊆ RS .
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Figure 1: Quantile functions are monotone increasing, right continuous

Let us introduce the ordered statistics xs:S given by the ordered values of the

S-tuple x1, . . . , xS , i.e. {x1:S , . . . , xS:S} = {x1, . . . , xS} and x1:S ≤ x2:S ≤ · · · ≤
xS:S . Let q(p) denote the p-quantile over these order statistics. The quantile

q(p) as a function of p is the inverse of the cumulative probability distribution

and is monotonically increasing, right-continuous.

Definition 2. Consider the quantiles q(p), p ∈ [0, 1], and a function φ : [0, 1]→
RS . The measure Mφ : X → R defined by

Mφ(x) = −
∫ 1

0

φ(p)q(p)dp (2)

is a spectral measure of risk if φ ∈ RS satisfies the conditions

1. Nonnegativity: φ(p) ≥ 0 for all p ∈ [0, 1],

2. Normalization:
∫ 1

0
φ(p)dp = 1,

3. Monotonicity : φ is non-increasing, i.e. φp1 ≥ φp2 if 0 ≤ p1 < p2 ≤ 1.

Spectral measures of risk are calculated as discounted weighted average

losses, with weakly decreasing weights, with the highest weight on the worst

outcome. The weight function φ is the so-called risk spectrum.

Here monotonicity really meant a non-increasing φ function. We will also

consider anti-spectral risk measures, where the last condition is replaced by

3’. Anti-monotonicity : φ is non-decreasing, i.e. φp1 ≤ φp2 if 0 ≤ p1 < p2 ≤ 1.

Note that in our model the risk measure takes on the same role as the more

general preference relation used by Timmer et al. (2005).
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3 The risk-based core

In this section we introduce the risk-based core and discuss some of its proper-

ties.

Our interest lies in stable allocations of the coalitional payoffs. The triple

(a,P, s) consisting of a state of the world s, a coalition structure P and an

allocation vector a ∈ RN such that
∑
i∈C ai = v(C, s) for all C ∈ P is a payoff

configuration.

In order to define the core, we must first understand dominance. Consider

a possible deviation by coalition C. The payoff of coalition C depends on the

realised state of the world s. The quantile qC(p) tells us that with probability

p coalition C has a value of at least qC(p). The conservatism of coalition C is

expressed by the spectral weight function φ. We assume that φ is common over

all coalitions. The risk of the deviation is then given by

Mφ(C) = −
∫ 1

0

φ(p)qC(p)dp.

So this is how much cash is needed to make the deviation acceptable (that is,

of worth 0). Coalition C is interested in how much payoff it is going to get

in (weighted) expected terms, so it is natural to consider the worth function

Wφ(C) = −Mφ(C) instead.

Definition 3 (Risk-based core). Consider a characteristic function form game

with uncertainty (N, v,S, p). Then the risk-based core under the common spec-

tral weight function φ or φ-core of this game Cφ(N, v,S, p) collects payoff con-

figurations (a,P, s) such that
∑
i∈C ai ≥Wφ(C) for all C ⊆ N .

Consider the following three-player example.

Example 4. The task at hand is the assembly of a new wardrobe. Since we

have no experience, we do not know what to expect and the task may turn out

to be tricky (s = 1), very tricky (s = 2), easy (s = 3) or so-so (s = 4). Since

this is a product sold in massive quantities all over the world, we must assume

that it is very likely easy (90%), but with some chance it is tricky (5%) or very

tricky (5%). If it is so-so we will do it and will call it easy ex post, so so-so has

0 probability.

When a group attempts to fix the wardrobe their success may depend on the

difficulty level. For simplicity we assume that assembly is very tricky (or outright

dangerous) when working alone, three men can easily do it, while for any pair

the success depends on the difficulty level. Formally we have a (symmetric)
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q

x1:4

x2:4

x3:4

x3:4

Figure 2: The example’s quantile function. Under the 25%-expected shortfall

the expected value of the lowest 25% of cases is calculated

characteristic function v, such that v({i} , s) = 0 for all i and s, v(N, s) = 3 for

all s and

v ({i, j} , s) =


1 if s = 1,

0 if s = 2,

3 if s = 3, and

2 if s = 4,

if i, j ∈ N and i 6= j. Therefore the ordered statistics for this coalition can

be given as (x1:4, x2:4, x3:4, x4:4) = (0, 1, 2, 3) with corresponding probabilities

(5%, 5%, 0%, 90%), which can also be given as the quantile function

q{i,j}(p) =


0 if 0 ≤ p < 5%,

1 if 5% ≤ p < 10%, and

3 if 10% ≤ p ≤ 100%.

We also assume that the players use a popular risk measure, the α-expected

shortfall (α-ES with α = 25%). For this measure

φ(p) =

4 if 0 ≤ p < 25%

0 otherwise.

In effect the players calculate the expected value of the lowest 25% of the payoffs.

The 25%-expected shortfall of the 2-player coalitions is W25%-ES({i, j}) = 4(0×
5% + 1× 5% + 3× 15%) = 2 for all i 6= j ∈ N .
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Then it is clear that C25%-ES(N, v,S, p) = {((1, 1, 1), {N} , s) ,∀s ∈ S}.
Notice that this core is very sensitive to the chosen spectral weight function.

If the players use α-expected shortfall with α > 25%, then Wα-ES({i, j}) > 2

and the core is empty. On the other hand, if α < 25%, that is, players are more

conservative, Wα-ES({i, j}) < 2 and the core becomes larger.

This property is actually quite general as we show it in the next subsection.

3.1 General results

Before stating the following theorem, reconsider the risk spectrum function φ.

Apart from the additional (anti-)monotonicity criterion it can be seen as a

probability density function. It is therefore appropriate to apply stochastic

dominance to them.

Consider the probability density functions φ and ψ with corresponding cu-

mulative distribution functions Φ and Ψ. Then we say that φ first order stochas-

tically dominates ψ if ∫ x

0

φ(p)dp >

∫ x

0

ψ(p)dp ∀x. (3)

Theorem 5. Consider a characteristic function form game with uncertainty

(N, v,S, p) and two spectral functions φ and ψ such that φ(p) first order stochas-

tically dominates ψ(p), then Cφ(N, v,S, p) ⊇ Cψ(N, v,S, p).

Proof. Assume the converse: Assume that there exists a payoff configuration

(a,P, s0) such that (a,P, s0) 6∈ Cφ(N, v,S, p), but (a,P, s0) ∈ Cψ(N, v,S, p).
This is only possible if there exists a coalition C, such that Wφ(C) >

∑
i∈C ai,

but Wψ(C) ≤
∑
i∈C ai. Equating the right hand side of the two inequalities

and recalling Equation 2 we get∫ 1

0

φ(p)qC(p)dp >

∫ 1

0

ψ(p)qC(p)dp. (4)

Recall that the deviation of C could induce one of the finite possible states

of the world corresponding to the different residual partitions. The coalitional

payoffs v(C, s) for each state s, together with the assigned probabilities ps:S to

each s of these – ordered – states determine a monotonically decreasing quantile
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function. Then∫ 1

0

φ(p)qC(p)dp =

∫ 1

0

φ(p)xS:Sdp+

∫ pS−1:S

0

φ(p)(xS−1:S − xS:S)dp+ . . . (5)

+

∫ p1:S

0

φ(p)(x1:S − x2:S)dp

= xS:S

∫ 1

0

φ(p)dp+ (xS−1:S − xS:S)

∫ pS−1:S

0

φ(p)dp+ . . . (6)

+ (x1:S − x2:S)

∫ p1:S

0

φ(p)dp

≤ xS:S

∫ 1

0

ψ(p)dp+ (xS−1:S − xS:S)

∫ pS−1:S

0

ψ(p)dp+ . . .

(7)

+ (x1:S − x2:S)

∫ p1:S

0

ψ(p)dp

=

∫ 1

0

ψ(p)qC(p)dp, (8)

where the inequality holds termwise by the repeated application of Inequality 3

and the fact that xi:S are monotone increasing in i and therefore the differences

xi−1:S − xi:S are never positive.

This contradicts Inequality 4. Therefore our original assumption was false

and the desired inclusion property holds.

While Theorem 5 compared cores of the same game, but under different

behavioural assumptions, the following result compares games with different

probability distributions — while keeping the players’ interpretations the same.

Theorem 6. Consider a characteristic function form game with uncertainty

(N, v,S, p) a spectral function φ. Let also q1 and q2 denote two quantile func-

tions such that q1(p) ≥ q2(p). Then Cq1(N, v,S, p) ⊆ Cq2(N, v,S, p).

The proof is analogous to the proof of Theorem 5.

3.2 Partition function form games

In partition function form games (Thrall and Lucas, 1963; Kóczy, 2018) the

value of a coalition depends on the entire partition of the players. Therefore

the different partitions correspond to the different states of the world. In this

section we formally define partition function games and present some special

results.
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A partition C of coalition C is a splitting of C into disjoint coalitions. Π(C)

denotes the set of partitions of C. In general, we use capital and calligraphic

letters to denote a set and its partition (the set of players N being an exception),

indexed capital letters are elements of the partition. We write i ∈ C if there

exists Ck such that i ∈ Ck ∈ C and if i ∈ C we write C(i) for the coalition

embedded in C containing i. An embedded coalition is a pair (C,P), where

C ∈ P. The set of embedded coalitions is denoted by E .

A game in partition function form is a pair (N,V ), where V : E → R is

the partition function, which assigns a real payoff to each embedded coalition,

where V (Ci, C) denotes the payoff for coalition Ci embedded in partition C. For

vectors a, b ∈ RN we write aC for the restriction to the set C and aC > bC if

ai ≥ bi for all i ∈ C ⊂ N and there exists j ∈ C such that aj > bj .

In this setting the state of the world is manifested by the emerging partition,

which leads to a simpler concept of payoff configuration: The pair ω = (a,P)

consisting of a payoff vector a ∈ RN and a partition P ∈ Π(N) is a payoff

configuration (or outcome) if
∑
i∈S ai = V (Pi,P) for all Pi ∈ P. The set of

outcomes of game (N,V ) is denoted Ω(N,V ).

The payoff of coalition C depends on the partition formed in the resid-

ual game induced by the deviation of C is
(
C, V {C}

)
. We follow Lekeas and

Stamatopoulos (2011) in assuming that coalition C cannot solve this game, it

does not know how will the residual players react so it uses heuristics to assess

the probabilities pC of the different residual partitions in C ∈ Π(C) such that∑
C∈Π(C) pC = 1. The coalition then sees the formation of the residual partitions

as a random process where the different possible partitions emerge as different

states of the world. The quantile qC(p) tells us that with probability p coalition

C has a value of at least qC(p). There is a natural correspondence between

partition function form games augmented with these probabilities and charac-

teristic function form games with uncertainty: (N,V, p) ∼ (N, v,S, p), where

S = Π and v(C, s) = V (C, s), where s ∈ S = Π. Therefore, for convenience

we continue using partition function form games. In particular, we redefine the

risk-based core as simple risk-based core for partition function form games.

Definition 7 (Simple risk-based core). Consider a partition function form game

(N,V ) where players have a common spectral weight function φ. Then the sim-

ple risk-based core or φ-core of this game Cφ(N,V ) collects payoff configurations

(a,P) such that
∑
i∈C ai ≥Wφ(C) for all C ⊆ N .

First we define the residual game over the set R ( N . Π(S) denotes the

set of partitions of S. Assume R = N \ R have formed PR ∈ Π(R). Then the
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residual game (R, VPR) is the partition function form game over the player set

R with the partition function given by VPR(C,PR) = V (C,PR ∪ PR).

Definition 8 (Optimistic/Pessimistic Recursive Core (Kóczy, 2007)). For a

single-player game the recursive core is trivially defined. Now assume that

the optmistic/pessimistic recursive core C+(N,V )/C−(N,V ) has been defined

for all games with |N | < k players. Then for an |N |-player game an out-

come (a,P) is optimistically dominated if there exists a coalition Q forming

partition Q and an outcome (b,Q ∪ PQ) ∈ Ω(N,V ), such that bQ > aQ and

if C+(Q,VQ) 6= ∅ then (yQ,PQ) ∈ C+(Q,VQ). It is pessimistically domi-

nated if there exists a coalition Q forming partition Q and a feasible pay-

off vector bQ ∈ RQ, such that for all (bQ, bQ,Q ∪ PQ) ∈ Ω(N,V ) we have

bQ > aQ and if C−(Q,VQ) 6= ∅ then (bQ,PQ) ∈ C−(Q,VQ). The opti-

mistic/pessimistic recursive core C+(N,V )/C−(N,V ) of (N,V ) is the set of

optimistically/pessimistically undominated outcomes.

The recursive cores are well-defined, though they may be empty.

Huang and Sjöström’s (2003) r-core coincides with the pessimistic recursive

core on a broad class of games that does not, however include the standard

TU-games without externalities. Ray’s (2007) standard equilibrium, defined for

for symmetric partition function form games has a similar recursive structure.

For an interpretation and the discussion of the properties of the recursive core

see Kóczy (2007, 2009); Huang and Sjöström (2010). Kóczy (2018) gives a

comprehensive overview of partition function form games including solutions

and applications.

Consider an initial payoff-configuration (a,P). When a coalition C deviates,

its deviation induces a new partition function form game. The definition of the

residual game (Kóczy, 2007) is more general than what we need here:

Definition 9 (Residual game). Consider a partition function form game (N,V ).

Let R ⊂ N and PR ∈ Π(R) be the partition of R = N \ R. Then the residual

game
(
R, V PR

)
is the partition function game played over player set R such

that V PR(C,PR) = V
(
C,PR ∪ PR

)
for all C ⊆ R and PR ∈ Π(R).

Our model generalises various approaches where there are assumptions on

either the probabilities of the residual coalition structures, or on the treatment

of different prospects from the coalition’s point of view. Acerbi (2002) assumes

that the partitions are equiprobable, Lekeas and Stamatopoulos (2011) assume

that their probability is proportional to their payoffs, von Neumann and Mor-

genstern (1944); Hart and Kurz (1983); Chander and Tulkens (1995, 1997) apply
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the disintegration or γ- rule and effectively give probability 1 to the partition

into singletons, while Maskin (2003) and McQuillin (2009) assume the grand

coalition forms. Hart and Kurz (1983) introduced the δ- or projection rule,

where the partition of the residual players remains unchanged after the depar-

ture of the deviating coalition, that is, those who belonged to the same coalition

still do, and those who belonged to different coalitions, still do. The latter rule

is axiomatically confirmed by Bloch and van den Nouweland (2014). On the

other hand the α-rule of Aumann and Peleg (1960) or the optimistic rule of

Shenoy (1979) do not make assumptions about probabilities but rather spec-

ify attitudes to payoff levels: the players only care about the lowest or highest

attainable payoff. At last, the recursive core (Kóczy, 2007) combines the two

aspects as it rules out some residual partitions (in case they do not belong to

a nonempty residual core), but at the same time uses optimism/pessimism to

form expectations. The following proposition is constructive, does not require

a proof.

Proposition 10. Consider a partition function form game (N,V ). The fol-

lowing core concepts can be established as risk-based cores with the appropriate

probability mass functions p and risk functions φ:

• The α-core: Cα(N,V ) = limε→0 Cφε(N,V ) where p > 0 and

φεα(p) =

 1
ε if 0 ≤ p ≤ ε

0 otherwise
(9)

• The optimistic core: Cω(N,V ) = limε→0 Cφε(N,V ) where p > 0 and

φεω(p) =

0 if 0 ≤ p ≤ 1− ε
1
ε otherwise

(10)

• The γ-core: Cγ(N,V ) = C1(N,V ) with φ(p) = 1 and

pC(P) =

1 if P =
{
{i} |i ∈ C

}
0 otherwise.

• The cohesion-core: Cc(N,V ) = C1(N,V ) with φ(p) = 1 and

pC(P) =

1 if P =
{
C
}

0 otherwise.

14



• Payoff proportional weights: Cpp(N,V ) = C1(N,V ) with

pC(P) =
V (C, {C} ∪ P)∑

Q∈Π(C) V (C, {C} ∪ Q)
,

• The pessimistic simple recursive core: RCα(N,V ) = limε→0 Cφεα(N,V )

with the spectral function φεα from Equation 9 and probability mass func-

tion

pC(P) =

 1
c if RCα(C, V {C}) 6= ∅ and ∃a : (a,P) ∈ RCα(C, V {C})

0 otherwise,

where c is the number of partitions P such that ∃a : (a,P)α ∈ RC(C, V {C}).

• The optimistic simple recursive core: RCω(N,V ) = limε→0 Cφεω (N,V )

with the spectral function φεω from Equation 10 and probability mass func-

tion

pC(P) =

 1
c if RCω(C, V {C}) 6= ∅ and ∃x : (a,P) ∈ RCω(C, V {C})

0 otherwise,

where c is the number of partitions P such that ∃a : (a,P) ∈ RCω(C, V {C}).

For the projection core the probabilities depend on the initial partition and

therefore cannot be presented in this form.

Theorem 5 provides an alternative proof to the following inclusion relations,

originally presented by Kóczy (2007).

Corollary 11. Consider a partition function form game (N,V ). Then the

following results hold:

• Cω(N,V ) ⊆ Cα(N,V )

• Cγ(N,V ) ⊆ Cα(N,V )

• Cc(N,V ) ⊆ Cα(N,V )

• Cpp(N,V ) ⊆ Cα(N,V )

Proof. The first follows directly from Theorem 5. The second, third and fourth

condition compares a pessimistic approach where the focus is on the function

φ and the only restriction on p is to ensure that partition with the lowest

coalitional payoff has a positive weight, and approaches with explicitly given

residual partitions. Such models with exogenously given residual behaviour are
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based on the assumption that the specified partition forms with certainty so the

probability of all other partitions is 0. To make the two situations compatible

we consider a limiting process where we allow very small probabilities to all

other partitions, too, prove the relation for this perturbed game and consider

the limit.

It is natural to ask whether similar inclusion properties, such asRCω(N,V ) ⊆
RCα(N,V ) or RCα(N,V ) ⊆ Cα(N,V ) could be shown analogously. For the lat-

ter the risk measures are the same, the difference lies in the probability mass

functions. Unfortunately for the recursive core inclusions the conditions of The-

orem 6 do not hold in general. To see this note that the quantile functions are

decreasing step functions where the steps correspond to the different residual

partitions. When these partitions are restricted to residual core partitions, some

of these steps are removed. The extrema of the quantile function do not change

producing the desired relation. On the other hand this result is not robust: for

the slightest perturbation of the spectral function there is an example for which

the inclusion relation is violated.

4 Discussion

The risk based core allows for a very general stability concept for coalitional

games with uncertainty, and in particular for partition function form games,

where both the perceived probability of residual reactions and the conserva-

tivism of the players can be set independently. We have shown how the known

core concepts emerge as (very) special cases and proved properties for the inclu-

sion relations of cores with different probability mass functions and especially

with different spectral functions.

What remains to be seen is where the probabilities of the different par-

titions come from. Kóczy (2018) describes an alternative formulation of the

recursive core with a dynamic residual game. A dynamic, myopic process is

either absorbed in a residual core outcome or goes on indefinitely. Modelled as

a Markovian process we can naturally consider its invariant distribution.

While our interest is primarily theoretical, one cannot overlook the compu-

tational advantages of these methods. Calculating the recursive core is a com-

putationally very intensive task already for problems with a handful of players.

Modelling the dynamic process above it is possible to approximate the proba-

bility mass functions in the residual games, allowing for a quicker calculation.
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