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Computationally intensive Value at Risk

calculations

Rafa l Weron1

Hugo Steinhaus Center for Stochastic Methods, Wroc law University of Technology,
50-370 Wroc law, Poland, rweron@im.pwr.wroc.pl

1 Introduction

Market risks are the prospect of financial losses – or gains – due to unexpected
changes in market prices and rates. Evaluating the exposure to such risks is
nowadays of primary concern to risk managers in financial and non-financial
institutions alike. Until late 1980s market risks were estimated through gap
and duration analysis (interest rates), portfolio theory (securities), sensitivity
analysis (derivatives) or ”what-if” scenarios. However, all these methods either
could be applied only to very specific assets or relied on subjective reasoning.

Since the early 1990s a commonly used market risk estimation methodol-
ogy has been the Value at Risk (VaR). A VaR measure is the highest possible
loss L incurred from holding the current portfolio over a certain period of time
at a given confidence level (Dowd, 2002; Franke, Härdle and Stahl, 2000; Jo-
rion, 2000):

P (L > VaR) ≤ 1 − c,

where c is the confidence level, typically 95%, 97.5% or 99%. By convention,
L = −∆X(τ), where ∆X(τ) is the relative change (return) in portfolio value
over the time horizon τ . Hence, large values of L correspond to large losses
(or large negative returns).

The VaR figure has two important characteristics: (i) it provides a common
consistent measure of risk across different positions and risk factors and (ii)
it takes into account the correlations or dependencies between different risk
factors. Because of its intuitive appeal and simplicity, it is no surprise that in
a few years Value at Risk has become the standard risk measure used around
the world. However, VaR has a number deficiencies, among them the non-
subadditivity – a sum of VaR’s of two portfolios can be smaller than the VaR
of the combined portfolio. To cope with these shortcomings, Artzner et al.
(1999) proposed an alternative measure that satisfies the assumptions of a
coherent, i.e. an adequate, risk measure. The Expected Shortfall (ES), also
called Expected Tail Loss or Conditional VaR, is the expected value of the
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Fig. 1. DJIA daily closing values, Xt, and daily returns, log(Xt+1/Xt), from the
period January 2, 1985 – November 30, 1992. Note, that this period includes Black
Monday, the worst stock market crash in Wall Street history. On October 19, 1987
DJIA lost 508 points or 25.6% of its value. Q: CSAfin01

losses in excess of VaR:

ES = E (L|L > VaR) .

It is interesting to note, that – although new to the finance industry – Ex-
pected Shortfall has been familiar to insurance practitioners for a long time.
It is very similar to the mean excess function which is used to characterize
claim size distributions, see e.g. Cizek, Härdle and Weron (2004).

The essence of the VaR and ES computations is estimation of low quan-
tiles in the portfolio return distributions. Hence, the performance of market
risk measurement methods depends on the quality of distributional assump-
tions on the underlying risk factors. Many of the concepts in theoretical and
empirical finance developed over the past decades – including the classical
portfolio theory, the Black-Scholes-Merton option pricing model and even the
RiskMetrics variance-covariance approach to VaR – rest upon the assump-
tion that asset returns follow a normal distribution. But is this assumption
justified by empirical data?

No, it is not! It has been long known that asset returns are not normally
distributed. Rather, the empirical observations exhibit excess kurtosis (fat
tails). The Dow Jones Industrial Average (DJIA) index is a prominent exam-
ple, see Figure 1 where the index itself and its returns (or log-returns) are
depicted. In Figure 2 we plotted the empirical distribution of the DJIA index.
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Gaussian fit to DJIA returns
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Fig. 2. Gaussian (dashed red) fit to the DJIA daily returns (black circles) empirical
cumulative distribution function from the period January 2, 1985 – November 30,
1992. Top right panel is a magnification of the left tail fit on a double logarithmic
scale clearly showing the discrepancy between the data and the normal distribution.

Q: CSAfin02

The contrast with the Gaussian law is striking. This heavy tailed or leptokur-
tic character of the distribution of price changes has been repeatedly observed
in various markets and may be quantitatively measured by the kurtosis in ex-
cess of 3 (a value obtained for the normal distribution), see e.g. Bouchaud
and Potters (2000), Carr et al. (2002), Gopikrishnan et al. (1998), Guillaume
et al. (1997), and Rachev and Mittnik (2000).

This problem has been dealt with by the regulators in an ad hoc way.
The Basle Committee on Banking Supervision (1995) suggested that for the
purpose of determining minimum capital reserves financial institutions use a
ten day VaR at the c = 99% confidence level multiplied by a safety factor
s ∈ [3, 4], with the exact value of s depending on the past performance of the
model. It has been argued by Stahl (1997) and Danielsson, Hartmann and De
Vries (1998) that the range of the safety factor comes from the heavy-tailed
nature of the returns distribution. Indeed, if we assume that the asset returns
distribution is symmetric and has finite variance σ2 then from Chebyshev’s
inequality (see e.g. Laha and Rohatgi, 1979) we obtain P(L ≥ ε) ≤ σ2/2ε2,
where L represents the random loss over the specified time horizon. So if we
want to calculate the upper bound for a 99% VaR, setting σ2/2ε2 = 1% yields
ε = 7.07σ, which in turn implies that VaR99% ≤ 7.07σ. However, if we assumed
a Gaussian distribution of returns then we would have VaR99% ≤ 2.33σ, which
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is roughly three times lower than the bound obtained for a heavy-tailed, finite
variance distribution.

Having said this much about the inadequacy of the Gaussian distribution
for financial modeling and risk management we have no other choice but offer
some heavy-tailed alternatives. We have to mention, though, that all distribu-
tional classes described in this chapter present computational challenge. Large
parts of the text are thus devoted to numerical issues. In Section 2 we deal with
the historically earliest alternative – the stable laws and briefly characterize
their recent generalizations – the so-called truncated stable distributions. In
Section 3 we study the class of generalized hyperbolic laws. Finally, in Section
4 we introduce the notion of copulas and discuss the relation between VaR,
asset portfolios and heavy tails.

All theoretical results are illustrated by empirical examples which uti-
lize the quantlets of the XploRe computing environment, see Härdle, Klinke
and Müller (2000) and the XploRe website http://www.xplore-stat.de. For
reference, figure captions include names of the corresponding quantlets (Q).
Currently, no other statistical computing environment offers a complete cov-
erage of the issues discussed in this chapter. However, when available links to
third-party libraries and specialized software are also provided.

2 Stable distributions

It is often argued that financial asset returns are the cumulative outcome of
a vast number of pieces of information and individual decisions arriving al-
most continuously in time, see e.g. McCulloch (1996) and Rachev and Mittnik
(2000). As such, since the pioneering work of Louis Bachelier in 1900, they
have been modeled by the Gaussian distribution. The strongest statistical ar-
gument for it is based on the Central Limit Theorem, which states that the
sum of a large number of independent, identically distributed variables from
a finite-variance distribution will tend to be normally distributed. However,
financial asset returns usually have heavier tails.

In response to the empirical evidence Mandelbrot (1963) and Fama (1965)
proposed the stable distribution as an alternative model. There are at least
two good reasons for modeling financial variables using stable distributions.
Firstly, they are supported by the generalized Central Limit Theorem, which
states that stable laws are the only possible limit distributions for properly
normalized and centered sums of independent, identically distributed random
variables, see e.g. Laha and Rohatgi (1979). Secondly, stable distributions are
leptokurtic. Since they can accommodate the fat tails and asymmetry, they
fit empirical distributions much better.

Stable laws – also called α-stable, stable Paretian or Lévy stable – were
introduced by Lévy (1925) during his investigations of the behavior of sums of
independent random variables. A sum of two independent random variables
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Dependence on alpha 
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Fig. 3. A semilog plot of symmetric (β = µ = 0) α-stable probability density
functions for α = 2 (thin black), 1.8 (red), 1.5 (thin, dashed blue) and 1 (dashed
green). The Gaussian (α = 2) density forms a parabola and is the only α-stable
density with exponential tails. Q: STFstab01

having an α-stable distribution with index α is again α-stable with the same
index α. This invariance property, however, does not hold for different α’s.

The α-stable distribution requires four parameters for complete descrip-
tion: an index of stability α ∈ (0, 2] also called the tail index, tail exponent
or characteristic exponent, a skewness parameter β ∈ [−1, 1], a scale param-
eter σ > 0 and a location parameter µ ∈ R. The tail exponent α determines
the rate at which the tails of the distribution taper off, see Figure 3. When
α = 2, a Gaussian distribution results. When α < 2, the variance is infinite
and the tails are asymptotically equivalent to a Pareto law, i.e. they exhibit
a power-law behavior (Janicki and Weron, 1994a; Lévy, 1925; Samorodnitsky
and Taqqu, 1994):

P(X > x) ∼ Cα(1 + β)x−α and P(X < −x) ∼ Cα(1 − β)x−α, (1)

where Cα = 1
πΓ (α) sin πα

2 . When α > 1, the mean of the distribution exists
and is equal to µ. In general, the pth moment of a stable random variable is
finite if and only if p < α. When the skewness parameter β is positive, the
distribution is skewed to the right, i.e. the right tail is thicker, see Figure 4.
When it is negative, it is skewed to the left. When β = 0, the distribution is
symmetric about µ. As α approaches 2, β loses its effect and the distribution
approaches the Gaussian distribution regardless of β. The last two parameters,
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Dependence on beta 
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Fig. 4. α-stable probability density functions for α = 1.2 and β = 0 (thin black),
0.5 (red), 0.8 (thin, dashed blue) and 1 (dashed green). Q: STFstab02

σ and µ, are the usual scale and location parameters, i.e. σ determines the
width and µ the shift of the mode (the peak) of the distribution.

2.1 Characteristic function representation

From a practitioner’s point of view the crucial drawback of the stable distri-
bution is that, with the exception of three special cases, its probability den-
sity function (PDF) and cumulative distribution function (CDF) do not have
closed form expressions. These exceptions include the well known Gaussian
(α = 2) law, whose density function is given by:

fG(x) =
1√
2πσ

exp

{

− (x− µ)2

2σ2

}

, (2)

and the lesser known Cauchy (α = 1, β = 0) and Lévy (α = 0.5, β = 1) laws.
Hence, the α-stable distribution can be most conveniently described by

its characteristic function φ(t) – the inverse Fourier transform of the PDF.
However, there are multiple parameterizations for α-stable laws and much
confusion has been caused by these different representations. The variety of
formulas is caused by a combination of historical evolution and the numerous
problems that have been analyzed using specialized forms of the stable dis-
tributions. The most popular parameterization of the characteristic function
of X ∼ Sα(σ, β, µ), i.e. an α-stable random variable with parameters α, σ, β
and µ, is given by (Samorodnitsky and Taqqu, 1994; Weron, 1996):
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S parameterization
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Fig. 5. Comparison of S and S0 parameterizations: α-stable probability density
functions for β = 0.5 and α = 0.5 (thin black), 0.75 (red), 1 (thin, dashed blue),
1.25 (dashed green) and 1.5 (thin cyan). Q: STFstab04

logφ(t) =











−σα|t|α{1 − iβsign(t) tan πα
2 } + iµt, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log |t|} + iµt, α = 1.

(3)

Note, that the traditional scale parameter σ of the Gaussian distribution is
not the same as σ in the above representation. A comparison of formulas (2)
and (3) yields the relation: σGaussian =

√
2σ.

For numerical purposes, it is often useful to use Nolan’s (1997) parame-
terization:

logφ0(t) =











−σα|t|α{1 + iβsign(t) tan πα
2 [(σ|t|)1−α − 1]} + iµ0t, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log(σ|t|)} + iµ0t, α = 1.

(4)
The S0

α(σ, β, µ0) representation is a variant of Zolotarev’s (1986) (M)-para-
meterization, with the characteristic function and hence the density and the
distribution function jointly continuous in all four parameters, see Figure 5. In
particular, percentiles and convergence to the power-law tail vary in a contin-
uous way as α and β vary. The location parameters of the two representations
are related by µ = µ0−βσ tan πα

2 for α 6= 1 and µ = µ0−βσ 2
π logσ for α = 1.
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2.2 Computation of stable density and distribution functions

The lack of closed form formulas for most stable densities and distribution
functions has negative consequences. Numerical approximation or direct nu-
merical integration have to be used, leading to a drastic increase in compu-
tational time and loss of accuracy. Of all the attempts to be found in the
literature a few are worth mentioning. DuMouchel (1971) developed a pro-
cedure for approximating the stable distribution function using Bergström’s
(1952) series expansion. Depending on the particular range of α and β, Holt
and Crow (1973) combined four alternative approximations to compute the
stable density function. Both algorithms are computationally intensive and
time consuming, making maximum likelihood estimation a nontrivial task,
even for modern computers. Recently, two other techniques have been pro-
posed.

Mittnik, Doganoglu and Chenyao (1999) exploited the density function
– characteristic function relationship and applied the fast Fourier transform
(FFT). However, for data points falling between the equally spaced FFT grid
nodes an interpolation technique has to be used. The authors suggested that
linear interpolation suffices in most practical applications, see also Rachev
and Mittnik (2000). Taking a larger number of grid points increases accuracy,
however, at the expense of higher computational burden. Setting the number
of grid points to N = 213 and the grid spacing to h = 0.01 allows to achieve
comparable accuracy to the direct integration method (see below), at least
for a range of α’s typically found for financial data (1.6 < α < 1.9). As for
the computational speed, the FFT based approach is faster for large samples,
whereas the direct integration method favors small data sets since it can be
computed at any arbitrarily chosen point. Mittnik, Doganoglu and Chenyao
(1999) report that for N = 213 the FFT based method is faster for samples
exceeding 100 observations and slower for smaller data sets.

We must stress, however, that the FFT based approach is not as universal
as the direct integration method – it is efficient only for large alpha’s and
only as far as the probability density function calculations are concerned.
When computing the cumulative distribution function the former method
must numerically integrate the density, whereas the latter takes the same
amount of time in both cases.

The direct integration method, proposed by Nolan (1997, 1999), consists
of numerically integrating Zolotarev’s (1986) integral formulas for the density
or the distribution function. To save space we state only the formulas for the
probability density function. Complete formulas can be also found in Borak,
Härdle and Weron (2004).

Set ζ = −β tan πα
2 . Then the density f(x;α, β) of a standard α-stable

random variable in representation S0, i.e. X ∼ S0
α(1, β, 0), can be expressed

as (note, that Zolotarev (1986, Section 2.2) used yet another parametrization):

• when α 6= 1 and x > ζ:
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f(x;α, β) =
α(x− ζ)

1

α−1

π | α− 1 |

∫ π
2

−θ0

V (θ;α, β) exp
{

−(x− ζ)
α

α−1V (θ;α, β)
}

dθ,

• when α 6= 1 and x = ζ:

f(x;α, β) =
Γ (1 + 1

α ) cos(ξ)

π(1 + ζ2)
1

2α

,

• when α 6= 1 and x < ζ:

f(x;α, β) = f(−x;α,−β),

• when α = 1:

f(x; 1, β) =















1
2|β|e

πx
2β

∫ π
2

−π
2

V (θ; 1, β) exp
{

−eπx
2β V (θ; 1, β)

}

dθ, β 6= 0,

1
π(1+x2) , β = 0,

where

ξ =

{

1
α arctan(−ζ), α 6= 1,
π
2 , α = 1,

(5)

and

V (θ;α, β) =







(cosαξ)
1

α−1

(

cos θ
sinα(ξ+θ)

)
α

α−1 cos{αξ+(α−1)θ}
cos θ , α 6= 1,

2
π

(

π
2
+βθ

cos θ

)

exp
{

1
β (π2 + βθ) tan θ

}

, α = 1, β 6= 0.

XploRe offers the direct integration method through the cdfstab and
pdfstab quantlets, see Borak, Härdle and Weron (2004) for a thorough
exposition of quantlets related to stable distributions. On a PC equipped
with a Pentium IV 1.6 GHz processor the calculation of the stable dis-
tribution or density function at 1000 points takes about 2 seconds. As
default, the integrals found in the above formulas are numerically inte-
grated using 2000 subintervals. These computational times can be slightly
improved when using a numerically more efficient environment. For exam-
ple, the program STABLE (downloadable from John Nolan’s web page:
http://academic2.american.edu/̃ jpnolan/stable/stable.html) needs about 1.6
seconds for performing corresponding calculations. It was written in Fortran
and calls several external IMSL routines, see Nolan (1997) for details. Apart
from speed, the STABLE program also exhibits higher relative accuracy (for
default tolerance settings in both programs): about 10−13 compared to 10−5

for extreme tail events and 10−10 for values used in typical financial applica-
tions (like approximating asset return distributions). Naturally, the accuracy
of both programs can be increased at the cost of computational time.
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It is interesting to note, that currently no other statistical computing en-
vironment offers the computation of stable density and distribution func-
tions in its standard release. Users have to rely on third-party libraries
or commercial products. A few are worth mentioning. John Nolan offers
the STABLE program in library form through Robust Analysis Inc., see
http://www.robustanalysis.com. This library (in C, Visual Basic or Fortran)
provides interfaces to Matlab, S-plus (or its GNU version – R) and Mathe-
matica. Diethelm Würtz has developed Rmetrics, an open source collection
of software packages for S-plus/R, which may be useful for teaching com-
putational finance, see http://www.itp.phys.ethz.ch/econophysics/R/. Stable
PDF and CDF calculations are performed using the direct integration method,
with the integrals being computed by R’s function integrate. Interestingly,
for symmetric stable distributions Rmetrics utilizes McCulloch’s (1998) ap-
proximation, which was obtained by interpolating between the complements
of the Cauchy and Gaussian CDFs in a transformed space. For α in the range
[0.92, 2.00] the absolute precision of the stable PDF and CDF approximation
is 6.6 × 10−5 and 2.2 × 10−5, respectively. The FFT based approach is uti-
lized in Cognity, the first and probably the only commercial risk management
platform that offers portfolio optimization based on the assumption of stably
distributed returns, see http://www.finanalytica.com.

2.3 Simulation of α-stable variables

The complexity of the problem of simulating sequences of α-stable random
variables stems from the fact that there are no analytic expressions for the
inverse F−1(x) nor the cumulative distribution function F (x). All standard
approaches like the rejection or the inversion methods would require tedious
computations. See Chapter ?? for a review of non-uniform random number
generation techniques.

A much more elegant and efficient solution was proposed by Chambers,
Mallows and Stuck (1976). They noticed that a certain integral formula de-
rived by Zolotarev (1964) yielded the following algorithm:

• generate a random variable U uniformly distributed on (− π
2 ,

π
2 ) and an

independent exponential random variable W with mean 1;
• for α 6= 1 compute:

X = (1 + ζ2)
1

2α
sin{α(U + ξ)}
{cos(U)}1/α

[

cos{U − α(U + ξ)}
W

]

1−α
α

, (6)

• for α = 1 compute:

X =
1

ξ

{

(π

2
+ βU

)

tanU − β log

( π
2W cosU
π
2 + βU

)}

, (7)
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where ξ is given by eqn. (5). This algorithm yields a random variable X ∼
Sα(1, β, 0), in representation (3). For a detailed proof see Weron (1996).

Given the formulas for simulation of a standard α-stable random variable,
we can easily simulate a stable random variable for all admissible values of
the parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0)
then

Y =

{

σX + µ, α 6= 1,

σX + 2
πβσ logσ + µ, α = 1,

is Sα(σ, β, µ). It is interesting to note that for α = 2 (and β = 0) the
Chambers-Mallows-Stuck method reduces to the well known Box-Muller algo-
rithm for generating Gaussian random variables, see e.g. Devroye (1986) and
Janicki and Weron (1994b).

Many other approaches have been proposed in the literature, includ-
ing application of Bergström (1952) and LePage (LePage, Woodroofe and
Zinn, 1981) series expansions, see Mantegna (1994) and Janicki and Kokoszka
(1992), respectively. However, this method is regarded as the fastest and the
most accurate. In XploRe the algorithm is implemented in the rndstab quant-
let. On a PC equipped with a Pentium IV 1.6 GHz processor one million
variables are generated in about 7 seconds, compared to about 1 second for
one million standard normal random variables obtained via the Box-Muller
algorithm (normal2). Because of its unquestioned superiority and relative
simplicity, the Chambers-Mallows-Stuck method is implemented in some sta-
tistical computing environments (e.g. the rstable function in S-plus/R) even
if no other routines related to stable distributions are provided.

2.4 Estimation of parameters

The estimation of stable law parameters is in general severely hampered by
the lack of known closed–form density functions for all but a few members
of the stable family. Numerical approximation or direct numerical integration
are nontrivial and burdensome from a computational point of view. As a
consequence, the maximum likelihood (ML) estimation algorithm based on
such approximations is difficult to implement and time consuming for samples
encountered in modern finance. However, there are numerical methods that
have been found useful in practice and are discussed in this section.

All presented methods work quite well assuming that the sample under
consideration is indeed α-stable. Since there are no formal tests for assessing
the α-stability of a data set we suggest to first apply the ”visual inspection”
or tail exponent estimators, like the Hill (1975) and direct tail estimation
methods, to see whether the empirical densities resemble those of α-stable
laws, see e.g. Borak, Härdle and Weron (2004) and Weron (2001).

Given a sample x1, ..., xn from Sα(σ, β, µ), in what follows, we provide

estimates α̂, σ̂, β̂ and µ̂ of α, σ, β and µ, respectively. We start the discussion
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with the simplest, fastest and ... least accurate quantile methods, then develop
the slower, yet much more accurate sample characteristic function methods
and, finally, conclude with the slowest but most accurate maximum likelihood
approach.

Sample quantiles methods

Fama and Roll (1971) provided very simple estimates for parameters of sym-
metric (β = 0, µ = 0) stable laws with α > 1. They propose to estimate σ by:

σ̂ =
x̂0.72 − x̂0.28

1.654
, (8)

where xf denotes the f -th population quantile, so that Sα(σ, β, µ)(xf ) = f .
As McCulloch (1986) noticed, Fama and Roll based their estimator of σ on
the fortuitous observation that (x0.72 − x0.28)/σ lies within 0.4% of 1.654 for
all 1 < α ≤ 2, when β = 0. This enabled them to estimate σ by (8) with less
than 0.4% asymptotic bias without first knowing α. However, when β 6= 0,
the search for an invariant range such as the one they found becomes futile.

The characteristic exponent α, on the other hand, can be estimated from
the tail behavior of the distribution. Fama and Roll suggested to take α̂ sat-
isfying:

Sα̂

(

x̂f − x̂1−f

2σ̂

)

= f. (9)

They found that f = 0.95, 0.96, 0.97 worked best for estimating α. This
method unnecessarily compounds the small asymptotic bias in the estima-
tor of σ into the estimator of α.

For 1 < α ≤ 2, the stable distribution has finite mean. Hence, the sample
mean is a consistent estimate of the location parameter µ. However, a more
robust estimate is the p% truncated sample mean – the arithmetic mean of
the middle p percent of the ranked observations. The 50% truncated mean is
often suggested in the literature when the range of α is unknown.

Fama and Roll’s (1971) method is simple but suffers from a small asymp-
totic bias in α̂ and σ̂ and restrictions on α and β. McCulloch (1986) general-
ized and improved the quantile method. He analyzed stable law quantiles and
provided consistent estimators of all four stable parameters, with the restric-
tion α ≥ 0.6, while retaining the computational simplicity of Fama and Roll’s
method. After McCulloch define:

vα =
x0.95 − x0.05

x0.75 − x0.25
and vβ =

x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
. (10)

Statistics vα and vβ are functions of α and β only, i.e. they are independent
of both σ and µ. This relationship may be inverted and the parameters α
and β may be viewed as functions of vα and vβ . Substituting vα and vβ by
their sample values and applying linear interpolation between values found in
tables given in McCulloch (1986) yields estimators α̂ and β̂.
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Scale and location parameters, σ and µ, can be estimated in a similar way.
However, due to the discontinuity of the characteristic function for α = 1
and β 6= 0 in representation (3), this procedure is much more complicated.
We refer the interested reader to the original work of McCulloch (1986). This
estimation technique is implemented in XploRe in the stabcull quantlet.

Sample characteristic function methods

Given an i.i.d. random sample x1, ..., xn of size n, define the sample charac-

teristic function by:

φ̂(t) =
1

n

n
∑

j=1

exp{itxj}.

Since |φ̂(t)| is bounded by unity all moments of φ̂(t) are finite and, for any
fixed t, it is the sample average of i.i.d. random variables exp(itxj). Hence, by

the law of large numbers, φ̂(t) is a consistent estimator of the characteristic
function φ(t).

Press (1972) proposed a simple estimation method, called the method of
moments, based on transformations of the characteristic function. From (3)
we have for all α:

|φ(t)| = exp(−σα|t|α). (11)

Hence, − log |φ(t)| = σα|t|α. Now, assuming α 6= 1, choose two nonzero values
of t, say t1 6= t2. Then for k = 1, 2 we have:

− log |φ(tk)| = σα|tk|α. (12)

Solving these two equations for α and σ, and substituting φ̂(t) for φ(t) yields:

α̂ =
log log |φ̂(t1)|

log |φ̂(t2)|

log | t1t2 |
, (13)

and

log σ̂ =
log |t1| log(− log |φ̂(t2)|) − log |t2| log(− log |φ̂(t1)|)

log | t1t2 |
. (14)

In order to estimate β and µ we have to choose two nonzero values of t, say
t3 6= t3, and apply a similar trick to ={logφ(t)}. The estimators are consistent
since they are based upon estimators of φ(t), ={φ(t)} and <{φ(t)}, which
are known to be consistent. However, convergence to the population values
depends on the choice of t1, ..., t4. The optimal selection of these values is
problematic and still is an open question. The XploRe implementation of the
method of moments (the stabmom quantlet) uses t1 = 0.2, t2 = 0.8, t3 = 0.1,
and t4 = 0.4 as proposed by Koutrouvelis (1980) in his simulation study.
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In the same paper Koutrouvelis presented a much more accurate regression-
type method which starts with an initial estimate of the parameters and pro-
ceeds iteratively until some prespecified convergence criterion is satisfied. Each
iteration consists of two weighted regression runs. The number of points to be
used in these regressions depends on the sample size and starting values of α.
Typically no more than two or three iterations are needed. The speed of the
convergence, however, depends on the initial estimates and the convergence
criterion.

The regression method is based on the following observations concerning
the characteristic function φ(t). First, from (3) we can easily derive:

log(− log |φ(t)|2) = log(2σα) + α log |t|. (15)

The real and imaginary parts of φ(t) are for α 6= 1 given by:

<{φ(t)} = exp(−|σt|α) cos
[

µt+ |σt|αβsign(t) tan
πα

2

]

,

and

={φ(t)} = exp(−|σt|α) sin
[

µt+ |σt|αβsign(t) tan
πα

2

]

.

The last two equations lead, apart from considerations of principal values, to:

arctan

(={φ(t)}
<{φ(t)}

)

= µt+ βσα tan
πα

2
sign(t)|t|α. (16)

Equation (15) depends only on α and σ and suggests that we estimate these
parameters by regressing y = log(− log |φn(t)|2) on w = log |t| in the model:

yk = m+ αwk + εk, (17)

where tk is an appropriate set of real numbers, m = log(2σα), and εk denotes
an error term. Koutrouvelis (1980) proposed to use tk = πk

25 , k = 1, 2, ...,K;
with K ranging between 9 and 134 for different values of α and sample sizes.

Once α̂ and σ̂ have been obtained and α and σ have been fixed at these
values, estimates of β and µ can be obtained using (16). Next, the regressions

are repeated with α̂, σ̂, β̂ and µ̂ as the initial parameters. The iterations
continue until a prespecified convergence criterion is satisfied. Koutrouvelis
proposed to use the Fama-Roll estimator (8) and the 25% truncated mean for
initial estimates of σ and µ, respectively.

Kogon and Williams (1998) eliminated this iteration procedure and sim-
plified the regression method. For initial estimation they applied McCulloch’s
method, worked with the continuous representation (4) of the characteris-
tic function instead of the classical one (3) and used a fixed set of only 10
equally spaced frequency points tk. In terms of computational speed their
method compares favorably to the original method of Koutrouvelis, see Ta-
ble 1. It has a significantly better performance near α = 1 and β 6= 0 due
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Table 1. Comparison of McCulloch’s quantile technique, the method of moments,
the regression approach of Koutrouvelis and the method of Kogon and Williams for
100 simulated samples of two thousand S1.7(0.005, 0.1, 0.001) random variables each.
Parameter estimates are mean values over 100 samples. Values of the Mean Absolute
Percentage Error (MAPEθ = 1

n

∑

n

i=1
|θ̂ − θ|/θ) are given in parentheses. In the last

column average computational times for one sample of 2000 random variables are
provided (on a PC equipped with a Pentium IV 1.6 GHz processor and running
XploRe 4.6). Q: CSAfin03

Method α̂ σ̂ β̂ µ̂ CPU time

McCulloch 1.7005 0.0050 0.1045 0.0010 0.04s
(2.60%) (2.16%) (110.72%) (22.01%)

Moments 1.9895 0.0104 0.0712 0.0010 0.03s
(17.03%) (107.64%) (969.57%) (33.56%)

Koutrouvelis 1.6988 0.0050 0.0989 0.0010 0.69s
(1.66%) (1.69%) (108.21%) (21.01%)

Kogon-Williams 1.6994 0.0050 0.0957 0.0010 0.18s
(1.95%) (1.77%) (110.59%) (21.14%)

to the elimination of discontinuity of the characteristic function. However, it
returns slightly worse results for other values of α. In XploRe both regression
algorithms are implemented in the stabreg quantlet. An optional parameter
lets the user choose between the original Koutrouvelis code and the Kogon-
Williams modification.

A typical performance of the described estimators is summarized in Ta-
ble 1, see also Figure 6. McCulloch’s quantile technique, the method of
moments, the regression approach of Koutrouvelis and the method of Ko-
gon and Williams were applied to 100 simulated samples of two thousand
S1.7(0.005, 0.1, 0.001) random variables each. The method of moments yielded
the worst estimates, clearly outside any admissible error range. McCulloch’s
method came in next with acceptable results and computational time signif-
icantly lower than the regression approaches. On the other hand, both the
Koutrouvelis and the Kogon-Williams implementations yielded good estima-
tors with the latter performing considerably faster, but slightly less accurate.
We have to say, though, that all methods had problems with estimating β.
Like it or not, our search for the optimal estimation technique is not over yet.
We have no other choice but turn to the last resort – the maximum likelihood
method.

Maximum likelihood method

The maximum likelihood (ML) estimation scheme for α-stable distributions
does not differ from that for other laws, at least as far as the theory is con-
cerned. For a vector of observations x = (x1, ..., xn), the ML estimate of the
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Regression fit to stable sample
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Fig. 6. Regression fit (dashed red), using Koutrouvelis’ regression method, to 2000
simulated S1.7(0.005, 0.1, 0.001) random variables (black circles). For comparison,
the CDF of the original distribution is also plotted (cyan). Right panel is a magni-
fication of the left tail fit on a double logarithmic scale. Q: CSAfin04

parameter vector θ = (α, σ, β, µ) is obtained by maximizing the log-likelihood
function:

Lθ(x) =

n
∑

i=1

log f̃(xi; θ), (18)

where f̃(·; θ) is the stable density function. The tilde denotes the fact that,
in general, we do not know the explicit form of the stable PDF and have to
approximate it numerically. The ML methods proposed in the literature differ
in the choice of the approximating algorithm. However, all of them have an
appealing common feature – under certain regularity conditions the maximum
likelihood estimator is asymptotically normal with the variance specified by
the Fischer information matrix, see DuMouchel (1973). The latter can be
approximated either by using the Hessian matrix arising in maximization or,
as in Nolan (2001), by numerical integration.

Because of computational complexity there are only a few documented at-
tempts of estimating stable law parameters via maximum likelihood.
DuMouchel (1971) developed an approximate ML method, which was based
on grouping the data set into bins and using a combination of means to com-
pute the density (the fast Fourier transform for central values of x and series
expansions for tails) to compute an approximate log-likelihood function. This
function was then numerically maximized.
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Applying Zolotarev’s (1964) integral formulas, Brorsen and Yang (1990)
formulated another approximate ML method, however, only for symmetric
stable random variables. To avoid the discontinuity and nondifferentiability of
the symmetric stable density function at α = 1, the tail index α was restricted
to be greater than one.

Much better, in terms of accuracy and computational time, are more recent
maximum likelihood estimation techniques. Mittnik et al. (1999) utilized the
FFT approach for approximating the stable density function, whereas Nolan
(2001) used the direct integration method. Both approaches are comparable
in terms of efficiency. The differences in performance are the result of different
approximation algorithms, see Section 2.2.

As Ojeda (2001) observes, the ML estimates are almost always the most ac-
curate, closely followed by the regression-type estimates, McCulloch’s quantile
method, and finally the method of moments. However, as we have already said
in the introduction to this Section, maximum likelihood estimation techniques
are certainly the slowest of all the discussed methods. For example, ML esti-
mation for a sample of 2000 observations using a gradient search routine which
utilizes the direct integration method needs 484 seconds or about 8 minutes!
The calculations were performed on a PC equipped with a Pentium IV 1.6
GHz processor and running STABLE ver. 3.13 (see also Section 2.2 where the
program was briefly described). For comparison, the STABLE implementation
of the Kogon-Williams algorithm performs the same calculations in only 0.04
seconds (the XploRe quantlet stabreg needs roughly four times more time,
see Table 1). Clearly, the higher accuracy does not justify the application of
ML estimation in many real life problems, especially when calculations are
to be performed on-line. For this reason the program STABLE also offers an
alternative – a fast quasi ML technique. It quickly approximates stable densi-
ties using a 3-dimensional spline interpolation based on pre-computed values
of the standardized stable density on a grid of (x, α, β) values. At the cost
of a large array of coefficients, the interpolation is highly accurate over most
values of the parameter space and relatively fast – 0.57s for a sample of 2000
observations.

2.5 Are DJIA and DAX returns α-stable ?

In this paragraph we want to apply the discussed techniques to financial data.
Due to limited space we chose only one estimation method – the regression
approach of Koutrouvelis (1980), as it offers high accuracy at moderate com-
putational time. We start the empirical analysis with the most prominent ex-
ample – the Dow Jones Industrial Average (DJIA) index. The data set covers
the period January 2, 1985 – November 30, 1992 and comprises 2000 returns.
Recall, that this period includes the largest crash in Wall Street history – the
Black Monday of October 19, 1987. Clearly the 1.66-stable law offers a much
better fit to the DJIA returns than the Gaussian distribution, see Table 2. Its



18 Rafa l Weron

Table 2. α-stable and Gaussian fits to 2000 returns of the Dow Jones Industrial
Average (DJIA) index from the period January 2, 1985 – November 30, 1992. Values
of the Anderson-Darling and Kolmogorov goodness-of-fit statistics are also given.
The former may be treated as a weighted Kolmogorov statistics which puts more
weight to the differences in the tails of the distributions. Q: CSAfin05

Parameters α σ β µ

α-stable fit 1.6596 0.0053 0.0823 0.0009
Gaussian fit 0.0115 0.0006

Test values Anderson-Darling Kolmogorov

α-stable fit 1.0044 0.8641
Gaussian fit +INF 4.5121

superiority, especially in the tails of the distribution, is even better visible in
Figure 7.

To make our statistical analysis more sound, we compare both fits through
Anderson-Darling and Kolmogorov test statistics, see Cizek, Härdle and
Weron (2004) and D’Agostino and Stephens (1986). The former may be
treated as a weighted Kolmogorov statistics which puts more weight to the
differences in the tails of the distributions. Although no asymptotic results
are known for the stable laws, approximate critical values for these goodness-
of-fit tests can be obtained via the bootstrap technique, see Borak, Härdle
and Weron (2004) and Stute, Manteiga and Quindimil (1993). In this chap-
ter, though, we will not perform hypothesis testing and just compare the test
values. Naturally, the lower the values the better the fit. The stable law seems
to be tailor-cut for the DJIA index returns. But does it fit other asset returns
as well?

The second analyzed data set comprises 2000 returns of the Deutsche
Aktienindex (DAX) index from the period January 2, 1995 – December 5,
2002. Also in this case the α-stable law offers a much better fit than the
Gaussian, see Table 3. However, the test statistics suggest that the fit is not
as good as for the DJIA returns (observe that both data sets are of the same
size and the test values in both cased can be compared). This can be also seen
in Figure 8. The left tail seems to drop off at some point and the very tail is
largely overestimated by the stable distribution. At the same time it is better
approximated by the Gaussian law.

This example clearly shows that the α-stable distribution is not a panacea.
Although it gives a very good fit to a number of empirical data sets, there
surely are distributions that recover the characteristics of other data sets
better. We devote the rest of this chapter to such alternative heavy tailed
distributions. We start with a modification of the stable law and in Section 3
concentrate on the class of generalized hyperbolic distributions.
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Stable and Gaussian fit to DJIA returns
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Fig. 7. 1.66-stable (cyan) and Gaussian (dashed red) fits to the DJIA returns (black
circles) empirical cumulative distribution function from the period January 2, 1985
– November 30, 1992. For better exposition of the fit in the central part of the
distribution ten largest and ten smallest returns are not illustrated in the left panel.
The largest loss (i.e. the smallest return) of −0.226 or −22.6% was sustained on
Black Monday. The right panel is a magnification of the left tail fit on a double
logarithmic scale clearly showing the superiority of the stable law. Q: CSAfin05

Table 3. α-stable and Gaussian fits to 2000 returns of the Deutsche Aktienindex
(DAX) index from the period January 2, 1995 – December 5, 2002. Q: CSAfin06

Parameters α σ β µ

α-stable fit 1.7003 0.0088 -0.3179 -0.0002
Gaussian fit 0.0157 0.0004

Test values Anderson-Darling Kolmogorov

α-stable fit 1.9149 1.1798
Gaussian fit 16.4119 2.8197
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Stable and Gaussian fit to DAX returns
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Fig. 8. 1.7-stable (cyan) and Gaussian (dashed red) fits to the DAX returns (black
circles) empirical cumulative distribution function from the period January 2, 1995
– December 5, 2002. For better exposition of the fit in the central part of the distri-
bution ten largest and ten smallest returns are not illustrated in the left panel. The
right panel is a magnification of the left tail fit on a double logarithmic scale. This
time the stable law overfits the tails of the empirical distribution. Q: CSAfin06

2.6 Truncated stable distributions

Mandelbrot’s (1963) pioneering work on applying α-stable distributions to as-
set returns gained support in the first few years after its publication (Fama,
1965; Officer, 1972; Teichmoeller, 1971). Subsequent works, however, have
questioned the stable distribution hypothesis (Akgiray and Booth, 1988; Blat-
tberg and Gonedes, 1974). By the definition of the stability property, the sum
of i.i.d. stable random variables is also stable. Thus, if short term asset returns
are distributed according to a stable law, longer term returns should retain the
same functional form. However, from the empirical data it is evident that as
the time interval between price observations grows longer, the distribution of
returns deviates from the short term heavy tailed distribution, and converges
to the Gaussian law. This indicates that the returns probably are not α-stable
(but it could also mean that the returns are just not independent). Over the
next few years, the stable distribution temporarily lost favor and alternative
processes were suggested as mechanisms generating stock returns.

In mid 1990s the stable distribution hypothesis has made a dramatic come-
back. Recently several authors have found a very good agreement of high-
frequency returns with a stable distribution up to six standard deviations away
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from the mean, see e.g. Cont, Potters and Bouchaud (1997) and Mantegna and
Stanley (1995). For more extreme observations, however, the distribution they
have found falls off approximately exponentially. To cope with such observa-
tions the truncated Lévy distributions (TLD) were introduced by Mantegna
and Stanley (1994). The original definition postulated a sharp truncation of
the α-stable probability density function at some arbitrary point. However,
later an exponential smoothing was proposed by Koponen (1995).

For α 6= 1 the characteristic function of a symmetric TLD random variable
is given by:

logφ(t) = − σα

cos πα2

[

(t2 + λ2)α/2 cos

{

α arctan
|t|
λ

}

− λα
]

,

where α is the tail exponent, σ is the scale parameter and λ is the truncation
coefficient. Clearly the TLD reduces to the symmetric α-stable distribution
(β = µ = 0) when λ = 0. The TLD distribution exhibits the following behav-
ior: for small and intermediate returns it behaves like a stable distribution,
but for extreme returns the truncation causes the distribution to converge to
a Gaussian distribution. Thus the observation that the asset returns distri-
bution is a TLD explains both the short-term α-stable behavior and the long
run convergence to the normal distribution.

Despite these interesting features the truncated Lévy distributions have
not been applied extensively to date. The most probable reason for this be-
ing the complicated definition of the TLD law. Like for α-stable distribu-
tions, only the characteristic function is known. No closed form formulas exist
for the density or the distribution functions. Since no integral formulas, like
Zolotarev’s (1986) for the α-stable laws, have been discovered as yet, statisti-
cal inference is, in general, limited to maximum likelihood utilizing the FFT
technique for approximating the PDF. Moreover, compared to the stable dis-
tribution, the TLD introduces one more parameter (asymmetric TLD laws
have also been considered in the literature, see e.g. Boyarchenko and Leven-
dorskii (2000) and Koponen (1995)) making the estimation procedure even
more complicated. Other parameter fitting techniques proposed in the litera-
ture comprise a combination of ad hoc approaches and moment matching, see
e.g. Boyarchenko and Levendorskii (2000) and Matacz (2000). Better tech-
niques have to be discovered before TLDs become a common tool in finance.

3 Hyperbolic distributions

In response to remarkable regularities discovered by geomorphologists in the
1940s, Barndorff-Nielsen (1977) introduced the hyperbolic law for modeling
the grain size distribution of windblown sand. Excellent fits were also obtained
for the log-size distribution of diamonds from a large mining area in South
West Africa. Almost twenty years later the hyperbolic law was found to pro-
vide a very good model for the distributions of daily returns of stocks from



22 Rafa l Weron

a number of leading German enterprises (Eberlein and Keller, 1995; Küchler
et al., 1999), giving way to its today’s use in stock price modeling (Bibby
and Sørensen, 1997) and market risk measurement (Eberlein, Keller and
Prause, 1998). The name of the distribution is derived from the fact that
its log-density forms a hyperbola, see Figure 9. Recall that the log-density
of the normal distribution is a parabola. Hence the hyperbolic distribution
provides the possibility of modeling heavier tails.

The hyperbolic distribution is defined as a normal variance-mean mixture
where the mixing distribution is the generalized inverse Gaussian (GIG) law
with parameter λ = 1, i.e. it is conditionally Gaussian, see Barndorff-Nielsen
(1977) and Barndorff-Nielsen and Blaesild (1981). More precisely, a random
variable Z has the hyperbolic distribution if:

(Z|Y ) ∼ N (µ+ βY, Y ) , (19)

where Y is a generalized inverse Gaussian GIG(λ = 1, χ, ψ) random variable
and N(m, s2) denotes the Gaussian distribution with mean m and variance s2.
The GIG law is a very versatile positive domain, three parameter distribution
with the probability density function given by:

fGIG(x) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1e−
1

2
(χx−1+ψx), x > 0, (20)

where the normalizing constant:

Kλ(t) =
1

2

∫ ∞

0

xλ−1e−
1

2
t(x+x−1)dx, t > 0, (21)

is the modified Bessel function of the third kind with index λ. Note that Kλ(t)
is also known as the MacDonald function. In the context of hyperbolic dis-
tributions, the Bessel functions are thoroughly discussed in Barndorff-Nielsen
and Blaesild (1981). Here we recall only two properties that will be used later.
Namely, (i) Kλ(t) is symmetric with respect to λ, i.e. Kλ(t) = K−λ(t), and
(ii) for λ = ± 1

2 it can be written in a simpler form:

K± 1

2

(t) =

√

π

2
t−

1

2 e−t. (22)

For other values of λ numerical approximations of the integral in eqn. (21)
have to be used, see e.g. Campbell (1980), Press et al. (1992) or Temme (1975).

Relation (19) implies that a hyperbolic random variable Z ∼ H(ψ, β, χ, µ)
can be represented in the form:

Z ∼ µ+ βY +
√
Y N(0, 1),

with the characteristic function:

φZ(u) = eiuµ
∫ ∞

0

eiβzu−
1

2
zu2

dFY (z). (23)
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Hyperbolic, NIG and Gaussian PDFs
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Fig. 9. Densities and log-densities of hyperbolic (cyan), NIG (thin black) and Gaus-
sian (thin, dashed red) distributions having the same variance, see (30). The name
of the hyperbolic distribution is derived from the fact that its log-density forms a
hyperbola, which is clearly visible in the right panel. Q: CSAfin07

Here FY (z) denotes the distribution function of a generalized inverse Gaussian
random variable Y with parameter λ = 1, see eqn. (20). Hence, the hyperbolic
PDF is given by:

fH(x) =

√

ψ/χ

2
√

ψ + β2K1(
√
ψχ)

e−
√

{ψ+β2}{χ+(x−µ)2}+β(x−µ). (24)

Sometimes another parameterization of the hyperbolic distribution with
δ =

√
χ and α =

√

ψ + β2 is used. Then the probability density function of
the hyperbolic H(α, β, δ, µ) law can be written as:

fH(x) =

√

α2 − β2

2αδK1(δ
√

α2 − β2)
e−α

√
δ2+(x−µ)2+β(x−µ), (25)

where δ > 0 is the scale parameter, µ ∈ R is the location parameter and
0 ≤ |β| < α. The latter two parameters – α and β – determine the shape, with
α being responsible for the steepness and β for the skewness. In XploRe the
hyperbolic density and distribution functions are implemented in the pdfhyp

and cdfhyp quantlets, respectively. The calculation of the PDF is straightfor-
ward, however, the CDF has to be numerically integrated from eqn. (25).

The hyperbolic law is a member of a more general class of generalized hy-
perbolic distributions, which also includes the normal-inverse Gaussian (NIG)



24 Rafa l Weron

and variance-gamma distributions as special cases. The generalized hyperbolic
law can be represented as a normal variance-mean mixture where the mixing
distribution is the generalized inverse Gaussian (GIG) law with any λ ∈ R.
Hence, the generalized hyperbolic distribution is described by five parameters
θ = (λ, α, β, δ, µ). Its probability density function is given by:

fGH(x) = κ
{

δ2 + (x− µ)2
}

1

2
(λ− 1

2
)
Kλ− 1

2

(

α
√

δ2 + (x − µ)2
)

eβ(x−µ), (26)

where:

κ =
(α2 − β2)

λ
2

√
2παλ−

1

2 δλKλ(δ
√

α2 − β2)
. (27)

For |β + z| < α its moment generating function takes the form:

M(z) = eµz
{

α2 − β2

α2 − (β + z)2

}

λ
2 Kλ

(

δ
√

α2 − (β + z)2
)

Kλ

(

δ
√

α2 − β2
) . (28)

Note, that M(z) is smooth, i.e. infinitely many times differentiable, near 0

and hence every moment exists. If we set ζ = δ
√

α2 − β2 =
√
ψχ then the

first two moments lead to the following formulas for the mean and variance
of a generalized hyperbolic random variable:

EX = µ+
βδ2

ζ

Kλ+1(ζ)

Kλ(ζ)
, (29)

VarX = δ2

[

Kλ+1(ζ)

ζKλ(ζ)
+
β2δ2

ζ2

{

Kλ+2(ζ)

Kλ(ζ)
−

(

Kλ+1(ζ)

ζKλ(ζ)

)2
}]

. (30)

The normal-inverse Gaussian (NIG) distributions were introduced by
Barndorff-Nielsen (1995) as a subclass of the generalized hyperbolic laws ob-
tained for λ = − 1

2 . The density of the normal-inverse Gaussian distribution
is given by:

fNIG(x) =
αδ

π
eδ
√
α2−β2+β(x−µ) K1(α

√

δ2 + (x− µ)2)
√

δ2 + (x− µ)2
. (31)

In XploRe the NIG density and distribution functions are implemented in the
pdfnig and cdfnig quantlets, respectively. Like for the hyperbolic distribu-
tion the calculation of the PDF is straightforward, but the CDF has to be
numerically integrated from eqn. (31).

At the ”expense” of four parameters, the NIG distribution is able to model
symmetric and asymmetric distributions with possibly long tails in both di-
rections. Its tail behavior is often classified as ”semi-heavy”, i.e. the tails are
lighter than those of non-Gaussian stable laws, but much heavier than Gaus-
sian. Interestingly, if we let α tend to zero the NIG distribution converges to
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the Cauchy distribution (with location parameter µ and scale parameter δ),
which exhibits extremely heavy tails. The tail behavior of the NIG density is
characterized by the following asymptotic relation:

fNIG(x) ∼ |x|−3/2e(∓α+β)x for x → ±∞. (32)

In fact, this is a special case of a more general relation with the exponent
of |x| being equal to λ − 1 (instead of −3/2), which is valid for all gener-
alized hyperbolic laws, see Barndorff-Nielsen and Blaesild (1981). Obviously,
the NIG distribution may not be adequate to deal with cases of extremely
heavy tails such as those of Pareto or non-Gaussian stable laws. However, em-
pirical experience suggests an excellent fit of the NIG law to financial data, see
e.g. Karlis (2002), Lillestöl (2001), Rydberg (1997) and Venter and de Jongh
(2002). Moreover, the class of normal-inverse Gaussian distributions possesses
an appealing feature that the class of hyperbolic laws does not have. Namely,
it is closed under convolution, i.e. a sum of two independent NIG random
variables is again NIG (Barndorff-Nielsen, 1995). In particular, if X1 and X2

are independent normal inverse Gaussian random variables with common pa-
rameters α and β but having different scale and location parameters δ1,2 and
µ1,2, respectively, then X = X1+X2 is NIG(α, β, δ1+δ1, µ1+µ2). This feature
is especially useful in time scaling of risks, e.g. in deriving 10-day risks from
daily risks. Only two subclasses of the generalized hyperbolic distributions are
closed under convolution. The other class with this important property is the
class of variance-gamma (VG) distributions, which is obtained when δ is equal
to 0. This is only possible for λ > 0 and α > |β|. The variance-gamma dis-
tributions (with β = 0) were introduced to the financial literature by Madan
and Seneta (1990).

3.1 Simulation of generalized hyperbolic variables

The most natural way of simulating generalized hyperbolic variables stems
from the fact that they can be represented as normal variance-mean mixtures.
Since the mixing distribution is the generalized inverse Gaussian law, the
resulting algorithm reads as follows:

1. simulate a random variable Y ∼ GIG(λ, χ, ψ) = GIG(λ, δ2, α2 − β2);
2. simulate a standard normal random variable N , e.g. using the Box-Muller

algorithm, see Section 2.3;
3. return X = µ+ βY +

√
Y N.

The algorithm is fast and efficient if we have a handy way of simulating
generalized inverse Gaussian variates. Michael, Schucany and Haas (1976)
proposed such a method for λ = − 1

2 , i.e. when sampling from the so-called
inverse Gaussian (IG) distribution. The procedure utilizes a transformation
that yields two roots. It starts with the observation that if we let ϑ =

√

χ/ψ
then the GIG(− 1

2 , χ, ψ) = IG(χ, ψ) density, see eqn. (20), of Y can be written
as:
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fY (x) =

√

χ

2πx3
e−

1

2
χ(x−ϑ)2/xϑ2

.

Hence:

V =
χ(Y − ϑ)2

Y ϑ2
, (33)

is distributed as a chi-square random variable with one degree of freedom,
i.e. χ2(1). As such it can be simply generated by taking a square of a stan-
dard normal random number. Unfortunately, the value of Y is not uniquely
determined by eqn. (33). Solving this equation for Y yields two roots:

y1 = ϑ+
ϑ

2χ

(

ϑV −
√

4ϑχV + ϑ2V 2
)

and y2 =
ϑ2

y1
.

According to Michael, Schucany and Haas (1976) the inverse Gaussian random
variable Y can be simulated by choosing y1 with probability ϑ/(ϑ+ y1) and
y2 with probability y1/(ϑ + y1), since Y has a representation as a mixture
of the binomial distribution with two values (y1 and y2) and with χ2(1) as
the mixing distribution. The rndnig quantlet of XploRe, as well as the rnig

function of the Rmetrics collection of software packages for S-plus/R (see also
Section 2.2 where Rmetrics was briefly described), utilize this routine.

In the general case, the GIG distribution – as well as the (generalized)
hyperbolic law – can be simulated via the rejection algorithm. This method, in
a version proposed by Atkinson (1982), is implemented in the HyperbolicDist
package for S-plus/R developed by David Scott, see the R-project home page
http://cran.r-project.org/. An adaptive version of the rejection method is used
to obtain hyperbolic random numbers in the rhyp function of Rmetrics.

Ingenious ways of choosing the so-called hat functions (which provide an
upper limit for the PDF of the sampled distribution) or squeeze functions
(which provide upper and lower limits) are available. The proper choice of
such functions can substantially increase the speed of computations, see also
Chapter ?? where the rejection algorithm is discussed. Although the method
works well for pseudo random numbers, it is not suited for the low discrepancy
sequences (often called quasi random numbers, even though there is nothing
random about them). The rejection method abandons some points from the
sample, thereby destroying the structure of the sample. But often we want to
use low discrepancy points since they promise faster convergence, at least for
low dimensions.

A much more direct approach for sampling from a given distribution is
the inversion algorithm, see Chapter ?? for an overview of this method. If we
want to simulate generalized hyperbolic random numbers, all we have to do is
to calculate (numerically) the inverse of the generalized hyperbolic CDF and
apply it to a uniformly distributed sample. For example, the rndhyp quantlet
of XploRe utilizes a binary search routine to obtain the inverse of the hyper-
bolic CDF. Another approach was proposed by Leobacher and Pillichshammer
(2002) who suggested that the approximate inverse of the hyperbolic CDF be
computed as the solution of a first-order differential equation.
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3.2 Estimation of parameters

Maximum likelihood method

The parameter estimation of generalized hyperbolic distributions can be per-
formed by the maximum likelihood method, since there exist closed-form for-
mulas (although, involving special functions) for the densities of these laws.
The computational burden is not as heavy as for α-stable laws, but it still is
considerable.

In general, the maximum likelihood estimation algorithm is as follows. For
a vector of observations x = (x1, ..., xn), the ML estimate of the parameter
vector θ = (λ, α, β, δ, µ) is obtained by maximizing the log-likelihood function:

L(x; θ) = logκ+
λ− 1

2

2

n
∑

i=1

log(δ2 + (xi − µ)2) +

+

n
∑

i=1

log Kλ− 1

2

(α
√

δ2 + (xi − µ)2) +

n
∑

i=1

β(xi − µ), (34)

where κ is defined by (27). Obviously, for hyperbolic (λ = 1) distributions
the algorithm uses simpler expressions of the log-likelihood function due to
relation (22).

The routines proposed in the literature differ in the choice of the optimiza-
tion scheme. The first software product that allowed statistical inference with
hyperbolic distributions – the HYP program – used a gradient search tech-
nique, see Blaesild and Sorensen (1992). In a large simulation study Prause
(1999) utilized the bracketing method. The XploRe quantlets mlehyp and
mlenig use yet another technique – the downhill simplex method of Nelder
and Mead (1965), with slight modifications due to parameter restrictions.

The main factor for the speed of the estimation is the number of modified
Bessel functions to compute. Note, that for λ = 1 (i.e. the hyperbolic distri-
bution) this function appears only in the constant κ. For a data set with n
independent observations we need to evaluate n and n+1 Bessel functions for
NIG and generalized hyperbolic distributions, respectively, whereas only one
for the hyperbolic. This leads to a considerable reduction in the time neces-
sary to calculate the likelihood function in the hyperbolic case. Prause (1999)
reported a reduction of ca. 33%, however the efficiency results are highly sam-
ple and implementation dependent. For example, limited simulation studies
performed in XploRe revealed a 25%, 55% and 85% reduction in CPU time
for samples of size 500, 1000 and 2000, respectively.

We also have to say that the optimization is challenging. Some of the
parameters are hard to separate since a flat-tailed generalized hyperbolic dis-
tribution with a large scale parameter is hard to distinguish from a fat-tailed
distribution with a small scale parameter, see Barndorff-Nielsen and Blaesild
(1981) who observed such a behavior already for the hyperbolic law. The like-
lihood function with respect to these parameters then becomes very flat, and
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may have local mimima. In the case of NIG distributions Venter and de Jongh
(2002) proposed simple estimates of α and β that can be used as staring val-
ues for the ML scheme. Starting from relation (32) for the tails of the NIG
density they derived the following approximation:

α− β ∼ 1

2

x1−f + E(X |X > x1−f )

E(X2|X > x1−f ) − x1−fE(X |X > x1−f )
,

α+ β ∼ −1

2

xf + E(X |X < xf )

E(X2|X < xf ) − xfE(X |X < xf )
,

where xf is the f -th population quantile, see Section 2.4. After the choice of
a suitable value for f , Venter and de Jongh (2002) used f = 5%, the ”tail
estimates” of α and β are obtained by replacing the quantiles and expectations
by their sample values in the above relations.

Another method of providing the starting values for the ML scheme was
suggested by Prause (1999). He estimated the parameters of a symmetric
(β = µ = 0) generalized hyperbolic law with a reasonable kurtosis (i.e. with
δα ≈ 1.04) that had the variance equal to that of the empirical distribution.

Other methods

Besides the ML approach other estimation methods have been proposed in
the literature. Prause (1999) tested different estimation techniques by replac-
ing the log-likelihood function with other score functions, like the Anderson-
Darling and Kolmogorov statistics or Lp-norms. But the results were disap-
pointing. Lillestöl (2001) made use of the Markov chain Monte Carlo technique
(see Chapter ??), however, again the results obtained were not impressive.
Karlis (2002) described an EM type algorithm (see Chapter ??) for maxi-
mum likelihood estimation of the normal inverse Gaussian distribution. The
algorithm can be programmed in any statistical package supporting Bessel
functions and it has all the properties of the standard EM algorithm, like
sure, but slow, convergence, parameters in the admissible range, etc. The EM
scheme can be also generalized to the family of generalized hyperbolic distri-
butions.

3.3 Are DJIA and DAX returns NIG distributed ?

It is always necessary to find a reasonable tradeoff between the introduction
of additional parameters and the possible improvement of the fit. Barndorff-
Nielsen and Blaesild (1981) mentioned the flatness of the likelihood function
for the hyperbolic distribution. The variation in the likelihood function of the
generalized hyperbolic distribution is even smaller for a wide range of parame-
ters. Consequently, the generalized hyperbolic distribution applied as a model
for financial data leads to overfitting (Prause, 1999). In the empirical analy-
sis that follows we will concentrate on NIG distributions since they possess
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Table 4. NIG and Gaussian fits to 2000 returns of the Dow Jones Industrial Average
(DJIA) index from the period January 2, 1985 – November 30, 1992. Q: CSAfin08

Parameters α δ or σ β µ

NIG fit (δ) 68.0724 0.0074 -1.8125 0.0008
Gaussian fit (σ) 0.0115 0.0006

Test values Anderson-Darling Kolmogorov

NIG fit 0.6724 0.7216
Gaussian fit +INF 4.5121

Table 5. NIG and Gaussian fits to 2000 returns of the Deutsche Aktienindex (DAX)
index from the period January 2, 1995 – December 5, 2002. Q: CSAfin09

Parameters α δ or σ β µ

NIG fit (δ) 55.1771 0.0138 -4.9035 0.0016
Gaussian fit (σ) 0.0157 0.0004

Test values Anderson-Darling Kolmogorov

NIG fit 0.3628 0.7936
Gaussian fit 16.4119 2.8197

nice analytic properties and have been reported to fit financial data better
than hyperbolic laws, see e.g. Karlis (2002), Lillestöl (2001) and Venter and
de Jongh (2002).

Now, we can return to the empirical analysis. This time we want to check
whether DJIA and/or DAX returns can be approximated by the NIG dis-
tribution. We fit the parameters using the maximum likelihood estimation
technique as it seems to be the best available. As can be seen in Figure 10
the fitted NIG distribution misses the very extreme DJIA returns. However,
it seems to give a better fit to the central part of the empirical distribution
than the α-stable law. This is confirmed by a lower value of the Kolmogorov
statistics, compare Tables 2 and 4. Surprisingly, also the Anderson-Darling
statistics returns a lower value, implying a better fit in the tails of the distri-
bution as well.

The second analyzed data set comprises 2000 returns of the Deutsche
Aktienindex (DAX) index. In this case the NIG law offers a much better fit
than the α-stable or the Gaussian, see Table 5 and compare with Table 3. This
can be also seen in Figure 11. The drop off in the left tail of the empirical
distribution is nicely caught by the NIG distribution.
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NIG and Gaussian fit to DJIA returns
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Fig. 10. NIG (cyan) and Gaussian (dashed red) fits to the DJIA returns (black
circles) empirical cumulative distribution function from the period January 2, 1985
– November 30, 1992. For better exposition of the fit in the central part of the
distribution ten largest and ten smallest returns are not illustrated in the left panel.
The right panel is a magnification of the left tail fit on a double logarithmic scale.
The NIG law slightly underfits the tails of the empirical distribution. Compare with
Figure 6 where the stable law is shown to fit the DJIA returns very well. Q: CSAfin08

4 Value at Risk, portfolios and heavy tails

The presented examples clearly show that we not only can, but must use
heavy tailed alternatives to the Gaussian law in order to obtain acceptable
estimates of market losses. But can we substitute the Gaussian distribution
with other distributions in Value at Risk (Expected Shortfall) calculations?
Recall, that the definition of VaR utilizes the quantiles of the portfolio re-
turns distribution and not the returns distribution of individual assets in the
portfolio. If all asset return distributions are assumed to be Gaussian then the
portfolio distribution is multivariate normal and well known statistical tools
can be applied. However, when asset returns are distributed according to a
different law (or different laws!) then the multivariate distribution may be
hard to tackle. In particular, linear correlation may no longer be a meaningful
measure of dependence.

Luckily for us multivariate statistics offers the concept of copulas. In rough
terms, a copula is a function C : [0, 1]n → [0, 1] with certain special properties,
see Nelsen (1999) and Rank and Siegl (2002). What is important for VaR cal-
culations is that it enables us to construct a multivariate distribution function
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NIG and Gaussian fit to DAX returns
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Fig. 11. NIG (cyan) and Gaussian (dashed red) fits to the DAX returns (black
circles) empirical cumulative distribution function from the period January 2, 1995
– December 5, 2002. Right panel is a magnification of the left tail fit on a double
logarithmic scale clearly showing the superiority of the NIG distribution. Compare
with Figure 7 where the stable law is shown to overfit the DJIA returns. Q: CSAfin09

from the marginal distribution functions of individual asset returns in a way
that takes their dependence structure into account. This dependence struc-
ture is no longer measured by correlation, but by other adequate functions
like rank correlation, comonotonicity and, especially, tail dependence. For a
treatment of VaR calculations, heavy tails and copulas consult also Bradley
and Taqqu (2003), Duffie and Pan (1997), Embrechts, McNeil and Straumann
(2002), and Schmidt (2004).

5 Conclusions

In this chapter we have analyzed heavy tailed models of asset returns distri-
butions. At first it seemed that the α-stable distribution was a panacea. It
had nice analytic properties (convolution, limiting behavior, excess kurtosis,
etc.) and it fitted the DJIA returns almost perfectly. But later, as we tested
the second sample (DAX returns), it turned out that the α-stable distribution
overfitted the tails. For a risk manager who likes to play safe this may not
be a bad idea, as the stable law overestimates the risks and thus provides an
upper limit of losses. But, in general, a distribution that fits the empirical
data perfectly would be ideal. In the second part of the chapter we have seen
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that there exist interesting heavy tailed alternatives to the stable distribution.
The normal inverse Gaussian law gave a better fit to both data sets. Natu-
rally, based on two examples we cannot conclude that the NIG distribution is
the optimal one. However, we can say that there exist tractable heavy tailed
alternatives to the Gaussian law that can be used in risk management, as well
as in other branches of finance.
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at-Risk, in Härdle, Kleinow and Stahl (2002).
Rydberg, T. H. (1997). The Normal Inverse Gaussian Lévy Process: Simulation and
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