
Cseh, Ágnes; Fleiner, Tamás

Working Paper

The complexity of cake cutting with unequal shares

IEHAS Discussion Papers, No. MT-DP - 2018/19

Provided in Cooperation with:
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of
Sciences

Suggested Citation: Cseh, Ágnes; Fleiner, Tamás (2018) : The complexity of cake cutting with
unequal shares, IEHAS Discussion Papers, No. MT-DP - 2018/19, Hungarian Academy of
Sciences, Institute of Economics, Budapest

This Version is available at:
https://hdl.handle.net/10419/222032

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/222032
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

MŰHELYTANULMÁNYOK DISCUSSION PAPERS

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES,

HUNGARIAN ACADEMY OF SCIENCES - BUDAPEST, 2018

MT-DP – 2018/19

The complexity of cake cutting

with unequal shares

ÁGNES CSEH – TAMÁS FLEINER

2

Discussion papers

MT-DP – 2018/19

Institute of Economics, Centre for Economic and Regional Studies,

Hungarian Academy of Sciences

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments.

Any references to discussion papers should clearly state that the paper is preliminary.

Materials published in this series may subject to further publication.

The complexity of cake cutting with unequal shares

Authors:

Ágnes Cseh

research fellow
Hungarian Academy of Sciences, Centre for Economic and Regional Studies,

Institute of Economics
E-mail: cseh.agnes@krtk.mta.hu

Tamás Fleiner
associate professor

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

E-mail: fleiner@cs.bme.hu

August 2018

3

 The complexity of cake cutting with unequal shares

Ágnes Cseh – Tamás Fleiner

Abstract

An unceasing problem of our prevailing society is the fair division of goods. The problem of

proportional cake cutting focuses on dividing a heterogeneous and divisible resource, the

cake, among n players who value pieces according to their own measure function. The goal is

to assign each player a not necessarily connected part of the cake that the player evaluates at

least as much as her proportional share.

In this paper, we investigate the problem of proportional division with unequal shares, where

each player is entitled to receive a predetermined portion of the cake. Our main contribution

is threefold. First we present a protocol for integer demands that delivers a proportional

solution in fewer queries than all known algorithms. Then we show that our protocol is

asymptotically the fastest possible by giving a matching lower bound. Finally, we turn to

irrational demands and solve the proportional cake cutting problem by reducing it to the

same problem with integer demands only. All results remain valid in a highly general cake

cutting model, which can be of independent interest.

Keywords: fair division, cake cutting, unequal shares, complexity

JEL Classification: C63, C78

Acknowledgement:

Supported by the Hungarian Academy of Sciences under its Momentum Programme

(LP2016-3/2016), its János Bolyai Research Fellowship, Cooperation of Excellences Grant

(KEP-6/2017), and OTKA grant K128611. This work is connected to the scientific program of

the Development of quality-oriented and harmonized R+D+I strategy and functional model

at BME project, supported by the New Hungary Development Plan (Project ID: TÁMOP-

4.2.1/B-09/1/KMR-2010-0002).

4

A tortaosztás bonyolultsága nem egyenlő

részesedések esetén

Cseh Ágnes – Fleiner Tamás

Összefoglaló

Jelen társadalmunk egyik égető problémája a javak igazságos elosztása. Az igazságos

tortaosztás célja, hogy egy osztható és heterogén forrást, a tortát n játékos közt osszunk szét.

A játékosok mind egyéni módon értékelik az egyes szeleteket. A cél az, hogy minden egyes

játékos legalább olyan értékes szeletet kapjon, mint az ő jogos részesedése.

Cikkünkben azt az esetet vizsgáljuk, amikor ez a jogos részesedés egyénenként változó.

Két eredményt értünk el. Egyrészt terveztünk egy olyan protokollt, ami minden eddigi ismert

protokollnál gyorsabban talál meg egy igazságos elosztást. Másrészt egy alsó korláttal

bebizonyítottuk, hogy protokollunk a lehető leggyorsabb. Mindkét eredmény érvényes egy

általános tortaosztási modellben is.

Tárgyszavak: igazságos elosztás, tortaosztás, nem egyenlő részesedések, bonyolultság

JEL: C63, C78

The complexity of cake cutting with unequal shares?

Ágnes Cseh1 and Tamás Fleiner2

1 Hungarian Academy of Sciences, Centre for Economic and Regional Studies, Institute of Economics
2 Department of Computer Science and Information Theory, Budapest University of Technology and Economics

Abstract. An unceasing problem of our prevailing society is the fair division of goods. The problem of
proportional cake cutting focuses on dividing a heterogeneous and divisible resource, the cake, among n
players who value pieces according to their own measure function. The goal is to assign each player a
not necessarily connected part of the cake that the player evaluates at least as much as her proportional
share.
In this paper, we investigate the problem of proportional division with unequal shares, where each player
is entitled to receive a predetermined portion of the cake. Our main contribution is threefold. First we
present a protocol for integer demands that delivers a proportional solution in fewer queries than all
known algorithms. Then we show that our protocol is asymptotically the fastest possible by giving a
matching lower bound. Finally, we turn to irrational demands and solve the proportional cake cutting
problem by reducing it to the same problem with integer demands only. All results remain valid in a
highly general cake cutting model, which can be of independent interest.

1 Introduction

In cake cutting problems, the cake symbolizes a heterogeneous and divisible resource that shall be distributed
among n players. Each player has her own measure function, which determines the value of any part of the
cake for her. The aim of proportional cake cutting is to allocate each player a piece that is worth at least
as much as her proportional share, evaluated with her measure function [22]. The measure functions are not
known to the protocol.

The efficiency of a fair division protocol can be measured by the number of queries. In the standard
Robertson-Webb model [19], two kinds of queries are allowed. The first one is the cut query, in which a player
is asked to mark the cake at a distance from a given starting point so that the piece between these two is
worth a given value to her. The second one is the eval query, in which a player is asked to evaluate a given
piece according to her measure function.

If shares are meant to be equal for all players, then the proportional share is defined as 1
n of the whole

cake. In the unequal shares version of the problem (also called cake cutting with entitlements), proportional
share is defined as a player-specific demand, summing up to the value of the cake over all players. The aim
of this paper is to determine the query complexity of proportional cake cutting in the case of unequal shares.
Robertson and Webb [19] write in their seminal book “Nothing approaching general theory of optimal number
of cuts for unequal shares division has been given to date. This problem may prove to be very difficult.” We
now settle the issue for the number of queries, the standard measure of efficiency instead of the number of
physical cuts.

1.1 Related work

Equal shares Possibly the most famous cake cutting protocol belongs to the class of Divide and Conquer
algorithms. Cut and Choose is a 2-player equal-shares protocol that guarantees proportional shares. It already
appeared in the Old Testament, where Abraham divided Canaan to two equally valuable parts and his brother
Lot chose the one he valued more for himself. The first n-player variant of this algorithm is attributed to

? Supported by the Hungarian Academy of Sciences under its Momentum Programme (LP2016-3/2016), its János
Bolyai Research Fellowship, Cooperation of Excellences Grant (KEP-6/2017), and OTKA grant K128611. This work
is connected to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and
functional model at BME” project, supported by the New Hungary Development Plan (Project ID:TÁMOP-4.2.1/B-
09/1/KMR-2010-0002).

Banach and Knaster [22] and it requires O
(
n2
)

cut and eval queries. Other methods include the continuous
(but discretizable) Dubins-Spanier protocol [10] and the Even-Paz protocol [12]. The latter show that their
method requires O (n log n) queries at most. The complexity of proportional cake cutting in higher dimensions
has been studied in several papers [2, 3, 5, 13, 14, 20], in which cuts are tailored to fit the shape of the cake.

Unequal shares The problem of proportional cake cutting with unequal shares is first mentioned by
Steinhaus [22]. Motivated by dividing a leftover cake, Robertson and Webb [19] define the problem formally and
offer a range of solutions for two players. More precisely, they list cloning players, using Ramsey partitions [16]
and most importantly, the Cut Near-Halves protocol [19]. The last method computes a fair solution for 2
players with integer demands d1 and d2 in 2dlog2(d1 + d2)e queries. Robertson and Webb also show how any
2-player protocol can be generalized to n players in a recursive manner. The number of physical cuts Cut
Near-Halves makes for two players can be beaten for certain demands, as Robertson and Webb [19] also note.
For some demands, Carney [7] designs such a protocol utilizing a number-theoretic approach.

Irrational demands The case of irrational demands in the unequal shares case is interesting from the
theoretical point of view, but beyond this, solving it might be necessary, because other protocols might generate
instances with irrational demands. For example, in the maximum-efficient envy-free allocation problem with
two players and piecewise linear measure functions, any optimal solution must be specified using irrational
numbers, as Cohler et al. [8] show. Barbanel [1] studies the case of cutting the cake in an irrational ratio
between n players and presents an algorithm that constructs a proportional division. Shishido and Zeng [21]
solve the same problem with the objective of minimizing the number of resulting pieces. Their protocol is
simpler than that of Barbanel [1].

Lower bounds The drive towards establishing lower bounds on the complexity of cake cutting protocols
is coeval to the cake cutting literature itself [22]. Even and Paz [12] conjectured that their protocol is the
best possible, while Robertson and Webb explicitly write that “they would place their money against finding
a substantial improvement on the n log2 n bound” for proportional cake cutting with equal shares. After ap-
proximately 20 years of no breakthrough in the topic, Magdon-Ismail et al. [15] showed that any protocol must
make Ω(n log n) comparisons – but this was no bound on the number of queries. Essentially simultaneously,
Woeginger and Sgall [23] came up with the lower bound Ω(n log n) on the number of queries for the case where
contiguous pieces are allocated to each player. Not much later, this condition was dropped by Edmonds and
Pruhs [11] who completed the query complexity analysis of proportional cake cutting with equal shares by
presenting a lower bound of Ω(n log n). Brams et al. [6] study the minimum number of actual cuts in the case
of unequal shares and prove that n − 1 cuts might not suffice – in other words, they show that there is no
proportional allocation with contiguous pieces. However, no lower bound on the number of queries has been
known in the case of unequal shares.

Generalizations in higher dimensions There are two sets of multiple-dimensional generalizations of
the proportional cake cutting problem. The first group focuses on the existence of a proportional division,
without any constructive proof. The existence can be shown easily using Lyapunov’s theorem, as stated by
Dubins and Spanier [10] as Corollary 1.1. Berliant et al. [4] investigate the existence of envy-free divisions.
Dall’Aglio [9] considers the case of equal shares and defines a dual optimization problem that allows to compute
a proportional solution by minimizing convex functions over a finite dimensional simplex. Complexity issues
are not discussed in these papers, in fact, queries are not even mentioned in them.

The second group of multiple-dimensional generalizations considers problems where certain geometric pa-
rameters are imposed on the cake and the pieces, see Barbanel et al. [2], Beck [3], Brams et al. [5], Hill [13], Iyer
and Huhns [14?]. Also, some of these have special extra requirements on the output, such as contiguousness
or envy-freeness. These works demonstrate the interest in various problems in multi-dimensional cake cutting,
for which we define a very general framework.

1.2 Our contribution

We provide formal definitions in Section 2 and present the query analysis of the fastest known protocol for
the n-player proportional cake cutting problem with total demand D ≥ n in Section 3. Then, in Section 4
we focus on our protocol for the problem, which is our main contribution in this paper. The idea is that we
recursively render the players in two batches so that these batches can simulate two players who aim to cut
the cake into two approximately equal halves. Our protocol requires only 2 (n− 1) · dlog2De queries. Other
known protocols reach D · dlog2De and n(n − 1) · dlog2De, thus ours is the fastest procedure that derives a
proportional division for the n-player cake cutting problem with unequal shares. Moreover, our protocol also

works on a highly general cake (introduced in Section 5), extending the traditional notion of the cake to any
finite dimension.

We complement our positive result by showing a lower bound of Ω (n · logD) on the query complexity of
the problem in Section 6. Our proof generalizes, but does not rely on, the lower bound proof given by Edmonds
and Pruhs [11] for the problem of proportional division with equal shares. Moreover, our lower bound remains
valid in the generalized cake cutting and query model, allowing a considerably more powerful notion of a query
even on the usual, (0, 1) interval cake.

In Section 7 we turn to irrational demands and solve the proportional cake cutting problem by reducing it
to the same problem with integer demands only. By doing so, we provide a novel and simple approach to the
problem. Moreover, our method works in the generalized query model as well.

2 Preliminaries

We begin with formally defining our input. Our setting includes a set of players of cardinality n, denoted by
{P1, P2, . . . , Pn}, and a heterogeneous and divisible good, which we refer to as the cake and project to the unit
interval [0, 1]. Each player Pi has a non-negative, absolutely continuous measure function µi that is defined on
Lebesgue-measurable sets. We remark that absolute continuity implies that every zero-measure set has value
0 according to µi as well. In particular, µi((a, b)) = µi([a, b]) for any interval [a, b] ⊆ [0, 1]. Besides measure

functions, each player Pi has a demand di ∈ Z+, representing that Pi is entitled to receive di/
n∑
j=1

dj ∈]0, 1[

part of the whole cake. The value of the whole cake is identical for all players, in particular it is the sum of all
demands:

∀1 ≤ i ≤ n µi([0, 1]) = D =

n∑
j=1

dj .

We remark that an equivalent formulation is also used sometimes, where the demands are rational numbers
that sum up to 1, the value of the full cake. Such an input can be transformed into the above form simply by
multiplying all demands by the least common denominator of all demands. As opposed to this, if demands are
allowed to be irrational numbers, then no ratio-preserving transformation might be able to transform them to
integers. That is why the case of irrational demands is treated separately.

The cake [0, 1] will be partitioned into subintervals in the form [x, y), 0 ≤ x ≤ y ≤ 1. A finite union of such
subintervals forms a piece Xi allocated to player Pi. We would like to stress that a piece is not necessarily
connected.

Definition 1. A set {Xi}1≤i≤n of pieces is a division of the cake [0, 1] if
⋃

1≤i≤n
Xi = [0, 1] and Xi ∩Xj = ∅

for all i 6= j. We call division {Xi}1≤i≤n proportional if µi(Xi) ≥ di for all 1 ≤ i ≤ n.

In words, proportionality means that each player receives a piece with which her demand is satisfied. We
do not consider Pareto optimality or alternative fairness notions such as envy-freeness in this paper.

We now turn to defining the measure of efficiency in cake cutting. We assume that 1 ≤ i ≤ n, x, y ∈ [0, 1]
and 0 ≤ α ≤ 1. Oddly enough, the Robertson-Webb query model was not formalized explicitly by Robertson
and Webb first, but by Woeginger and Sgall [23], who attribute it to the earlier two. In their query model, a
protocol can ask agents the following two types of queries.

• Cut query (Pi, α) returns the leftmost point x so that µi([0, x]) = α. In this operation x becomes a so-called
cut point.
• Eval query (Pi, x) returns µi([0, x]). Here x must be a cut point.

Notice that this definition implies that choosing sides, sorting marks or calculating any other parameter
than the value of a piece are not counted as queries and thus they do not influence the efficiency of a protocol.

Definition 2. The number of queries in a protocol is the number of eval and cut queries until termination.
We denote the number of queries for a n-player algorithm with total demand D by T (n,D).

The query definition of Woeginger and Sgall is the strictest of the type Robertson-Webb. We now outline
three options to extend the notion of a query, all of which have been used in earlier papers [11, 12, 19, 23] and
are also referred to as Robertson-Webb queries.

1. The query definition of Edmonds and Pruhs. There is a slightly different and stronger formalization
of the core idea, given by Edmonds and Pruhs [11] and also used by Procaccia [17, 18]. The crucial difference
is that they allow both cut and eval queries to start from an arbitrary point in the cake.
• Cut query (Pi, x, α) returns the leftmost point y so that µi([x, y]) = α or an error message if no such
y exists.
• Eval query (Pi, x, y) returns µi([x, y]).

These queries can be simulated as trivial concatenations of the queries defined by Woeginger and Sgall.
To pin down the starting point x of a cut query (Pi, x, α) we introduce the cut point x with the help of
a dummy player’s Lebesgue-measure, ask Pi to evaluate the piece [0, x] and then we cut query with value
α′ = α+µi([0, x]). Similarly, to generate an eval query (Pi, x, y) one only needs to artificially generate the
two cut points x and y and then ask two eval queries of the Woeginger-Sgall model, (Pi, x) and (Pi, y).
We remark that such a concatenation of Woeginger-Sgall queries reveals more information than the single
query in the model of Edmonds and Pruhs.

2. Proportional cut query. The term proportional cut query stands for generalized cut queries of the sort
“Pi cuts the piece [x, y] in ratio a : b”, where a, b are integers. As Woeginger and Sgall also note it, two
eval queries and one cut query with ratio α = a

a+b · µi([x, y]) are sufficient to execute such an operation if
x, y are cut points, otherwise five queries suffice. Notice that the eval queries are only used by Pi when she
calculates α, and their output does not need to be revealed to any other player or even to the protocol.

3. Reindexing. When working with recursive algorithms it is especially useful to be able to reindex a piece
[x, y] so that it represents the interval [0, 1] for Pi. Any further cut and eval query on [x, y] can also be
substituted by at most five queries on the whole cake. Similarly as above, there is no need to reveal the
result of the necessary eval queries addressed to a player.

These workarounds ensure that protocols require asymptotically the same number of queries in both model
formulations, even if reindexing and proportional queries are allowed. We opted for utilizing all three extensions
of the Woeginger-Sgall query model in our upper bound proofs, because the least restrictive model allows the
clearest proofs. Regarding our lower bound proof, it holds even if we allow a highly general query model
including all of the above extensions, which we define in Section 5.2.

3 Known protocols

To provide a base for comparison, we sketch the known protocols for proportional cake cutting with unequal
shares and bound their query complexity.

The most naive approach to the case of unequal shares is the cloning technique, where each player Pi with
demand di is substituted by di players with unit demands. In this way a D-player equal shares cake cutting
problem is generated, which can be solved in O(D logD) queries [12].

As Robertson and Webb [19] point out, any 2-player protocol can be generalized to an n-player protocol.
They list two 2-player protocols, Cut Near-Halves and the Ramsey Partition Algorithm [16] and also remark
that for 2 players, Cut Near-Halves is always at least as efficient as Ramsey Partition Algorithm. Therefore,
we restrict ourselves to analyzing the complexity of the generalized Cut Near-Halves protocol.

Cut Near-Halves is a simple procedure, in which the cake of value D is repeatedly cut in approximately half
by players P1 and P2 with demands d1 ≤ d2 as follows. P1 cuts the cake into two near-halves, more precisely,
in ratio bD2 c : dD2 e. Then, P2 picks a piece that she values at least as much as P1. This piece is awarded to
P2 and her claim is reduced accordingly, by the respective near-half value of the cake. In the next round, the
same is repeated on the remaining part of the cake, and so on, until d1 or d2 is reduced to zero. Notice that the
cutter is always the player with the lesser current demand, and thus this role might be swapped from round
to round.

The recursive n-player protocol of Robertson and Webb runs as follows. We assume that k−1 < n players,
P1, P2, . . . , Pk−1, have already divided the whole cake of value D = d1 + d2 + . . . + dn. The next player Pk
then challenges each of the first k− 1 players separately to redistribute the piece already assigned to them. In
these rounds, Pk claims dk

d1+d2+...+dk−1
part of each piece. This generates k− 1 rounds of the Cut Near-Halves

protocol, each with 2 players. Notice that this protocol tends to assign a highly fractured piece of cake to every
player.

The following theorem summarizes the results known about the complexity of the 2-player and n-player
versions of the Cut Near-Halves protocol.

Theorem 1 (Robertson and Webb [19]). The 2-player Cut Near-Halves protocol with demands d1, d2
requires T (2) = 2dlog2(d1 + d2)e queries at most. The recursive n-player version is finite.

Here we give an estimate for the number of queries of the recursive protocol.

Theorem 2. The number of queries in the recursive n-player Cut Near-Halves protocol is at most

T (n,D) =

n−1∑
i=1

[
2i ·
⌈
log2

(i+1∑
j=1

dj

)⌉]
≤ n(n− 1) · dlogDe.

Proof. The first round consists of players P1 and P2 sharing the cake using 2dlog2 (d1 + d2)e queries. The
second round then has two 2-player runs, each of them requiring 2dlog2 (d1 + d2 + d3)e queries. In general, the

ith round terminates after i · 2dlog2

(i+1∑
j=1

dj

)
e queries at most. The number of rounds is n− 1. Now we add up

the total number of queries.

n−1∑
i=1

[
2i ·
⌈
log2

(i+1∑
j=1

dj

)⌉]
≤
n−1∑
i=1

[
2i ·
⌈
log2

(n∑
j=1

dj

)⌉]
=

n−1∑
i=1

[
2i ·
⌈
log2D

⌉]
= n(n− 1) · dlogDe

The following example proves that the calculated bound can indeed be reached asymptotically in instances
with an arbitrary number of players.

Example 1. The estimation for the query number is asymptotically sharp if
⌈
log2

(i+1∑
j=1

dj

)⌉
=
⌈
log2D

⌉
holds

for at least a fixed portion of all 1 ≤ i ≤ n−1, say, for the third of them. This is easy to reach if n is a sufficiently
large power of 2 and all but one players have demand 1, while there is another player with demand 2. Notice
that this holds for every order for the agents. If one sticks to a decreasing order of demand when indexing the
players, then not only asymptotic, but also strict equality can be achieved by setting d1 much larger than all
other demands.

4 Our protocol

In this section, we present a simple and elegant protocol that beats all three above mentioned protocols in
query number. Our main idea is that we recursively render the players in two batches so that these batches
can simulate two players who aim to cut the cake into two approximately equal halves. For now we work with
the standard cake and query model defined in Section 2. Later, in Section 5.3 we will show how our protocol
can be extended to a more general cake. We remind the reader that cutting near-halves means to cut in ratio
bD2 c : dD2 e.

To ease the notation we assume that the players are indexed so that when they mark the near-half of the
cake, the marks appear in an increasing order from 1 to n. In the subsequent rounds, we reindex the players to
keep this property intact. Based on these marks, we choose “the middle player”, this being the player whose
demand reaches the near-half of the cake when summing up the demands in the order of marks from left to
right. This player cuts the cake and each player is ordered to the piece her mark falls to. The middle player
is cloned if necessary so that she can play on both pieces. The protocol is then repeated on both generated
subinstances, with adjusted demands. In the subproblem, the players’ demands are according to the ratios
listed in the pseudocode.

0 1P3P2P1

2:3

1 1 12

0 10 1P1 P2 P2 P3

1:21:1

1 1

P1 P2 P2 0 1P2P3

1:1

P1 P2 P2 P3 P2

Fig. 1. The steps performed by our algorithm on Example 2. The colored intervals are the pieces already allocated to
a player.

Proportional division with unequal shares

Each player marks the near-half of the cake X.
Sort the players according to their marks.
Calculate the smallest index j such that bD2 c ≤

∑j
i=1 di =: a.

Cut the cake in two along Pj ’s mark.
Define two instances of the same problem and solve them recursively.

1. Players P1, P2, . . . , Pj share piece X1 on the left. Demands are set to d1, d2 . . . , dj−1, dj −
a+ bD2 c, while measure functions are set to µi · bD2 c/µi(X1), for all 1 ≤ i ≤ j.

2. Players Pj , Pj+1, . . . , Pn share piece X2 = X \ X1 on the right. Demands are set to a −
bD2 c, dj+1, dj+2, . . . , dn, while measure functions are set to µi·dD2 e/µi(X2), for all j ≤ i ≤ n.

Example 2. We present our protocol on an example with n = 3. Every step of the protocol is depicted in
Figure 1. Let d1 = 1, d2 = 3, d3 = 1. Since D = 5 is odd, all players mark the near-half of the cake in ratio 2:3.
The cake is then cut at P2’s mark, since d1 < bD2 c, but d1 + d2 ≥ bD2 c. The first subinstance will consist of
players P1 and P2, both with demand 1, whereas the second subinstance will have the second copy of player
P2 alongside P3 with demands 2 and 1, respectively. In the first instance, both players mark half of the cake
and the one who marked it closer to 0 will receive the leftmost piece, while the other player is allocated the
remaining piece. The players in the second instance mark the cake in ratio 1 : 2. Suppose that the player
demanding more marks it closer to 0. The leftmost piece is then allocated to her and the same two players
share the remaining piece in ratio 1 : 1. The player with the mark on the left will be allocated the piece on
the left, while the other players takes the remainder of the piece. These rounds require 3 + 2 + 2 + 2 = 9
proportional cut queries and no eval query.

Theorem 3. Our “Protocol for proportional division with unequal shares” terminates with a proportional
division.

Proof. We provide detailed calculations for the first subinstance only, because analogous calculations can easily
be obtained for the second subinstance. First we observe that dj−a+ bD/2c = bD/2c−

∑j−1
1 di is positive by

the definition of j. Now we have to ensure that the subinstance is generated in such a manner that all players
evaluate the full cake X1 of the first subinstance equally and to the sum of all their demands. In the case of
the first subinstance, the sum of demands is

∑j
i=1 di − a+ bD2 c = bD2 c. This will be the measure of the cake

X1 for all players. To achieve this, µ1, µ2, . . . , µj need to be adjusted. Each µi will become in this subinstance

µi1 = µi ·
bD2 c
µi(X1)

.

If Pi, 1 ≤ i < j receives a piece of worth di, then in the original instance, it is of worth

di ·
µi(X1)

bD2 c
≥ di,

because µi(X1) ≥ µj(X1) = bD2 c, due to the cutting rule in our protocol. With this we have shown that every
player appearing only in the first subinstance is guaranteed to gain her proportional share. An analogous proof
works for players Pj+1, Pj+2, . . . , Pn. The last step is to show that Pj collects her proportional share from the
two subinstances.

The only player whose measure function certainly need not be adjusted is Pj . It is because µj(X1) = bD2 c,
thus µj1 = µj ·

bD2 c
µj(X1)

= µj . Therefore, if Pj receives her proportional share dj − a+ bD2 c and a− bD2 c in the

two subinstances, then in the original instance her piece is worth dj at least.

Having shown its correctness, we now present our estimation for the number of queries our protocol needs.

Theorem 4. For any 2 ≤ n and n < D, the number of queries in our n-player protocol on a cake of total
value D is T (n,D) ≤ 2(n− 1) · dlog2De.

Proof. If n = 2, then our algorithm simulates the Cut Near-Halves algorithm—except that it uses cut queries
exclusively—and according to Theorem 1 it requires 2dlog2De queries at most. This matches the formula
stated in Theorem 4. From this we prove by induction. For n > 2, the following recursion formula corresponds
to our rules.

T (n,D) = n+ max
1≤i≤n

{
T (i, bD

2
c) + T (n− i+ 1, dD

2
e)
}

We now substitute our formula into the right side of this expression.

n+ max
1≤i≤n

{
T (i, bD

2
c) + T (n− i+ 1, dD

2
e)
}

=

n+ max
1≤i≤n

{
2(i− 1)dlog2 b

D

2
ce+ 2(n− i)dlog2 d

D

2
ee
}
≤ (∗)

n+ max
1≤i≤n

{2(i− 1)(dlog2De − 1) + 2(n− i)(dlog2De − 1)} =

n+ 2(n− 1)(dlog2De − 1) =

−n+ 2 + 2(n− 1)dlog2De ≤
2(n− 1) · dlog2De = T (n,D)

The inequality marked by (∗) is trivially correct if D is even. For odd D, we rely on the fact that log2D cannot
be an integer.

dlog2 b
D

2
ce ≤ dlog2 d

D

2
ee = dlog2

D + 1

2
e = dlog2 (D + 1)− log2 2e = dlog2 (D + 1)e − 1 = dlog2De − 1

With a query number of O(n logD), our protocol is more efficient than all known protocols. We will now
point out a further essential difference in fairness when comparing to the fastest known protocol before our
result, the generalized Cut Near-Halves. Our protocol treats players equally, while the generalized Cut Near-
Halves does not. Equal treatment of players is a clear advantage if one considers the perception of fairness
from the point of view of a player.

We remark that our protocol is not truthful, which can be illustrated on a simple example. Take the 2-
player equal shares case with nonzero measure functions on any nonzero measure interval. If the player whose
mark is at the left knows the measure function of the other player, she can easily manipulate the outcome by
marking the half of the cake just before the mark of the other player. As a result, her piece will be larger than
what she receives if she reports the truth, unless their measure functions are special.

Remark 1. In the “Protocol for proportional division with unequal shares”

• each player answers the exact same queries as the other players in the same round and same subinstance;

• no player is asked to disclose the outcome of an eval query.

Proof. In any subinstance, our protocol asks each player to answer the same proportional cut query, namely
cutting the current cake to near-halves. Eval queries in these proportional queries are only utilized as technical
workarounds to determine the value of the piece that plays the cake in the current subinstance. Their result is
never revealed to any other player or even the protocol itself. The only outcome of the proportional cut query
is a mark at the near-half of the current cake. Moreover, there is no difference in the role of the players when
queries are asked, and no player is doomed to receive her exact share, like the cutter in Cut-and-Choose. If
we consider Cut-Near-Halves, being the cutter in the first round is the most undesired role, followed by being
a cutter in the second round, and so on. Our protocol forgoes this differentiation between the players, since it
addresses the same queries to each player in a round, and the cake will be cut at the mark of the player whose
demand happens to reach bD2 c when the demands are summed up in order of the marks on the cake.

The generalized Cut Near-Halves protocol fails to satisfy both of the above points. It addresses both eval
and cut queries to players and treats players differently based on which type of query they got. In the 2-player
version of Cut Near-Halves, only one player marks the cake and the other player uses an eval query to choose
a side. This enables the second player to have a chance for a piece strictly better than half of the cake, while
the first player is only entitled for her exact proportional share and has no chance to receive more than that.
Besides this, the player who is asked to evaluate a piece might easily speculate that she was offered the piece
because the other player cut it off the cake—and thus gain information about the measure function of the
other player.

However, the remark is true for the Even-Paz protocol for proportional division with equal shares, which
can be utilized in our problem through the cloning technique. As mentioned in Section 3, it needs O(D logD)
proportional cut queries. The more efficient generalized Cut Near-Halves protocol only needs O(n2 logD)
queries, but it treats players differently. Our protocol adheres to the equal treatment of players principle and
beats both protocols in efficiency.

5 Generalizations

In this section we introduce a far generalization of cake cutting, where the cake is a measurable set in arbitrary
finite dimension and cuts are defined by a monotone function. At the end of the section we prove that even in
the generalized setting, O(n logD) queries suffice to construct a proportional division.

5.1 A general cake definition

Our players remain {P1, P2, . . . , Pn} with demands di ∈ Z+, but the cake is now a Lebesgue-measurable subset
X of Rk such that 0 < λ(X) <∞. Each player Pi has a non-negative, absolutely continuous measure function
µi defined on the Lebesgue-measurable subsets of X. An important consequence of this property is that for
every Z ⊆ X, µi(Z) = 0 if and only if λ(Z) = 0. The value of the whole cake is identical for all players, in
particular it is the sum of all demands:

∀1 ≤ i ≤ n µi(X) = D =

n∑
j=1

dj .

A measurable subset Y of the cake X is called a piece. The volume of a piece Y is the value λ(Y) taken by
the Lebesgue-measure on Y . The cake X will be partitioned into pieces X1, . . . , Xn.

Definition 3. A set {Xi}1≤i≤n of pieces is a division of X if
⋃

1≤i≤n
Xi = X and Xi ∩ Xj = ∅ holds for all

i 6= j. We call division {Xi}1≤i≤n proportional if µi(Xi) ≥ di holds for all 1 ≤ i ≤ n.

We will show in Section 5.3 that a proportional division always exists.

5.2 A stronger query definition

The more general cake clearly requires a more powerful query notion. Cut and eval queries are defined on an
arbitrary piece (i.e. measurable subset) I ⊆ X. Beyond this, each cut query specifies a value α ∈ R+ and a
monotone mapping f : [0, λ(I)] → 2I (representing a moving knife) such that f(x) ⊆ f(y) and λ(f(x)) = x
holds for every 0 ≤ x ≤ y ≤ λ(I).

• Eval query (Pi, I) returns µi(I).
• Cut query (Pi, I, f, α) returns an x ≤ λ(I) with µi(f(x)) = α or an error message if such an x does not

exist.

As queries involve an arbitrary measurable subset I of X, our generalized queries automatically cover the
generalization of the previously discussed Edmonds-Pruhs queries, proportional queries and reindexing. If we
restrict our attention to the usual unit interval cake [0, 1], generalized queries open up a number of new
possibilities for a query, as Example 3 shows.

Example 3. On the unit interval cake the following rules qualify as generalized queries.

• Evaluate an arbitrary measurable set.
• Cut a piece of value α surrounding a point x so that x is the midpoint of the cut piece.
• For disjoint finite sets A and B, cut a piece Z of value α such that Z contains the ε-neighborhood of A

and avoids the ε-neighborhood of B for a maximum ε.
• Determine x such that the union of intervals [0, x], [1n ,

1
n + x], . . . , [n−1n , n−1n + x] is of value α.

The new notions also allow us to define cuts on a cake in higher dimensions.

Example 4. Defined on the generalized cake X ⊆ Rk, the following rules qualify as generalized queries.

• Evaluate an arbitrary measurable set.
• Cut a piece of value α of piece I so that the cut is parallel to a given hyperplane.
• Multiple cut queries on the same piece I ⊂ R2: one player always cuts I along a horizontal line, the other

player cuts the same piece along a vertical line.

5.3 The existence of a proportional division

Our algorithm “Proportional division with unequal shares” in Section 4 extends to the above described general
setting and hence proves that a proportional division always exists.

Theorem 5. For any 2 ≤ n and n < D, the number of generalized queries in our n-player protocol on the
generalized cake of total value D is T (n,D) ≤ 2(n− 1) · dlog2De.

Proof. The proof of Theorem 1 carries over without essential changes, thus we only discuss the differences
here. First we observe that proportional queries in ratio a : b can still be substituted by a constant number
of eval and cut queries. In the generalized model, proportional query (Pi, I, f, a, b) returns x ≤ λ(I) such that
b · µi(f(x)) = a · µi(I \ f(x)). Similarly as before, Pi first measures I by a single eval query and then uses
the cut query (Pi, I, f, α) with α = a

a+b · µi(I). In the first round of our generalized algorithm, all players are
asked to cut the cake X in near-halves using the same f function. Then Pj is calculated, just as in the simpler
version and we cut X into the two near-halves according to Pj ’s f -cut and clone Pj if necessary. Due to the
monotonicity of f , this sorts each player to a piece she values at least as much as the full demand on all players
sorted to that piece. Subsequent rounds are played in the same manner.

The query number for n = 2 follows from the fact that each of the two players are asked a proportional
cut query in every round until recursively halving dD2 e reaches 1, which means dlog2De queries in total.
The recursion formula remains intact in the generalized model, and thus the query number T (n,D) = 2(n −
1)dlog2De too.

6 The lower bound

In this section, we prove our lower bound on the number of queries any deterministic protocol needs to make
when solving the proportional cake cutting problem with unequal shares. This result is valid in two relevant
settings: 1. on the [0, 1) cake with Robertson-Webb or with generalized queries, 2. on the general cake and
queries introduced in Section 5.

The lower bound proof is presented in two steps. In Section 6.1 we define a single-player cake-cutting
problem where the goal is to identify a piece of small volume and positive value for the sole player. For this
problem, we design an adversary strategy and specify the minimum volume of the identified piece as a function
of the number of queries asked. In Section 6.2 we turn to the problem of proportional cake cutting with unequal
shares. We show that in order to allocate each player a piece of positive value, at least Ω(n logD) queries must
be addressed to the players—otherwise the allocated pieces overlap.

6.1 The single-player problem

We define our single-player problem on a generalized cake of value D, a player P and her unknown measure
function µ. The aim is to identify a piece of positive value according to µ by asking queries from P . The
answers to these queries come from an adversary strategy we design. We would like to point out that the
single-player thin-rich game of Edmonds and Pruhs [11] defined on the unit interval cake has a different goal.
There, the player needs to receive a piece that has value not less than 1 and width at most 2. Moreover, their
proof for the n-player problem is restricted to instances with n = 2 · 3`, ` ∈ Z+, whereas ours is valid for any
n ∈ Z+.

In our single-player problem, a set of queries reveals information on the value of some pieces of the cake.
Each generalized eval query (P, I) partitions the cake into two pieces; I and X \ I. An executed cut query
(P, I, f, α) with output x partitions the cake into three; f(x), I \ f(x) and X \ I. To each step of a protocol
we define the currently smallest building blocks of the cake, which we call crumbles. Two points of X belong
to the same crumble if and only if they are in the same partition in all queries asked so far. At start, the
only crumble is the cake itself and every new query can break an existing crumble into more crumbles. More
precisely, q queries can generate 3q crumbles at most. Crumbles at any stage of the protocol partition the
entire cake. The exact value of a crumble is not necessarily known to the protocol and no real subset of a
crumble can have a revealed value. As a matter of fact, the exact same information are known about the value
of any subset of a crumble.

Example 5. In Figure 2 we illustrate an example for crumbles on the unit interval cake after two queries.
The upper picture depicts a cut query defined on the green set I. It generates a piece of value α so that it
contains the ε-neighborhood of points A1, A2, A3 for maximum ε. This piece is marked red in the figure and it
is a crumble. The second crumble at this point is the remainder of I (marked in green only), while the third
crumble is the set of points in black. These three crumbles are illustrated in the second picture. The second
query evaluates the blue piece in the third picture. It cuts the existing crumbles into 6 crumbles in total, as
depicted in the bottom picture.

We now proceed to construct an adversary strategy that bounds the volume of any crumble C with
µ(C) > 0. Our adversary can actually reveal more information than asked; we allow her to disclose the value
of each crumble in the cake. When a query is asked, the answer is determined based on the parameters of
the query and the current set of crumbles, which we denote by C. Together with the answer to the query, the
adversary also specifies the new set of crumbles Cnew together with µ(Cnew) for each Cnew ∈ Cnew. In the next
query, this Cnewwill serve as the current set of crumbles C. The adversary answers the queries in accordance
to the following rules, which are also stated in a pseudocode below.

• eval query (C, I)
This query changes the structure of the crumble set C in such a way that each crumble C ∈ C is split into
exactly two new crumbles C ∩ I and C \ I, both of which might be empty (lines 1-2). If the part inside
the crumble is at least as large as the other part, then the adversary assigns the full vale of C to C ∩ I
(lines 3-5). Otherwise, the outer part C \ I will get the entire value (lines 6-8). The answer to the eval
query is the total value of new crumbles that lie in I (line 11).

0 1A1 A2 A3

cut

0 1
3 crumbles

0 1
eval

0 1
6 crumbles

Fig. 2. The crumble partition after two queries in Example 5. We marked each of the 6 crumbles by a different color
in the bottom picture.

• cut query (C, I, f, α)
Each cut query is executed in two rounds. In the first round (lines 12-22) we define new crumbles C \ I
(line 13) and intermediate crumbles C ∩ I (line 14) for all crumbles C ∈ C. If λ(C ∩ I) ≥ 2/3 · λ(C) then
C ∩ I inherits the entire value of C (lines 15-17), otherwise C \ I carries all the value of C (lines 18-20).
The new crumbles are set aside until the next query arrives, while the intermediate crumbles will be the
crumbles of the second round (lines 23-45).
If the total value of these intermediate crumbles is less than α, then an error message is returned indicating
that I is not large enough to be cut off a piece of value α (lines 23-24). Otherwise, for each intermediate
crumble Cinti we define the value xi for which f(xi) halves Cinti in volume (lines 26-28). We then reorder
the indices of intermediate crumbles according to these xi values (line 29). Now we find the index k for

which
∑k−1
i=1 µ(Cinti) < α ≤

∑k
i=1 µ(Cinti).

The set of new crumbles will now be completed by adding sets
{
Cinti ∩ f(xk)

}
and

{
Cinti \ f(xk)

}
to it

(lines 31-32). The value of these new crumbles is specified depending on the index i of Cinti . If i < k, then
the crumble in f(xk) inherits the full value of the intermediate crumble (lines 34-36). If i > k, then the
crumble outside of f(xk) inherits the value of the intermediate crumble (lines 37-39). Finally, for i = k,
the crumble inside f(xk) receives all of α that has not been assigned to new crumbles inside f(xk) with a
smaller index (line 41). After this, the crumble outside of f(xk) gets the remainder of µ(Cintk) (line 42).
At last, the algorithm returns x = xk (line 44).

Once all queries have been answered according to the above rules, the player is allocated a piece Z ⊆ X.
The adversary specifies µ(Z) as the total value of those crumbles that are subsets of Z.

Having described and demonstrated our adversary strategy, we now turn to proving our key lemma on the
volume of pieces that carry a positive value.

Lemma 1. After q queries in the single-player problem, the volume of any piece with positive value is at least
D
3q .

Proof. Due to the last rule of the adversary strategy, the volume of any piece with positive value is bounded
from below by the volume of any crumble with positive value. We will now argue that eval and cut queries
assign positive value to crumbles whose volume is at least a third of the volume of the previous crumble.

At the very beginning of the protocol, for q = 0, the only crumble is X itself, with volume D
30 . Eval queries

assign positive value to crumbles that are at least as large as half of the previous crumble they belonged to
prior to the query. If a new crumble with positive value was created in the first round of a cut query, then
its volume was at least one third of a previous crumble (lines 13 and 20). Otherwise, the new crumble with
positive value was an intermediate crumble Cinti in the second round. The first round of our algorithm assigns
positive value to an intermediate crumble only if it was at least two-thirds of the old crumble in the input of
the cut query (lines 14-15). This round will now cut Cinti into two new crumbles (line 32). If i 6= k, then the
larger of these will inherit the value of the intermediate crumble (lines 35 and 39). Otherwise, if i = k, then
Cinti is cut into exact halves (lines 41-42). All in all, new crumbles that are assigned a positive value in the

ALGORITHM 1: Adversary strategy

Eval query (C, I)
1 for ∀C ∈ C do
2 Cnew ← Cnew ∪ {C ∩ I} ∪ {C \ I}
3 if λ(C ∩ I) ≥ 1

2
λ(C) then

4 µ(C ∩ I)← µ(C)
5 µ(C \ I)← 0

6 else
7 µ(C ∩ I)← 0
8 µ(C \ I)← µ(C)

9 end

10 end
11 return

∑
Cnew∈Cnew,Cnew⊆I µ(Cnew)

Cut query (C, I, f, α)
12 for ∀C ∈ C do
13 Cnew ← Cnew ∪ {C \ I}
14 Cint ← Cint ∪ {C ∩ I}
15 if λ(C ∩ I) ≥ 2

3
λ(C) then

16 µ(C ∩ I)← µ(C)
17 µ(C \ I)← 0

18 else
19 µ(C ∩ I)← 0
20 µ(C \ I)← µ(C)

21 end

22 end

23 if
∑

Cint∈Cint µ(Cint) < α then
24 return error
25 else
26 for ∀Cint

i ∈ Cint do
27 find xi ∈ R so that λ(Cint ∩ f(xi)) = 1

2
λ(Cint

i)
28 end

29 reorder [i] in Cint
i so that x1 ≤ x2 ≤ . . .

30 find k ∈ Z so that
∑k−1

i=1 µ(Cint
i) < α ≤

∑k
i=1 µ(Cint

i)

31 for ∀Cint
i ∈ Cint do

32 Cnew ← Cnew ∪
{
Cint

i ∩ f(xk)
}
∪
{
Cint

i \ f(xk)
}

33 end
34 if i < k then
35 µ(Cint

i ∩ f(xk))← µ(Cint
i)

36 µ(Cint
i \ f(xk))← 0

37 else if i > k then
38 µ(Cint

i ∩ f(xk))← 0

39 µ(Cint
i \ f(xk))← µ(Cint

i)

40 else

41 µ(Cint
k ∩ f(xk))← α−

∑k−1
i=1 µ(Cint

i)

42 µ(Cint
k \ f(xk))← µ(Cint

k) +
∑k−1

i=1 µ(Cint
i)− α

43 end
44 return xk
45 end

second round are of volume at least half of two-thirds of the volume of the original crumble in the input of the
query.

6.2 The n-player problem

We now place our single-player problem into the framework of the original problem. The instance we construct
has c1n players whose demand sums up to c2n, where c1 and c2 are arbitrary constants between 0 and 1.
We call these players humble, because their total demand is modest compared to the number of them. The
remaining (1−c1)n players share a piece of worth D−c2n. These players are greedy, because their total demand
is large. The simplest such instance is where n− 1 humble players have demand 1, and the only greedy player
has demand D− (n−1). We fix the measure function of every greedy player to be the Lebesgue-measure. This
enforces humble players to share a piece of volume c2D among themselves. Lemma 1 guarantees that after qi
queries addressed to Pi, the volume of any piece carrying positive value for Pi is at least D

3qi . We now sum up
the volume of the pieces allocated to humble players in any proportional division.

c1n∑
i=1

D

3qi
≤ c2n

We divide both sides by c1nD.

1

c1n

c1n∑
i=1

3−qi ≤ c2
c1D

For the left side of this inequality, we use the well known inequality for the arithmetic and geometric means
of non-negative numbers.

c1n

√
3−

∑c1n
i1

qi ≤ c2
c1D

Taking the logarithm of both sides leads to the following.

1

c1n

(
−
c1n∑
i1

qi

)
≤ log3

c2
c1
− log3D

With this, we have arrived to a lower bound on the number of queries.

c1n∑
i1

qi ≥ c1n
(

log3D + log3

c1
c2

)
∼ Ω(n log3D)

This proves that one needs Ω(n logD) queries to derive a proportional division for the humble players in
the instance. Moreover, if c1 and c2 are known, a more accurate bound can be determined using our formula
c1n (log3D − log3 c2 + log3 c1). This suggests that the problem becomes harder to solve if the c1n humble
players vastly outnumber the greedy players. In the c1n = n− 1 case we mentioned earlier, the query number
is at least (n− 1) log3D.

We can now conclude our theorem on the lower bound.

Theorem 6. To construct a proportional division in an n-player unequal shares cake cutting problem with
demands summing up to D one needs Ω(n logD) queries.

7 Irrational demands

In this section we consider the case when some demands are irrational numbers. Apart from this, our setting
is exactly the same as before. Even though two direct protocols have been presented for the problem of
proportional cake cutting with irrational demands [1, 21], we feel that our protocol sheds new light to the
topic. The complexity of all known protocols for irrational shares falls into the same category: finite but
unbounded. Shishido and Zeng [21] present a protocol that is claimed to be simpler than the one of Barbanel
[1]. First they present a 2-player protocol, in which one player marks a large number of possibly overlapping
intervals that are worth the same for her. The other player then chooses one of these so that it satisfies her
demand. The authors then refer to the usual inductive method to the case of n players, in which the n-th
player shares each of the n− 1 pieces the other players have already obtained. This procedure is cumbersome
compared to our protocol that reduces the problem to one with rational demands or decreases the number of
players. Moreover, our method works on our generalized cake and query model.

Let us choose an arbitrary piece A ⊆ X such that µi(A) > 0 for all players Pi. If the players share A
and X \ A in two separate instances, both in their original ratio d1 : d2 : . . . : dn, then the two proportional
divisions will give a proportional d1 : d2 : . . . : dn division of X itself. Assume now that µi(A) < µj(A) for
some players Pi and Pj , and some piece A ⊆ X. When generating the two subinstances on A and X \ A,
we reduce di on A to 0 and increase it in return on X \ A and swap the roles for dj , increasing it on A and
decreasing it on X \ A. The first generated instance thus has n − 1 players with irrational demands, while
the second instance has n players with irrational demands. We will show in Lemma 3 that if we set the right
new demands in these instances, the two proportional divisions deliver a proportional division of X. The key
point we prove in Lemma 4, which states that the demands in the second subinstance sum up to slightly
below all players’ evaluation of X \ A. Redistributing the slack as extra demand among players gives us the
chance to round the demands up to rational numbers in the second subinstance and keep proportionality in
the original instance. Iteratively breaking up the instances into an instance with fewer players and an instance
with rational demands leads to a set of instances with rational demands only.

We now describe our protocol in detail. Without loss of generality we can assume that d1 ≤ d2 ≤ . . . ≤ dn.
As a first step, P1 answers the cut query with x = d1 and I = X. We denote the piece in f(d1) by A and ask
all players to evaluate A. Let Pj be one of the players whose evaluation is the highest. Notice that µj(A) ≥ d1,
because µ1(A) = d1. We distinguish two cases from here.

1. If µj(A) = d1, then µi(A) ≤ d1 for all players. We allocate A to P1 and continue with an instance I1
with n − 1 players having the same demands as before. The measure functions need to be normalized to
D−d1

D−µi(A) · µi for all i 6= 1 so that all players of I1 evaluate X \A to D − d1.

2. Otherwise, µj(A) = d1 + ε, where ε > 0. We generate instances I2a and I2b.
(a) In the first instance I2a, the cake is A, P1’s demand is 0, Pj ’s demand is dj +d1, while all other players

keep their original di demand. In order to make all players evaluate the full cake to the sum of their
demands D, measure functions are modified to D

µi(A) · µi.
(b) In the second instance I2b, the cake is X \A, P1’s demand is d1 +

d21
D−d1 , Pj ’s demand is dj− d1(d1+ε)

D−(d1+ε) ,

while the original di demands are kept for all other players. In order to make all players evaluate the
full cake to D, we set D

D−µi(A) · µi.

Proportional division with irrational demands

P1 marks d1 → A. All players evaluate A. Pj has the highest evaluation.

If µj(A) = d1, then allocate A to P1 and
continue with n− 1 players on I1.

Otherwise µj(A) = d1 + ε. Define two
instances I2a and I2b. While I2a has n − 1
players, demands in I2b sum up to below D
and thus can be rationalized.

I1 I2a I2b
cake X \A A X \A
d1 0 0 d1 +

d21
D−d1

dj dj dj + d1 dj − d1(d1+ε)
D−(d1+ε)

di di di di
µi

D−d1
D−µi(A)µi

D
µi(A)µi

D
D−µi(A)µi

Lemma 2. A proportional division in I1 extends to a proportional division in the original problem once P1’s
allocated piece A is added to it.

Proof. Clearly P1 is satisfied with A, since µ1(A) = d1. In any proportional division in I1, every player Pi,

i 6= 1 is guaranteed to receive a piece that is worth at least D−µi(A)
D−d1 · di ≥ di for her in the original instance.

Lemma 3. If each player receives her demanded share in I2a and I2b, then the union of these pieces gives a
proportional division in the original problem.

Proof. We calculate the share of each player for the case when each player receives a piece satisfying her
demand in I2a and I2b.

• d1: 0 + (d1 +
d21

D−d1) · D−d1D = d1

• dj : (dj + d1) · d1+εD + (dj − d1·(d1+ε)
D−(d1+ε)) ·

D−(d1+ε)
D = dj

• di, i /∈ {1, j}: di · d1+εD + di · D−(d1+ε)D = di

Lemma 4. By slightly increasing all demands, I2b can be transformed into an instance of proportional cake
cutting with rational demands.

Proof. The key observation here is that there is a slack in the demands, meaning that demands in I2b sum up
to strictly below D, which is the evaluation of all players of the full cake X \ A. The sum of the demands is
the following.

d1 +
d21

D − d1
+ dj −

d1 · (d1 + ε)

D − (d1 + ε)
+

∑
i/∈{1,j}

di =

n∑
i=1

di +
d21

D − d1
− d1 · (d1 + ε)

D − (d1 + ε)
< D

The inequality above follows from the fact that
d21

D−d1 <
d1(d1+ε)
D−(d1+ε) for all ε > 0.

The slack can be distributed as extra demand among all players so that all demands are rational. An
implementation of this could be that we round up the irrational demands at a sufficiently insignificant digit.

Theorem 7. Any instance of the proportional cake cutting problem with n players and irrational demands
can be transformed into at most n− 1 proportional cake cutting problems with rational demands and thus can
be solved using a finite number of queries.

Proof. We prove this theorem by induction. For n = 2, we need to show that the problem with irrational
demands can be reduced to at most one proportional cake cutting problem with rational demands. For two
players, our protocol proceeds as follows. First P1 marks a piece X that is worth d1 for her. Now we ask P2

to evaluate X. If µ2(A) ≤ d1, then P1 is allocated X and P2 is satisfied with I \X, because µ2(I \X) ≥ d2.
Otherwise, if µ2(X) = d1 + ε for some ε > 0, then P2 is allocated X and the two players share I \ X with

demands d1 +
d21
d2

and d2− d1(d1+ε)
d2−ε . These demands ensure a proportional share to both players, as we show in

Lemma 3. Moreover, applying Lemma 4 to two players proves that they sum up to strictly below d1 + d2 and
thus can be rounded up to rational numbers, which gives us the single 2-player problem that must be solved
in order to derive a proportional division for the original problem.

Assume now that an n−1-player proportional cake cutting problem with irrational demands can be solved
by transforming it into n − 2 proportional cake cutting problems with rational demands. If we are given an
n-player proportional cake cutting problem with irrational demands, our “Proportional division with irrational
demands” protocol transforms it into either I1 or to a problem with two instances, I2a and I2b. Solving either
of those problems will lead to a proportional division in the original n-player problem, as Lemmas 2 and 3
show. The first instance is an n− 1 player proportional cake cutting problem with irrational demands, which
can be solved via n − 2 proportional cake cutting problems with rational demands by our assumption. The
same is true for I2a. As of I2b, Lemma 4 proves that its demands can be rounded up to rational numbers. Even
in the worst case, when our protocol generates I2a and I2b in every recursive step, it ends up constructing
n− 1 instances with rational demands.

We would like to emphasize that even though we have transformed any proportional cake cutting problem
with irrational demands into a set of problems with rational demands, we did not show any upper bound on
its query complexity. When the problems with rational demands are created, D might grow arbitrarily large,
which hugely affects the query number.

Acknowledgment We thank Simina Brânzei and Erel Segal-Halevi for their generous and insightful advice.

Bibliography

[1] Barbanel, J.B.: Game-theoretic algorithms for fair and strongly fair cake division with entitlements. In:
Colloquium Mathematicae. vol. 69, pp. 59–73 (1996)

[2] Barbanel, J.B., Brams, S.J., Stromquist, W.: Cutting a pie is not a piece of cake. The American Mathe-
matical Monthly 116(6), 496–514 (2009)

[3] Beck, A.: Constructing a fair border. The American Mathematical Monthly 94(2), 157–162 (1987)
[4] Berliant, M., Thomson, W., Dunz, K.: On the fair division of a heterogeneous commodity. Journal of

Mathematical Economics 21(3), 201–216 (1992)
[5] Brams, S.J., Jones, M.A., Klamler, C.: Proportional pie-cutting. International Journal of Game Theory

36(3), 353–367 (2008)
[6] Brams, S.J., Jones, M.A., Klamler, C.: Divide-and-conquer: A proportional, minimal-envy cake-cutting

algorithm. SIAM review 53(2), 291–307 (2011)
[7] Carney, E.: A new algorithm for the cake-cutting problem of unequal shares for rational ratios: the divisor

reduction method. Scientific Terrapin 3(2), 15–22 (2012)
[8] Cohler, Y.J., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Optimal envy-free cake cutting. In: 25th AAAI

Conference on Artificial Intelligence (2011)
[9] Dall’Aglio, M.: The Dubins–Spanier optimization problem in fair division theory. Journal of Computa-

tional and Applied Mathematics 130(1), 17–40 (2001)
[10] Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. The American Mathematical Monthly 68(1), 1–17

(1961)
[11] Edmonds, J., Pruhs, K.: Cake cutting really is not a piece of cake. ACM Transactions on Algorithms

(TALG) 7(4), 51 (2011)
[12] Even, S., Paz, A.: A note on cake cutting. Discrete Applied Mathematics 7(3), 285–296 (1984)
[13] Hill, T.P.: Determining a fair border. The American Mathematical Monthly 90(7), 438–442 (1983)
[14] Iyer, K., Huhns, M.N.: A procedure for the allocation of two-dimensional resources in a multiagent system.

International Journal of Cooperative Information Systems 18(03n04), 381–422 (2009)
[15] Magdon-Ismail, M., Busch, C., Krishnamoorthy, M.S.: Cake-cutting is not a piece of cake. In: 20th Annual

Symposium on Theoretical Aspects of Computer Science. pp. 596–607. Springer Berlin, Heidelberg (2003)
[16] McAvaney, K., Robertson, J., Webb, W.: Ramsey partitions of integers and pair divisions. Combinatorica

12(2), 193–201 (1992)
[17] Procaccia, A.D.: Cake cutting: not just child’s play. Communications of the ACM 56(7), 78–87 (2013)
[18] Procaccia, A.D.: Cake cutting algorithms. In: Handbook of Computational Social Choice, chapter 13.

Citeseer (2015)
[19] Robertson, J., Webb, W.: Cake-cutting algorithms: Be fair if you can. Natick: AK Peters (1998)
[20] Segal-Halevi, E., Nitzan, S., Hassidim, A., Aumann, Y.: Fair and square: Cake-cutting in two dimensions.

Journal of Mathematical Economics 70, 1–28 (2017)
[21] Shishido, H., Zeng, D.Z.: Mark-choose-cut algorithms for fair and strongly fair division. Group Decision

and Negotiation 8(2), 125–137 (1999)
[22] Steinhaus, H.: The problem of fair division. Econometrica 16, 101–104 (1948)
[23] Woeginger, G.J., Sgall, J.: On the complexity of cake cutting. Discrete Optimization 4(2), 213–220 (2007)

	cake_muhely.pdf
	The complexity of cake cutting with unequal shares

