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Recursive Partitioning and Tree-based
Methods

Heping Zhang

Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034.
heping.zhang@yale.edu; http://peace.med.yale.edu

1 Introduction

Tree-based methods have become one of the most flexible, intuitive, and pow-
erful data analytic tools for exploring complex data structures. The applica-
tions of these methods are far reaching. They include financial firms (credit
cards: Altman, 2002; Frydman et al., 2002, and investments: Pace, 1995; Bren-
nan et al., 2001), manufacturing and marketing companies (Levin et al., 1995),
and pharmaceutical companies.

The best documented, and arguably most popular uses of tree-based meth-
ods are in biomedical research for which classification is a central issue. For
example, a clinician or health scientist may be very interested in the following
question (Goldman et al., 1996, 1982; Zhang et al., 2001): Is this patient with
chest pain suffering a heart attack, or does he simply have a strained muscle?
To answer this question, information on this patient must be collected, and a
good diagnostic test utilizing such information must be in place. Tree-based
methods provide one solution for constructing the diagnostic test.

Classification problems also frequently arise from engineering research.
Bahl et al. (1989) introduced a tree-based language model for natural language
speech recognition. Desilva and Hull (1994) used the idea of decision trees to
detect proper nouns in document images. Geman and Jedynak (1996) used
a related idea to form an active testing model for tracking roads in satellite
images. In addition, decision trees have been used in scientific and social
studies including astronomy (Owens et al., 1996), chemistry (Chen et al., 1998)
and politics (http://www.dtreg.com/housevotes.htm). We will revisit some
of these applications later in detail.

Most commercial applications of tree-based methods have not been well-
documented through peer reviewed publications. In 1999 the author helped
the CLARITAS, a marketing company, apply a tree-based method as de-
scribed in Section 6 (Zhang, 1998) for marketing segmentation analysis. Tree-
based methods have also been frequently used in the drug development pro-
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cess. The author has personally provided consultations to Aventis, Inc. for
drug approvals.

The purpose of this article is to provide an overview for the construction
of the decision trees, and, particularly, the recursive partitioning technique,
which is the thrust of this methodology. In their early applications, tree-based
methods were developed primarily to facilitate the automation of classifica-
tions as an expert system (Breiman et al., 1984; Friedman, 1977; Wasson et
al., 1985), although Morgan and Sonquist (1963) were motivated by the need
to analyze survey data to identify interactions, particularly in the presence
of non-numerical predictors. More recently, classification trees have not only
been used for automated disease diagnosis, but also for selecting important
variables that are associated with a disease or any response of interest (Zhang
and Bracken, 1995, 1996; Zhang and Singer, 1999; Zhang et al., 2003, 2001).

There are different approaches to classification. First, it can be done in-
tuitively. For example, a physician or a group of physicians may use their
experience in caring for patients with chest pain to form a subjective opin-
ion or an empirical decision as to whether a new patient with chest pain is
likely to suffer a heart attack, and consequently, decide what treatment is
most appropriate. Secondly, methods in both statistical and machine learning
literature have been developed, such as Fisher linear discriminant analysis
(Fisher, 1936) and support vector machine (Cristianini and Shawe-Taylor,
2000). These methods have the parametric flavor in the sense that the classi-
fication rule has an explicit form with only a few parameters to be determined
from a given sample that is usually referred to as learning sample.

Classification trees belong to the third type of methods for which we al-
low a very general structure, e.g., the binary tree as displayed in Fig. 1, but
the number of “parameters” also needs to be determined from the data, and
this number varies. For this reason, classification trees are regarded as non-
parametric methods. They are adaptive to the data and are flexible, although
the large number of quantities (or parameters) to be estimated from the data
makes the classification rule more vulnerable to noise in the data.

To be more precise about the statistical problem, let us define the data
structure and introduce some notation. Suppose that we have observed p
covariates, denoted by a p-vector x, and a response y for n individuals. For
the ith individual, the measurements are

xi = (xi1, · · · , xip)′ and yi, i = 1, · · · , n.

The objective is to model the probability distribution of P (y |x) or a functional
of this conditional distribution.

To appreciate how these variables are characterized in real applications,
let us examine some of the published applications.

Example 1. Levin et al. (1995) described a probability-driven, customer-
oriented decision support system for the marketing decisions of the Franklin
Mint, a leading Philadelphia-based worldwide direct response marketer of
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Fig. 1. Classification Tree for Colon Cancer Diagnosis Based on Gene Expression
Data. Inside each node are the number of tumor (C) and normal (N) tissues. See
Zhang et al. (2001) for more details.

quality collectibles and luxury home decor products. The purpose of the sys-
tem is to target the“right” audience for each promotion from among a very
large marketing database, based on the customers’ attributes and characteris-
tics. In this case, the customers’ attributes and characteristics constitute the
x variables. Whether the targeted client is desirable or not forms the basis for
the response y.

Example 2. To screen large chemical databases in corporate collections
and chemical libraries, Chen et al. (1998) used recursive partitioning to de-
velop three-dimensional pharmacophores that can guide database screening,
chemical library design, and lead optimization. Their idea was to encode the
three-dimensional features of chemical compounds into bit strings, and those
features are the x variables. Then, those features are selected in relation to
the biological activities (i.e., y) of the compounds. Here, each compound con-
tributes an observation. Using this idea, the authors successfully retrieved
three-dimensional structure-activity relationships from a large heterogeneous
dataset of 1644 monoamine oxidase inhibitors. We will revisit this example in
detail in Section 4.

Like any multivariate regression model and as we can see from the above
examples, the covariates or predictors in x may contain variables that can be
categorical (nominal or ordinal) or continuous. For example, ethnicity is usu-
ally treated as categorical data and age as continuous. Some of the covariates
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may have missing values, and we will discuss how missing values are handled
in the tree framework. In a nutshell, unlike what is usually done in a simple
linear regression, observations with missing information are not omitted from
classification trees.

Not only can we have mixed types of predictors, but also the response
variable can be discrete (binary or multiclass), continuous, and sometimes
censored. The characteristics of the response, y, determines the method for
estimating P (y |x). We will review a variety of tree-based methods that are
adaptable to the distribution of y. In Section 2, we will introduce the basic
idea of classification trees using a dichotomous response. Section 2 is followed
by some in-depth discussion of computational challenges and implementations
in Section 3 and by examples in Section 4 to illustrate how we can interpret
results from tree-based analyses. One of the most popular uses of tree-based
methods is in the analysis of censored data in which y is the time to an event
and is subject to censoring. As described in Section 5, such trees are referred
to as survival trees (Bacchetti and Segal, 1995; Carmelli et al., 1991, 1997;
Gordon and Olshen, 1985; Zhang, 1995). In Section 6, we will present an ex-
tension of the tree methodology to the classification of a response consisting
of multiple components such as an array of respiratory symptoms (Zhang,
1998). Finally, we will conclude in Section 7 with some remarks on relatively
recent developments such as forests and Bayesian trees. To illustrate the meth-
ods and their applications, some examples will be presented along with the
methods.

2 Basic Classification Trees

We have highlighted some applications of decision trees. Here, we will explain
how they are constructed. There has been a surge of interest lately in using
decision trees to identify genes underlying complex diseases. For this reason,
we will begin the explanation of the basic idea with a genomic example, and
then will also discuss other examples.

Zhang et al. (2001) analyzed a data set from the expression profiles of
2,000 genes in 22 normal and 40 colon cancer tissues (Alon et al., 1999). In
this data set, the response y equals 0 or 1 according to whether the tissue is
normal or with cancer. Each element of x is the expression profile for one of
the 2,000 genes. The objective is to identify genes and to use them to construct
a tree so that we can classify the tumor type according to the selected gene
expression profiles. Fig. 1 is a classification tree constructed from this data
set. In what follows, we will explain how such a tree is constructed and how
it can be interpreted.

2.1 Tree Growing and Recursive Partitioning

Tree construction usually comprises two steps: growing and pruning. The
growing step begins with the root node, which is the entire learning sample.



Recursive Partitioning and Tree-based Methods 5

In the present example, the root node contains the 62 tissues and it is labeled
as node 1 on the top of Fig. 1. The most fundamental step in tree growing is
to partition the root node into two subgroups, referred to as daughter nodes
, such that one daughter node contains mostly cancer tissue and the other
daughter node mostly normal tissue. Such a partition is chosen from all possi-
ble binary splits based on the 2,000 gene expression profiles via questions like
“Is the expression level of gene 1 greater than 200?” A tissue is assigned to
the right or left daughter according to whether the answer is yes or no. When
all of the 62 tissues are assigned to either the left or right daughter nodes, the
distribution in terms of the number of cancer tissues is assessed for both the
left and right nodes using typically a node impurity. One of such criteria is
the entropy function

it = −pt log(pt) − (1 − pt) log(1 − pt),

where pt is the proportion of cancer tissue in a specified node t. This function is
at its lowest level when pt = 0 or 1. In other words, there is the least impurity
when the node is perfect. On the other hand, it reaches the maximum when
pt = 1

2 , that is, the node is equally mixed with the cancer and normal tissues.
Let L and R denote the left and right nodes, respectively. The quality

of the split s, resulting from the question “Is the expression level of gene 1
greater than 200?” is measured by weighing iL and iR as follows:

gs = 1 − Pr(L)iL − Pr(R)iR, (1)

where Pr(L) and Pr(R) are probabilities of tissues falling into the left and
right nodes, respectively. The split with the lowest gs is ultimately chosen to
split the root node. This very same procedure can be applied to split the two
daughter nodes, leading to the so-called recursive partitioning process. This
process dies out as the sizes of the offspring nodes become smaller and smaller
and the distribution of the tissue type becomes more and more homogeneous.
The splitting stops when the node contains only one type of tissues.

The objective of the tree growing step is to produce a tree by executing
the recursive partitioning process as far as possible. A natural concern is that
such a saturated tree is generally too big and prone to noise. This calls for
the second step to prune the saturated tree in order to obtain a reasonably
sized tree that is still discriminative of the response whereas parsimonious for
interpretation and robust with respect to the noise.

2.2 Tree Pruning and Cost Complexity

For the purpose of tree pruning, Breiman et al. (1984) introduced misclassifi-
cation cost to penalize the errors of classification such as classifying a cancer
tissue as a normal one, and vice versa. The unit of misclassification cost is
chosen to reflect the seriousness of the errors because the consequence of clas-
sifying a cancer tissue as a normal one is usually more severe than classifying
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a normal tissue as a cancer one. A common practice is to assign a unit cost
for classifying a normal tissue as a cancer one and a cost, c, for classifying a
cancer tissue as a normal one. Once c is chosen, the class membership for any
node can be determined to minimize the misclassification cost. For example,
the root node of Fig. 1 is classified as a cancer node for any c chosen to be
greater than 22

40 . While c is usually chosen to be greater than 1, for the purpose
of illustration here, if it is chosen to be 0.5, the root node is classified as a
normal node because it gives rise to a lower misclassification cost.

When the class memberships and misclassification costs are determined
for all nodes, the misclassification cost for a tree can be computed easily by
summing all costs in the terminal nodes. A node is terminal when it is not
further divided, and other nodes are referred to as internal nodes. Precisely,
the quality of a tree, denoted by T, is reflected by the quality of its terminal
nodes as follows:

R(T ) =
∑

t∈T̃

Pr(t)R(t), (2)

where T̃ is the set of terminal nodes of tree T and R(t) the within-node
misclassification cost of node t.

The ultimate objective of tree pruning is to select a subtree of the saturated
tree so that the misclassification cost of the selected subtree is the lowest on an
independent, identically distributed sample, called a test sample. In practice,
we rarely have a test sample. Breiman et al. (1984) proposed to use cross
validation based on cost-complexity. They defined the number of the terminal
nodes of T, denoted by |T̃ |, as the complexity of T. A penalizing cost, the so-
called complexity parameter, is assigned to one unit increase in complexity,
i.e., one extra terminal node. The sum of all costs becomes the penalty for
the tree complexity, and the cost-complexity of a tree is:

Rα(T ) = R(T ) + α|T̃ |, (3)

where α(> 0) is the complexity parameter.
A useful and interesting result from Breiman et al. (1984) is that, for a

given complexity parameter, there is a unique smallest subtree of the satu-
rated tree that minimizes the cost-complexity measure (3). Furthermore, if
α1 > α2 the optimally pruned subtree corresponding to α1 is a subtree of
the one corresponding to α2. Therefore, increasing the complexity parameter
produces a finite sequence of nested optimally pruned subtrees, which makes
the selection of the desirably-sized subtree feasible.

Although the introduction of misclassification cost and cost complexity
provides a solution to tree pruning, it is usually a subjective and difficult
decision to choose the misclassification costs for different errors. Moreover,
the final tree can be heavily dependent on such a subjective choice. From
a methodological point of view, generalizing the concept of misclassification
cost is difficult when we have to deal with more complicated responses, which
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we will discuss in detail later. For these reasons, we prefer a simpler way for
pruning as described by Segal (1988) and Zhang and Singer (1999).

Let us now return to the example. In Fig. 1, the 62 tissues are divided
into four terminal nodes 2, 5, 6, and 7. Two of them (Nodes 2 and 7) contain
21 normal tissues and no cancer tissue. The other two nodes (Node 5 and 6)
contain 40 cancer tissues and 1 normal tissue. Because this tree is relatively
small and has nearly perfect classification, pruning is almost unnecessary.
Interestingly, this is not accidental for analyses of many microarray data for
which there are many genes and relatively few samples.

The construction of Fig. 1 follows the growing procedure as described
above. First, node 1 is split into nodes 2 and 3 after examining all allowable
splits from the 2000 gene expression profiles, and the expression level of gene
IL-8 and its threshold at 60 are chosen because they result in the lowest
weighted impurity of nodes 2 and 3. A tissue is sent to the left (node 2) or right
(node 3) daughter node according to whether or not the IL-8 level is below 60.
Because node 2 is pure, no further split is necessary and it becomes a terminal
node. Node 3 is split into nodes 4 and 5 through recursive partitioning and
according to whether or not the expression of gene CANX is greater than 290,
while the partition is restricted to the 40 tissues in node 3 only. Furthermore,
node 4 is subsequently partitioned into nodes 6 and 7 according to whether
or not the expression of gene RAB3B exceeds 770.

There are also many interesting applications of simple classification trees.
For example, Goldman et al. (1982) used classification trees to predict heart
attack based on information from 482 patients. After a tree is constructed, the
prediction is made from a series of questions such as “Is the pain in the neck
only?” and/or “Is the pain in the neck and shoulder?” An appealing feature of
tree-based classification is that the classification rule is based on the answers
to simple and intuitive questions as posed here.

Although we present classification trees for a binary response, the method
is similar for a mult-level response. The impurity function can be defined as

it = −
J∑

j=1

Pr(y = j) log{Pr(y = j)},

for a J-level y. Everything else in the tree growing step as described above
is applicable. For tree pruning, the only change to be made is to define the
misclassification cost c(j|k) from level k to level j, j, k = 1, . . . , J.

3 Computational Issues

In Sections 2.1 and 2.2, we have explained the basic steps and concepts for
tree construction. For most users of decision trees, the implementation aspect
does not really affect the application. For methodological and software devel-
opments, however, it is imperative to understand the computational issues.
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The most critical issue is to find the optimal split efficiently for any given
node. The overall strategy is to identify the optimal split from each of the
predictors and then choose the overall best one. Choosing the overall best one
is straightforward, but identifying the optimal split from a predictor takes
some efforts. The algorithm must take into account the nature of the predic-
tor. Although we will use a dichotomous response to explain the ideas, the
algorithm is also applicable for the other types of responses.

3.1 Splits Based on An Ordinal Predictor

Let us first consider a predictor with an ordinal scale such as gene expression
in Fig. 1 or the ratio of cash flow to total debt in Fig. 2. Under the tree
framework, as long as a predictor is ordinal, we will soon see that it does not
matter whether the predictor is on a continuous or discrete scale.

Table 1. Expression Level of Gene IL-8 in 22 Normal and 40 Colon Cancer Tissues
Used in Fig. 1

Expression Colon Expression Colon Expression Colon Expression Colon
Level Cancer Level Cancer Level Cancer Level Cancer

23.74 N 35.95875 N 33.9725 N 45.1 N
56.91875 N 28.7675 N 28.00875 N 39.7575 N
11.37625 N 31.6975 N 30.57875 N 171.4525 N
36.8675 N 40.33875 N 76.9875 N 97.92 N

55.2 N 238.58625 N 645.99375 N 117.6025 N
113.91375 N 567.13125 N 1528.4062 Y 306.30875 Y

76.125 Y 169.1375 Y 213.6275 Y 326.42625 Y
370.04 Y 114.92375 Y 311.4375 Y 186.2775 Y

131.65875 Y 412.135 Y 284.14625 Y 1178.9188 Y
75.81375 Y 1007.5262 Y 120.72 Y 227.70625 Y
80.73875 Y 2076.9025 Y 93.3575 Y 1813.4562 Y

170.11875 Y 737.695 Y 270.19625 Y 75.95 Y
62.7375 Y 148.04125 Y 599.6975 Y 247.52625 Y

390.31125 Y 222.55875 Y 391.355 Y 249.15125 Y
117.185 Y 104.78125 Y 124.91875 Y 210.90125 Y

519.08125 Y 175.55125 Y

Table 1 displays the expression levels of gene IL-8 in 22 normal and 40
colon cancer tissues. Our objective for the time being is to split these 62 tissues
into two subsamples according to whether the expression level of gene IL-8
is greater than a given threshold. In theory, this threshold can be anything,
but practically, there is only a finite number of them that make a difference.
In other words, it takes a finite number of steps to find an optimal threshold,
although the solution is not unique.

The first step in finding an optimal threshold is to sort all expression lev-
els, say, in an ascending order as displayed in Table 2. If the threshold is



Recursive Partitioning and Tree-based Methods 9

Table 2. Sorted Expression Level of Gene IL-8 in 22 Normal and 40 Colon Cancer
Tissues Used in Fig. 1

Expression Colon Expression Colon Expression Colon Expression Colon
Level Cancer Level Cancer Level Cancer Level Cancer

11.37625 N 23.74 N 28.00875 N 28.7675 N
30.57875 N 31.6975 N 33.9725 N 35.95875 N
36.8675 N 39.7575 N 40.33875 N 45.1 N

55.2 N 56.91875 N 62.7375 Y 75.81375 Y
75.95 Y 76.125 Y 76.9875 N 80.73875 Y

93.3575 Y 97.92 N 104.78125 Y 113.91375 N
114.92375 Y 117.185 Y 117.6025 N 120.72 Y
124.91875 Y 131.65875 Y 148.04125 Y 169.1375 Y
170.11875 Y 171.4525 N 175.55125 Y 186.2775 Y
210.90125 Y 213.6275 Y 222.55875 Y 227.70625 Y
238.58625 N 247.52625 Y 249.15125 Y 270.19625 Y
284.14625 Y 645.99375 N 306.30875 Y 311.4375 Y
326.42625 Y 370.04 Y 390.31125 Y 391.355 Y

412.135 Y 519.08125 Y 567.13125 N 599.6975 Y
737.695 Y 1007.5262 Y 1178.9188 Y 1528.4062 Y

1813.4562 Y 2076.9025 Y

below the minimum (11.37625) or above the maximum (2076.9025), it pro-
duces an empty subsample. Thus, the threshold should be between 11.37625
and 2076.9025. If we take a look at the two lowest levels, 11.37625 and 23.74,
it is clear that any threshold between these two levels produces the same two
subsamples (or daughter nodes). In this example, there are 62 distinct levels
of expression. Thus, we have 62 − 1 = 61 distinct ways to split the 62 sam-
ples into two daughter nodes. It is noteworthy that, unlike this example, the
number of unique levels of a predictor is usually lower than the number of
samples.

The second step in finding an optimal threshold is to move along the
intervals defined by two adjacent, distinct levels of the sorted predictor values.
In Table 2, we move along as follows:

[11.37625, 23.74), [23.74, 28.00875), . . . , [56.91875, 62.7375),
. . . , [1528.4062, 1813.4562), [1813.4562, 2076.9025).

For computation, the threshold can be chosen as the middle point of the above
intervals. For interpretation, the threshold can be rounded-off as is done to
the first split in Fig. 1.

We have determined the pool of the potential thresholds, which is some-
times referred to as the allowable splits. Obviously, we can examine each
threshold one at a time and assess its quality according to (1).

For a large data set, this means a lot of wasted computing time. To re-
duce the computation to a minimal level, let us take a careful look as to what
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Table 3. Search for the Optimal Split

Left Node Right Node Split
No. of No. of Node No. of No. of Node Quality

Interval Sample Cancer Impurity Sample Cancer Impurity gs

[11.37625, 23.74) 1 0 0 61 40 0.6438 0.3666
[23.74, 28.00875) 2 0 0 60 40 0.6365 0.3849

...
...

...
...

...
...

...
...

[56.91875, 62.7375) 14 0 0 48 40 0.4506 0.6512
[62.7375, 75.81375) 15 1 0.1030 47 39 0.4562 0.6292

...
...

...
...

...
...

...
...

[1528.4062, 1813.4562) 60 38 0.6572 2 2 0 0.3640
[1813.4562, 2076.9025) 61 39 0.6538 1 1 0 0.3568

happens when we move the threshold from one interval to the next. In Table
3, as the threshold is moved up to the next interval, the samples that were
already assigned to the left daughter stay on the left side because their expres-
sion levels are still below the new threshold. Most of the samples that were
assigned to the right daughter stay on the right side, except those samples
whose expression levels are equal to the lower limit of the new interval. In
this particular case, there is only one sample that we need to move from the
right side to the left every time we move the threshold by one interval. This
observation implies that the node impurities and the split quality can be com-
puted by updating the information slightly for the small set of the samples
that are affected. Every of such a small set of samples is affected only once in
the entire search of the predictor. In summary, after the values of a predictor
are sorted, we can find an optimal threshold to split a node in the number
of steps proportional to the number of distinct values of the predictor, which
is at most the number of samples in the node. For the present example, any
value in [56.91875, 62.7375) is an optimal split. Intuitively from Table 3, we
push the threshold as high as possible to maintain the perfect purity of the
left daughter node. In the meantime, if we look bottom-up from the table,
we also push the threshold as low as possible to maximize the purity of the
right daughter node. The interval [56.91875, 62.7375) offers the best balance.
In Fig. 1, the split is chosen at 60, although any number in this interval is a
legitimate choice.

Overall, if we have n samples in a node and p predictors, excluding the
sorting time, the final threshold for the node can be identified in at most
O(np) steps.

3.2 Splits Based on A Nominal Predictor

For a nominal variable, we cannot sort the values of the variable as we did in
Table 2. For a predictor of k levels, there are a total of 2k−1−1 ways to split a
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node. To explain the algorithm, let us use an artificial example as summarized
in Table 4.

Table 4. An Artificial Data Set

Predictor No. of No. of Rate of
Value Normal Cancer Cancer

A 5 10 0.67
B 10 5 0.33
C 20 30 0.60
D 35 25 0.42

In Table 4, the predictor has 4 levels, giving rise to 7 possible ways to
split a node. A naive way is to assess every allowable split on an individual
basis. This could be an extensive computation when the number of levels is
10 or higher. Thus, it is important to find a way to compute the quality of
all splits in a gradual manner as in Section 3.1. If we focus on the levels of
the predictor for the left daughter node, we can travel all 7 possible splits as
follows: {A}, {AB}, {B}, {BC}, {C}, {AC}, and {ABC}. The key is that
every move requires either the deletion or addition of a single level, which
keeps the computation at the minimal level. Such a path of traveling through
all 2k−1 − 1 splits can be defined for any k.

There is actually a simple and quick solution for a dichotomous response.
As shown in Table 4, we can compute the cancer rate for every level of the
nominal predictor. During the splitting, the rates can substitute for the corre-
sponding nominal levels. Because the rates are ordinal, the method described
in Section 3.1 can be applied. After the optimal split is determined, we can
map the rate back to the original nominal level. For example, for the data in
Table 4, the optimal threshold based on the rate is in the interval [0.42, 0.6),
which means that the left daughter node contains samples with levels B and
D, and the right daughter node with levels A and C. For a multiclass response,
there is no apparent way to form an ordinal surrogate for a nominal predictor.

3.3 Missing Values

An important feature of decision trees is their ability to deal with missing
predictor values. There are several solutions. Although there have been limited
attempts (Quinlan, 1989) to compare some of them, the performance of the
various solutions is largely unexplored. The choice mostly depends on the
objective of the study.

The easiest approach is to treat the missing attribute as a distinct value
and to assign all samples with missing values to the same node (Zhang et al.,
1996). This approach is not only simple, but also provides clear paths as to
where the samples with missing attributes end up in the tree structure.
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Breiman et al. (1984) introduced and advocated surrogate splits to deal
with missing attributes. The idea is very intuitive. For example, in Table 2,
we considered using expression levels from gene IL-8 to split the 62 samples.
What happens if the expression level from one of the samples, say, the first
one, was not recorded? This happens in microarray experiments. Because IL-8
level is missing for the first sample, we cannot determine whether the level is
below or above 60 and hence cannot decide whether the first sample should be
assigned to the left or right daughter node. To resolve this ambiguity, Breiman
et al. (1984) proposed to seek help from other genes that act “similarly” to
IL-8. Since there are many other genes, we can use the one that is most similar
to IL-8, which leads to a surrogate for IL-8.

What we need to clarify is the meaning of similarity. To illustrate this
concept, let us consider gene CANX. Using the method described in Section
3.1, we can find an optimal split from gene CANX. The similarity between
CANX and IL-8 is the probability that the optimal splits from these two genes
assign a sample with complete information in these two genes into the same
node. This strategy is similar to replacing a missing value in one variable in
linear regression by regressing on the non-missing value most highly correlated
with it. Then, why can’t we use the same strategy as in the linear regression?
According to Breiman et al. (1984), their strategy is more robust. The main
reason is that their strategy is more specific to the particular sample with
missing attributes, and does not result in a potential catastrophic impact for
other samples with missing attributes.

The surrogate splits have some advantages over the simpler approach as de-
scribed earlier. It makes use of other potentially useful information. Breiman et
al. (1984) also proposed to rank the importance of variables through surrogate
splits. The surrogate splits also have some limitations. First, it is uncommon,
if at all, that surrogate splits are provided in published applications. Thus,
it is unrealistic to know what the surrogate splits are and how we assign a
sample with a missing attribute. Second, there is no guarantee in a data set
that we can find a satisfactory surrogate split. Lastly, while it is a sensible
idea to rank the variable importance based on surrogate splits, there is no as-
surance that a predictor ranked relatively high is necessarily predictive of the
outcome, which can create a dilemma for interpretation. More recently, the
importance of a variable tends to be evaluated on the basis of its performance
in forests (Breiman, 1994; Zhang et al., 2003) rather than on a single tree.

In the construction of random forests, Breiman proposed another way of
replacing missing values through an iterative process. A similar idea can be
applied for tree construction. To initialize the process, we can fill in the missing
values by the median of an ordered variable or by the category of a nominal
variable with the highest frequency. An initial tree can be constructed once all
missing data are imputed. In the next step, suppose again that in Table 2, the
expression of gene IL-8 is missing for the first sample. The unobserved level is
estimated by a weighted average over the samples with observed expressions
for gene IL-8. Here, the weight is the so-called proximity, which is a similarity
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measure between a pair of samples. Intuitively, if the second sample is more
similar to the first sample than to the third one, we give more weight to the
second sample than to the third one if the first sample is not observed. How
is the proximity defined for a pair of samples? We can set it to zero before
the initial tree is grown. Then, whenever a tree is grown, if two samples end
up in the same terminal nodes, its promixity is increased by one unit. After
the missing data are updated, a new tree is grown. Breiman recommends to
continue this process at most five times in the random forest construction. For
tree construction, it may take longer for the process to “converge,” especially
when the number of predictors is large. Nonetheless, it may still be worthwhile
to repeat a few iterations. In addition to this convergence issue, it is also
difficult to track where the samples with missing values are assigned as with
the use of surrogate splits.

4 Interpretation

Interpretation of results from trees is usually straightforward. In Figure 1,
we identified 3 genes IL-8, CANX, and RAB3B whose expression levels are
highly predictive of colon cancer. However, this does not necessarily mean that
these genes cause colon cancer. Such a conclusion requires a thorough search
of the literature and further experiments. For example, after reviewing the
literature, Zhang et al. (2001) found evidence that associates IL-8 with the
stage of colon cancer (Fox et al., 1998), the migration of human clonic epithe-
lial cell lines (Toshina et al., 2000), and metastasis of bladder cancer (Inoue
et al., 2000). In addition, the expression of the molecular chaperone CANX
was found to be down-regulated in HT-29 human colon adenocarcinoma cells
(Yeates and Powis, 1997) and to be involved in apoptosis in human prostate
epithelial tumor cells (Nagata et al., 1997). Lastly, RAB3B is a member of the
RAS oncogene family. Therefore, these existing studies provide independent
support that the three genes identified in Fig. 1 may be in the pathways of
colon cancer. If this hypothesis could be confirmed from further experiments,
Fig. 1 would have another important implication. Pathologically speaking, the
40 colon cancer samples are indistinguishable. Fig. 1 indicates that those 40
samples are not homogeneous in terms of gene expression levels. If confirmed,
such a finding could be useful in cancer diagnosis and treatment.

As we stated earlier, there are numerous applications of decision trees in
biomedical research, including the example above. To have a glimpse of the
diverse applications of decision trees, let us review two different examples.

Example 3. Frydman and colleagues introduced recursive partitioning for
financial classification (Frydman et al., 2002). They considered a financial
dataset of 58 bankrupt (y = 1) industrial companies that failed during 1971-
81, and 142 non-bankrupt (y = 0) manufacturing and retailing companies
randomly selected from COMPUSTAT universe. Each company forms an ob-
servational unit or the so-called sample. Twenty financial variables with prior
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evidence of predicting business failure are considered. They include the ratio
of cash to total assets, the ratio of cash to total sales, the ratio of cash flow to
total debt, the ratio of current assets to current liabilities, the ratio of current
assets to total assets, the ratio of current assets to total sales, the ratio of
earnings before interest and taxes to total assets, interest coverage, the ratio
of market value of equity to total capitalization, the ratio of net income to
total assets, the ratio of quick assets to current liabilities, the ratio of quick
assets to total assets, the ratio of quick assets to total sales, the ratio of re-
tained earnings to total assets, the ratio of total debt to total assets, the ratio
of total sales to total assets, and the ratio of working capital to total sales.
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Fig. 2. Classification Tree for Bankruptcy. B1, B2, and B3 are three groups of
relatively high risk of bankruptcy, and NB1 and NB2 are two groups of likely non-
bankrupt companies. Inside the terminal nodes (boxes) are the numbers of bankrupt
and non-bankrupt companies. See Frydman et al. (2002) for more details.

We can see from Fig. 2 that the risk of bankruptcy is relatively high if
the ratio of cash flow to total debt is below 0.1309, unless both the ratio of
retained earnings to total assets and the ratio of cash to total sales are above
certain levels, i.e., 0.1453 and 0.025, respectively. Even if the ratio of cash flow
to total debt is above 0.1309, there can be elevated risk of bankruptcy if the
ratio of total debt to total assets is high (above 0.6975). A tree diagram as
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in Fig. 2 offers a very clear and simple assessment of the financial state of a
company.

Example 2 (continued) We indicated earlier what the predictors and re-
sponse are for Example 2. Let us revisit this example. Unlike the other exam-
ples that we have introduced so far, this example uses a continuous response
y – the compound potency. Because of this difference, the resulting tree is
called a regression tree. To utilize the information from the 3-dimensional
structures of compounds, Chen et al. (1998) used atom pair descriptors that
are composed of the atom types of the two component atoms and the “binned”
Euclidean distance between these two atoms. The width of each distance bin
was chosen as 1.0 Å. To define predictors x from the atom pair descriptors, the
authors characterized the atom pair descriptors in 17 types including negative
charge center (e.g., sulfinic group), positive charge center (e.g., the nitrogen in
primary, secondary, and tertiary amines), hydrogen bond acceptor (e.g., oxy-
gen with at least one available lone pair electron), triple bond center, aromatic
ring center, and H-bond donor hydrogen.

Fig. 3 presents part of the regression tree that is constructed by Chen et
al. (1998). We trimmed the left hand side to fit into the space here; however,
we can get the idea from the right hand side of tree. Generally speaking, a
node of size 3 or 6 such as nodes 6 and 8 is too small to be reliable. Since we
do not have the data to re-grow the tree, let us pretend that the node sizes
are adequate, and concentrate on the interpretation instead. Since the main
objective of Chen et al. appears to identify active nodes (i.e., those with high
potencies), a small, inactive node is not of great concern.

First, there is one highly active node (node 7 with potency greater than
2) in Fig. 3. There are also two highly active nodes on the left hand side
which are not shown in Fig. 3. Supported by the literature, Chen et al. (1998)
postulated that there might be different mechanisms of action because the
active nodes contain compounds of very different characteristics. This is sim-
ilar to the hypothesis suggested by Fig. 1 that the 40 colon cancer tissues
might be biologically heterogeneous. Chen et al. concluded further that their
tree demonstrates the ability to detect multiple mechanisms of action coex-
isting in a large three-dimensional chemical data set. In addition, the selected
atom pair descriptors also reveal interesting features of the monoamine oxi-
dase (MAO) inhibitors. For instance, the “aromatic ring center–triple bond
center” pair in the first split is the structural characteristic of pargyline, a
well known MAO inhibitor.

We can see from these examples that tree-based methods tend to unravel
integrated, intuitive results whose pieces are consistent with prior findings.
Not only can we use trees for prediction, but also we may use them to identify
potentially important mechanisms or pathways for further investigation.
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������

������

...

��
��
node 2
57
2.1

hydrogen bond acceptor
H-bond donor hydrogen

3.9-5.1Å

node 3
14
0.3

������

������

��
��
node 4
43
2.6

H-bond donor hydrogen
aromatic ring center

3.9-5.1Å
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Fig. 3. Regression Tree for Predicting Potencies of Compounds. Inside each node are
the number of compounds (middle) and the average potency of all compounds within
the node (bottom). Underneath each node is the selected atom pair descriptor. Above
the arm is the interval for the distance between the selected atom pair descriptor
that assigns the compounds to the right daughter node. See Chen et al. (1998) for
more details.

5 Survival Trees

The most popular use of tree-based methods is arguably in survival analysis
for censored time, particularly in biomedical applications. The general goal of
such applications is to identify prognostic factors that are predictive of sur-
vival outcome and time to an event of interest. For example, Banerjee et al.
(2000) reported a tree-based analysis that enables the natural identification
of prognostic groups among patients in the perioperative phase, using infor-
mation available regarding several clinicopathologic variables. Such groupings
are important because patients treated with radical prostatectomy for clini-
cally localized prostate carcinoma present considerable heterogeneity in terms
of disease-free survival outcome, and the groupings allow physicians to make
early yet prudent decisions regarding adjuvant combination therapies. See,
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e.g., Bacchetti and Segal (1995), Carmelli et al. (1991), Carmelli et al. (1997)
and Kwak et al. (1990) for additional examples.

Before pointing out the methodological challenge in extending the basic
classification trees to survival trees, let us quickly introduce the censored data.
Let z denote the time to an event, which can be death or the occurrence of a
disease. For a variety of reasons including losts to follow-up and the limited
period of a study, we may not be able to observe z until the event occurs for
everyone in the study. Thus, what we actually observe is a censored time y
which is smaller than or equal to z. When z is observed, y = z. Otherwise, z is
censored and y < z. Let δ = 1 or 0 denote whether z is censored or observed.

The question is how to facilitate the censored time y in the tree-based
methods. As in Section 2, we need to define a splitting criterion to divide a
node into two, and also to find a way to choose a “right-sized” tree. Many
authors have proposed different methods to address these needs. Here, we de-
scribe some of the methods. See Crowley et al. (1995), Intrator and Kooper-
berg (1995), LeBlanc and Crowley (1995), Segal (1988), Segal (1995), Zhang
et al. (2001) and Zhang and Singer (1999) for more details.

5.1 Maximizing Difference between Nodes

Gordon and Olshen (1985) are among the earliest to have developed survival
trees. Earlier, we focused on reducing the impurity within a node by split-
ting. When two daughter nodes have low impurities, the distributions of the
response tend to differ between the two nodes. In other words, we could have
achieved the same goal by maximizing the difference between the distributions
of the response in the two daughter nodes. There are well established statis-
tics that measure the difference in distribution. In survival analysis, we can
compute the Kaplan-Meier curves (see, e.g., Miller, 1981) separately for each
node. Gordon and Olshen used the so-called Lp Wasserstein metrics, dp(·, ·),
as the measure of discrepancy between the two survival functions. Specifically,
for p = 1, the Wasserstein distance, d1(SL, SR), between two Kaplan-Meier
curves, SL and SR, is illustrated in Fig. 4.

A desirable split maximizes the distance, d1(SL, SR), where SL and SR are
the Kaplan-Meier curves for the left and right daughter nodes, respectively.
Replacing gs in (1) with −d1(SL, SR) we can split the root node into two
daughter nodes and use the same recursive partitioning process as before to
produce a saturated tree.

To prune a saturated survival tree, T, Gordon and Olshen (1985) general-
ized the tree cost-complexity for censored data. The complexity remains the
same as before, but we need to redefine the cost R(t), which now is measured
by how far node t deviates from a desirable node in lieu of a pure node in
the binary response case. In the present situation, a replacement for a pure
node is a node τ in which all observed times are the same, and hence its
Kaplan-Meier curve, δτ , is a piecewise constant survival function that has at
most one point of discontinuity. Then, the within-node cost, R(t), is defined as
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Fig. 4. The L1 Wasserstein Distance between Two Kaplan-Meier Curves as mea-
sured by the area marked with d1. Note that one curve (SL) is thicker than the
other (SR).

d1(St, δτ ). Combining this newly defined cost-complexity with the previously
described pruning step serves as a method for pruning survival trees.

Another, perhaps more commonly used way to measure the difference in
survival distributions is to make use of the log-rank statistic. Indeed, the pro-
cedures proposed by Ciampi et al. Ciampi et al. (1986) and Segal (1988) max-
imize the log-rank statistic by comparing the survival distributions between
the two daughter nodes. The authors did not define the cost-complexity using
the log-rank statistic. However, LeBlanc and Crowley (1993) introduced the
notion of “goodness-of-split” complexity as a substitute for cost-complexity
in pruning survival trees. Let G(t) be the value of the log-rank test at node
t. Then the split-complexity measure is

G(T ) =
∑

t�∈T̃

G(t) − α(|T̃ | − 1).

Therneau et al. (1990) proposed another way to define R(t) that makes
use of the so-called martingale residuals by assuming within-node proportional
hazard models and then the least squares are computed as the cost.

In our experience, we found that Segal’s bottom-up procedure (Segal,
1988) is practical and easy to use. That is, for each internal node (includ-
ing the root node) of a saturated tree, we assign it a value that equals the
maximum of the log-rank statistics over all splits starting from the internal
node of interest. Then, we plot the values for all internal nodes in an increasing
order and decide a threshold from the graph. If an internal node corresponds
to a smaller value than the threshold, we prune all of its offspring. Zhang and
Singer (1999) pointed out that this practical procedure can be modified in a
broad context by replacing the log-rank statistic with a test statistic that is
appropriate for comparing two samples with a defined outcome.

5.2 Use of Likelihood Functions

Although the concept of node impurity is very useful in the development
of tree-based methodology, that concept is closely related to the concept of
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likelihood as pointed out by Zhang et al. (2001). In fact, the adoption of likeli-
hood makes it much easier to extend the tree-based methodology to analysis of
complex dependent variables including censored time. For example, Davis and
Anderson (1989) assume that the survival function within any given node is an
exponential function with a constant hazard. LeBlanc and Crowley (1992) and
Ciampi et al. (1988) assume different within-node hazard functions. Specifi-
cally, the hazard functions in two daughter nodes are assumed proportional,
but are unknown. In terms of estimation, LeBlanc and Crowley (1992) use
the full or partial likelihood function in the Cox proportional hazard model
whereas Ciampi et al. (1988) use a partial likelihood function.

The most critical idea in using the likelihood is that within-node survival
functions are temporarily assumed to serve as a vehicle of finding a split
instead of believing them to be the true ones. For example, we cannot have a
constant hazard function in the left daughter node, and then another constant
hazard function in the right daughter node while assuming that the parent
node also has a constant hazard function. Here, the constant hazard function
plays the role of the “sample average.” However, after a tree is constructed, it
is both reasonable and possible that the hazard functions within the terminal
nodes may become approximately constant.

5.3 A Straightforward Extension

Zhang (1995) examined a straightforward tree-based approach to censored
survival data by observing the fact that the response variable involves two
dimensions: a binary censoring indicator and the observed time. If we can
split a node so that the node impurity is “minimized” in both dimensions, the
within-node survival distribution is expected to be homogeneous. Based on
this intuitive idea, Zhang (1995) proposed to compute the within-node impu-
rity in terms of both the censoring indicator and the observed time first sepa-
rately, and then together through weighting. Empirically, this simple approach
tends to produce trees similar to those produced from using the log-rank test.
More interestingly, empirical evidence also suggests that this simple approach
outperforms its more sophisticated counterparts in discovering the underlying
structures of data. Unfortunately, there need to be more comparative studies
to scrutinize these different methods, even though limited simulations com-
paring some of the methods have been reported in the literature (Crowley et
al., 1995, 1997; Zhang, 1995).

5.4 Other Developments

The methods that we described above are not designed to deal with time-
dependent covariates. Bacchetti and Segal (1995) and Huang et al. (1998)
proposed similar approaches to accommodate the time-dependent covariates
in survival trees. The main concern with these existing approaches is that the
same subject can be assigned to both the left and right daughter nodes, which
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is distinct from any other tree-based methods and is potentially confusing in
interpretation.

It is common in survival tree analysis that we want to stratify our sam-
ple into at a few groups that define the grades for the survival. To this end,
it is useful to combine some terminal nodes into one group, which is loosely
called “amalgamation.” Ciampi et al. (1986) used the log-rank statistic for
this purpose. LeBlanc and Crowley (1993) proposed constructing an ordinal
variable that describes the terminal nodes. Often, we can simply examine the
Kaplan-Meier curves for all terminal nodes to determine the group member-
ship (Carmelli et al., 1997).

6 Tree-based Methods for Multiple Correlated Outcomes

As pointed out by Zhang (1998), multiple binary responses arise from many
applications for which an array of health-related symptoms are of primary
interest. Most of the existing methods are parametric; see, e.g., Diggle et al.
(1994) for an excellent overview. In this section, we will describe a tree-based
alternative to the parametric methods.

Motivated by both the broad application as well as by the need to analyze
building-related occupant complaint syndrome (BROCS), Zhang (1998) pro-
posed a tree-based method to model and classify multiple binary responses.
Let us use the BROCS study to explain the method.

To understand the nature of BROCS, data were collected in 1989 from
6,800 employees of the Library of Congress (LOC) and the headquarters of
the Environmental Protection Agency (EPA) in the United States. The data
contain many explanatory variables, but Zhang (1998) extracted a subset of
22 putative risk factors, most of which are answers to “yes or no” or frequency
(never, rarely, sometimes, etc.) questions. For example, is working space an
enclosed office with door, a cubicle without door, stacks, etc? See Table 1 of
Zhang (1998) for a detailed list. In this data set, BROCS is represented by
six binary responses that cover respiratory symptoms in the central nervous
system, upper airway, pain, flu-like, eyes, and lower airway. The primary pur-
pose with this extracted data set is to evaluate the effect of the important
risk factors on the six responses by constructing trees.

In terms of notation, the primary distinction is that the response y for each
subject is a 6-vector. Consequently, we need to generalize the node-splitting
criterion and cost-complexity to this vector-response. As we indicated earlier,
one solution is to assume a certain type of within-node distribution for the
vector-response and then maximize the within-node likelihood for splitting.
One such distribution is

f(y; Ψ, θ) = exp(Ψ ′y + θ′w − A(Ψ, θ)), (4)

where Ψ and θ are node-dependent parameters, A(Ψ, θ) is the normalization
function depending on Ψ and θ, and w =

∑
i<j yiyj . Zhang (1998) chose
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this distribution because it is commonly used in the parametric models for
multiple binary responses. See, e.g., Cox (1972), Fitzmaurice and Laird (1993)
and Zhao and Prentice (1990). The negative of the likelihood based on (4) now
serves as the impurity function, and the rest of the recursive partitioning as
described before applies.

A naive approach is to treat y as a numerical vector and use a function such
as the determinant of the within-node covariance matrix of y as a measure of
impurity. If y were continuous, this approach is what Segal (1992) proposed
to construct regression trees for repeatedly measured continuous y. For binary
outcomes, however, this approach appears to suffer the well-known end-cut
preference problem in the sense that it gives preference to the splits that result
in two unbalanced daughter nodes in terms of their sizes.

One advantage of the likelihood based method is that the negative of the
within-node likelihood can also be used as the within-node cost R(t) for tree
pruning. The main difficulty with this method is the computational burden,
because every allowable split calls for a maximization of the likelihood derived
from (4). Some strategies for reducing the computational time are discussed
in Zhang (1998).

The criterion based on (4) ultimately leads to a 9 terminal nodes tree as
displayed in Fig. 5, which suggests that respondents belonging to terminal
nodes 7 and 17 have high incidence of respiratory symptoms. This is because
the working area air quality of the people within these terminal nodes was
poor, namely, often too stuffy or sometimes dusty. On the other hand, for ex-
ample, subjects in terminal node 14 experienced the least discomfort because
they had the best air quality. The basic message from this example is that
tree-based analyses often reveal findings that are readily interpretable.

7 Remarks

In Breiman et al. (1984), tree-based methods are presented primarily as an
automated machine learning technique. There is now growing interest in ap-
plying tree-based methods in biomedical applications, partly due to the rising
challenges in analyzing genomic data in which we have a large number of
predictors and a far smaller number of observations (Zhang et al., 2001). In
biomedical applications, scientific understanding and interpretation of a fit-
ted model are an integral part of the learning process. In most situations, an
automated tree as a whole has characteristics that are difficult or awkward
to interpret. Thus, the most effective and productive way of conducting tree-
based analyses is to transform this machine learning technique into a human
learning technology. This requires the users to review the computer-generated
trees carefully and revise the trees using their knowledge, which not only often
simplifies the trees, but also may improve the predictive precision of the trees,
because recursive partitioning is not a forward looking process and does not
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Fig. 5. Tree Structure for the Risk Factors of BROCS based on (4). Inside each
node (a circle or a box) are the node number and the number of subjects. The
splitting question is given under the node. The asterisks indicate where the subjects
with missing information are assigned. The pin diagrams under the tree show the
incidence rates of the six clusters (C: CNS; U: upper airway; P: pain; F: flu-like; E:
eyes; and L: lower airway) in the nine terminal nodes. The side bar on the right end
indicates the range of 0 and 1 for the rates of all symptoms.

guarantee any optimality of the overall tree. Zhang et al. (1996) called this
step tree repairing.

While the full potential of tree-based applications remains to be seen and
exploited, it must be made crystally clear that parametric methods such as lo-
gistic regression and Cox models will continue to be useful statistical tools. We
will see more applications that use tree-based methods together with para-
metric methods to take advantages of various types of methods. The main
advantage of tree-based methods is their flexibility and intuitive structures.
However, because of their adaptive nature, statistical inference based on tree-
based methodology is generally difficult. Despite the difficulty, some progress
has been made to understand the asymptotic behavior of tree-based inference
(Breiman, 1994; Buhlmann and Yu, 2003; Donoho, 1997; Gordon and Olshen,
1978, 1980, 1984; Lugosi and Nobel, 1996; Nobel, 1996; Nobel and Olshen,
1996).
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Some attempts have been made to compare the tree-structured methods
with other methods (Long et al., 1993; Segal and Bloch, 1989; Selker et al.,
1995). More comparisons are still warranted, particularly in the context of ge-
nomic applications where data reduction is necessary and statistical inference
is also desirable.

One exciting development in recent years is the expansion of trees into
forests. In a typical application such as Banerjee et al. (2000) and Carmelli et
al. (1997), constructing one or several trees is usually sufficient to unravel rela-
tionships between predictors and a response. Nowadays, many studies produce
massive information such as recognizing spam mail from numerous character-
istics and identifying disease genes. One or even several trees are no longer
adequate to convey all of the critical information in the data. Construction
of forests enables us to discover data structures further and in the meantime
improves classification and predictive precision (Breiman, 1994; Zhang et al.,
2003). So far, most forests are formed through some random perturbations
and are hence referred to as random forests (Breiman, 1994). For example, we
can draw bootstrap samples (Efron and Tibshirani, 1993) from the original
sample and construct a tree as described above. Every time we draw a boot-
strap sample, we produce a tree. Repetition of this process yields a forest.
This is commonly called bagging (Breiman, 1994). The emergence of genomic
and proteomic data afford us the opportunity to construct deterministic for-
est (Zhang et al., 2003) by collecting a series of trees that have a similarly
high predictive quality. Not only do forests reveal more information from large
data sets, but they also outperform single trees (Breiman, 1994; Buhlmann
and Yu, 2003, 2002; Zhang et al., 2003).

A by-product of forests is a collection of variables that are frequently used
in the forests, and the frequent uses are indicative of the importance of those
variables. Zhang et al. (2003) examined the frequencies of the variables in a
forest and used them to rank the variables. It would be even more helpful and
informative if a certain probability measure could be assigned to the ranked
the variables.

Bayesian approaches may offer another way to construct forests by in-
cluding trees with a certain level of posterior probability. These approaches
may also help us understand the theoretical properties of tree-based methods.
However, the existing Bayesian tree framework focuses on providing an alter-
native method to those that exist. We would make an important progress if we
could take full advantage of the Bayesian approach to improve our tree-based
inference.

Classification and regression trees assign a subject to a particular node
following a series of boolean statements. Ciampi et al. (2002) considered a
“soft” splitting algorithm that at each node an individual goes to the right
daughter node with a certain probability, which is a function of a predictor.
This approach has the spirit of random forests. In fact, we can construct a
random forest by repeating this classification scheme.
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Several companies including DTREG.com, Insightful, Palisade Corpora-
tion, Salford Systems, and SAS market different variants of decision trees.
In addition, there are many versions of free-ware including my own version,
which is distributed from my website.
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