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We investigate how the spectral risk measure associated with holding stocks rather than a 

risk-free deposit, depends on the holding period. Previous papers have shown that within a 

limited class of spectral risk measures, and when the stock price follows specific processes, 

spectral risk becomes negative at long periods. We generalize this result for arbitrary 

exponential Lévy processes. We also prove the same behavior for all spectral risk measures 

(including the important special case of Expected Shortfall) when the stock price grows 

realistically fast and when it follows a Geometric Brownian Motion or a Finite Moment Log 

Stable process. This result would suggest that holding stocks for long periods has a vanishing 

risk. However, using realistic models, we find numerically that the risk increases for a few 

decades and reaches zero at around 100 years. Therefore, we conclude that holding stocks 

is risky for all practically relevant periods. 
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Összefoglaló 

Tanulmányunkban azt vizsgáljuk: hogyan függ a tartási periódustól annak a spektrális 

kockázata, hogy kockázatmentes bankbetét helyett részvényekbe fektetünk. A korábbi 

kutatásokban megmutatták, hogy bizonyos spektrális kockázati mértékekre és folyamatokra a 

spektrális kockázat negatív lesz hosszú távon. Mi ezt az eredményt általánosítjuk tetszőleges 

exponenciális Lévy-folyamatra. Belátjuk ugyanezt tetszőleges spektrális kockázati mértékre 

(beleértve az expected shortfall esetét) is, ha a részvényárfolyam realisztikusan gyorsan nő és 

az geometriai Brown-mozgást végez, vagy véges momentumú log-stabil folyamatot követ. Ez 

az eredmény azt sugallja, hogy a részvénytartás kockázata hosszú távon elenyésző. 

Ugyanakkor realisztikus modelleket használva numerikusan azt találjuk, hogy a kockázat 

több évtizeden át növekszik és csak kb. 100 év után éri el a nullát. Ezért konklúziónk az, hogy 

minden praktikusan releváns időtávra a részvénytartás kockázatos. 
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Moment Log Stable Model, Time Diversification

JEL Classification: G11

∗We would like to thank Peter Farkas, Gabor Kondor, Adam Zawadowski, and participants of the
8th Annual Financial Market Liquidity Conference for helpful comments. Péter Csóka was supported by
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1 Introduction

There has been tremendous interest both from practitioners and researchers on the ques-
tion of how risky it is to hold stocks rather than a risk-free deposit in the long run.
The existence of time diversification, meaning that the risk of holding stocks decreases
with the time horizon, has profound effects on all long-term investments such as pension
savings and target date funds. Industry practitioners hold the common wisdom that the
longer the intended holding period for a portfolio, the more it should contain risky, rather
than risk-free investments.

The academic literature on the topic is more controversial (Bennyhoff, 2009). Siegel
(1998) showed that for investment horizons of at least 15 years, the risk of holding stocks
(measured by realized variance) is lower than the risk of holding bonds or Treasury bills,
and the risk of holding stocks is decreasing over time. However, Pástor and Stambaugh
(2012) argue that stocks are more volatile in the long run from the perspective of an
investor. The reason is that investors do not know the parameters of the stock price
process (especially not the conditional expected return), and by making noisy predictions,
at a 50-year horizon they face about 1.3 times higher return variance per year than at
a 1-year horizon. Modeling the investors’ beliefs, Avramov, Cederburg, and Lučivjanská
(2017) find that there could be investors who perceive that the mean reversion of stocks
is weaker, and hence they consider stocks riskier.

One can consider the probability that at time t the stock investment value S(t) is
smaller than the risk free deposit value S0e

rt, where S0 is the initial investment and r is
a constant risk-free rate. This probability decreases with t, supporting the notion that
the risk of the stock investment decreases with the holding period. However, as noted by
Harlow (1991), this concept does not take into account the difference between S0e

rt and
S(t), and this difference can, of course, be larger and larger as t increases.

Bodie (1995) approached the concept of risk differently by quantifying risk as the
price of a put option that guarantees the risk-free payout S0e

rt at time t. The price of
the corresponding put option was found to be increasing as t increases, which can be
interpreted as the risk of holding stocks increases over time. Wilkie (2001) criticized the
methodology of Bodie (1995) by saying that if we wish to guarantee that we get at least
the proceeds of a risk-free investment, then (since buying the option also has some costs)
we have to invest everything in the risk-free investment, and pricing the option makes
no sense. Moreover, Ferguson and Dean (1996) argued that the method of Bodie (1995)
forces one to conclude that the risk of an asset relative to the risk of any other asset
increases with the investment horizon, leading to a paradox.

Following Treussard (2006) and Nguyen, Pham, and Tran (2012), we consider the risk
of holding a stock rather than a risk-free deposit over time. More precisely, we analyze
the spectral risk measure (Acerbi, 2002) of the loss variable Y (t) = S0e

rt − S(t). If Y (t)
is positive (negative), then the stock performs poorly (well), in comparison with the risk
free money market account. Spectral risk measures are coherent (Artzner, Delbaen, Eber,
and Heath, 1999) and can be expressed as a weighted average of losses, with increasing
weights for higher losses. Thus we can think of the spectral risk of Y (t) as a weighted
average regret value associated with having bought the stock, rather than investing in a
money market account.

As a special spectral risk, we consider Expected Shortfall (ES) (Acerbi and Tasche,
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2002; Rockafellar and Uryasev, 2002), which can be computed and estimated efficiently
(Acerbi and Tasche, 2002) and is backtestable (Acerbi and Szekely, 2014). Moreover, in
2013 the Basel Committee of Banking Supervision took the decision (Basel Committee,
2013) of using ES for capital adequacy internal models, underscoring the importance of
ES as a practical risk measure.

To describe the possible evolution of stock prices, we consider different stochastic
processes. Besides the standard geometric Brownian motion (GBM) model, we analyze
the exponential Lévy model (see for instance Mandelbrot (1963), Bertoin (1996), and
McCulloch (1996)). The exponential Lévy process, of which GBM is a special case, offers
more flexibility to model the heavy tail behavior of stock prices. As an illustration, we will
investigate a particular exponential Lévy subclass called the Finite Moment Log Stable
(FMLS) model (Carr and Wu, 2003). The FMLS model can capture heavier tails for the
losses.

There are two distinct regimes where the long-time behavior of risk is different. De-
pending on the parameters of the stock price process (the drift µ and the convexity
adjustment κ), we distinguish between a high growth regime (µ > r + κ) and a medium
growth regime (r + κ ≥ µ > r). Our results extend those of Nguyen, Pham, and Tran
(2012), since we treat the exponential Lévy model in general and the FMLS model in
particular, and we have results for Expected Shortfall both in the GBM and in the FMLS
models. We prove in case of a GBM stock process that in the high growth regime all
spectral risk measures (including Expected Shortfall) will be negative at high t. We also
investigate general exponential Lévy models and provide conditions under which in both
at the high growth and at the medium growth regimes spectral risk will be negative at
high t. For the FMLS model, we obtain the same results as for the GBM model, that is,
in the high growth regime all spectral risk measures will be negative at high t.

This result would suggest that holding stocks for long periods has a vanishing risk.
However, using realistic price process models, we find numerically that the risk is increas-
ing for about 30 years and starts to decrease only after that, reaching zero at around 100
years. After performing some sensitivity tests, we conclude that holding stocks is risky
for all practically relevant periods.

The structure of the paper is as follows. Spectral risk measures and their Choquet
representation are given in Section 2. Section 3 contains the investigated stochastic
processes, Section 4 provides the analytical results. Section 5 contains numerical results,
Section 6 concludes.

2 Spectral risk measures

Coherent risk measures (Artzner, Delbaen, Eber, and Heath, 1999) have a sound ax-
iomatic foundation, are supported by general equilibrium theory (Csóka, Herings, and
Kóczy, 2007) and they can also capture liquidity risk (Acerbi and Scandolo, 2008). Con-
sider the random variable X that represents the loss distribution of a portfolio at time t.
Thus positive values of X are representing losses, negative values of X are representing
profits. The set of the random loss variables is denoted by X .

Definition 2.1. The risk measure ρ : X → R is called a coherent risk measure if it
satisfies the following properties:
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• monotonicity: Y ≤ X ⇒ ρ(Y ) ≤ ρ(X),

• positive homogeneity: h > 0 ⇒ ρ(hX) = hρ(X),

• sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

• translation invariance: a ∈ R ⇒ ρ(X + a) = ρ(X) + e−rta,

where e−rt is the discount factor at time t.

Throughout this paper we will assume a constant risk-free rate r. The discount factor
e−rt is omitted in some papers, but it is especially important for us here, as we will
investigate long horizons.

As a prominent coherent risk measure, Expected Shortfall (ES) (Acerbi and Tasche,
2002; Rockafellar and Uryasev, 2002) can be computed and estimated efficiently (Acerbi
and Tasche, 2002), and it is backtestable (Acerbi and Szekely, 2014). Moreover, in 2013
the Basel Committee of Banking Supervision took the decision (Basel Committee, 2013)
of using ES for capital adequacy internal models. Given a random loss variable X ∈ X
and a confidence level α ∈ [0, 1], ESα(X) is the average of the loss in the worst 100(1−α)%
cases. As an example, α = 90%, and ES90% is the average of the loss in the worst 10% of
the cases.

To define ES formally in our setting, we need some more notation. Given a random
loss variable X ∈ X , let FX(x) = P [X ≤ x] denote its distribution function. The
generalized inverse of the loss distribution X is defined as F−1

X (p) = inf{x|FX(x) ≥ p}.

Definition 2.2. Given a random loss variable X ∈ X , for α ∈ [0, 1), the Expected
Shortfall of X at α, ESα(X) is defined as

ESα(X) = e−rt
1

1− α

∫ 1

α

F−1
X (p)dp.

For α = 1, ES1, that is the (discounted) maximum loss is defined as

ESα(X) = e−rt ess. sup{X}.

Spectral risk measures (Acerbi, 2002) are also coherent and they are generalizing ES
to get the weighted average of the losses with increasing weights as follows.

Definition 2.3. Given a random loss variable X ∈ X , the spectral risk measure of X,
ρφ(X) is defined as

ρφ(X) = e−rt
∫ 1

0

F−1
X (p)φ(p)dp,

where φ ∈ L1([0, 1]), and the following properties are true:

• φ is positive;

• φ is monotonically increasing;

•
∫ 1

0
|φ(p)|dp = 1.
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Note again that all the usual formulas are written for losses, not gains, and they are
adjusted with the e−rt discount factor. As it is clear from its definition, ES is a spectral
risk measure that we will use as a specific example in our numerical calculations.

We will work with spectral risk measures throughout this paper, but we will use
an equivalent definition derived as a special case of Choquet integrals (Choquet, 1954).
Choquet integral risk measures (see for instance Sriboonchita, Wong, Dhompongsa, and
Nguyen (2009)) are defined as follows.

Definition 2.4. Given a random loss variable X ∈ X , the Choquet integral risk measure
of X, ρh(X) is given by

ρh(X) = e−rt
∫ ∞

0

h(1− FX(x))dx+ e−rt
∫ 0

−∞
[h(1− FX(x))− 1]dx,

where h, the so-called distortion function (Wang, 1996) is non-decreasing and satisfies
h(0) = 0 and h(1) = 1.

Nguyen, Pham, and Tran (2012) notes that for concave distortion functions h there
exists a connection between Choquet integral risk measures and spectral risk measures
such that if h′(1 − p) = φ(p), then ρh(X) = ρφ(X) for all X ∈ X . In this work, we
will refer to spectral risk measures and Choquet integral risk measures interchangeably.
A distortion function h is non-degenerate, if there exists p > 0 such that h′(p) > 0, or,
equivalently, there exists q < 1 such that φ(q) > 0.

Following Treussard (2006) and Nguyen, Pham, and Tran (2012), we consider Y (t) =
S0e

rt − S(t) as the loss variable whose spectral risk we want to calculate using Defini-
tion 2.4. If Y (t) is positive (negative), then the stock performs poorly (well), in compar-
ison with the risk-free deposit. We can also think of Y (t) as a regret value associated
with having bought the stock, rather than holding our investment in a risk-free deposit.

Throughout the paper, we will restrict our attention to non-degenerate distortion
functions. In practice, this means that we exclude the degenerate maximum loss risk
measure.

3 Investigated models

Let S(t) be a positive valued stochastic process which represents the stock price on the
market. As usual, this stochastic process is assumed to be defined with respect to a
filtered probability space (Ω,F ,P).

In the geometric Brownian motion model (GBM), the stock price follows the stochastic
process

S(t) = S0e
(µ−σ2/2)t+σWt , S(0) = S0, (1)

where µ > 0 is the drift, σ > 0 is the volatility, and Wt is a Wiener process.
The standardized log return of this process S(t) is distributed as

ln(S(t)
S0

)− (µ− σ2/2)t

σ
√
t

∼ Φ[z], (2)
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where Φ[z] is the standard normal distribution function.
Exponential Lévy processes (see for instance Mandelbrot (1963), Bertoin (1996), and

McCulloch (1996)), of which GBM is a special example, offer more flexibility to model
heavier tail behaviour. In the exponential Lévy model, the stock price follows the stochas-
tic process

S(t) = S0e
(µ−κX)t+Xt , S(0) = S0, (3)

where Xt is a Lévy process fully determined by its Lévy triplet T, µ > 0 is the drift,
and κX is the convexity adjustment term that can be calculated as

κX =
1

t
lnEeXt . (4)

The convexity adjustment κX plays the role of a compensator in the sense that
e−κX t+Xt is a martingale. Note that κX does not depend on time. We will denote the
distribution function of the Lévy process at a given time t by Ft.

We will consider a specific exponential Lévy model, called Finite Moment Log Stable
(FMLS) model. In the FMLS model, the stock price movement follows the stochastic
process (Carr and Wu, 2003)

S(t) = S0e
(µ−κ)t+σLαt , S(0) = S0, (5)

where µ is the drift, σ is the scale of volatility, Lαt is alpha stable distributed with

shape parameters α ∈ (1, 2) and β = −1, with scale parameter t
1
α , and with zero mean,

that is Lαt ∼ S(α,−1, t
1
α , 0) (see more details in Carr and Wu (2003)). Note that the

only remaining free parameter for the distribution is α. The α→ 2 limit corresponds to
the GBM model. Decreasing α results in heavier tails for the losses. As before, κ is the
convexity adjustment term for the FMLS model, given as

κ = −σαsec(πα/2). (6)

Note that κ is positive due to the properties of the sec function, as α ∈ (1, 2). Now the
log return of the S(t) process becomes

ln

(
S(t)

S0

)
= (µ− κ)t+ σLαt , (7)

therefore its distribution is S(α,−1, σt
1
α , (µ−κ)t) for a fixed t. Stable distributions have

the following important property (see for example page 24 of Janicki and Weron (1994)).

Proposition 3.1. If X is an alpha stable distributed random variable X ∼ S(α, β, 1, 0)
then γX + δ ∼ S(α, β, γ, δ) for δ > 0 and γ ∈ R.

Using Proposition 3.1 we obtain

ln(S(t)
S0

)− (µ− κ)t

σt
1
α

∼ S(α,−1, 1, 0). (8)

We denote the distribution and density functions of S(α,−1, 1, 0) at z by Θα(z) and
Θ′α(z), respectively.
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4 Analytical Results

The main question of this paper is the long horizon behavior of ρh(Y (t)). As will be
demonstrated in Section 5, it starts at zero, and at first, it typically grows. The question
is whether it starts to decrease at a certain time or keeps rising. If ρh(Y (t)) becomes
negative for a large t, it must have decreased from its positive maximum. In this case, it
keeps decreasing below zero.

We will work under the statistical measure in this paper, but it will always be possible
to consider results in the risk neutral measure with the substitution µ = r. There are
two distinct regimes where the long-time behavior of risk is different. The case when
µ > r + κ we call the high growth regime. When r + κ ≥ µ > r, we are in the medium
growth regime. The case µ ≤ r (low growth regime) is not realistic, as it would mean
that the risky asset grows slower on average than the risk-free asset.

Nguyen, Pham, and Tran (2012) investigated two exponential Lévy Processes, GBM
and exponential Poisson. They proved that h′ > c > 0 is a sufficient condition in both
regimes for the risk to be negative at high t. In the high growth regime, they also proved
this behavior if h′ is continuous. We reinvestigated the GBM model and proved the new
result that in the high growth regime all spectral risk measures would be negative at high
t. Moreover, for general exponential Lévy models, we proved that in both high growth
and medium growth regimes if h′ > c > 0, then spectral risk will be negative at high
t. We also investigated a specific exponential Lévy model, the FMLS model, and we
obtained the same results as for the GBM model, that is in the high growth regime all
spectral risk measures will be negative at high t.

4.1 GBM Model

In this section, we assume that the stock process S(t) is a geometric Brownian motion.
The formula derived by Nguyen, Pham, and Tran (2012) for the spectral risk, adjusted

to our definition that takes into account discounting, is:

ρh(Y (t)) = S0[1− e(µ−r)t
∫ ∞
−∞

h′(Φ[z])
1√
2π
e
−1
2

(z−σ
√
t)2dz]. (9)

We have the following own result.

Theorem 4.1. In the GBM stock price model, ρh(Y (t)) is negative for a large t if µ >
r + σ2

2
.

Proof. Since h′ is a monotonically decreasing function in a closed interval, it can only
have a countable number of jump points, so the function is almost surely continuous
everywhere.

Let A = [0, d]. Due to the assumption of the theorem

h′(x) ≥ c ∀ x ∈ A, (10)
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where c > 0. For the integral in (9), we obtain the following lower bound.∫ ∞
−∞

h′(Φ[z])
1√
2π
e
−1
2

(z−σ
√
t)2dz (11)

=

∫
Φ−1A

h′(Φ[z])
1√
2π
e
−1
2

(z−σ
√
t)2dz +

∫
R\Φ−1A

h′(Φ[z])
1√
2π
e
−1
2

(z−σ
√
t)2dz

≥ c

∫
Φ−1A

1√
2π
e
−1
2

(z−σ
√
t)2dz +

∫
R\Φ−1A

h′(Φ[z])
1√
2π
e
−1
2

(z−σ
√
t)2dz.

By definition, Φ−1(A) = (−∞, b], where b = Φ−1(d). For every point x on the interval
(−∞, b] we have h′(Φ[x]) ≥ c. Let us choose a subinterval [a′, b] of the interval (−∞, b].
Since h′ ≥ 0 everywhere, we can assess that∫ ∞

−∞
h′(Φ[z])

1√
2π
e
−1
2

(z−σ
√
t)2dz (12)

≥ c

∫ b

a′

1√
2π
e
−1
2

(z−σ
√
t)2dz = c[Φ(b− σ

√
t)− Φ(a′ − σ

√
t)],

where the last equation follows from integrating the density function of a normally dis-
tributed random variable with mean σ

√
t and standard deviation 1 on the interval [a′, b].

Using the mean value theorem, for a d ∈ [a′, b] we assess that

c[Φ(b− σ
√
t)− Φ(a′ − σ

√
t)] ≥ c(b− a′)e

−1
2

(d−σ
√
t)2 .

Therefore, we can deduce that

e(µ−r)t
∫ ∞
−∞

h′(Φ[z])
1√
2π
e
−1
2

(z−σ
√
t)2dz (13)

≥ e(µ−r)tc · (b− a′)e
−1
2

(d−σ
√
t)2 = c · (b− a′)e(µ−r−σ

2

2
)t+dσ

√
t− 1

2
d2 .

The last expression goes to infinity if t goes to infinity, since we assumed that µ−r−σ2

2
> 0.

It follows that ρh(Y (t)) in (9) goes to minus infinity and hence becomes negative for a
large t .

4.2 Arbitrary Exponential Lévy Models

In this section, we assume that the stock process S(t) is an exponential Lévy process.
For a brief introduction, see Section 3. First, we derive an own formula for the spectral
risk in this model.

Theorem 4.2. In an arbitrary exponential Lévy model, the spectral risk of Y (t),

ρh(Y (t)) = S0[1− e(µ−r)t
∫ ∞
−∞

ez−κX(1)th′(Ft(z))ft(z)dz], (14)

where Ft is the distribution function of the Lévy process at a given time t, and ft is its
density function.
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Proof. Using the Choquet representation in Definition 2.4, we get that

ρh(Y (t)) =

∫ ∞
0

h(1− FY (t)(x))dx+

∫ 0

−∞
[h(1− FY (t)(x))− 1]dx. (15)

We conduct a substitution to express this formula with the distribution function of
the Lévy process. To do so, we further shape 1− FY (t)(x). We know that the log return
of the stock in this model can be written as

ln(
S(t)

S0

) = µt+Xt − tκX . (16)

Using Equation (16), we obtain the following

1− FY (t)(x) = P(S(t) < S0e
rt − x) (17)

= P
(
X(t) < ln

(S0e
rt − x
S0

)
−(µ− κX(1))t

)
= Ft

(
ln
(S0e

rt − x
S0

)
−(µ− κX(1))t

)
.

In Equation (15), performing the substitution z = ln(ert − x
S0

) − (µ − κX)t ⇔ dx =

−S0e
z+(µ−κX)tdz, we get that

ρh(Y (t)) =

∫ C

−∞
h(Ft(z))S0e

z+(µ−κX)tdz +

∫ ∞
C

[h(Ft(z))− 1]S0e
z+(µ−κX)tdz, (18)

where C = (r − µ+ κX)t. Integrating by parts, we obtain that

ρh(Y (t)) = [h(Ft(z))S0e
z+(µ−κX)t]C−∞ −

∫ C

−∞
h′(Ft(z))ft(z)S0e

z+(µ−κX)tdz (19)

+ [h(Ft(z)− 1]S0e
z+(µ−κX)t]∞C −

∫ ∞
C

h′(Ft(z))ft(z)S0e
z+(µ−κX)tdz.

Substituting the values on the boundary points using h(0) = 0, h(1) = 1 we can assert
that

ρh(Y (t)) = S0e
rt[1− e(µ−r)t

∫ ∞
−∞

ez−κX th′(Ft(z))ft(z)dz].

Applying Theorem 4.2, we prove the same long-time behavior for arbitrary Lévy
models as was proven by Nguyen, Pham, and Tran (2012) in the case of GBM.

Theorem 4.3. In an arbitrary exponential Lévy model ρh(Y (t)) is negative for a large t
if h′(·) is bounded below with a c > 0 constant, and if µ > r.

Proof. Due to the definition of κX and by the assumption of the theorem∫ ∞
−∞

ez−κX th′(Ft(z))ft(z)dz (20)

≥ C ·
∫ ∞
−∞

ez−κX tft(z)dz = C · e−κX tE[eXt ] = C.
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And therefore,

e(µ−r)t
∫ ∞
−∞

ez−κX(1)th′(Ft(z))ft(z)dz (21)

goes to infinity as t goes to infinity, implying that ρh(Y (t)) also goes to minus infinity
and ρh(Y (t)) becomes negative for a large t.

4.3 FMLS Model

In this section, we assume that the stock process S(t) is an FMLS process. For a brief
introduction, see Section 3.

Theorem 4.4. In the FMLS stock price model, the spectral risk of Y (t),

ρh(Y (t)) = S0[1− e(µ−r)t
∫ ∞
−∞

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz]. (22)

Proof. The proof is similar to that of Theorem 4.2. The main difference appears in the
variable substitution. Due to the properties of the stable variables (Proposition 3.1) we
can express the risk without time dependency.

Performing the substitution z =
ln(ert− x

S0
)−(µ−κ)t

σt
1
α

⇔ dx = −S0σt
1
α ezσt

1
α+(µ−κ)tdz ,

integrating by parts and utilising h(0) = 0 and h(1) = 1, we obtain ρh(Y (t)) as stated in
the theorem.

Theorem 4.5. In the FMLS stock price model, ρh(Y (t)) is negative for a large t if h′(·)
is bounded below with a c > 0 constant, and if µ > r.

Proof. This is a special case of Theorem 4.3, since the FMLS process is an exponential
Lévy process.

Theorem 4.6. In the FMLS stock price model, ρh(Y (t)) is negative for a large t if
µ > r + κ.

Proof. Since h′ is a monotonically decreasing function in a closed interval, it can only
have a countable number of jump points, so the function is almost surely continuous
everywhere.

Let A = [0, d]. Due to the assumption of the theorem

h′(x) ≥ c ∀ x ∈ A,

where c > 0. As for the integral in (22), we obtain the following lower bound.∫ ∞
−∞

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz (23)

=

∫
Θ−1
α (A)

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz +

∫
R\Θ−1

α (A)

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz

≥ c

∫
Θ−1
α (A)

ezσt
1/α−κtΘ′α(z)dz +

∫
R\Θ−1

α (A)

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz.
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By definition, Θ−1
α (A) = (−∞, b], where b = Θ−1

α (a). For every point x on the interval
(−∞, b], it holds that h′(Θα(x)) ≥ c.

Next, we will show that Θ′α(z) is positive on an appropriate subinterval [a′, b′] of
[−∞, b]. We know that Θ′α(z) is the density function of a stable distributed random
variable with parameters (α,−1, 1, 0). Moreover, on [−∞, b] the cumulative distribution
function of this random variable is not constant, hence the density function is surely
positive at some points. According to Proposition 3.12 on page 102 of Cont and Tankov
(2004), if a Lévy process is infinitely active, then the density function of this process is
continuous for every t. Carr and Wu (2003) showed that the stable process is infinitely
active in case 1 < α < 2, meaning that it has an infinite number of jumps over any time
interval. Hence we can assess that the process Lα,−1

t has continuous density function for
every t ≥ 0. In particular, it holds for t = 1, that is for Θ′α(z). Thus Θ′α(z) is positive in at
least one point on [−∞, b], implying that Θ′α(z) is positive on an appropriate subinterval
[a′, b′] of [−∞, b].

Denote the minimum value of Θ′α(z) on [a′, b′] by c′ > 0. Since h′ ≥ 0 everywhere, we
obtain that

e(µ−r)t
∫ ∞
−∞

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz (24)

≥ c · e(µ−r)t
∫ b′

a′
ezσt

1/α−κtΘ′α(z)dz =

∫ b′

a′
c · e(µ−r−κ)t+zσt1/αΘ′α(z)dz.

Since Θ′α(z) is positive on an appropriate subinterval [a′, b′] of [−∞, b], we obtain that

e(µ−r)t
∫ ∞
−∞

ezσt
1/α−κth′(Θα(z))Θ′α(z)dz (25)

≥ c · c′
∫ b′

a′
e(µ−r−κ)t+zσt1/αdz.

By integrating, it follows that∫ b′

a′
e(µ−r−κ)t+zσt1/αdz =

[e(µ−r−κ)t+zσt1/α

σt1/α

]b′
a′

(26)

=
e(µ−r−κ)t

σt1/α
[eb
′σt1/α−a′σt1/α ] =

e(µ−r−κ)t

σt1/α
[e(b′−a′)σt1/α ].

The last expression goes to infinity if t goes to infinity, since we assumed that µ > r+ κ.
It follows that ρh(Y (t)) in (22) goes to minus infinity and hence becomes negative for a
large t .

5 Numerical Results

To illustrate the implications of our theoretical calculations, in this section we present
numerical results performed with realistic model parameters. We obtained the daily
closing prices on the dividend-adjusted SP500 index to represent the risky “stock” in our
model. The cash deposit rate was estimated using data on the annualized returns on 3-
month US treasury bills. Both time series were taken from 1960 to 2016. Calibrating the
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historical data to the GBM model yielded the following estimation for the parameters:
r = 0.048, µ = 0.089, σGBM = 0.155.

To illustrate the effect of stronger tails in the loss distribution, and to offer some
robustness test, we also calibrated a set of FMLS models with four different α parameters:
α = 1.8, 1.85, 1.9, 1.95. We used the same r = 0.048, µ = 0.089 values as for the GBM
model. At each α, we set σα such that the difference between the first and the third yearly
return quartiles are matched with that of the GBM model. This procedure ensures
consistency between the different models in terms of short-term volatility. All five of
these models represent realistic test cases for long-term investments in a well-diversified
US equity portfolio.

All the models are in the “high growth regime” as defined in Section 4. Using our
results from Section 4, we computed the Expected Shortfall at the 90% level as an il-
lustrative risk measure. We performed the calculation for all five calibrated models for
different holding periods, up to one hundred years, with monthly steps. The value of
the initial stock investment was set to unity. The distribution functions of the normal
and stable distributions are readily available in MatLab, the necessary integrations were
performed with numerical quadrature, also available in MatLab. The results are plot-
ted in Figure 1. The risk curves start at zero, increase up to a maximum value, then,
in accordance with our analytical results, drop down to and below zero. At any given
holding period, the GBM model produces the lowest risk levels, while the FMLS curves,
especially the ones with relatively low α parameters, show higher risk values. This is due
to the heavier tails in the FMLS distribution on the loss side.

Figure 1: Expected Shortfall (90%) risk measure for holding a stock rather than a risk-free
deposit, as a function of the holding period for r = 0.048, µ = 0.089, and σGBM = 0.155.
Risk curves are plotted for the GBM model, and for the FMLS model with different α
parameters.

As discussed in the seminal paper of Artzner, Delbaen, Eber, and Heath (1999),
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coherent risk measures can be interpreted as the amount of reserve cash necessary to lower
market exposure to a tolerable level. Although the numerical results shown underscore
our analytic conclusion that the risk measure becomes zero at some holding time for all
the investigated models, note the time scale on the x axis. The necessary reserve cash
becomes zero only at around, or beyond, one hundred years. Within our framework, it
means that holding only stocks in our investment portfolio incurs a tolerable risk only
if we are willing to hold them for more than a century. On the other hand, at long but
realistic holding periods (a few decades), we need quite a sizable cushion to mitigate risk.
According to Figure 1, the necessary cash reserve amounts to about half of the initial
stock value.

To perform some sensitivity tests, let us consider the effect of changing the parameters.
In particular, we will explore parameter modifications that lower the risk measure. For
most users, decreasing the 90% confidence level for the Expected Shortfall is not an option.
Increasing the confidence level would lead to higher risks, since then the average of even
worse outcomes would be calculated. To decrease risk, volatility should be decreased
or the difference between µ and r should be increased in our models. In Figure 2, we
show risk curves with a reduced volatility of σGBM = 0.125. In Figure 3, the curves are
calculated with the increased drift of µ = 0.11. All other parameters are the same as
in Figure 1. Our models with these modified parameters represent optimistic, but still
realistic market views. Although the risk curves with the modified parameters shifted
down as expected, our conclusions remain essentially the same: Risk remains significant
for decades.

Figure 2: Expected Shortfall (90%) risk measure for holding a stock rather than a risk-free
deposit, as a function of the holding period for r = 0.048, µ = 0.089, and σGBM = 0.125.
Risk curves are plotted for the GBM model, and for the FMLS model with different α
parameters.
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Figure 3: Expected Shortfall (90%) risk measure for holding a stock rather than a risk-free
deposit, as a function of the holding period for r = 0.048, µ = 0.11, and σGBM = 0.155.
Risk curves are plotted for the GBM model, and for the FMLS model with different α
parameters.

6 Conclusion

For long-run investors, it is crucial to know how to evaluate the risk associated with
holding stocks rather than a risk-free deposit. We analyzed spectral risk, which can be
interpreted as a weighted average regret value associated with having bought the stock,
rather than investing in a money market account.

We show that for arbitrary exponential Lévy processes and when all possible outcomes
have strictly positive weight, spectral risk becomes negative at long periods. We also prove
the same behavior for all spectral risk measures (including the important special case of
Expected Shortfall, giving zero weights to some good outcomes) when the stock price is in
the high-growth regime and when it follows a GBM or an FMLS process. We leave it as
an open question whether Expected Shortfall becomes negative for arbitrary exponential
Lévy processes in the high growth regime.

After calibrating the model to SP500, we find that risk indeed becomes negative, but
only about after a century, and it remains significant for decades. Increasing the tails in
the FMLS process, or adding model or parameter uncertainty makes the situation even
worse. Also supported by the sensitivity test, it is safe to conclude that holding stocks is
risky in the long run.
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