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1 Introduction

Global games are coordination games with incomplete information. This class of game
is appropriate to model economic situations where agents have incentive to coordinate
on some action, but due to incomplete information perfect coordination fails. Global
games have been applied to several economic situations, such as bank runs (Goldstein and
Pauzner (2004), Goldstein and Pauzner (2005)), currency crisis (Morris and Shin (1998),
Cukierman et al. (2004)), debt crisis (Morris and Shin (2004)), and technology adoption
(Chamley (1999), Heidhues and Melissas (2006)).

In this paper I extend the standard global games framework by introducing an addition
target on which agents can coordinate on. I compare this multidimensional case to the
standard global games problem. Furthermore, I investigate the effects of consolidating the
multiple targets. I find that introducing an additional option generates a negative strategic
correlation between the options and thus weakens the coordination. However, unifying the
options eliminates the endogenous correlation and thus restores the coordination. I also
show two potential applications to be modeled by these kinds of games.

I build a model with two risky options. There is a continuum of agents who can choose
between a safe and the two risky options. The payoff of the agents choosing a risky option
is increasing with the number of agents choosing the same outcome. This provides an
incentive for the agents to take coordinated actions. However, as the agents have imperfect
information, perfect coordination is not possible. I investigate two scenarios: One, in which
the two risky options are available separately, and another, in which the two are unified.

The unified-risky-options case is formally equivalent to a usual one dimensional global
game. Therefore, in the unique equilibrium, agents choose the risky option only if their
signal is above some constant threshold. However, in case of separate risky options mul-
tidimensionality results an important difference: the threshold is not a constant but a
function of the agents’ signal about the risky outcome. In the equilibrium agents choose a
certain option if their signal on that outcome exceeds the value taken by the cutoff func-
tion at their signal on the other option. I prove the existence and the uniqueness of such
an equilibrium to a certain range of parameters by using Banach fixed point theorem. I
have no closed-form solution for the threshold functions, instead I construct them by using
numerical methods.

Multidimensionality has an important consequence for the power of coordination. When
there are multiple options, coordination weakens. This is due to strategic motives of agents.
Agents have incentives to make mutually consistent actions. Since there are a fixed number
of agents, when there are multiple options, their power is split. The more people coordinate
on one option the less people there are who can potentially coordinate on the other. This
generates a negative correlation between the two options which I call strategic correlation.

The key element of the model is the interaction of the coordination motives of agents
to move together and the substitutability of the options. When there are multiple options,
each potential object of coordination, they are in fact substitutes. Thus, with multiple op-
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tions the coordination disperses. However, unifying the options eliminates the coordination
split and thus strengthens the power of coordination.

I show two applications which can be modeled by the multidimensional global games
framework. The first application is the choice of invoicing currency of oil. In the oil market
the historically established currency is the US Dollar. I show that there are situations when
an agent would switch to the usage of a new currency if there were one new currency besides
the US Dollar, however, would not switch if there were two other currencies. The second
application is the introduction of common European bond. A common argument for joint
issuance is that it smooths out idiosyncratic risk. While this argument is present in my
model, there is an extra layer: joint bond issuance can make participating countries more
vulnerable to speculative attacks.

To my knowledge, this is the first paper showing how the consolidation of multiple
coordination targets can increase coordination. This paper belongs to the stream of the
global games literature which extends the dimension of the standard setup. Oury (2013)
deals with global games where the state space is multidimensional. She focuses on the
sufficient conditions for equilibrium uniqueness in a general class of multidimensional global
games. However, her result does not apply to my model as the action space she defines
differs from the one I use in my model.

Some of the theoretical models of contagion of self-fulfilling crises (e.g. Goldstein and
Pauzner (2004), Keister (2009)) also employ global games techniques with multidimensional
state space, thus let the payoffs be influenced by not only one single, but multiple economic
variables. In particular these models show that when two markets have the same group
of agents, however independent fundamentals, contagion of crises from one market to the
other is likely to occur. However, my model differs from these papers in both the choice
set and the driving force. In these papers the decisions related to the two markets are
not mutually exclusive, agents can choose both of the investment options. The main
mechanism is driven by wealth effect: the crisis in one country influences the wealth of the
agents which changes their behavior toward the other country. In contrast, in my model
agents have to decide among different options. Because there exist multiple options agents
cannot coordinate on the same action, thus the power of their aggregate move is dispersed.

He et al. (2016) also build a global games model with two risky options to investigate
what makes an asset a safe asset. Similar to this paper they also apply their model to
the common European bond issuance. Their paper differs from mine in both the main
focus and the driving mechanism. In general they use their model to investigate the
determinants and features of safe assets. Meanwhile the emphasis of my model is on the
coordination of agents and how it is influenced by the available coordination targets. The
key elements of their model is the trade-off between the strategic complementarity and
the strategic substitutability of the agents’ action. In may paper there is only strategic
complementarity, however there is not only two risky option but also a safe outside option
which induce that the coordination is not only splits between the two options but also
weakens.
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The closest paper to mine is Fujimoto (2014). He explores the similar extension of
global games as I do, namely the introduction of multiple mutually exclusive options.
He proves equilibrium uniqueness and existence for such games in a quite general setup
and also examines the consequences of multidimensionality. My work differs from his
in three important aspects. First, he considers regime change models and thus discrete
outcomes, while in my model the aggregate outcome is continuous. Second, because of
the different setup his mathematical proofs do not apply directly to my model and thus
I provide different proofs to show the existence and uniqueness of the equilibrium in my
setup. Third, I concentrate on the coordination issues of multidimensional global games in
general, while he focuses on speculative attacks.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
characterizes the equilibrium behaviour of agents in case of separate issuance, Section 4
deals with the case of joint issuance. In Section 5 I compare the outcomes in the different
scenarios. In Section 6 I show some comparative statics. Section 7 shows two applications.
Finally, Section 8 concludes.

2 The Model

There are two uncertain economic fundamentals, θA and θB. There is a continuum of agent
with measure one, indexed by i ∈ I = [0, 1]. There are two periods. Each agent is born
in period 1 with an endowment e. Consumption occurs only in period 2 and each agent
obtains utility of u (c), where c is her consumption in period 2. Function u is increasing,
implying that in period 2 agents consume all their wealth. In period 1 agents have to
decide between the available options. There are two scenarios. In the first scenario there
are two risky options each related to one of the uncertain economic fundamentals and a
safe outside option. That is the set of available actions for each agent is Ω = {0, A,B},
where the two risky options are denoted by A and B, while the safe action is represented by
0. In the second scenario the two economic fundamentals are unified and thus agents can
choose either a risky option related to the unification of the fundamentals or a safe outside
action. Thus the set of available actions for the agents is Ω = {0, C}, where C means the
unified risky option and 0 is the outside option. Hereafter the superscripts stand for the
agents, while the subscripts take the same values as the actions. I use a ∈ {0, A,B,C} to
denote the actions in general. When I consider only the two risky options I use r ∈ {A,B}
to represent one of them, while −r denotes the other, i.e. −r = {A,B} /r.

Settlement takes place in period 2. Agents who chose the safe outside option get a risk
free payment o. Agents who chose a risky option a ∈ {A,B,C} realize payoff p (θa + La),
where p′ > 0. The fundamental values θA and θB are independently and randomly drawn
from the real line (i.e. the common priors are independent1 improper uniform over R2).

1I relax this assumption and derive the model with correlated fundamentals in the Appendix.
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While θC represents the fundamental value of the unified option and is equal to the average2

of the individual fundamental values, that is θC = 1
2 (θA + θB). Furthermore LA, LB and

LC denote the mass of agents choosing option A, B or C, respectively. The mass of agents
taking action a ∈ Ω is given by the aggregate actions La =

∫ 1
0 1[ai=a]di, where ai is the

action taken by agent i, while 1[ai=a] is the indicator function which takes the value of one

if ai = a and zero otherwise. The assumption that θa and La enters the payoff function in
an additive way is not essential for the results but simplifies the model.

Agents have incomplete information about the economic fundamentals. Each of them
receives a noisy signal about both fundamentals. The private signal of agent i ∈ [0, 1] about
fundamental r ∈ {A,B} is xir = θr + εir, where εir is an idiosyncratic noise. The noise term
consists of two parts: εir = ei+eir. The first component, ei, is the systemic part of the noise
which is common in both signals received by an agent. The second component, eir, is the
fundamental specific part. The components ei, eiA and eiB are distributed independently
and normally with mean 0 and standard deviation s, sA and sB, respectively, and are inde-
pendent across agents. Thus, by standard properties of the normal distribution, εir also has
a normal distribution with mean 0 and standard deviation σr =

√
s2 + s2r , furthermore εiA

and εiB are correlated with a correlation coefficient ρ = s2√
(s2+s2A)

√
(s2+s2B)

. The parameter

distribution and the noise technology is common knowledge among the agents.

3 Separate Options

3.1 Equilibrium

In the first scenario agents can choose among the two risky and one safe option, that is
Ω = {0, A,B}. I consider symmetric Bayesian Nash Equilibria. A Bayesian pure strategy
is a map s : R2 → Ω, where s(xi) is the action chosen if the agent receives the pair of
signals xi = (xiA, x

i
B).

In equilibrium each agent chooses a risky action if the expected payoff from this option
given her own pair of signals and others’ strategy is higher than both the expected payoff
from the other risky action and the payoff from the safe option.

An agent prefers the risky option r to the safe option if p (θr + Lr) > o. As p is
strictly increasing, there exists a constant n ≡ p−1(o), such that the latter is equivalent to
θr + Lr > n. Between the two risky actions agents prefer to choose the one with higher
expected payoff, thus, given that p is strictly increasing, agents prefer action A on action
B if θA + LA > θB + LB, and prefer action B otherwise. Given these preference rankings,
the equilibrium is such that each agent chooses the risky option r if the expected value of
θr +Lr given her own pair of signals (xi) and others’ strategy (×j∈I/is(xj)) is higher than
both n and the expected value of θ−r + L−r. That is, for each xi ∈ R2

2This assumption is not essential for the main result, but simplifies the model.
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s(xi) =


A if E

[
θA + LA

∣∣xi ,×j∈I/is(xj)] > max
{
E
[
θB + LB

∣∣xi ,×j∈I/is(xj)] , n}
B if E

[
θB + LB

∣∣xi ,×j∈I/is(xj)] > max
{
E
[
θA + LA

∣∣xi ,×j∈I/is(xj)] , n}
0 otherwise

(1)
According to the signal generating process, the posterior cumulative distribution func-

tion about the fundamental value θr is increasing in the agent’s related private signal xir
and - as the fundamentals are assumed to be uncorrelated - does not change with her
other private signal xi−r. Corollary I consider monotone Bayesian Nash equilibria in which
agents’ strategies are increasing in own signals and non-increasing in cross signals. Propo-
sition 1 states that such a strategy is coherent with the equilibrium (see the proof in the
Appendix).

Proposition 1 If all agents have monotone strategies increasing in related own signal and
non-increasing in cross signal then the best response of any agent is to also have such a
strategy.

There have to be some cutoff values, such that an agent would choose a given strategy if
and only if her signal about the underlying value exceeds this cutoff value. In the usual case
when the state space is one dimensional the cutoff is given by a constant (see for instance
Morris and Shin (2003)). But here each cutoff is conditional on the signal received by
the agent about the other fundamental, thus the cutoffs are not constants, but functions.3

As the action space consists of three elements, I define cutoffs between each possible pair
of actions. The cutoff function between actions r ∈ {A,B} and q ∈ Ω \ r = {−r, 0} is
a map krq : R→ R, where krq(xi−r) prescribes a private signal about r (i.e. a value for
xir)

4 such that an agent with pair of signals
(
xi−r, k

rq(xi−r)
)

is indifferent between choosing
option r and q. The monotonicity of the strategies implies that the above defined krq cutoff
functions are indeed functions, i.e. for each element of their domain associate one single
value. Altogether 4 cutoff functions are defined: kA0, kB0, kAB, kBA, such that they solve
the following equations:

E
[
θA + LA

∣∣(xiA, kB0(xiA)
)]

= n (2)

E
[
θB + LB

∣∣(kA0(xiB), xiB
)]

= n (3)

3There is an identical formulation of the problem where some function of the two signals is set against
a constant cutoff value. This identical formulation is closer to the logic of the standard one dimensional
global games, though the solution concept I apply better matches with the formulation I use in the paper.

4Note that the superscript of the functions sets out the two actions that the function separates. For
example kA0(xiB) is the cutoff function between actions A and 0. The first digit of the superscript shows
which signal is set as a function of the other signal. That is kA0(xiB) gives the value of xiA for a given xiB
making the agent independent between choosing risky option A or choosing 0, the safe outside option.
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E
[
θA + LA

∣∣(kAB(xiB), xiB
)]

= E
[
θB + LB

∣∣(kAB(xiB), xiB
)]

(4)

E
[
θA + LA

∣∣(xiA, kBA(xiA)
)]

= E
[
θB + LB

∣∣(xiA, kBA(xiA)
)]

(5)

Note that from (4) and (5) follows that kAB and kBA are inverse functions. Thus a
monotone equilibrium is defined by a joint solution (kA0(xiB), kB0(xiA), kAB(xiB)) to equa-
tions (2)-(4).

Indeed, agents prefer the risky option r ∈ {A,B} over the other two options, if and
only if both xir > kr0(xi−r) and xir > kr(−r)(xi−r). This gives the equilibrium strategies:

Proposition 2 (strategy profile). If strategies are monotone increasing in the related own
signal and non-increasing in the cross signal, the strategy for ∀i ∈ [0, 1] is as follows:

s(xi) =


A if xiA > KA(xiB)
B if xiB > KB(xiA)
0 otherwise

(6)

where KA(xiB) ≡ max
{
kA0(xiB), kAB(xiB)

}
, KB(xiA) ≡ max

{
kB0(xiA), kBA(xiA)

}
and

kBA(xiA) = inv(kAB(xiB)).

Suppose these functions indeed exist, thus they should be such as Proposition 3 shows
(see the proof in the Appendix).

Proposition 3 (cutoff functions). The cutoff functions can be characterized by the fol-
lowing equations:

kA0
(
xiB
)

= n− 1+

∫ ∞
−∞

φ (z)Φ

(
KA

(
xiB +

√
2σBz

)
− kA0

(
xiB
)
−
√

2σAρz√
2σA

√
1− ρ2

)
dz (7)

kB0
(
xiA
)

= n− 1+

∫ ∞
−∞

φ (z)Φ

(
KB

(
xiA +

√
2σAz

)
− kB0

(
xiA
)
−
√

2σBρz√
2σB

√
1− ρ2

)
dz (8)

kAB
(
xiB
)

= xiB+

∫ ∞
−∞

φ (z)

 Φ

(
KA(xiB+

√
2σBz)−kAB(xiB)−

√
2σAρz

√
2σA
√

1−ρ2

)
−Φ

(
KB(kAB(xiB)+

√
2σAz)−xiB−

√
2σBρz

√
2σB
√

1−ρ2

)
 dz (9)

where φ (z) and Φ (z) denote the pdf and the cdf, respectively, of the univariate standard
normal distribution.
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It can be shown that if there is enough noise in the signal generating process, there
exists a unique equilibrium in monotone strategies. This is stated in Proposition 4 (see the
proof in the Appendix).

Proposition 4 (existence, uniqueness). If 2σr+σ−r
σrσ−r

< 2
√
π
√

1− ρ2 for all r ∈ {A,B},
there exists an essentially5 unique Bayesian equilibrium described by the cutoff functions
given in Proposition 3.

3.2 Implications

Figure 1 provides the geometrical representation of the cutoff lines that are characterized
by Proposition 3 in the space of private signals. On the figure xiA is measured on the
horizontal axis, while xiB on the vertical axis. If the pair of signals received by an agent
falls into the bottom left area enclosed by kB0 and kA0 she chooses the safe action. In this
case her signals about both fundamentals and thus her expected gain from choosing any
of the risky options are so low that she rather chooses the outside option. The top left
area enclosed by kB0 and kBA shows the case when the agent picks action B. In this case
her signal on the fundamental value of B is high enough to have an expected gain from
choosing action B higher than both from choosing the outside option and from choosing
action A. Similarly, the bottom right area enclosed by kA0 and kBA shows the case when
the agent chooses option A.

Figure 1: Cutoffs for the Separate-risky-option Case in the Space of Private Signals

5The equilibrium is not unique but essentially unique because at the cutoff the agent is indifferent
between the concerned actions.
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The mass of agents taking a particular action is given by the share of agents falling in
the different domains. Thus the aggregate number of agents choosing risky action r in case
of the separate risky options is given by the following equation:

E(Lr |θ ) = P (xir > Kr(xi−r) |θ ) =

∞∫
−∞

∞∫
Kr(u−r)

f (uA, uB) durdu−r (10)

where f (uA, uB) is the joint pdf of xiA |θ and xiB |θ . Given the signal generating process,
f (uA, uB) is in fact a bivariate normal distribution with mean vector [θA θB] and covariance
matrix [ σA ρ

ρ σB ].
Figure 2 shows the share of agents picking option A. The number of agents choosing

action A increases in θA and decreases in θB. If θA increases the distribution of signals on
fundamental value A (xiA) shifts to the right. Thus the higher θA is, the more agents get
signal xiA high enough (relative to the other signal, xiB) to pick action A. While when θB
decreases the distribution of signals on fundamental value B (xiB) shifts to the left, hence
the cutoff for choosing option A decreases and thus more agents opt for action A.

Figure 2: Share of Agents Choosing Option A in the Separate-risky-option Case in the
Space of Fundamental Values

4 Unified Options

4.1 Equilibrium

In the second scenario agents either choose the safe option or a risky option depending on
the unified fundamentals, that is Ω = {0, C}. Again, I consider symmetric Bayesian Nash
Equilibria with Bayesian pure strategy s : R2 → Ω, where s(xi) is the action chosen if the
agent receives the pair of signals xi = (xiA, x

i
B). In the equilibrium each agents pick the
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the risky unified option if its expected payoff given her own pair of signals (xi) and others’
strategy (×j∈I/is(xj)) is higher than the payoff from the outside option.

An agent prefers the unified risky option to the safe option if p (θC + LC) > o. As p is
strictly increasing, there exists a constant n ≡ p−1(o), such that the latter is equivalent to
θC + LC > n.

Hence the strategy should be such that an agent opts for the unified option if and only
if she expects θC + LC conditional on her own pair of signals (xi) and others’ strategy
(×j∈I/is(xj)) to be higher than n. That is, for each xi ∈ R2

s(xi) =

{
C if E

[
θC + LC

∣∣xi ,×j∈I/is(xj)] > n

0 otherwise

Let us define xiC ≡
1
2

(
xiA + xiB

)
. Given the signal generating processes for xiA and xiB

this can be rearranged to xiC = 1
2

(
θA + εiA + θB + εiB

)
= θC+εiC , with εiC = 1

2

(
εiA + εiB

)
=

ei+ 1
2

(
eiA + eiB

)
. As εiA and εiB are normal random variables εiC is also distributed normally

with mean 0 and standard deviation σC =
√
σ2 + 1

4σ
2
A + 1

4σ
2
B. One can show that the case

of unified option is equivalent to the standard one dimensional case with fundamental
value θC and private signal xiC = θC + εiC . This implies6 that there is always a unique
equilibrium in switching strategies, such that agents choose the unified risky option if and
only if xiC > n− 1

2 .
By using that xiC ≡

1
2

(
xiA + xiB

)
, we can express the cutoff in terms of the original

signals. Thus we get a cutoff function kC0
(
xiA
)

= −xiA + 2n− 1, implying the strategy

s(xi) =

{
C if xiB > kC0(xiA) = −xiA + 2n− 1
0 otherwise

(11)

4.2 Implications

The cutoff line characterized by Equation 11 is shown in Figure 3. It is in fact a straight
line. Agents with a pair of signals falling on the area top right to this line opt for the
unified option while others choose the safe option.

The aggregate number of agents choosing the risky joint option is given by the following
equation:

E(LC |θ ) = P (xiB > kC0(xiA) |θ ) =

∞∫
−∞

∞∫
kC0(uA)

f (uA, uB) duBduA (12)

where again, f (uA, uB) is the joint pdf of xiA |θ and xiB |θ .

6For a proof see for instance Morris and Shin (2003).
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Figure 3: Cutoffs for the Unified-risky-option Case in the Space of Private Signals

Figure 4 shows the share of agents choosing the unified risky option. The share of
agents picking the unified option is increasing in both θA and θB. The higher any of the
two fundamental values the more agent gets such signals that their sum is high enough to
choose the unified risky option.

Figure 4: Share of Agents Choosing the Unified Risky Option in the Space of Fundamental
Values
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5 Comparison

In this section I compare different scenarios. In Subsection 5.1 I set the standard benchmark
case when there is a single risky option with its own fundamental value against the case
of two separate risky options. Then in Subsection 5.2 I compare the two-separate-risky-
actions case with the unified-risky-options case, that is when there is one risky action
depending on both fundamental values. In both subsections I first study the difference in
the individual decision of agents, then I analyze the aggregate behavior of the agents.

5.1 One Single Risky Option Versus Two Separate Risky Options

Suppose there is a single risky option with its own fundamental value. In this case the
cutoff is given by a constant, in our setup k = −0.5 + n is the cutoff value (see Morris and
Shin (2003)). An agent chooses the safe option if her signal is smaller than the cutoff value
and opt for the risky one if higher.

How does the decision of the agent change if instead of a single risky option there are
two risky possibilities? Figure 5 compares the outcomes regarding action A as a function of
the private signals.7 The lines on the graph are the cutoff functions. The areas determined
by the lines are denoted by two letters of which the first indicates the choice in the single-
risky-action case, while the second indicates the outcome when there are two risky options.

Figure 5: Comparison of the Individual Decisions in the Single-risky-option and Two-
separate-risky-option Cases

7Note that xiB does not influence the decision of the agents when they can only choose action A, still I
present the result in the xiA-xiB space to be comparable with the two-risky-action case.
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The vertical line at n− 0.5 is the cutoff in the single-risky-option case. With a private
signal smaller than n−0.5 (the area left to this line) the agents do not pick the single risky
option. Note that this decision is not influenced by the availability of another risky option.
Indeed, with such signals she picks risky action A neither in the single-risky-option, nor in
the two-separate-risky-option case. The only difference is that when there is a second risky
possibility that the agent expects to be attractive enough (her private signal on action B is
higher than kB0) she pick that option (see the area denoted by 0-B), which she cannot in
the single-risky-option case. Otherwise she keeps choosing the outside option (area 0-0).

When the agent receives a signal above n − 0.5 (area right to the line) she picks the
single risky option. This action may change when there is another risky possibility. First,
she may prefer to take the other risky alternative. With private signals falling on the
domain A-B the agent has an expected gain from choosing option B higher than both
the outside option and the gain from picking option A. Second, she may also prefer to
choose the outside option. Area A-0 shows the pair of signals with which an agent does
not choose neither of the two risky options though opt for the single risky option. This
domain is enclosed by kB0, kA0 and −0.5 + n lines. Proposition 5 states that this area
indeed exists (see the proof in the Appendix).

Proposition 5 (inert area). The cutoff functions are above the −1/2 + n line, that is
kr0(xi−r) > −0.5 + n for r ∈ {A,B} and xi−r ∈ R.

This area reveals that when there is a second option, however, not attractable for an
agent, she is less willing to choose the first option. This is because agents have incentives
to make mutually consistent actions. Given that the number of agents is fixed, when
there are multiple options, their power is split. The more agent coordinates on one option
the less people there are who can potentially coordinate on the other. This generates a
negative correlation between the two options. I refer to this endogenous correlation as
strategic correlation. Given that the fundamentals are uncorrelated, without the strategic
correlation the willingness of an agent to pick a risky option should not be influenced by
her expectations about the fundamental value of the other risky option that she will not
choose for sure. Still, due to the endogenous strategic correlation, the availability of a
second option, even when not attractable for an agent, makes the agent less willing to
choose the first option.

Let us turn to the aggregates and compare the overall number of agents choosing option
A under the two scenarios. Equation (10) and Figure 2 show the share of agents choosing
option A in the two-separate-risky-option case. In the single-risky-option case the share of
agents picking the risky option can be simply calculated by using the properties of a one
dimensional normal distribution (see Morris and Shin (2003)). For a given θA fundamental
value the share of agents taking action A is given by the following equation

E(LA |θA ) = P (xiA > −1/2 + n) =
1

σA
Φ

(
θA + 0.5− n

σA

)
(13)
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where again Φ (z) denotes the cdf of the univariate standard normal distribution.
Figure 6 compares the share of agents who choose action A if there are two separate

risky and a safe option versus if besides the safe option only risky action A is available
(LA − L). The outcomes are plotted in the space of fundamentals8. The left panel shows
the 3-dimensional surface while the right panel shows its contour projection on the XY
plane.

Figure 6: Comparison of the Aggregate Number of Agents Choosing the Single Risky
Option and Either of the Two Separate Risky Options

When θA is low enough the agents would not pick action A in neither case, thus the
presence of the second risky option does not influence the outcome. However, when θA is
higher the availability of risky option B matters. In particular the higher θB is relative to
θA, the less agents pick option A as they rather choose option B.

5.2 Two Separated Versus Two Unified Risky Options

In this subsection I compare the cases when the two risky options are separated and when
they are unified. Figure 7 shows the individual decisions as a function of private signals in
both cases. The lines on the graph are the cutoff functions. Similarly as before, the kA0,
kAB and kB0 lines show the cutoff lines in the two-separate-risky-option case. While kC0

shows the cutoff line for the unified-risky-option case.
The areas determined by the lines are denoted by two letters of which the first indicates

the choice when there are two separated risky possibilities, while the second indicates the
outcome when they are unified. Agents with pair of signals falling on the 0-0 domain choose
the outside option in both cases. Then, agents in domains A-C and B-C pick one of the
separate risky options (at A-C they opt for action A, while at B-C they choose option B)
and also the unified risky option. At the same time, agents with pair of signals on area
A-0 or B-0 choose the risky option A or B, respectively, but does not choose their union.

8Note that θB does not influence the outcome in the single-risky-option case, still I present the result in
the θA-θB space to be comparable with the two-risky-option case.
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Figure 7: Comparison of Individual Decisions in the Separate-risky-option and the Unified-
risky-option Cases

These areas include agents who receive high signal about one of the fundamentals and low
about the other. Hence, these agents expect one of the options to be valuable enough for
choosing of its own, however the low expected value of the other option makes unattractive
the unified option. Finally, agents with private signals on the area 0-C choose neither of
the separate risky options but pick their union. This is due to the fact that the negative
strategic correlation is present in case of separate options but not in case of unification.
Indeed, when there are two separate risky possibilities there are two potential targets to
coordinate on, hence the coordination disperses and thus weakens its power. While in case
of a unified risky option agents coordinate on a single target, thus the negative strategic
correlation does not arise. It is easy to show that the 0-C area indeed exists by using
Proposition 5 and the observation that the line kC0 crosses the (n− 0.5, n− 0.5) point.

Let us turn to the aggregate behavior of the agents. Equation (10) and Figure 2 show
LA, the share of agents choosing option A in the case of two separate risky options. While
if the risky options are unified the aggregate number of agents choosing it is shared, that is
LA = LB = LC

2 , where Equation (12) and Figure 4 show LC , the share of agents choosing
the unified option.

Consider first the overall number of agents choosing any of the risky possibilities. Fig-
ure 8 shows the difference between the total number of agents choosing a risky option
in case of joint and separate risky options (LC − LA − LB). The outcomes are shown
in the space of the fundamental values of the two options. The top left panel shows the
3-dimensional surface while the top right panel shows its contour projection on the XY
plane while the bottom panel shows the sign of the difference.
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Figure 8: Comparison of the Aggregate Number of Agents Choosing the Unified Risky
Option and Either of the Risky Options

The sign is positive when more agents pick the unified option than the two separate
risky options and negative in the reverse case. The difference is around zero when the
unification does not influence the total number of agents choosing them. There are two
such typical situations: first, when one of the fundamentals is so high that it outweighs the
other fundamental value (see the northeast part on the top right panel); second, when both
fundamentals are low (see the southwest part on the top right panel). In the former case,
the option with high fundamental value dominates the union, which is thus chosen with
similar intensity, while the other option alone is not selected. In the latter case, none of the
separate risky options and neither their union is picked. More agents choose either of the
independent risky options than their union (see the dark areas on the top right panel) when
one of the risky option has high fundamental value and the other has low, but in absolute
value the one with low is greater. In this case the option with high fundamental value is
chosen, but not the union. However, there are situations when slightly more agents opt
for the joint option than in either of the separate risky options (see the light area on the
bottom panel). This is the case when the value of the two fundamentals are close to each
other and both are low. In this situation, because of the negative strategic correlation, a
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single target is more attractive than multiple targets, this is why more agents choose the
union of the risky options than the distinct options.

Consider next how the form of the risky options affects, say, option A. Figure 9 shows
the difference between the number of agents assigned to option A in the unified and in
the separated case (LC/2 − LA). The outcomes are shown in the space of fundamentals.
The left panel shows the 3-dimensional surface while the right panel shows its contour
projection on the XY plane.

Figure 9: Comparison of the Aggregate Number of Agents Assigned to Option A in the
Separate-risky-option and the Unified-risky-option Cases

The figure reveals that when both θA and θB are low (see the southwest part on the right
panel) the form of the risky options does not make a difference, since neither fundamental
A individually, nor the alliance of the two fundamentals is chosen. However, when θA is
high compared to θB (see the north and the northwest part on the right panel) less agent
picks the union as fundamental B counteracts the strength of fundamental A, so in these
cases option A is less popular individually. Meanwhile, when θB is high compared to θA
(see the east and the southeast part on the right panel) more agents pick option A singly
as the lower fundamental value of B makes the union less preferred.

6 Information Accuracy

This section shows how the outcomes depend on the information precision. I investigate
what happens if the standard deviation, either the systematic part (s) or the fundamental
specific parts (sA and sB), of the noise term changes. Higher standard deviation means that
there is lower information in the signals. The information precision affects the individual
decisions when there are separate risky options, but does not affect when they are unified.
However, the aggregate behavior of the agents changes in both scenarios.

First, I consider changes in the standard deviation of the systemic part of the noise term
(s). Figure 10 provides a geometrical representation of how the cutoff lines separating the
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Figure 10: Cutoff Lines in the Two-separate-risky-option Case at Various Standard Devi-
ations of the Systemic Part of the Noise Term (s = {1, 2, 4} and sA = sB = 0.7)

potential choices of an agent shifts for different s values. The fundamental specific variances
are fixed at sA = sB = 0.7.

The plot reveals that when s increases, the cutoff lines kAO and kBO shift equally
outwards from the -0.5 lines. So the higher the uncertainty, the higher signal on a given
option is needed for an agent to choose that option. The intuition is the following: the
higher dispersion of the expectation of the fundamentals makes the agents to expect that a
larger share of their fellow agents would pick the other risky option. In other worlds, higher
uncertainty makes coordination harder, thus strengthens the negative strategic correlation,
and therefor enlarges the inert area.

Figure 11 shows how the value of s influences the aggregate number of agents choosing
option A in the separate-risky-option case (LA, see Subfigure 11a) and in the unified-risky-
option case (LC , see Subfigure 11b).

As s increases both curves become flatter, so the higher uncertainty reduces the potency
of the fundamentals. This is also reflected in the difference between the aggregate behavior
of the agents under the two scenarios, which is also plotted on Figure 11. Subfigure 11c
plots the difference between the number of agents choosing option A in case of unified and
separate risky options (LC/2− LA). Subfigure 11d shows the difference between the total
number of agents who opt for the unified risky option and who pick either of the separate
risky options (LC − LA − LB).

Both flatten and drift towards zero as s increases. In other worlds, when the agents’
private information is more accurate, the difference between the agents’ aggregate behavior
under the various scenarios decreases.

Note that all the effects caused by changes in s are symmetric in the two risky options.
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(a) LA (b) LC (c) LC/2− LA (d) LC − LA − LB

Figure 11: Aggregate Number of Agents and Differences Between the Aggregate Number
of Agents Choosing the Different Options at Various Standard Deviations of the Systemic
Part of the Noise Term (s = {1, 2, 4} and sA = sB = 0.7)

Now, I bring in asymmetry and consider variation in the standard deviation of the option
specific part of the noise. Figure 12 shows how the cutoff lines in the separate-risky-option
case vary depending on the value of sB. The other parameters are fixed at sA = 0.7 and
s = 2.

When information on option B is less accurate (that is sB increases), the three cutoff
lines move to higher θB and lower θA values. This is in line with the previous finding that
the cutoff lines shifts upward when there is higher uncertainty. Indeed, kBO shifts upward
as higher sB means bigger uncertainty regarding option B. Meanwhile, an increase in sB
decreases the relative (compared to option B) uncertainty about option A, that is why kAO

shifts downward.
Figure 13 plots the agents aggregate behavior for various sB values. Subfigure 13a

shows the aggregate number of agents picking option A in the instance of separate risky
options (LA), while Subfigure 13b shows the share of agents choosing the unified risky
option (LC).

Changes in sB twist the LA surface, but not LC . This is because due to the unification
all effects are divided equally, thus even the option specific changes have symmetric effects
and affect only the steepness but not the curvature of LC .

But, given that LA rotates, the difference of the share of agents assigned to a risky option
under the different scenarios rotates as well. This is shown on Figure 13. Subfigure 13c
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Figure 12: Cutoff Lines in the Two-separate-risky-option Case at Various Standard Devia-
tions of the Option Specific Part of the Noise Term (s = 2, sA = 0.7 and sB = {0.6, 0.7, 3})

(a) LA (b) LC (c) LC/2− LA (d) LC − LA − LB

Figure 13: Aggregate Number of Agents and Differences Between the Aggregate Number
of Agents Choosing the Different Options at Various Standard Deviations of the Option
Specific Part of the Noise Term (s = 2, sA = 0.7 and sB = {0.6, 0.7, 3})
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plots the difference between the agents assigned to option A in case of joint and separate

options (
LC
2
− LA). Subfigure 13d compares the total number of agents who choose the

joint risky option and who pick either of the separate risky options (LC − LA − LB).

7 Applications

In this section I show two potential applications of the multidimensional global games
model. First, in Subsection 7.1 I describe a model for the choice of oil invoicing currency.
Second, in Subsection 7.2 I present a model for the issuance of the European common
bond.

7.1 Choice of Currency for Oil Invoicing

In this subsection I introduce a model that describes the choice of invoicing currency in
the oil market. The model is an extended, but partially simplified version of the model
developed by Mileva and Siegfried (2007).9 There is a continuum of crude oil seller with
measure one, indexed by i ∈ I = [0, 1]. Oil sellers have to decide which currency to use for
invoicing their oil contracts. Suppose there are three currencies, the US Dollar, the Euro
and the British Pound, which can be used, that is j ∈ {UDS,EUR,GBP}. Each seller
can use only a single currency. In time t = 1 sellers decide on the currency, while at time
t = 2 trade takes place and sellers realize their income. The price of oil is independent of
the invoicing currency, however the cost varies depending on the currency.

The cost of using currency j is Cj . It contains the transaction cost, the liquidity cost
and the information cost. Information cost arises only for the Euro and for the British
Pound. In the oil market the historically established invoicing currency is the US Dollar.
However, switching to a different currency have information cost as the traders have to
learn the usage of the new unit of account. The more trader uses the new currency the
lower the information cost is. I assume that the transaction and the liquidity cost do not
depend on the number of traders using the given currency,10 hence the cost of usage is the
function of the number of agents who use the currency for the Euro and for the British
Pound but not for the US Dollar. The aggregate number of agents using currency j is
denoted by Lj , while cj is the part of the cost of using currency j which does not depend
on the aggregate number of users. For simplicity, I assume that Lj enters the cost function
in an additive way. Thus the cost functions are CUSD = cUSD, CEUR = cEUR−LEUR and
CGBP = cGBP − LGBP .

9Their emphasis is on the network effects which arise from the assumption that currency choice of crude
oil sellers determine the currency distribution of other goods. I exclude this assumption and rather build
on the learning element of the model.

10Contrary to the model in Mileva and Siegfried (2007) I suppose that the denomination of oil producers’
expenses is not influenced by the composition of the invoicing currency of oil as the oil market is small
compared to the non-oil market.

20



At t = 1 sellers get noisy signals Xi
j = cj + εij for each j ∈ {USD,EUR,GBP},

where εij are the noise terms which are distributed independently and normally with mean
0 and standard deviation ςj , and are independent across agents. Given her signal triplet
each seller decides on her invoicing currency choice. A seller prefers the Euro over the
other two currencies if she expects cEUR − cUSD − LEUR to be negative and smaller than
cGBP − cUSD −LGBP . Similarly, a seller prefers the most the British Pound if she expects
cGBP − cUSD − LGBP to be negative and smaller than cEUR − cUSD − LEUR. Otherwise,
she prefers the most the US Dollar.

Let me introduce the notations θr ≡ cUSD−cr and xir ≡ Xi
USD−Xi

r, ε
i
r = εiUSD−εir for

r ∈ {EUR,GBP}. Such we have the same model as described in Section 2. In particular
the two risky options are the Euro and the British Pound and the US Dollar is the outside
option. The two fundamental values are θEUR and θGBP on which oil sellers get signals
xiEUR and xiEUR, where εiUSD is the systematic part and −εir is the fundamental specific part

of the noise terms. Thus the standard deviations are σEUR =
√
ς2USD + ς2EUR and σGBP =√

ς2USD + ς2GBP , while the correlation coefficient is ρ =
ς2USD√

(ς2USD+ς2EUR)
√

(ς2USD+ς2GBP )
. Fi-

nally, one can get from the payments after some algebra that n = 0.
Let me compare the individual decisions when only the Euro and when both the Euro

and the British Pound are available besides the US Dollar for invoicing oil contracts.
Figure 5 is suitable for the comparison. Option 0 represents the US Dollar, option A is the
Euro and option C is the British Pound. The line at −0.5 (since n = 0, n − 0.5 = −0.5)
separate the traders decision when only the US Dollar and the Euro are usable. In the
three-currency-case the kB0, kBA and kA0 lines separate the traders’ decisions. A trader
with xir ≡< −0.5 (left to the line at −0.5), or equivalently Xi

USD < Xi
r − 0.5, switches to

the Euro, otherwise continues to use the US Dollar in the two-currencies case. How does
the availability of another currency (in our example the British Pound) affects the traders’
decision on the invoicing currency? Oil sellers using the US Dollar in the two-currencies
case either continue to use the US Dollar (0-0 area) or switches to the British Pound (0-B
area). Traders who switch to the usage of the Euro when this is the only new currency
besides the US Dollar either choose again the Euro (A-A area) or switch to the British
Pound (A-B area) or after all use the US Dollar (A-0 area). Hence there are situations when
an oil seller would switch to the usage of a new currency if there were one new currency
besides the US Dollar, however would not switch if there were two other currencies.

7.2 Introduction of the Common European Bond

In this subsection I present a model to describe the introduction of a joint bond that would
replace the national issuance by member states of the Eurozone. Here I concentrate on the
case when symmetric countries issue the common bond. For this, the model with uncor-
related fundamentals is suitable. To assess the case of asymmetric countries a model with
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correlated fundamentals is required, which I sketch in Appendix A.2. The multidimen-
sional global games framework is suitable for evaluating the effect of joint bond issuance
on the stability of the participating countries.

A and B are two countries with similar economic strength. Both countries borrow from
investors by issuing bonds. There are two scenarios. The first is when the two countries
issue bond separately. The second is when the two countries do not issue national bonds,
instead they together issue a common bond.11

There is a continuum of speculators with measure one, indexed by i ∈ I = [0, 1]. There
are two periods. In period 1 speculators can decide whether to short some bonds. Because
of short-sale constraints, each trader can short sell exactly 1 unit. If countries issue bonds
separately speculators can trade any of the two (but because of the short-sale constraints
not both at the same time). That is the set of available actions for each speculator is
Ω = {0, A,B}, where not trading is represented by 0, taking short position in one of the
two national bonds are denoted by A and B. If countries issue bonds jointly the set of
available actions for the traders is Ω = {0, C}, where C means shorting the common bond.

Settlement takes place in period 2. Speculators choosing the outside option get a
risk free interest rate rf , thus their payment is 1 + rf . Speculators going short in bond
a ∈ {A,B,C} realizes payoff p (θa + La). The fundamental values θA and θB represent
the vulnerability of the two countries, they are independently and randomly drawn from
the real line. While θC = 1

2 (θA + θB) represents the vulnerability of the alliance of the
countries and is equal to the average of the individual fundamental values. Furthermore
LA, LB and LC denote the mass of speculators shorting the bond of country A, the bond
of country B and the joint bond, respectively.

Each trader receives a noisy signal about both countries’ fundamentals. The private
signal of investor i ∈ [0, 1] about the fundamental of country r ∈ {A,B} is xir = θr + εir,
where εir is an idiosyncratic noise. The noise term consists of two parts: εir = ei + eir. The
first component of the noise term, ei, is the systemic part of the noise, while the second
component, eir, is the country specific part. The components ei, eiA and eiB are distributed
independently and normally with mean 0 and standard deviation s, sA and sB, respectively,
and are independent across speculators.

The welfare in country r ∈ {A,B} is a decreasing function of the fundamental vulnera-
bility of the country and the mass of speculators attacking the country: Wr = wr (θr, Lr),
where w′r < 0. Similarly, the global welfare is a decreasing function of the sum of the two
countries’ vulnerability and the overall number of shorting traders: W = w (θA + θA, LA + LB),
where w′ < 0. In case of joint issuance the countries share the cost of attack, that is
LA = LB = LC

2 .
I compare the welfare in the separate and in the joint bond issuance scenarios. The

11Several implementation approaches to common bond issuance have been suggested. Though there
are proposals with a mix of national bonds and jointly issued common bonds, in this subsection I only
concentrate on the limiting case when there is a full degree of substitution of joint issuance for national
issuance.
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former scenario is equivalent to the separate-risky-options case, while the latter is identical
to the unified-risky-options case. Given that the welfare functions wr and w are decreasing
and the value of the fundamental is independent of the type of issuance, the aggregate
number of attackers is the key ingredient of the welfare comparison. In particular the one
with higher number of attackers results lower welfare. Hence Figure 8 and Figure 9 capture
the results.

Figure 8 shows the difference between the total number of speculators attacking in
case of joint and separate issuance. The sign is positive when more speculators attack
the common bond than the two separate countries and negative in the reverse case. More
agents attack either of the independent countries than their alliance (see the dark areas
on the top right panel) when one of the countries has high vulnerability and the other
has low, but in absolute value the one with low is greater. In this case the country which
is vulnerable alone is attacked, but not the common bond. This reveals that the joint
issuance can smooth out idiosyncratic risk, which is a common argument for Eurobond.
However, when the vulnerability of the two countries are similarly low, slightly more agents
speculate in the joint bond than in either of the national bonds (see the light are on the
bottom panel). In this case the negative strategic correlation makes the single target more
attractive than the multiple targets.

Figure 9 shows the difference between the number of speculators impairing country A
in case of joint and separate issuance. The figure shows that when the vulnerability of
both countries are low (both θA and θB are low, see the southwest part on the right panel)
the form of bond issuance does not make a difference, since neither country A individually,
nor the alliance of the two countries is attacked. However, when country A is vulnerable
compared to country B (high θA compared to θB, see the north and the northwest part on
the right panel) the joint bond is less attacked since country B counteracts the vulnerability
of country A, so in these cases country A is worse off individually. Meanwhile, when the
country B is more vulnerable than country A (high θB compared to θA, see the east and
the southeast part on the right panel) country A is better off alone as the vulnerability of
country B harms also country A in case of their alliance.

8 Conclusion

In this paper I analyze the coordination aspect of multidimensional global games. Global
games are coordination games with incomplete information, they have been applied to
several economic situations, such as bank runs, currency crisis, and technology adoption.
I extend the standard global games framework by introducing and additional coordination
target.

Multidimensionality has an important consequence for the power of coordination. When
there are multiple options, coordination weakens. This is due to strategic motives of agents.
Agents have incentives to make mutually consistent actions. Since there are a fixed number
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of agents, when there are multiple options, their power is split. The more people coordinate
on one option the less people there are who can potentially coordinate on the other. This
generates a negative correlation between the two options which I call strategic correlation.

The key element of the model is the interaction of the coordination motives of agents
to move together and the substitutability of the options. When there are multiple options,
each potential object of coordination, they are in fact substitutes. Thus, with multiple op-
tions the coordination disperses. However, unifying the options eliminates the coordination
split and thus strengthens the power of coordination.

I show two applications which can be modeled by the multidimensional global games
framework. The first application is the choice of invoicing currency of oil. In the oil market
the historically established currency is the US Dollar. I show that there are situations when
an agent would switch to the usage of a new currency if there were one new currency besides
the US Dollar, however, would not switch if there were two other currencies. The second
application is the introduction of common European bond. A common argument for joint
issuance is that it smooths out idiosyncratic risk. While this argument is present in my
model, there is an extra layer: joint bond issuance can make participating countries more
vulnerable to speculative attacks.
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A Appendix

A.1 Complete Information

In case of complete information there are multiple equilibria for a certain range of funda-
mentals. The following domains can be separated in case of separate risky options (see
Figure 14):

• i) if θB ≥ max(n, θA + 1), each agent has a dominant strategy to choose option B

• ii) if θA ≥ max(n, θB + 1), each agent has a dominant strategy to choose option A

• iii) if θA < n− 1 and θB < n− 1, each agent has a dominant strategy to choose the
outside option

• iv) if n − 1 ≤ θB < n and θA < n − 1, there are two pure strategy Nash equilibria:
either everybody choose option B or everybody choose the outside option

• v) if n − 1 ≤ θA < n and θB < n − 1, there are two pure strategy Nash equilibria:
either everybody choose option A or everybody choose the outside option

• vi) if θ1 − 1 < θB < θA + 1 and either n− 1 < θA or n− 1 < θB, there are two pure
strategy Nash equilibria: either everybody choose option A or everybody choose
option B

• vii) if n−1 ≤ θA < n and n−1 ≤ θB < n, there are three pure strategy Nash equilibria:
either everybody choose option A or everybody choose option B or everybody choose
the outside option

While in case of join issuance the following domains can be distinguished (see Figure
15):

• i) if θB ≥ 2n − θA, each agent has a dominant strategy to choose the unified risky
option

• ii) if 2n− θA > θB ≥ 2n− θA− 2, there are two pure strategy Nash equilibria: either
everybody choose the unified risky option or everybody choose the outside option

• iii) if 2n − θA − 2 > θB, each agent has a dominant strategy to choose the outside
option
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Figure 14: Equilibria in Case of Complete Information with Two Separate Risky Options
in the Space of the Fundamental Values

Figure 15: Equilibria in Case of Complete Information with the Unified Risky Option in
the Space of the Fundamental Values
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A.2 Correlated Fundamentals

The economic fundamentals, θA and θB, are correlated with correlation coefficient ρθ and

follow a bivariate normal distribution such that

[
θA
θB

]
∼ N

([
yA
yB

]
,

[
τ2A τAτBρθ

τAτBρθ τ2B

])
.12

However, for simplicitiy, I assume that the pair of signals received by and agent are not
correlated. For this reason, I set the variance of the systematic part of the individual noise
term (ei) to be 0 (that is s = 0), and thus the noise term εir has mean 0 and standard
deviation sr = σr.

The joint distribution of the fundamentals and the noise terms implies that an agent ob-
serving the vector of signals xi = (xiA, x

i
B) considers the fundamental values and the oppo-

nents’ signal to be distributed normally such as θ
∣∣xi ∼ N(µθ,Σθ) and xj

∣∣xi ∼ N(µxj ,Σxj )
for ∀j 6= i, where

µθ = µxj =

(
HAAx

i
A + (1−HAA)yA +HABx

i
B + (1−HAB)yB

HBAx
i
A + (1−HBA)yA +HBBx

i
B + (1−HBB)yB

)
and

Σxj = Σθ +

(
σ2A 0
0 σ2B

)
=

(
σ2A(1 +HAA) σAσB

√
HABHBA

σAσB
√
HABHBA σ2B(1 +HBB)

)
where the weights are

HAA ≡
(1− ρ2)(τAτB)2 + (τAσB)2

(1− ρ2)(τAτB)2 + (τAσB)2 + (σAτB)2 + (σAσB)2
(14)

HAB ≡
ρτAτBσ

2
A

(1− ρ2)(τAτB)2 + (τAσB)2 + (σAτB)2 + (σAσB)2
(15)

HBA ≡
ρτAτBσ

2
B

(1− ρ2)(τAτB)2 + (τAσB)2 + (σAτB)2 + (σAσB)2
(16)

HBB ≡
(1− ρ2)(τAτB)2 + (σAτB)2

(1− ρ2)(τAτB)2 + (τAσB)2 + (σAτB)2 + (σAσB)2
(17)

Similarly as in case of uncorrelated fundamentals, the strategy can be characterized by
Proposition 2. However the cutoff function characterizing the equilibrium are differ from
the uncorrelated case. Proposition 6 describes them.

12An alternative representation is that the fundamentals are independently and randomly drawn from
the real line, however each agent observe the pair of noisy public signals yA = θA + εyA and yB = θB + εyB ,

where

[
εyA
εyB

]
∼ N

([
0
0

]
,

[
τ2A τAτBρθ

τAτBρθ τ2B

])
.
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Proposition 6 (cutoff functions 2).
The cutoff functions can be characterized by the following equations:

kA0(xiB) =
1

HAA

{
n− 1− (1−HAA)yA −HABx

i
B − (1−HAB)yB

+

∫ ∞
−∞

φ (z)Φ
(
DA

(
z, kA0(xiB), xiB

))
dz

}
(18)

kB0(xiA) =
1

HBB

{
n− 1− (1−HBB)yB −HBAx

i
A − (1−HBA)yA

+

∫ ∞
−∞

φ (z)Φ
(
DB

(
z, kB0(xiA), xiA

))
dz

}
(19)

kAB(xiB) =
HAB −HBB

HAA −HBA
(yB − xiB) + yA +

1

HAA −HBA

·
∫ ∞
−∞

φ(z)
[
Φ
(
DA(z, kAB(xiB), xiB)

)
− Φ

(
DB

(
z, xiB, k

AB(xiB)
))]

dz (20)

kBA(xiA) =
HBA −HAA

HBB −HAB
(yA − xiA) + yB +

1

HBB −HAB

·
∫ ∞
−∞

φ(z)
[
Φ
(
DB(z, kBA(xiA), xiA)

)
− Φ

(
DA

(
z, xiA, k

BA(xiA)
))]

dz (21)

where φ (z) and Φ (z) denote the pdf and the cdf, respectively, of the univariate standard
normal distribution, HAA, HAB, HBA and HBB as defined in equation (14), (15),(16) and
(17), respectively and

DA
(
z, xiA, x

i
B

)
≡

√
1 +HBB

σA
√

(1 +HAA)(1 +HBB)−HABHBA

·
{
KA

(
σB
√

1 +HBBz

+HBAx
i
A + (1−HBA)yA +HBBx

i
B + (1−HBB)yB

)
−HAAx

i
A

−(1−HAA)yA −HABx
i
B − (1−HAB)yB −

σA
√
HABHBAz√
1 +HBB

}
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DB
(
z, xiB, x

i
A

)
≡

√
1 +HAA

σB
√

(1 +HAA)(1 +HBB)−HABHBA

·
{
KB

(
σA
√

1 +HAAz

+HABx
i
B + (1−HAB)yB +HAAx

i
A + (1−HAA)yA

)
−HBBx

i
B

−(1−HBB)yB −HBAx
i
A − (1−HBA)yA −

σB
√
HBAHABz√
1 +HAA

}
Proposition 7 states that if there is enough noise in the signal generating process, there

exists a unique equilibrium in monotone strategies.

Proposition 7 (existence, uniqueness 2). If ... for all r ∈ {A,B}, there exists an essen-
tially unique Bayesian equilibrium described by the cutoff functions given in Proposition
6.

A.3 Proofs

Proof. (of Proposition 1) The joint distribution of the noise terms implies that an agent
observing the vector of signals xi = (xiA, x

i
B) considers the fundamental values and the

opponents’ signal to be distributed normally as follows: θr |xi ∼ N(xir, σr) and xjr |xi ∼
N(xir,

√
2σr) for ∀j 6= i and r ∈ {A,B}. Thus if xir increases ceteris paribus, E (θr |xi )

increases as well.
Moreover the posterior distribution of opponents’ signal is also increasing in xir, thus

given that agents follow monotone increasing strategies in related signals, and E (Lr |xi ) =
Pr
(
aj = r

∣∣xi ), an increase in xir rise E (Lr |xi ) as well. This implies that E (θr + Lr |xi )
increases with xi.

Given that xir is neutral to both θ−r |xi and xj−r |xi and opponents follow non-increasing
strategy in cross signals, E (θ−r + L−r |xi ) is non-increasing in xi.

This makes action r more attractive compared to both action 0 and −r.
Proof. (of Proposition 3)

Since the noise term is distributed iid., in the symmetric equilibrium, the probability
that an agent chooses action r is equal to the aggregate number of agents who chooses
that action. Thus given the strategy characterized in Proposition 2 and the conditional
distribution ur ≡ xjr |xi ∼ N(xir,

√
2σr) for ∀j 6= i and r ∈ {A,B}, it can be easily shown

that

E(Lr |xi ) = P (xjr > Kr(xj−r)
∣∣xi ) =

∞∫
−∞

∞∫
Kr(u−r)

f (uA, uB) durdu−r

where f (uA, uB) is the joint pdf of xjA |xi and xjB |xi . Let z1 and z2 such that

[
z1
z2

]
∼

N (0, I), thus by using the Cholesky decomposition uA = xiA +
√

2σAzA and uB = xiB +
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√
2σB

(
ρzA +

√
1− ρ2zB

)
would hold. By introducingDr (z) =

Kr(xi−r+
√
2σ−rz)−xir−

√
2σrρz

√
2σr
√

1−ρ2
,

the equations can be rearranged as follows:

E
(
Lr
∣∣xi ) =

∞∫
−∞

∞∫
Kr(u−r)

f (uA, uB) durdu−r =

∞∫
−∞

∞∫
Dr(z−r)

φ (zA, zB) dzrdz−r

=

∫ ∞
−∞

φ (z) [1− Φ (Dr (z))] dz = 1−
∫ ∞
−∞

φ (z)Φ (Dr (z)) dz

where φ (z) and Φ (z) denote the pdf and the cdf, respectively, of the univariate stan-
dard normal distribution and φ(zA, zB) denotes the pdf of the bivariate standard normal
distribution, where zA and zB are independent, implying that φ (zA, zB) = φ (zA)φ (zB).
Using that θr |xi ∼ N(xir, σr) for r ∈ {A,B} results in

E(θr + Lr |xi ) = E(θr |xi ) + E(Lr |xi ) = xir + 1−
∫ ∞
−∞

φ (z)Φ (Dr (z)) dz (22)

The definition of the cutoff function kr0 implies that whenever xir = kr0(xi−r), E(θr +
Lr |xi ) = n has to hold. Substituting this into (22) gives

kr0(xi−r) + 1−
∫ ∞
−∞

φ (z)Φ

(
Kr
(
xi−r +

√
2σ−rz

)
− kr0(xi−r)−

√
2σrρz√

2σr
√

1− ρ2

)
dz = n

implying that

kr0(xi−r) = n− 1+

∫ ∞
−∞

φ (z)Φ

(
Kr
(
xi−r +

√
2σ−rz

)
− kr0(xi−r)−

√
2σrρz√

2σr
√

1− ρ2

)
dz (23)

The definition of kr(−r) implies that with xir = kr(−r)
(
xi−r

)
, the E

(
θr + Lr

∣∣xi ) =
E
(
θ−r + L−r

∣∣xi ) is satisfied, thus combining this with equation (22) gives

kr(−r)
(
xi−r

)
+ 1−

∫ ∞
−∞

φ (z)Φ

(
Kr
(
xi−r +

√
2σ−rz

)
− kr(−r)

(
xi−r

)
−
√

2σrρz√
2σr
√

1− ρ2

)
dz

= xi−r + 1−
∫ ∞
−∞

φ (z)Φ

(
K−r

(
kr(−r)

(
xi−r

)
+
√

2σrz
)
− xi−r −

√
2σ−rρz√

2σ−r
√

1− ρ2

)
dz

which can be rearranged into the following form:

kr(−r)
(
xi−r

)
= xi−r +

∫ ∞
−∞

φ (z)

 Φ

(
Kr(xi−r+

√
2σ−rz)−kr(−r)(xi−r)−

√
2σrρz

√
2σr
√

1−ρ2

)
−Φ

(
K−r(kr(−r)(xi−r)+

√
2σrz)−xi−r−

√
2σ−rρz

√
2σ−r
√

1−ρ2

)
 dz (24)
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Proof. (of Proposition 4) By using Banach fixed point theorem, I show that the cutoff
function triplet k =

{
kA0, kB0, kAB

}
given by Proposition 3 indeed exists and is unique.

For this in Lemma 8 I show that the set of cutoff function triplets K with some metric
d is a complete metric space. In Lemma 9 I prove that the joint best response mapping
B : K → K is a contraction map.

Lemma 8 (Non-empty Complete Metric Space). The set of cutoff function triplet K with
some metric d is a complete metric space.

First let me define the metric d for any two sets of functions F = {f1, f2, . . . fN} and
G = {g1, g2, . . . gN} where both contain N number of functions, each with domain R:

d (F,G) ≡ max

{
sup
y∈R
|f1 (y)−g1 (y)| , sup

y∈R
|f2 (y)−g2 (y)|, . . . , sup

y∈R
|fN (y)−gN (y)|

}

From (23) we can establish that kr0 : R→[−1 + n, n] is bounded. While from (24) follows
that kr(−r) (y)−y : R→ [−1, 1] is bounded. Hence (K, d) is indeed a complete metric space.

Lemma 9 (Contraction Map). The joint best response mapping B : C → C is a contraction
map.

Given that everybody has cutoffs k ≡
{
kA0, kB0, kAB

}
, the best response cutoffs of

agent i is given by B(k) =
{
bA0(k), bB0(k), bAB(k)

}
. Where from (23) and (24) we have

for r ∈ {A,B}

br0 (y, k) = n− 1+

∫ ∞
−∞

φ (z)Φ

(
Kr
(
y +
√

2σ−rz
)
− kr0(y)−

√
2σrρz√

2σr
√

1− ρ2

)
dz (25)

br(−r) (y, k) = xi−r +

∫ ∞
−∞

φ (z)

 Φ

(
Kr(y+

√
2σ−rz)−kr(−r)(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
−Φ

(
K−r(kr(−r)(y)+

√
2σrz)−y−

√
2σ−rρz

√
2σ−r
√

1−ρ2

)
 dz (26)

with Kr (y) ≡ max
{
kr0 (y) , kr(−r) (y)

}
. In order to verify that the map is indeed a contrac-

tion map we have to show that d (k, k′) > d (B (k) , B (k′)). For this it is enough to show that
both d (k, k′) > supy∈R

∣∣br0 (y, k)− br0(y, k′)
∣∣ and d (k, k′) > supy∈R

∣∣br(−r) (y, k)− br(−r)(y, k′)
∣∣ hold

if the sufficient conditions are fulfilled.
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First let me concentrate on br0

sup
y∈R

∣∣br0 (y, k)− br0(y, k′)
∣∣

= sup
y∈R

∣∣∣∣∣∣∣∣
∫∞
−∞ φ (z)Φ

(
Kr(y+

√
2σ−rz)−kr0(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
dz∫∞

−∞ φ (z)Φ

(
Kr′(y+

√
2σ−rz)−kr0′(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
dz

∣∣∣∣∣∣∣∣
= sup

y∈R

∣∣∣∣∣∣∣∣
∫ ∞
−∞

φ(z)

 Φ

(
Kr(y+

√
2σ−rz)−kr0(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
−Φ

(
Kr′(y+

√
2σ−rz)−kr0′(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
 dz

∣∣∣∣∣∣∣∣ (27)

According to the mean value theorem there exists ξ s.t.:

φ (ξ) =

Φ

(
Kr(y+

√
2σ−rz)−kr0(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
− Φ

(
Kr′(y+

√
2σ−rz)−kr0′(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
Kr(y+

√
2σ−rz)−kr0(y)−

√
2σrρz

√
2σr
√

1−ρ2
− Kr′(y+

√
2σ−rz)−kr0′(y)−

√
2σrρz

√
2σr
√

1−ρ2

Since maxξ∈R φ (ξ) = φ (0) = 1√
2π

we have

φ (0)
Kr
(
y +
√

2σ−rz
)
−Kr′ (y +

√
2σ−rz

)
− kr0(y) + kr0′(y)

√
2σr
√

1− ρ2

≥ Φ

(
Kr
(
y +
√

2σ−rz
)
− kr0(y)−

√
2σrρz√

2σr
√

1− ρ2

)

−Φ

(
Kr′ (y +

√
2σ−rz

)
− kr0′(y)−

√
2σrρz√

2σr
√

1− ρ2

)

Moreover for any y the inequality −kr0 (y) + kr0′ (y) ≤ supz∈R
∣∣kr0 (y)− kr0′ (y)

∣∣ has to
hold. But from the definition of metric d follows that supy∈R

∣∣kr0 (y)− kr0′ (y)
∣∣ ≤ d (k, k′),

which implies −kr0 (y) + kr0′ (y) ≤ d (k, k′). Similarly holds

Kr
(
y +
√

2σ−rz
)
−Kr′

(
y +
√

2σ−rz
)

≤ sup
y∈R

∣∣Kr (y)−Kr′ (y)
∣∣

≤ max

(
sup
y∈R

∣∣kr0 (y)− kr0′ (y)
∣∣, sup
y∈R

∣∣∣kr(−r) (y)− kr(−r)′ (y)
∣∣∣)

≤ d
(
k, k′

)
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for any y. These imply that

φ (0)
2d (k, k′)

√
2σr
√

1− ρ2

≥ Φ

(
Kr
(
y +
√

2σ−rz
)
− kr0(y)−

√
2σrρz√

2σr
√

1− ρ2

)

−Φ

(
Kr′ (y +

√
2σ−rz

)
− kr0′(y)−

√
2σrρz√

2σr
√

1− ρ2

)

Combining this with (27) gives:

sup
y∈R

∣∣br0 (y, k)− br0(y, k′)
∣∣ ≤ sup

y∈R

∣∣∣∣∣∣
∫ ∞
−∞

φ(z)

φ (0)
2d
(
k, k

′
)

√
2σr
√

1− ρ2

 dz
∣∣∣∣∣∣ =

d (k, k′)
√
πσr

√
1− ρ2

.

Thus supz∈R
∣∣br0 (z, k)− br0(z, k′)

∣∣ < d (k, k′) holds if ρ and σr are such that 1
σr

<
√
π
√

1− ρ2 (condition 1).
Now let me concentrate on br(−r). Equation (26) gives

sup
y∈R

∣∣∣br(−r) (y, k)− br(−r)
(
y, k′

)∣∣∣

= sup
y∈R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ ∞
−∞

φ (z)



Φ

(
Kr(y+

√
2σ−rz)−kr(−r)(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
−Φ

(
Kr′(y+

√
2σ−rz)−kr(−r)′(y)−

√
2σrρz

√
2σr
√

1−ρ2

)
−Φ

(
K−r(kr(−r)(y)+

√
2σrz)−y−

√
2σ−rρz

√
2σ−r
√

1−ρ2

)
+Φ

(
K−r′(kr(−r)′(y)+

√
2σrz)−y−

√
2σ−rρz

√
2σ−r
√

1−ρ2

)


dz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Similarly as above, by using the mean value theorem and the definition of Kr, one can
show that

φ (0)
2d (k, k′)

√
2σr
√

1− ρ2

≥ Φ

(
Kr
(
y +
√

2σ−rz
)
− kr(−r) (y)−

√
2σrρz√

2σr
√

1− ρ2

)

−Φ

(
Kr′ (y +

√
2σ−rz

)
− kr(−r)′ (y)−

√
2σrρz√

2σr
√

1− ρ2

)
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and

φ (0)
d (k, k′)

√
2σ−r

√
1− ρ2

≥ −Φ

(
K−r

(
kr(−r) (y) +

√
2σrz

)
− y −

√
2σ−rρz√

2σ−r
√

1− ρ2

)

+Φ

(
K−r′

(
kr(−r)′ (y) +

√
2σrz

)
− y −

√
2σ−rρz√

2σ−r
√

1− ρ2

)

These imply that

sup
z∈R

∣∣∣br(−r) (y, k)− br(−r)
(
y, k′

)∣∣∣
≤

∫ ∞
−∞

φ(z)

[
φ (0)

2d (k, k′)
√

2σr
√

1− ρ2
+ φ (0)

d (k, k′)
√

2σ−r
√

1− ρ2

]
dz

=
d (k, k′)
√
π
√

1− ρ2

(
1

σr
+

1

2σ−r

)∫ ∞
−∞

φ(z) dz =
d (k, k′)
√
π
√

1− ρ2
σr + 2σ−r

2σrσ−r

Thus if ρ, σr and σ−r are such that 2σA+σB
σAσB

< 2
√
π
√

1− ρ2 (condition 2), then d (k, k′) >

supy∈R
∣∣br(−r) (y, k)− br(−r)(y, k′)

∣∣ holds. Since 2
σB

< 2σA+σB
σAσB

condition 1 is always sat-

isfied whenever condition 2 holds. Hence if 2σA+σB
σAσB

< 2
√
π
√

1− ρ2, for all r ∈ {A,B},
then (

B (k) , B
(
k′
))

= max

(
supy∈R

∣∣bA0 (y, k)− bA0(y, k′)
∣∣, supy∈R

∣∣bB0 (y, k)− bB0(y, k′)
∣∣,

supy∈R
∣∣bAB (y, k)− bAB(y, k′)

∣∣, supy∈R
∣∣bBA (y, k)− bBA(y, k′)

∣∣ )
< d

(
k, k

′
)

is fulfilled. So in this case the mapping is indeed a contraction.

Proof. (of Proposition 5) Assume that for some y0 the inequality kr0 (y0) > n− 0.5 does
not hold. That is there exists some δ0 ≥ 0 constant such that kr0 (y0) = n− 0.5− δ0.

Substituting it into (23) gives

n−0.5−δ0 = n−1+

∫ ∞
−∞

φ (z)Φ

(
Kr
(
y0 +

√
2σ−rz

)
− (n− 0.5− δ0)−

√
2σrρz√

2σr
√

1− ρ2

)
dz (28)
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According to the mean value theorem there exists ξ such that

φ (ξ) =

Φ

(
Kr(y0+

√
2σ−rz)−(n−0.5−δ0)−

√
2σrρz

√
2σr
√

1−ρ2

)
− Φ

(
−ρz√
1−ρ2

)
Kr(y0+

√
2σ−rz)−(n−0.5−δ0)−

√
2σrρz

√
2σr
√

1−ρ2
− −ρz√

1−ρ2

thus

Φ

(
Kr
(
y0 +

√
2σ−rz

)
− (n− 0.5− δ0)−

√
2σrρz√

2σr
√

1− ρ2

)

= φ (ξ)
Kr
(
y0 +

√
2σ−rz

)
− (n− 0.5− δ0)√

2σr
√

1− ρ2
+ Φ

(
−ρz√
1− ρ2

)

Combing it with (28) gives∫ ∞
−∞

φ (z)

[
φ (ξ)

Kr
(
xi−r +

√
2σ−rz

)
− (n− 0.5− δ0)√

2σr
√

1− ρ2
+ Φ

(
−ρz√
1− ρ2

)]
dz = 0.5− δ0

Using that φ (z) = φ (−z) and Φ (z) = 1 − Φ (−z) implies that with any constant A:∫∞
−∞ φ (z) Φ (Az) dz =

∫ 0
−∞ φ (−z) [1− Φ (−Az)] +

∫∞
0 φ (z) Φ (Az) dz =

∫∞
0 φ (z) dz =0.5. Hence∫∞

−∞ φ (z) Φ

(
−ρz√
1−ρ2

)
dz =0.5, and thus

∫∞
−∞ φ (z)φ (ξ)

Kr(y0+
√
2σ−rz)−(n−0.5−δ0)
√
2σr
√

1−ρ2
dz = −δ0.

Rearrangement gives
∫∞
−∞ φ (z)Kr

(
y0 +

√
2σ−rz

)
dz = −δ0

(√
2σr
√

1−ρ2
φ(ξ) + 1

)
+ n − 0.5,

which implies that for some y1 the following has to hold

Kr (y1) ≤ −δ0

(
1 +

√
2σr
√

1− ρ2
φ (ξ)

)
− 0.5 + n

Using condition and that maxξ∈R φ (ξ) = φ (0) = 1√
2π

, the inequality
√
2σr
√

1−ρ2
φ(ξ) < 2

has to hold. Moreover Kr (yA) ≡ max
{
kr0 (y1) , kr(−r) (y1)

}
, thus

kr0 (y1) < −0.5 + n− 3δ0

That is there exists some constant δ1 > 3δ0 ≥ 0 constant such that kr0 (y1) = n−0.5−δ1.
Doing the same transformations as above for y1 gives that for some y2 there exists δ2 > 3δ1
such that kr0 (y2) = n − 0.5 − δ2. Similarly repeating the same steps m times provides
kr0 (ym) = n−0.5− δm with δm > 3δm−1 > 3m−1δ1 > 0. This holds for any m and since δ1
is a positive constant, limm→−∞ k

r0 (ym) = −∞. But given that kr0 (ym) ∈ [−1 + n, n] it is
a contradiction. Consequently there cannot be y0 such that the inequality kr0 (y0) > n−0.5
does not hold.
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Proof. (of Proposition 6)
Since the noise term is distributed iid., in the symmetric equilibrium, the probability

that an agent chooses action r is equal to the aggregate number of agents who chooses
that action. Thus given the strategy characterized in Proposition 2 and the conditional
distribution u ≡ xj

∣∣xi ∼ N(µxj ,Σxj ) for ∀j 6= i, it can be easily shown that

E(Lr |xi ) = P (xjr > Kr(xj−r)
∣∣xi ) =

∞∫
−∞

∞∫
Kr(u−r)

f (uA, uB) durdu−r

where f (uA, uB) is the joint pdf of xjA |xi and xjB |xi . Let zA and zB such that[
zA
zB

]
∼ N (0, I), thus by using the Cholesky decomposition zA and zB can be set such

that uB = HBAx
i
A + (1 − HBA)yA + HBBx

i
B + (1 − HBB)yB + σB

√
1 +HBBzB and

uA = HAAx
i
A + (1 − HAA)yA + HABx

i
B + (1 − HAB)yB +

σA√
1 +HBB

(
√
HABHBAzB +√

(1 +HAA)(1 +HBB)−HABHBAzA) would hold. By introducing

DA
(
z, xiA, x

i
B

)
=

√
1 +HBB

σA
√

(1 +HAA)(1 +HBB)−HABHBA

·
{
KA

(
σB
√

1 +HBBz

+HBAx
i
A + (1−HBA)yA +HBBx

i
B + (1−HBB)yB

)
−HAAx

i
A

−(1−HAA)yA −HABx
i
B − (1−HAB)yB −

σA
√
HABHBAz√
1 +HBB

}
the equation can be rearranged as follows:

E
(
LA
∣∣xi ) =

∞∫
−∞

∞∫
KA(uB)

f (uA, uB) duAduB =

∞∫
−∞

∞∫
DA(zB)

φ (zA, zB) dzAdzB

=

∫ ∞
−∞

φ (z)
[
1− Φ

(
DA

(
z, xiA, x

i
B

))]
dz = 1−

∫ ∞
−∞

φ (z)Φ
(
DA

(
z, xiA, x

i
B

))
dz

where φ (z) and Φ (z) denote the pdf and the cdf, respectively, of the univariate stan-
dard normal distribution and φ(zA, zB) denotes the pdf of the bivariate standard normal
distribution, where zA and zB are independent, implying that φ (zA, zB) = φ (zA)φ (zB).
Using that θ

∣∣xi ∼ N(µθ,Σθ) results in

E(θA + LA
∣∣xi ) = E(θA

∣∣xi ) + E(LA
∣∣xi )

= HAAx
i
A + (1−HAA)yA +HABx

i
B + (1−HAB)yB

+ 1−
∫ ∞
−∞

φ (z)Φ
(
DA

(
z, xiA, x

i
B

))
dz (29)
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The definition of the cutoff function kA0 implies that whenever xiA = kA0(xiB), E(θA +
LA
∣∣xi ) = n has to hold. Substituting this into (29) gives

HAAk
A0(xiB) + (1−HAA)yA +HABx

i
B + (1−HAB)yB + 1

−
∫ ∞
−∞

φ (z)Φ
(
DA

(
z, kA0(xiB), xiB

))
dz = n

implying that

kA0(xiB) =
1

HAA

{
n− 1− (1−HAA)yA −HABx

i
B − (1−HAB)yB

+

∫ ∞
−∞

φ (z)Φ
(
DA

(
z, kA0(xiB), xiB

))
dz

}
(30)

One can similarly show that

E(θB + LB
∣∣xi ) = HBBx

i
B + (1−HBB)yB +HBAx

i
A + (1−HBA)yA

+ 1−
∫ ∞
−∞

φ (z)Φ
(
DB

(
z, xiB, x

i
A

))
dz (31)

and thus

kB0(xiA) =
1

HBB

{
n− 1− (1−HBB)yB −HBAx

i
A − (1−HBA)yA

+

∫ ∞
−∞

φ (z)Φ
(
DB

(
z, kB0(xiA), xiA

))
dz

}
(32)

The definition of kAB implies that with xiA = kAB
(
xiB
)
, the equation E

(
θA + LA

∣∣xi ) =
E
(
θB + LB

∣∣xi ) is satisfied, thus combining this with equations (29) and (31) gives

HAAk
AB(xiB) + (1−HAA)yA +HABx

i
B + (1−HAB)yB

+1−
∫ ∞
−∞

φ (z)Φ
(
DA

(
z, kAB(xiB), xiB

))
dz

= HBBx
i
B + (1−HBB)yB +HBAk

AB(xiB) + (1−HBA)yA

+1−
∫ ∞
−∞

φ (z)Φ
(
DB

(
z, xiB, k

AB
(
xiB
)))

dz

which can be rearranged into the following form:

kAB(xiB) =
HAB −HBB

HAA −HBA
(yB − xiB) + yA +

1

HAA −HBA

·
∫ ∞
−∞

φ(z)
[
Φ
(
DA(z, kAB(xiB), xiB)

)
− Φ

(
DB

(
z, xiB, k

AB(xiB)
))]

dz (33)
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One can similarly show that

kBA(xiA) =
HBA −HAA

HBB −HAB
(yA − xiA) + yB +

1

HBB −HAB

·
∫ ∞
−∞

φ(z)
[
Φ
(
DB(z, kBA(xiA), xiA)

)
− Φ

(
DA

(
z, xiA, k

BA(xiA)
))]

dz (34)

Proof. (of Proposition 7) By using Banach fixed point theorem, I show that the cutoff
function triplet k =

{
kA0, kB0, kAB

}
given by Proposition 6 indeed exists and is unique.

For this in Lemma 10 I show that the set of cutoff function triplets K with some metric
d is a complete metric space. In Lemma 11 I prove that the joint best response mapping
B : K → K is a contraction map.

Lemma 10 (Non-empty Complete Metric Space 2). The set of cutoff function triplet K
with some metric d is a complete metric space.

First let me define the metric d for any two sets of functions F = {f1, f2, . . . fN} and
G = {g1, g2, . . . gN} where both contain N number of functions, each with domain R:

d (F,G) ≡ max

{
sup
y∈R
|f1 (y)−g1 (y)| , sup

y∈R
|f2 (y)−g2 (y)|, . . . , sup

y∈R
|fN (y)−gN (y)|

}

From (30) we can establish that kr0 : R→[−1 + n, n] is bounded. While from (33) follows
that kr(−r) (y)−y : R→ [−1, 1] is bounded. Hence (K, d) is indeed a complete metric space.

Lemma 11 (Contraction Map 2). The joint best response mapping B : C → C is a
contraction map.

Given that everybody has cutoffs k ≡
{
kA0, kB0, kAB

}
, the best response cutoffs of agent

i is given by B(k) =
{
bA0(k), bB0(k), bAB(k)

}
. Where from (30), (32) and (33) we have

bA0(v, k) =
1

HAA

{
n− 1− (1−HAA)yA −HABv − (1−HAB)yB

+

∫ ∞
−∞

φ (z)Φ
(
DA

(
z, kA0(v), v

))
dz

}
(35)

bB0(v, k) =
1

HBB

{
n− 1− (1−HBB)yB −HBAv − (1−HBA)yA

+

∫ ∞
−∞

φ (z)Φ
(
DB

(
z, kB0(v), v

))
dz

}
(36)
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bAB(v, k) =
HAB −HBB

HAA −HBA
(yB − v) + yA +

1

HAA −HBA

·
∫ ∞
−∞

φ(z)
[
Φ
(
DA(z, kAB(v), v)

)
− Φ

(
DB

(
z, v, kAB(v)

))]
dz (37)

with KA (v) ≡ max
{
kA0 (v) , kAB (v)

}
and KB (v) ≡ max

{
kB0 (v) , kBA (v)

}
. In or-

der to verify that the map is indeed a contraction map we have to show that d (k, k′) >
d (B (k) , B (k′)). For this it is enough to show that d (k, k′) > supv∈R

∣∣bA0 (v, k)− bA0(v, k′)
∣∣,

d (k, k′) > supv∈R
∣∣bB0 (v, k)− bB0(v, k′)

∣∣ and d (k, k′) > supv∈R
∣∣bAB (v, k)− bAB(v, k′)

∣∣
hold if the sufficient conditions are fulfilled.

First let me concentrate on bA0

sup
v∈R

∣∣bA0 (v, k)− bA0(v, k′)
∣∣

= sup
v∈R

∣∣∣∣∣
∫∞
−∞ φ(z)Φ(DA(z, kA0(v), v))dz

HAA
−
∫∞
−∞ φ(z)Φ(DA(z, kA0′(v), v))dz

HAA

∣∣∣∣∣
=

1

HAA
· sup
v∈R

∣∣∣∣∫ ∞
−∞

φ(z)
[
Φ(DA(z, kA0(v), v))− Φ(DA(z, kA0′(v), v))

]
dz

∣∣∣∣
(38)

According to the mean value theorem there exists ξ s.t.:

φ (ξ) =
Φ(DA(z, kA0(v), v))− Φ(DA(z, kA0′(v), v))

DA(z, kA0(v), v)−DA(z, kA0′(v), v)

Since maxξ∈R φ (ξ) = φ (0) = 1√
2π

we have

Φ(DA(z, kA0(v), v))− Φ(DA(z, kA0′(v), v))

≤ φ(0)
[
DA(z, kA0(v), v)−DA(z, kA0′(v), v)

]
=

φ(0)
√

1 +HBB

σA
√

(1 +HAA)(1 +HBB)−HABHBA

·
{
HAA

[
−kA0(v) + kA0′(v)

]
+KA

(
σB
√

1 +HBBz +HBAk
A0(v) + (1−HBA)yA +HBBv + (1−HBB)yB

)
−KA′

(
σB
√

1 +HBBz +HBAk
A0′(v) + (1−HBA)yA +HBBv + (1−HBB)yB

)}
Moreover for any v the inequality −kA0 (v)+kA0′ (v) ≤ supy∈R

∣∣kA0 (v)− kA0′ (v)
∣∣ has to

hold. But from the definition of metric d follows that supv∈R
∣∣kA0 (v)− kA0′ (v)

∣∣ ≤ d (k, k′),
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which implies −kA0 (v) + kA0′ (v) ≤ d (k, k′). Similarly holds

KA

(
σB
√

1 +HBBz +HBAk
A0(v) + (1−HBA)yA +HBBv + (1−HBB)yB

)
−KA′

(
σB
√

1 +HBBz +HBAk
A0′(v) + (1−HBA)yA +HBBv + (1−HBB)yB

)
≤ sup

v∈R

∣∣KA (v)−KA′ (v)
∣∣

≤ max

(
sup
v∈R

∣∣kA0 (v)− kA0′ (v)
∣∣, sup
v∈R

∣∣kAB (v)− kAB′ (v)
∣∣)

≤ d
(
k, k′

)
for any v. These imply that

Φ(DA(z, kA0(v), v))−Φ(DA(z, kA0′(v), v)) ≤ φ(0)
√

1 +HBB(1 +HAA)

σA
√

(1 +HAA)(1 +HBB)−HABHBA

d(k, k′)

Combining this with (38) gives:

sup
v∈R

∣∣bA0 (v, k)− bA0(v, k′)
∣∣

≤ 1

HAA
· sup
v∈R

∣∣∣∣∣
∫ ∞
−∞

φ(z)

[
φ(0)
√

1 +HBB(1 +HAA)

σA
√

(1 +HAA)(1 +HBB)−HABHBA

d(k, k′)

]
dz

∣∣∣∣∣
=

√
1 +HBB(1 +HAA)√

2πσAHAA

√
(1 +HAA)(1 +HBB)−HABHBA

d(k, k′).

Thus supz∈R
∣∣bA0 (z, k)− bA0(z, k′)

∣∣ < d (k, k′) holds if the parameters are such that
√
1+HBB(1+HAA)√

2πσAHAA
√

(1+HAA)(1+HBB)−HABHBA
< 1 (condition 3A).

One can similarly show that supz∈R
∣∣bB0 (z, k)− bB0(z, k′)

∣∣ < d (k, k′) holds if the pa-

rameters are such that
√
1+HAA(1+HBB)√

2πσBHBB
√

(1+HAA)(1+HBB)−HABHBA
< 1 (condition 3B).

Now let me concentrate on bAB. Equation (37) gives

sup
v∈R

∣∣bAB (v, k)− bAB
(
v, k′

)∣∣
= sup

v∈R

∣∣∣∣∣∣∣∣
∫∞
−∞ φ(z)

[
Φ(DA(z, kAB(v), v))− Φ(DA(z, kAB′(v), v))

]
dz

HAA −HBA

−
∫∞
−∞ φ(z)

[
Φ(DB(z, v, kAB(v)))− Φ(DB(z, v, kAB′(v)))

]
dz

HAA −HBA

∣∣∣∣∣∣∣∣
=

1

HAA −HBA
· sup
v∈R

∣∣∣∣∫ ∞
−∞

φ(z)

[
Φ(DA(z, kAB(v), v))− Φ(DA(z, kAB′(v), v))

+Φ(DB(z, v, kAB(v)))− Φ(DB(z, v, kAB′(v)))

]
dz

∣∣∣∣
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Similarly as above, by using the mean value theorem, one can show that

Φ(DA(z, kAB(v), v))−Φ(DA(z, kAB′(v), v)) ≤ φ(0)
√

1 +HBB(1 +HAA)

σA
√

(1 +HAA)(1 +HBB)−HABHBA

d(k, k′)

and

Φ(DB(z, v, kAB(v)))−Φ(DB(z, v, kAB′(v))) ≤ φ(0)
√

1 +HAA(1 +HBA)

σB
√

(1 +HAA)(1 +HBB)−HABHBA

d(k, k′)

These imply that

sup
v∈R

∣∣bAB (v, k)− bAB
(
v, k′

)∣∣
≤ 1

HAA −HBA

∫ ∞
−∞

φ(z)

 φ(0)
√
1+HBB(1+HAA)

σA
√

(1+HAA)(1+HBB)−HABHBA
d(k, k′)

+ φ(0)
√
1+HAA(1+HBA)

σB
√

(1+HAA)(1+HBB)−HABHBA
d(k, k′)

 dz
=

1

HAA −HBA

 φ(0)
√
1+HBB(1+HAA)

σA
√

(1+HAA)(1+HBB)−HABHBA
d(k, k′)

+ φ(0)
√
1+HAA(1+HBA)

σB
√

(1+HAA)(1+HBB)−HABHBA
d(k, k′)

∫ ∞
−∞

φ(z)dz

=
σA
√

1 +HAA(1 +HBA) + σB
√

1 +HBB(1 +HAA)√
2πσAσB(HAA −HBA)

√
(1 +HAA)(1 +HBB)−HABHBA

d(k, k′)

Thus if the parameters are such that σA
√
1+HAA(1+HBA)+σB

√
1+HBB(1+HAA)√

2πσAσB(HAA−HBA)
√

(1+HAA)(1+HBB)−HABHBA
< 1

(condition 4A), then d (k, k′) > supy∈R
∣∣bAB (y, k)− bAB(y, k′)

∣∣ holds.

One can similarly show that supz∈R
∣∣bBA (z, k)− bBA(z, k′)

∣∣ < d (k, k′) holds if the

parameters are such that σB
√
1+HBB(1+HAB)+σA

√
1+HAA(1+HBB)√

2πσAσB(HBB−HAB)
√

(1+HAA)(1+HBB)−HABHBA
< 1 (condition

4B).
Note that condition 3A and condition 3B are always satisfied whenever condition

4A and condition 4B, respectively, hold. Hence if 2σA+σB
σAσB

< 2
√
π
√

1− ρ2, for all r ∈
{A,B}, then(

B (k) , B
(
k′
))

= max

(
supy∈R

∣∣bA0 (y, k)− bA0(y, k′)
∣∣, supy∈R

∣∣bB0 (y, k)− bB0(y, k′)
∣∣,

supy∈R
∣∣bAB (y, k)− bAB(y, k′)

∣∣, supy∈R
∣∣bBA (y, k)− bBA(y, k′)

∣∣ )
< d

(
k, k

′
)

is fulfilled. So in this case the mapping is indeed a contraction.
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