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1 Introduction

When institutional investors convert part of their illiquid portfolio to cash, or
rearrange their portfolio in general, they should consider both the transaction
costs and the effects on the resulting portfolio. Almgren and Chriss (2000)
and Almgren (2003) define temporary and permanent price impact functions
to determine optimal execution strategies. During trading, supply-demand
imbalances cause temporary price impact and hence transaction costs. In this
case, there are temporary price fluctuations from the equilibrium price, but
by the end of the period, the order book fully recovers. On the other hand,
the permanent price impact changes the equilibrium price of the resulting
portfolio for the whole liquidation time horizon, and there is no full price
recovery. To value illiquid portfolios for a given period, Acerbi and Scandolo
(2008) assumes that there is no permanent price impact, which is a reasonable
assumption for smaller trades and longer time horizons, or for assets having
a relatively certain fundamental value like short-term bonds. There is also
no permanent price impact in the recent Rule 22e-41 adopted by the SEC
to regulate registered open-end funds’ liquidity risk, since what Rule 22e-4
wants to avoid is the spillover of transaction costs between investors in the
same fund, and not the changes in the equilibrium prices.

To determine the value of an illiquid portfolio, Acerbi and Scandolo (2008)
uses Marginal Supply-Demand Curves (MSDCs) of the assets within the
portfolio and a liquidity policy. Given a period, the MSDC of a risky asset
expresses the marginal bid prices (for positive quantities) and marginal asks
(for negative quantities) at which the particular asset can be traded. A
liquidity policy specifies the portfolio constraints, for instance, the minimum
level of cash to be reached for an open-end fund to be able to meet its
obligations to redeeming shareholders. In general, the liquidity policy serves
as the acceptable set of portfolios, and can model the requirement that having
more risky assets requires strictly more cash. Acerbi and Scandolo (2008)
shows that the value of an illiquid portfolio without permanent price impact is
given as a convex optimization problem, where an attainable portfolio within
the liquidity policy should be reached with the lowest transaction costs.

The permanent price impact, however, can be relevant for larger trades
and shorter time horizons, and for assets having a relatively uncertain funda-
mental value. In this paper, to the best of our knowledge, given a period, we
are the first to provide an optimization problem for valuing illiquid portfolios
with permanent price impacts. We also assume that the temporary effects are

1Securities and Exchange Commission’s Investment Company Liquidity Risk Manage-
ment Programs, 17 CFR Parts 210, 270, 274, effective January 17, 2017, and partly from
June 1, 2018. https://www.sec.gov/rules/final/2016/33-10233.pdf.
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dissipated by the time the portfolio constraints (the liquidity policy) should
be satisfied, but we incorporate permanent price impacts. Huberman and
Stanzl (2004) shows that a linear permanent price impact function is needed
for arbitrage-free pricing. Moreover, Almgren et al. (2005) tests empirically
and cannot reject the hypothesis of a linear permanent price impact. We also
use a linear permanent price impact function, which means that depending
on the size of the trade, selling decreases and buying increases the level of
the corresponding MSDC linearly.

Intuitively, there is an endowment effect on top of the transaction cost
effect that should be taken into account when valuing illiquid portfolios with
permanent price impacts. The trade-off is between trading more from a
rather liquid asset to have lower transaction costs, and trading less to cause
lower permanent price impact on the remaining endowment from the partic-
ular asset. In general, solving the optimization problem requires numerical
methods or further assumptions. As a special case, we consider a cash liq-
uidity policy with no short positions (Csóka, 2017), where the acceptable
portfolio should have a minimum level of cash and short positions should
be closed. To get analytical results, one can approximate the MSDCs with
exponential functions (Tian et al., 2013). As a policy implication, we note
that introducing permanent price impacts in internal or external regulation
can substantially change liquidity risk or capital requirements.

In a sense, what we capture is that an institutional investor or any in-
vestor with large enough stakes has the power to influence or even manipulate
the value of certain assets, which is also documented in recent studies. In
the Saudi Stock Market, Alzahrani et al. (2012) finds an asymmetry in the
price impact of block purchases and sales. Han et al. (2016) and Kitamura
(2016) analyze data from order-driven markets to examine the price impact
of informed trading. Han et al. (2016) confirms the presence of informed
trading by finding that a substantial portion of the price impact is persis-
tent. Comparing the market impact of small and large trades, Han et al.
(2016) finds that the price impact for institutional investors is larger than
for individuals, and concludes that stealth trading is usual. Kitamura (2016)
also shows a significant price impact of informed trading.

The structure of the paper is the following. In Section 2, we give the no-
tation, wrap up portfolio valuation theory under liquidity constraints with-
out permanent price impact, and illustrate the theory with examples. In
Section 3, we present our method to value illiquid portfolios with linear per-
manent price impact functions. Finally, we conclude in Section 4 and show
possible avenues for further research.
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2 Portfolio Valuation without Permanent Price

Impact

In this section, we combine the notation of Acerbi and Scandolo (2008) and
Csóka and Herings (2014) to summarize how, for a given period, the value
of an illiquid portfolio can be defined without permanent price impact.

An investor can hold cash as well as risky assets from the set N =
{1, . . . , n}. Let p = (p0,p

n) = (p0, p1, . . . , pn) ∈ R × Rn denote a portfolio,
where p0 is the amount of cash in the portfolio (p0 < 0 means an immediate
payment requirement) and pi is the number of assets held from asset i ∈ N .
Let P ∈ R × Rn denote the space of portfolios. Moreover, let p ⊕ a denote
adding a ∈ R amount of cash to portfolio p ∈ P , which results in portfolio
q ∈ P satisfying q0 = p0 + a and qi = pi for all i ∈ N .

The value of a portfolio depends on the order books for the risky assets
to be specified as follows. We follow Çetin et al. (2004), Jarrow and Protter
(2005) and Acerbi and Scandolo (2008) in modeling the order books for every
asset i ∈ N by a marginal supply-demand curve (MSDC) mi.

Definition 2.1. The marginal supply-demand curve (MSDC) for asset i ∈ N
is given by the map mi : R \ {0} 7→ R satisfying

(i) mi(x) ≥ mi(x) if x < x;
(ii) mi(x) is right-continuous with left limits for x < 0 and left-continuous

with right limits for x > 0.

The amount mi(x) for x > 0 expresses the marginal bids at which asset
i ∈ N can be sold. Similarly, mi(x) for x < 0 represents the marginal asks
at which asset i can be bought. Let mi(0

+) denote the best bid and mi(0
−)

the best ask price of asset i ∈ N . For negative (positive) values of x the
MSDC mi(x) corresponds to the supply (demand) of asset i ∈ N by others.
On top of the best bid and ask prices, MSDCs can, therefore, be used to
represent both the supply and the demand side constraints in liquidity, even
in a state-contingent way for modeling risk. Since we can work with any
given period, the MSDCs are not necessary the order books, but they can
also capture trading possibilities for different time horizons.

Note that the MSDCs are not defined at zero. Since we are working with
assets, it is natural to assume that mi(x) ≥ 0 for all i ∈ N . However, the
MSDC of a contract (for instance a swap agreement) could admit positive
and negative values as well.

The MSDCs can be used to calculate the liquidation value of a portfolio.
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Definition 2.2. The liquidation mark-to-market value of a portfolio p ∈ P
is defined by

L(p) = p0 +
n∑
i=1

∫ pi

0

mi(x)dx.

The liquidation mark-to-market value of a portfolio L(p) is its initial cash,
plus the proceeds one gets by liquidating the long positions and the amount
of money to be paid for closing the short positions.

When calculating L(p), it is implicitly assumed that all the positions are
closed using the current MSDC. The other extreme is to use only the best
bid prices for long positions and only the best ask prices for short positions.

Definition 2.3. The uppermost mark-to-market value of a portfolio p ∈ P
is defined by

U(p) = p0 +
n∑
i=1

[
mi(0

+) max(pi, 0) +mi(0
−) min(pi, 0)

]
.

Depending on the MSDCs, the cost of prompt liquidation, which is the
difference between the liquidation value and the uppermost mark-to-market
value of a portfolio, can be substantially high. The extent, to which trade
is required is related to the portfolio constraints, captured by the liquidity
policy.

Definition 2.4. A liquidity policy L ⊆ P is a closed and convex subset of
the portfolio-space satisfying

1. if p ∈ L and a ≥ 0, then p⊕ a ∈ L,

2. if p ∈ L, then (p0,0
n) ∈ L.

The liquidity policy serves as the acceptable set of portfolios specifying
the desired portfolio vectors. The liquidity policy is a convex set, where
starting from any portfolio in the set both more cash (1.) and no risky assets
(2.) are acceptable. Starting from an acceptable portfolio at the frontier of
the liquidity policy, having more risky assets requires weakly more cash to
be acceptable, but as a special case, requiring strictly more cash is possible
as well.

As another special case, we will consider a cash liquidity policy with no
short positions (Csóka, 2017), where the acceptable portfolio should have c
units of cash and short positions should be closed.
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Definition 2.5. Given c ∈ R, the c-cash liquidity policy with no short posi-
tions L+ (c) is given by

L+(c) = {(p0,pn) ∈ P|p0 ≥ c and pn ≥ 0n} .

Note that the required cash c could be negative as well.
As we will see, the value of a portfolio in this framework depends on

how we can reach the liquidity policy from it. A portfolio is attainable from
another portfolio if we can reach both the level of cash and the number of
risky assets in it by trading.

Definition 2.6. Given a portfolio p ∈ P , the portfolio q ∈ P is attainable
from p, q ∈ Att(p) ⊆ P if there is r ∈ P such that

q = p− r⊕ L(r).

The liquidated part r has typically long positions, and then L(r) provides
more cash. However, r could also have short positions, meaning that there
will be more from those assets in the new portfolio, which requires cash.
Given a period, the (mark-to-market) value of a portfolio is defined as follows.

Definition 2.7 (Acerbi and Scandolo (2008)). The mark-to-market value
of portfolio p ∈ P under the liquidity policy L is a function V L : P → R
defined by

V L(p) = sup {U(q)|q ∈ Att(p) ∩ L} . (1)

In (1), we are looking for the most valuable portfolio which is attainable
from the initial one and satisfies the liquidity policy. Note that in U(q)
the original MSDC is used, assuming full recovery of the (generalized) order
book.

According to the next proposition, this portfolio can be found as a solution
of a convex optimization problem, which is crucial for industry implementa-
tion.

Proposition 2.8 (Acerbi and Scandolo (2008)). The optimization problem
(1) in q is equivalent to a convex optimization problem in r, given by

V L(p) = sup {U(p-r) + L(r)|r ∈ CL(p)} , (2)

where CL(p) is a convex set given by

CL(p) = {r|p− r⊕ L(r) ∈ L} .

If CL(p) is empty, then V L(p) = −∞, else the supremum V L(p) ∈ R.
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To illustrate the definitions, we provide the following example.

Example 2.9. Consider a market with cash and one risky asset, where the
space of portfolios is given by P = R2. We are interested in the value of the
initial portfolio p = (p0, p1) = (4, 4), that is we have 4 units of cash and 4
units of an illiquid risky asset. Assume that the MSDC of the risky asset is
given by

m1(x) =


5 if x < 0,

4 if 0 < x ≤ 1,

2 if 1 < x ≤ 3,

1 if 3 < x.

We can calculate the liquidation and the uppermost mark-to-market value
of p as

L(p) = 4 + 4× 1 + 2× 2 + 1× 1 = 13,

U(p) = 4 + 4× 4 = 20.

Suppose that the liquidity policy is the 10-cash liquidity policy with no short
positions L+(10), where the acceptable portfolio should have 10 units of cash
and short positions should be closed.

In p, there are 4 units of cash and no short positions, so we need 6 more
units of cash. To meet the liquidity policy, we can do nothing else but sell
2 units of the risky asset, r = (0, 2). The first unit is sold for 4, and the
second unit for 2, L(r)=6. Indeed, we get that q = p− r + L(r) = (10, 2) ∈
Att(p) ∩ L+(10). The mark-to-market value of p is

V L
+(10)(p) = U(q) = 10 + 4× 2 = 18.

In the spirit of Proposition 2.8, we get the same number from U(p − r) +
L(r) = 4 + 4× 2 + 6 = 18.

Notice that even though we have sold 2 units, the resulting portfolio was
valued using the original MSDC. The implicit assumption is that liquidity
recovers by new limit orders, trade has no permanent price impact.

With full permanent price impact and hence no new limit orders, only
one more unit could be sold for 2 and the rest for 1, that is the modified
MSDC of the risky asset would be

m̂1(x) =


5 if x < 0,

2 if 0 < x ≤ 1,

1 if 1 < x.

Using m̂1, the uppermost mark-to-market value of q is Û(q) = 10+2×2 = 14,
which is, of course, lower.
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Motivated by Example 2.9, in the next section we incorporate the effects
of permanent price impact on the valuation of illiquid portfolios.

3 Portfolio Valuation with Linear Permanent

Price Impact

In this paper, we use a linear permanent price impact function. Huberman
and Stanzl (2004) shows that a linear permanent price impact function is
needed for arbitrage-free pricing. Furthermore, Almgren et al. (2005) tests
empirically and cannot reject the hypothesis of a linear permanent price
impact. Translated to MSDCs, a linear permanent price impact means that
depending on the size of the trade, we expect that selling decreases and
buying increases the level of the MSDC linearly, formally defined as follows.

Definition 3.1. Let a risky asset i ∈ N , its MSDC mi, and a parameter
βi ∈ R+ be given. After liquidating ri ∈ R amount of asset i, the MSDC of
asset i, modified with linear permanent price impact mβi

i (x) is given by

mβi
i (x) = mi(x)− βiri.

Again, ri > 0 means selling, ri < 0 means buying from asset i.
Let us reconsider Example 2.9 with a linear permanent price impact.

Example 3.2. [Example 2.9 continued.] Suppose a linear permanent impact
function with β1 = 0.2. Since we still can do nothing else but liquidate 2
units of asset 1, the initial MSDC is lowered by 2 × 0.2 and the MSDC of
asset 1, modified with linear permanent price impact m0.2

1 (x) becomes

m0.2
1 (x) =


4.6 if x < 0,

3.6 if 0 < x ≤ 1,

1.6 if 1 < x ≤ 3,

0.6 if 3 < x.

Using m0.2
1 , the uppermost mark-to-market value of q is

U(q) = 10 + 3.6× 2 = 17.2,

which is somewhere in between the case with no permanent price impact and
full permanent price impact.

Given the linear price impact parameters βi ∈ R+ for each i ∈ N , analo-
gously to Definition 2.3, let U denote the uppermost mark-to-market value
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function with linear price impact, calculated from the MSDCs modified with
linear permanent price impact, that is from mβi

i for each i ∈ N .
Now, given a period, we can define the mark-to-market value of a portfolio

with linear permanent price impact.

Definition 3.3. Given βi ∈ R+ for each i ∈ N , the mark-to-market value
of portfolio p ∈ P with linear permanent price impact under the liquidity

policy L is a function V
L

: P → R defined by

V
L
(p) = sup

{
U(q)|q ∈ Att(p) ∩ L

}
. (3)

Note that the set of attainable portfolios Att(p) is calculated using the
original MSDCs, whereas in U(q) the MSDCs are modified with linear per-
manent price impacts.

Analogously to Proposition 2.8, using Definition 2.6 and q = p−r⊕L(r)
we get the following proposition.

Proposition 3.4. Given βi ∈ R+ for each i ∈ N , the optimization problem
(3) in q is equivalent to an optimization problem in r, given by

V
L
(p) = sup

{
U(p-r) + L(r)|r ∈ CL(p)

}
, (4)

where CL(p) is again a convex set given by

CL(p) = {r|p− r⊕ L(r) ∈ L} .

If CL(p) is empty, then V L(p) = −∞, else the supremum V L(p) ∈ R.

Note that in Proposition 3.4, we just claim a general optimization problem
and not a convex one, due to the appearance of U .

Example 3.5 (Examples 2.9 and 3.2 continued.). Let us extend the market
to two risky assets, so the space of portfolios is now given by P = R3.

Suppose that in the initial portfolio there are also 4 units of a second
risky asset, that is p = (p0, p1, p2) = (4, 4, 4).

Let the MSDC of asset 2 be given by

m2(x) =


2 if x < 0,

1 if 0 < x ≤ 1,

0.6 if 1 < x.

Let asset 2 also have a linear permanent price impact parameter of 0.2,
that is let β1 = β2 = 0.2. Finally, let us keep the 10-cash liquidity policy
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with no short positions L+(10). If there is no permanent price impact and
liquidity recovers, then using Proposition 2.8 we get that it is optimal to
liquidate r∗ = (0, 1, 8

3
) to get the additional liquidity of L(r∗) = 6 and we

obtain q∗ = p− r∗ = (10, 3, 4
3
). The mark-to-market value of p is then

V L
+(10)(p) = U(q∗) = 10 + 4× 3 + 1× 4

3
=

70

3
≈ 23.33.

If there is permanent price impact, then, after solving (4), the new optimum
is to liquidate r∗∗ = (0, 0.8, 4) to get the additional liquidity of L(r∗∗) =
6 and we obtain q∗∗ = (10, 3.2, 0). The new best bid of asset 1 becomes
4 − 0.8 × 0.2 = 3.84 and we get that the mark-to-market value of p with
linear permanent price impact is

V
L+(10)

(p) = U(q∗∗) = 10 + 3.84× 3.2 = 22.288.

Note that using the optimal trade with no permanent price impact r∗ =
(0, 1, 8

3
) would result in this case q∗ = (10, 3, 4

3
), and the new best bids of

asset 1 and asset 2 would be 4−1×0.2 = 3.8 and 1− 8
3
×0.2 = 7

15
respectively.

Then U(q∗) = 10 + 3.8× 3 + 7
15
× 4

3
= 991

45
≈ 22.02 < 22.228 = U(q∗∗), which

is, of course, not optimal.
Intuitively, there is an endowment effect on top of the transaction cost

effect that should be taken into account with permanent price impacts. The
trade-off is between trading more from a relatively liquid asset to have lower
transaction costs and trading less to cause lower permanent price impact on
the remaining endowment from the particular asset.

To give more insights about the problem in (4), in the rest of the paper we
assume continuous MSDCs such that they are defined at zero, implying that
mi(0) = mi(0

+) = mi(0
−) for all i ∈ N . Moreover, we work with a c-cash

liquidity policy with no short positions L+ (c). Then we have the following
formulation of the optimization problem.

Proposition 3.6. Given βi ∈ R+ and continuous MSDCs mi for each i ∈ N ,
and L+ (c), the optimization problem (4) is equivalent to an optimization
problem in r, given by

V
L+(c)

(p) = max
(
U (p− r) + L (r)

)
(5)

subject to

p0 − r0 + L (r) = c, and

pi − ri ≥ 0 for all i ∈ N.
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Proof. Due to the c-cash liquidity policy with no short positions L+ (c), the
supremum can be changed to maximum and we get the first constraint in (5).
The second constraint makes sure that new short positions are not opened
for pi > 0 and old short positions are closed for pi < 0. �

To solve (5), recall that using continuous MSDSs the uppermost mark-
to-market value function with linear price impact U is given by

U (p− r) = p0 − r0 +
n∑
i=1

[mi(0)− βiri] (pi − ri). (6)

Based on Boyd and Vandenberghe (2004), we can use the Karush-Kuhn-
Tucker conditions to find the solution of (5). The Lagrange function is given
by

G (r, λ, µ) = −U (p− r)− L (r) − λ [p0 − r0 + L (r)− c]−
n∑
i=1

µi [pi − ri] ,

or, using (6) and Definition 2.2 it is

G (r, λ, µ) = −p0 −
n∑
i=1

[mi(0)− βiri] (pi − ri)−
n∑
i=1

∫ ri

0

mi(x)dx

−λ

[
n∑
i=1

∫ ri

0

mi(x)dx+ p0 − c

]
−

n∑
i=1

µi [pi − ri] .

Let r∗∗i denote the optimal ri for all i ∈ N . Without loss of generality, we
can assume that r∗∗0 = 0, since the optimization problem does not depend on
the level of cash.

The Karush-Kuhn-Tucker conditions are as follows. First,

∂G (r, λ, µ)

∂ri
= mi(0)− 2βir

∗∗
i + βipi − (1 + λ)mi(r

∗∗
i ) + µi = 0 for all i ∈ N.

Primal feasibility requires that

∂G (r, λ, µ)

∂λ
=

n∑
i=1

∫ r∗∗i

0

mi(x)dx+ p0 − c = 0, and

∂G (r, λ, µ)

∂µi
= pi − r∗∗i ≥ 0.

Due to complementary slackness we have that

µi [pi − r∗∗i ] = 0 for all i ∈ N.
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Finally, dual feasibility requires that

µi ≥ 0 for all i ∈ N.

Now we can formally see the intuition of Example 3.5. Suppose that
pi − r∗∗i > 0. Then −2βir

∗∗
i + βipi appears in the partial derivative of the

Lagrangian function with respect to ri. So r depends on the initial portfolio
p and the permanent price impact parameters, and the marginal revenue
(cost) at r∗∗i > 0 (r∗∗i < 0) controlling both for the endowment effect and the
transaction cost effect.

Solving the problem requires numerical methods or further assumptions.
To get analytical results, one can approximate the MSDCs with exponential
functions (Tian et al., 2013).

4 Conclusion

To take into account both the temporary and the permanent price impacts
of trading by institutional investors, for a given period, we provided an op-
timization problem for portfolio valuation under liquidity constraints with
linear permanent price impact. We showed that incorporating permanent
price impact could have substantial effects on the optimal trading strategy.
Given the cash and the number of assets in the portfolio, the building block-
s of our model are the MSDCs and the linear price impact parameters of
the assets, and the liquidity policy specifying the portfolio constraints. All
blocks could be state contingent for modeling liquidity risk and market risk
together, running stress tests, and calculating capital requirements.

There are many possible extensions for further research. One could model
nonlinear price impacts or a price impact which is not shifting all the points
of the MSDC in a parallel way. In fact, one of the reasons that we assume
that short positions should be closed is that by huge short-selling from an
asset, the parallel shift of its MSDC results in negative prices at which short
positions could be closed and then the optimization problem has no solution.
For industry implementation, the underlying optimization problem could be
further investigated, even for more general liquidity policies. Our method
could also be adjusted for hedging under liquidity constraints (Dömötör,
2017). Finally, we worked for a given period, but adding time as an extra
dimension would also be interesting.
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