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Abstract 

 

A firm has liabilities towards a group of creditors. We analyze the question of how to 

distribute the asset value of the firm among the creditors and the firm itself. Compared to 

standard bankruptcy games as studied in the game theory literature, we introduce the firm as 

an explicit player and define a new class of transferable utility games called liability games. 

Liability games are superadditive, constant sum, partially convex, and partially concave.  

The core of a liability game is empty if and only if the firm is insolvent and has multiple 

positive liabilities.  

We analyze the nucleolus of the game and show that allocating the asset value of the firm 

using the nucleolus satisfies efficiency, non-negativity, and liabilities boundedness. We prove 

that at the nucleolus, the firm gets a strictly higher amount than its stand-alone value if and 

only if the firm is insolvent and has multiple positive liabilities. The firm is using the threat to 

pay others to get debt forgiveness and is able to keep a positive amount of its assets.  

We provide conditions under which the nucleolus coincides with a generalized truncated 

proportional rule, assigning a non-negative payment to the firm and distributing the 

remainder in proportion to the liabilities, truncated by the asset value of the firm. 
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Tartozásos játékok 

 

Csóka Péter - P. Jean-Jacques Herings 

 

Összefoglaló 

 

 

Egy vállalat tartozik a hitelezők egy csoportjának. Tanulmányunkban azt a kérdést vizsgáljuk, 

hogy hogyan osszuk el a vállalat eszközeit a hitelezők és a vállalat között. A játékelméleti 

irodalomban gyakran elemzett csődjátékokhoz képest a vállalatot explicit módon, játékosként 

kezeljük és egy új átruházható hasznosságú játékosztályt definiálunk, a tartozásos játékokat. 

A tartozásos játékok szuperadditívak, konstans összegűek, részben konvexek és részben 

konkávok. A tartozásos játékok magja pontosan akkor üres, ha a vállalat inszolvens és több 

pozitív tartozása van. 

A játék nukleoluszát elemezve belátjuk, hogy a nukleolusz szerint elosztva a vállalat eszközeit 

olyan elosztást kapunk, amely teljesíti a hatékonyság, a nemnegatívitás és a tartozások mint 

felső korlát tulajdonságokat. Belátjuk, hogy a nukleoluszban a vállalat pontosan akkor kap 

többet, mint amennyit önállóan is elérhetne, ha inszolvens és több pozitív tartozása van.  

A vállalat ekkor azzal fenyeget, hogy másoknak fizet, így elengednek a tartozásából és 

megtarthat egy pozitív részt az eszközeiből. Mutatunk olyan feltételeket, amikor a nukleolusz 

egybeesik egy általánosított csonkított arányos csődszabállyal, amikor a vállalat nemnegatív 

kifizetést kap és a maradék eszközét az összes eszközzel csonkolt tartozásokkal arányosan 

osztjuk el. 

 

 

Tárgyszavak: csőd, tartozás elengedés, csődjátékok, nukleolusz, arányos csődszabály 

 

 

JEL kódok: C71, G10 
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A firm has liabilities towards a group of creditors. We analyze the question of

how to distribute the asset value of the firm among the creditors and the firm itself.

Compared to standard bankruptcy games as studied in the game theory literature,

we introduce the firm as an explicit player and define a new class of transferable

utility games called liability games. Liability games are superadditive, constant sum,

partially convex, and partially concave. The core of a liability game is empty if and

only if the firm is insolvent and has multiple positive liabilities.

We analyze the nucleolus of the game and show that allocating the asset value of

the firm using the nucleolus satisfies efficiency, non-negativity, and liabilities bound-

edness. We prove that at the nucleolus, the firm gets a strictly higher amount than

its stand-alone value if and only if the firm is insolvent and has multiple positive

liabilities. The firm is using the threat to pay others to get debt forgiveness and

is able to keep a positive amount of its assets. We provide conditions under which

the nucleolus coincides with a generalized truncated proportional rule, assigning a

non-negative payment to the firm and distributing the remainder in proportion to
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1 Introduction

It is often the case that insolvent agents agree with their creditors to decrease the value

of their liabilities by reducing the principal, restructuring the payments, or getting longer

maturities. For each creditor, the difference between the value of the old liability and the

legally binding, but lower level of new liability is called the debt forgiveness of the creditor.

For sovereign defaults, about 30-40 % debt forgiveness is documented by Arslanalp and

Henry (2005), D’Erasmo (2008), and Benjamin and Wright (2009).

Insolvent agents can be either countries, states, firms, individuals, or other organiza-

tions. Throughout the paper, we will stick to the term firm. A liability problem consists of

a firm with a certain asset value and liabilities towards a group of creditors. The question

is how to distribute the asset value of the firm among the creditors and the firm itself.

Given a liability problem, a liability rule assigns a vector of payments to the creditors and

to the firm. Payment vectors should satisfy non-negativity as the firm has limited liability

and no creditor should be asked to pay, liabilities boundedness as the firm does not pay

in excess of its liabilities, and efficiency meaning that the sum of the payments should be

equal to the firm’s asset value. A frequently studied liability rule is the proportional rule,

which assigns a payment of zero to the firm and distributes the asset value in proportion to

the liabilities to the firm’s creditors. We introduce generalized proportional rules as those

which allows for a non-negative payment to the firm and a proportional distribution of the

remainder.

Sturzenegger and Zettelmeyer (2007) and Chatterjee and Eyigungor (2015) note that

there is no settled theory for the renegotiations concerning the distribution of the asset

value of the firm, but creditors may join ad hoc committees and try to force the firm to

pay them first. We make use of the theory of transferable utility games and can thereby

omit the details of the renegotiation process. The resulting transferable utility games are

called liability games.

Compared to standard bankruptcy games as studied in the game theoretical literature,

see O’Neill (1982) for a seminal contribution and Thomson (2003), Thomson (2013), and

Thomson (2015) for recent surveys, we introduce the firm as an explicit player. The worth

of a coalition in a liability game has the usual interpretation. It is what the members of a

coalition can guarantee for themselves, irrespective of what outsiders do. More specifically,

given a coalition and its complement, the firm first makes payments to the coalition it

belongs to, up to the value of the liabilities in the firm’s coalition, and then pays to the

complementary coalition. If the firm is solvent, its coalition can also keep what is left from

the asset value after paying all creditors.

Liability games turn out to have some special properties. They feature both concavity

and convexity: the subgame restricted to all creditors is convex, whereas the game obtained
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by restricting attention to the coalitions containing the firm is concave. Liability games

are superadditive: there is no loss of merging disjoint coalitions. Moreover, in a liability

game, the worth of a coalition plus the worth of the complementary coalition is always

equal to the asset value, that is, a liability game is a constant sum game (von Neumann

and Morgenstern, 1944).

The core of a liability game consists of those payment vectors where no coalition of the

players can complain, that is, where every coalition of players receives at least its worth.

We show that the core of a liability game is non-empty if and only if the game is additive,

that is, the worth of a coalition is simply the sum of the worths of its members, so there is

no synergy from forming a coalition. We also show that a liability game is additive if and

only if the firm is solvent or it is insolvent and has only one positive liability.

Since the core of a liability game is empty when the firm is insolvent and has multiple

positive liabilities, a solution concept minimizing the complaints of the coalitions is a

natural candidate for a liability rule, which brings us to the nucleolus (Schmeidler, 1969).

We show that the nucleolus satisfies the properties required for a liability rule: efficiency,

non-negativity, and liabilities boundedness, that is, the payment to a creditor can be at

most as much as his claim. We show that the nucleolus coincides with the Shapley value

(Shapley, 1953) for the case where the firm is solvent, or insolvent with at most two positive

liabilities.

We also prove that at the nucleolus, the firm gets a strictly higher amount than its

stand-alone value if and only if the firm is insolvent and has multiple positive liabilities.

Thus the firm needs the threat to pay others to end up with a positive asset value and

obtain some debt forgiveness. To provide an upper bound on how much an insolvent firm

with multiple positive liabilities can gain at the nucleolus as a liability rule, we show that

it ends up with at most half of the asset value. We show that in this case, creditors with

higher claims get higher payments, but they also have higher debt forgiveness. In fact,

there is a threshold of liabilities, below which there is no debt forgiveness, above which

there is positive debt forgiveness. Thus creditors with smaller claims may not be threat-

ened. Finally, we provide conditions under which the nucleolus coincides with a generalized

truncated proportional rule. This generalized truncated proportional rule assigns a non-

negative payment to the firm and distributes the remainder in proportion to the liabilities

that result after truncation by the asset value of the firm. We present a closed-form ex-

pression for the non-negative payment to the firm, thereby pinning down the generalized

truncated proportional rule that coincides with the nucleolus.

There is a large game-theoretic literature on problems where the bankrupt agent is not

treated as a player, but as an exogenously given estate. We refer to such problems as

bankruptcy problems and to the induced transferable utility games as bankruptcy games.
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In bankruptcy problems, it is standard to allocate the entire estate to the claimants. For

surveys of this literature, we refer the reader to Thomson (2003), Thomson (2013), and

Thomson (2015).

Aumann and Maschler (1985) shows that in bankruptcy games the nucleolus coincides

with the Talmud rule. Depending on whether the sum of the half-claims is above or below

the value of the estate, the allocation rule is constrained equal awards or constrained equal

losses. Treating the bankrupt agent as a player, therefore, makes much difference. Not

only may the bankrupt agent get a positive amount, also the division of the remainder is

no longer guided by the application of the constrained equal awards and the constrained

equal losses rules, but rather by a truncated proportional rule.

Anderson and Sundaresan (1996) considers a dynamic model with uncertainty in which

creditors have the costly option of taking the firm to the bankruptcy court or agree to some

debt forgiveness. Yue (2010) models both sovereign default and debt renegotiation in a

dynamic equilibrium model, where default may result in the loss of future access to capital

markets. What we show is that even without bankruptcy or reputation costs there is a

possibility for debt forgiveness, which is obtained by using the threat of paying others. Our

argument for debt forgiveness is also complementary to the argument that debt forgiveness

would increase the incentive of a debtor to make adjustment efforts to increase the value

of the assets (Corden, 1988), to some extent also benefiting the creditors. Our findings

can also be seen as a new motive to bail out an organization in a soft budget constraint

syndrome (Kornai, 1979).

The rest of the paper is organized as follows. In Section 2 we define and illustrate

liability problems and liability games. In Section 3 we analyze the following properties

of liability games: additivity, convexity, concavity, superadditivity, and the constant-sum

property. In Section 4 we define liability rules and argue in favor of the nucleolus as

a liability rule. Section 5 we derive some properties of the payment vectors that result

from using the nucleolus. In Section 6 we present conditions under which the nucleolus

coincides with a particular generalized truncated proportional rule. Section 7 contains the

conclusion.

2 Liability Problems and Liability Games

Let N = {0, 1, . . . , c} denote the set of agents, where agent 0 is a firm having a set of

creditors C = {1, . . . , c} with cardinality |C| = c ≥ 1. The firm has asset value A ∈ R+

and liabilities ` ∈ RC
+, with `i ∈ R+ the liability to creditor i ∈ C. The question is how to

distribute the asset value of the firm among the creditors and the firm itself.

Definition 2.1. A liability problem is a pair (A, `) ∈ R+ × RC
+.
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Let L be the class of liability problems.

Given a liability problem (A, `) ∈ L, a payment vector is a vector x ∈ R+×RC
+ satisfying

liabilities boundedness and efficiency. Liabilities boundedness means that no creditor i ∈ C
receives more than his claim, so xi ≤ `i. Efficiency requires that the sum of the payments

should be equal to the asset value:
∑

i∈N xi = A. Note that non-negativity and efficiency

imply that payments to the firm are also bounded from above, x0 ≤ A.

Let ˆ̀denote the vector of liabilities truncated by the asset value, that is ˆ̀
i = min{A, `i}

is the truncated liability of creditor i ∈ C. Given a subset of creditors S ⊆ C, we will use

the notation `(S) =
∑

i∈S `i for the total liabilities of S and ˆ̀(S) =
∑

i∈S
ˆ̀
i for the total

truncated liabilities of S. If `(C) > A, then the asset value is insufficient to honor all the

creditors and the firm is said to be insolvent. On the other hand, if `(C) ≤ A, then the

firm is solvent. Some of our results depend on whether ˆ̀(C) is less than or equal to A or

not. The condition ˆ̀(C) ≤ A is equivalent to either `(C) ≤ A or there is i ∈ C such that

`i > A and `j = 0 for every j ∈ C \ {i}. Thus ˆ̀(C) ≤ A means that the firm is solvent or

it is insolvent with only one positive liability.

The agents can form coalitions in bargaining over the eventual payment vector. A

coalition is an element of 2N , the collection of all subsets of N. The worth of a non-empty

coalition S ∈ 2N is equal to what members of S can guarantee for themselves, irrespective

of what outsiders do. It matters greatly whether the firm, player 0, is a member of S or

not. If 0 ∈ S, then the firm pays its liabilities to its creditors within the coalition, up to

the asset value. Moreover, the coalition can also keep what is left from the asset value after

paying all other creditors which is a positive amount if and only if the firm is solvent. If

0 6∈ S, then coalition S can only obtain what is left after the firm has paid its liabilities to

creditors not in S in full and at most an amount equal to the value of the liabilities of its

members.

A liability problem therefore gives rise to a transferable utility game, which is formally

a function v from the set of all coalitions 2N to the real numbers with v(∅) = 0. The set

of all transferable utility games with player set N is denoted by G. The next definition

formally defines the coalitional worths for the liability game v that results from a liability

problem (`, A) ∈ L.

Definition 2.2. Let (A, `) ∈ L be a liability problem. The induced liability game v : 2N → R
is defined by setting, for S ∈ 2N ,

v(S) =

{
min{A, `(S \ {0})}+ max{A− `(C), 0}, if 0 ∈ S,
min{`(S),max{0, A− `(C \ S)}}, if 0 6∈ S.

Notice that v(S) ≥ 0 for all S ∈ 2N and v(N) = A. The formulas in Definition 2.2

simplify by specifying them separately for the case where the firm is solvent and the case
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where the firm is insolvent. This is demonstrated in the following theorem, the proof of

which is straightforward and therefore omitted.

Theorem 2.3. Let (A, `) ∈ L be a liability problem. If the firm is solvent, so `(C) ≤ A,

then the induced liability game v : 2N → R satisfies, for S ∈ 2N ,

v(S) =

{
A− `(C \ S), if 0 ∈ S,
`(S), if 0 6∈ S.

If the firm is insolvent, so `(C) > A, then the induced liability game v : 2N → R satisfies,

for S ∈ 2N ,

v(S) =

{
min{A, `(S \ {0})}, if 0 ∈ S,
max{0, A− `(C \ S)}, if 0 6∈ S.

To obtain the worth v(S) for the solvent case when 0 ∈ S, observe that in that case

`(S \ {0}) +A− `(C) = A− `(C \S). Similarly, to obtain the worth v(S) for the insolvent

case when 0 6∈ S, notice that A− `(C \ S) < `(S).

For a game v ∈ G and a non-empty coalition D ∈ 2N , the subgame vD with player set D

is obtained by restricting v to subsets of D. If the game v is induced by a liability problem

with an insolvent firm, then for the set of creditors C the subgame vC corresponds to

the transferable utility game defined by O’Neill (1982) for standard bankruptcy problems.

However, here we also treat the firm as a player. Moreover, we do not restrict attention to

the insolvent case. As an illustration of liability games, consider the following examples.

Example 2.4. Consider the liability problem with two creditors, so N = {0, 1, 2}, A = 12,

and ` = (6, 9). The firm in this liability problem is insolvent. The induced liability game v

is illustrated in Table 1:

S {0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}
v(S) 0 3 6 6 9 12 12

Table 1: The induced liability game when N = {0, 1, 2}, A = 12, `1 = 6, and `2 = 9.

The worth of coalition {1} is equal to 3, since 3 is the amount that remains for creditor 1

after the firm has paid creditor 2 in full, and corresponds to the amount that creditor 1

can get without the cooperation of the firm. The worth of coalition {0, 1} is 6. If the firm

cooperates with creditor 1, then together they can achieve 6 by having the firm pay its

liability to creditor 1 in full.

In this example, it is easily seen that there is no payment vector x against which no

coalition has a complaint. Let x be a payment vector with x0 = 0. Then v({0, 1}) = 6
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and v({0, 2}) = 9 implies that x1 + x2 ≥ 15 in order for coalitions {0, 1} and {0, 2} not

to object. Since there are at most 12 units to allocate, this is impossible. Let x be a

payment vector with x0 > 0. Then v({1, 2}) = 12 implies x0 + x1 + x2 > 12, leading to a

contradiction. The core of the game is empty, and we will see in Section 4 that this is a

quite general phenomenon.

The next example illustrates the consequences of raising the asset value in Example 2.4

to 20.

Example 2.5. Consider the liability problem with two creditors, so N = {0, 1, 2}, A = 20,

and ` = (6, 9). Notice that the firm is solvent. The induced liability game v is illustrated

in Table 2. There is exactly one payment vector that does not give rise to objections by

S ∅ {0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}
v(S) 0 5 6 9 11 14 15 20

Table 2: The induced liability game when N = {0, 1, 2}, A = 20, `1 = 6, and `2 = 9.

any coalition: x = (5, 6, 9). This payment vector is the one that results when the firm pays

its two creditors in full and keeps the remainder.

3 Properties of Liability Games

In this section, we examine the following properties of liability games.

Definition 3.1. A game v ∈ G is:

• Additive if for all S ∈ 2N we have v(S) =
∑

i∈S v({i}).

• Constant sum (von Neumann and Morgenstern, 1944) if for all S ∈ 2N we have

v(S) + v(N \ S) = v(N).

• Convex (Shapley, 1971) if for all S, T ∈ 2N we have v(S)+v(T ) ≤ v(S∪T )+v(S∩T ).

• Concave if for all S, T ∈ 2N we have v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ).

• Superadditive if for all S, T ∈ 2N such that S∩T = ∅ we have v(S)+v(T ) ≤ v(S∪T ).

• Zero-monotonic if for all i ∈ N , for all S ⊆ N\{i}, we have v(S)+v({i}) ≤ v(S∪{i}).
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Note that additivity implies the constant sum property and convexity, convexity im-

plies superadditivity, and superadditivity implies zero-monotonicity, but not the other way

around.

First, we show that a liability game is additive if and only if the firm is solvent or it is

insolvent with only one positive liability.

Theorem 3.2. Given a liability problem (A, `) ∈ L, the induced liability game v is additive

if and only if ˆ̀(C) ≤ A. The stand-alone values of an additive liability game are given by

v({0}) = A− ˆ̀(C) and, for every i ∈ C, v({i}) = ˆ̀
i.

Proof.

(⇐)

The condition ˆ̀(C) ≤ A is equivalent to either `(C) ≤ A or there is a single creditor

i ∈ C such that `i > A and `j = 0 for all j ∈ C \ {i}. It holds by Theorem 2.3 that in the

former case

v(S) =

{
A− `(C \ S), 0 ∈ S,
`(S), 0 /∈ S,

and in the latter case

v(S) =


min{A, `(S \ {0})} = ˆ̀(S \ {0}) = ˆ̀

i, 0, i ∈ S,
min{A, `(S \ {0})} = 0, 0 ∈ S, i ∈ N \ S,
max{0, A− `(C \ S)} = A− ˆ̀(C \ S) = A− 0 = ˆ̀

i, 0 ∈ N \ S, i ∈ S,
max{0, A− `(C \ S)} = A− ˆ̀(C \ S) = A− A = 0, 0, i ∈ N \ S.

It is now easily verified that in both cases, v({0}) = A − ˆ̀(C), v({j}) = ˆ̀
j for all j ∈ C,

and v(S) =
∑

j∈S v({j}) for all S ⊆ N , so v is additive.

(⇒)

Suppose ˆ̀(C) > A. Let i ∈ C be such that `i > 0. By Theorem 2.3 it holds that

v({0}) = min{A, `(∅)} = 0,

v({i}) = max{0, A− `(C \ {i})} ≤ max{0, A− ˆ̀(C \ {i})} < ˆ̀
i,

where the strict inequality follows from ˆ̀
i > 0 and ˆ̀(C) > A. At the same time it holds by

Theorem 2.3 that

v({0, i}) = min{A, `i} = ˆ̀
i,

so v is not additive, yielding a contradiction. 2

It is easily verified in Examples 2.4 and 2.5 that for every coalition S ∈ 2N the sum of

the worths of coalition S and its complementary coalition N \ S is constant and equal to

the asset value A. We show next that this property holds in all generality.
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Theorem 3.3. Let (A, `) ∈ L be a liability problem. The induced liability game v is

constant sum.

Proof. If ˆ̀(C) ≤ A, then v is additive by Theorem 3.2 and the result follows. We

therefore assume ˆ̀(C) > A, which implies that `(C) > A. Let some S ∈ 2N be given. We

distinguish two cases: 1. 0 ∈ S and 2. S ⊆ C.

Case 1. 0 ∈ S.

By Theorem 2.3 it holds that

v(S) + v(N \ S) = min{A, `(S \ {0})}+ max{0, A− `(C \ (N \ S))}
= min{A, `(S \ {0})}+ max{0, A− `(S \ {0})}
= A,

where the last equality follows by considering the two cases `(S \{0}) ≤ A and `(S \{0}) >
A separately.

Case 2. S ⊆ C.

By Theorem 2.3 we have that

v(S) + v(N \ S) = max{0, A− `(C \ S)}+ min{A, `((N \ S) \ {0})}
= max{0, A− `(C \ S)}+ min{A, `(C \ S)}
= A,

where the last equality follows by considering the two cases `(C \S) ≤ A and `(C \S) > A

separately. 2

Since the worth of the grand coalition v(N) is equal to the asset value A, we know that

the sum of the worths of two complementary coalitions is actually equal to A.

Liability games feature both concavity and convexity. As we can also see in Exam-

ples 2.4 and 2.5, the subgame restricted to the set of creditors is convex. The game

restricted to coalitions containing the firm is concave. More precise, in the next result we

show that the game v+0 on the set of players C defined by

v+0(S) = v({0} ∪ S), ∅ 6= S ⊆ C

is concave.

Theorem 3.4. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

The subgame vC is convex and the game v+0 is concave.

Proof. The subgame vC corresponds to the transferable utility game defined by O’Neill

(1982) for standard bankruptcy problems, which is shown to be convex by Curiel, Maschler,

and Tijs (1987).
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Consider any S, T ∈ 2C \ {∅}. We have that

v+0(S) + v+0(T ) = v({0} ∪ S) + v({0} ∪ T )

= v(N)− v(N \ ({0} ∪ S)) + v(N)− v(N \ ({0} ∪ T ))

= v(N)− vC(C \ S) + v(N)− vC(C \ T )

≥ v(N)− vC((C \ S) ∪ (C \ T )) + v(N)− vC(C \ S) ∩ (C \ T ))

= v(N)− vC(C \ (S ∩ T )) + v(N)− vC(C \ (S ∪ T ))

= v({0} ∪ (S ∩ T )) + v({0} ∪ (S ∪ T ))

= v+0(S ∩ T ) + v+0(S ∪ T ),

where the second equality uses Theorem 3.3, the inequality follows from the convexity of

vC , and the penultimate equality uses Theorem 3.3 again. 2

The last property we consider in this section is superadditivity. The next result shows

that liability games satisfy this property.

Theorem 3.5. Let (A, `) ∈ L be a liability problem. The induced liability game v is

superadditive.

Proof. Let S, T ∈ 2N be two disjoint coalitions, so S ∩ T = ∅. If ˆ̀(C) ≤ A, then the

game is additive by Theorem 3.2 and the result follows. We therefore assume ˆ̀(C) > A.

If 0 /∈ S ∪ T, then v(S) + v(T ) ≤ v(S ∪ T ) by the convexity of vC as demonstrated

in Theorem 3.4 and the result holds, so we only need to consider the situation where

0 ∈ S ∪ T. Without loss of generality, assume 0 ∈ S. By Theorem 2.3 it holds that

v(S) = min{A, `(S \ {0})},
v(T ) = max{0, A− `(C \ T )},

v(S ∪ T ) = min{A, `(S ∪ T \ {0})}.

We consider three cases: 1. A ≤ `(S \ {0}). 2. A > `(S \ {0}) and A ≤ `(C \ T ). 3.

A > `(S \ {0}) and A > `(C \ T ).

Case 1. A ≤ `(S \ {0}).
It holds that v(S) = v(S ∪ T ) = A. Since ˆ̀(C) > A, we have that

`(C \ T ) ≥ ˆ̀(C \ T ) ≥ ˆ̀(S \ {0}) ≥ A,

so v(T ) = 0. It follows that v(S) + v(T ) ≤ v(S ∪ T ) as desired.

Case 2. A > `(S \ {0}) and A ≤ `(C \ T ).

Since `(C \ T ) ≥ A, it holds that v(T ) = 0, so

v(S ∪ T ) ≥ v(S) = v(S) + v(T ).
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Case 3. A > `(S \ {0}) and A > `(C \ T ). It holds that v(S) = `(S \ {0}). Since

`(C \ T ) < A, we have that

v(T ) = A− `(C \ T ) < `(T ),

where the strict inequality follows from ˆ̀(C) > A. It also holds that

v(T ) = A− `(C \ T ) ≤ A− `(S \ {0}).

We find that

v(S) + v(T ) ≤ min{`(S \ {0}) + A− `(S \ {0}), `(S \ {0}) + `(T )}
= min{A, `(S ∪ T \ {0})} = v(S ∪ T ).

2

Since the liability game v is superadditive, it is also zero-monotonic, a property that turns

out to be useful in the sequel.

4 The Nucleolus as a Liability Rule

A liability rule is a function that assigns a payment vector to each liability problem.

Definition 4.1. A liability rule is a function f : L → RN
+ such that, for every (A, `) ∈ L,

for every i ∈ C, fi(A, `) ≤ `i and
∑

i∈N fi(A, `) = A.

A payment vector satisfies non-negativity, liabilities boundedness, and efficiency. A

natural way to proceed is to consider the liability game that is induced by the liability

problem and to use a liability rule that corresponds to a solution of the liability game.

It needs to be shown that the allocation prescribed by the solution is indeed a payment

vector.

Let a game v ∈ G be given. An allocation is a vector x ∈ RN such that xi is the payoff

of player i ∈ N . The allocation x yields a total payoff of x(S) =
∑

i∈S xi to the members

of coalition S ∈ 2N . The allocation x is called efficient if x(N) = v(N) and coalitionally

rational if x(S) ≥ v(S) for all S ∈ 2N . The allocation x is blocked by coalition S ∈ 2N if

x(S) < v(S).

The set of pre-imputations of a game v ∈ G is equal to I∗(v) = {x ∈ RN |x(N) =

v(N)}. The addition of individual rationality constraints leads to the set of imputations

I(v) = {x ∈ I∗(v)| for every i ∈ N, xi ≥ v({i})}. The core of the game v (Gillies,

1959), denoted by Core(v), is the set of efficient and coalitionally rational allocations,

Core(v) = {x ∈ I∗(v)| for every S ∈ 2N , x(S) ≥ v(S)}.
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We define N = 2N \{∅, N} as the collection of all non-empty coalitions that are proper

subsets of the grand coalition. The excess e(S, x) of coalition S ∈ N at an allocation

x ∈ RN is given by

e(S, x) = v(S)− x(S).

The excess e(S, x) measures the complaint of coalition S against allocation x. The higher

the excess e(S, x), the less satisfied coalition S is with x. Let e(x) ∈ RN be the vector of

excesses at x, indexed by S ∈ N . A pre-imputation x ∈ I∗(v) belongs to Core(v) if and

only if for every S ∈ N we have that e(S, x) ≤ 0.

The next result is a corollary of Theorem 3.3.

Corollary 4.2. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

For every S ∈ N , for every pre-imputation x ∈ I∗(v), it holds that e(S, x)+e(N \S, x) = 0.

Since a liability game is constant sum, it follows that for any coalition and any pre-

imputation the sum of the excesses of the coalition and the complementary coalition is

equal to zero. It therefore holds that the core of a liability game is non-empty if and only

if all excesses are equal to zero, a very strong condition. Indeed, the following result shows

that the core of a liability game is empty if and only if ˆ̀(C) > A.

Theorem 4.3. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

If ˆ̀(C) ≤ A, then Core(v) = {(A− ˆ̀(C), ˆ̀)}. If ˆ̀(C) > A, then Core(v) = ∅.

Proof. Let ˆ̀(C) ≤ A. Then v is additive by Theorem 3.2. It follows that Core(v) is a

singleton, containing the unique imputation x ∈ I(v) where each player gets his stand-alone

value. By Theorem 3.2 it holds that x0 = A− ˆ̀(C) and, for every i ∈ C, xi = ˆ̀
i.

Let ˆ̀(C) > A. Suppose Core(v) 6= ∅ and let x ∈ Core(v). For every S ∈ N , it holds

that e(S, x) ≤ 0. By Corollary 4.2 it follows that, for every S ∈ N , e(S, x) = 0. The latter

property can only hold if v is additive. By Theorem 3.2, we have that ˆ̀(C) ≤ A, leading

to a contradiction. 2

In case the firm is solvent, then there is a unique core element. At this core element,

the firm pays each of its liabilities in full and keeps the remaining asset value for itself. In

case the firm is insolvent and has a single positive liability, there is a unique core element

as well. At this core element, the firm pays the creditor with a positive claim an amount

equal to A and has a remaining asset value equal to 0.

In all other cases, the core is empty. There is always a coalition with a complaint irre-

spective of the pre-imputation chosen. A solution concept that minimizes the complaints

of the coalitions then appears as a natural candidate for a liability rule, since it leads to
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allocations as close to the core as possible. This leads us to advocate the nucleolus as

introduced in Schmeidler (1969), formally defined next.

The lexicographic order �lex is the complete order on R|N | defined as follows. For

x, y ∈ RN it holds that x �lex y if and only if either x = y or there exists a number

k′ ∈ {1, . . . , |N |} such that, for every k < k′, xk = yk, and xk′ < yk′ . We have that x ≺lex y

if and only if x �lex y and x 6= y. The coordinate ordering mapping θ : RN 7→ R|N | is

defined such that it arranges the coordinates of a vector x ∈ RN in a weakly decreasing

order.

Definition 4.4. The nucleolus of a game v ∈ G is

Nu(v) = {x ∈ I(v)| for every y ∈ I(v), θ(e(x)) �lex θ(e(y))}.

As shown in Schmeidler (1969), the definition of the nucleolus results in a uniquely

specified imputation, so the set Nu(v) is a singleton. From now on, we will therefore treat

Nu(v) as a vector rather than a set. It is the imputation that lexicographically minimizes

the ordered excesses. If the core of a game v ∈ G is non-empty, then Nu(v) ∈ Core(v).

If v is a liability game, then a non-empty core means that the core is a singleton. In this

case, either the firm is solvent and the nucleolus then requires the firm to pay its liabilities

in full or the firm is insolvent and has a single positive liability on which A is paid, see

Theorem 4.3.

If we replace the set of imputations I(v) by the set of pre-imputations I∗(v) in Defini-

tion 4.4, then we obtain the pre-nucleolus Nu∗(v) of the game.

Consider the payment vector x = (1, 4, 7) in Example 2.4, so with a strictly positive

payoff of 1 for the firm. The excesses at (1, 4, 7) for coalitions S ∈ N are easily verified to

be as follows.

S {0} {1} {2} {0, 1} {0, 2} {1, 2}
e(S, (1, 4, 7)) -1 -1 -1 1 1 1

Table 3: The excesses at x = (1, 4, 7) in Example 2.4.

Note that indeed, as stated in Corollary 4.2, the sum of the excesses of a coalition and

its complementary coalition is equal to zero.

The sum of the excesses of the two-player coalitions is equal

v({0, 1}) + v({0, 2}) + v({1, 2})− 2x(N) = v({0, 1}) + v({0, 2}) + v({1, 2})− 2v(N)

= 27− 24 = 3.

The highest excess of any of the two-player coalitions is therefore at least equal to 1 and

any pre-imputation different from (1, 4, 7) will lead to some two-player coalition having
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an excess strictly above 1. It follows that the pre-nucleolus Nu∗(v) = (1, 4, 7). Since the

pre-nucleolus is an imputation, it coincides with the nucleolus.

The firm, even though it is insolvent, gets a strictly positive payment of 1 at the

nucleolus. It pays an amount of 4 to creditor 1, and an amount of 7 to creditor 2, and

therefore is allowed to keep 1 unit for itself from the the asset value of its asset value

A = 12 . Both creditor 1 and creditor 2 receive 2 units less than their claim on the firm.

We define next the debt forgiveness of a creditor as the difference between the liability

towards him and the payment he receives. The truncated debt forgiveness of a creditor

is defined as the difference between the truncated liability towards him and the received

payment.

Definition 4.5. Let (A, `) ∈ L be a liability problem and x ∈ RN
+ be a payment vector.

The debt forgiveness of creditor i ∈ C is given by di(A, `, x) = `i − xi. The truncated debt

forgiveness by creditor i ∈ C is given by d̂i(A, `, x) = ˆ̀
i − xi = min{A, `i} − xi.

In Example 2.4, both creditor 1 and creditor 2 have a debt forgiveness of 2 units at

the nucleolus. In Example 2.5, all creditors have a debt forgiveness, as well as a truncated

debt forgiveness, equal to 0.

The firm is said to receive strong debt forgiveness at a payment vector x ∈ RN
+ if x0 > 0

and there is strictly positive debt forgiveness by at least one of the creditors. If the firm

is solvent, it receives strong debt forgiveness if and only if there is strictly positive debt

forgiveness by at least one of the creditors. If the firm is insolvent, then it receives strong

debt forgiveness if and only if it receives a strictly positive payment.

Another well-known solution for a game v ∈ G is the Shapley value (Shapley, 1953)

denoted by φ(v). It is defined by

φi(v) =
∑

S⊆N\{i}

(v(S ∪ {i})− v(S))
|S|!(|N \ S| − 1)!

|N |!
, i ∈ N.

The next result derives the nucleolus for liability problems with ˆ̀(C) ≤ A, thereby gener-

alizing Example 2.5.

Theorem 4.6. Let (A, `) ∈ L be a liability problem such that ˆ̀(C) ≤ A and let v be

the induced liability game. It holds that Nu(v) = φ(v) = (A − ˆ̀(C), ˆ̀), for every i ∈ C,

d̂i(A, `,Nu(v)) = 0, and for every S ∈ N , e(S,Nu(v)) = 0.

Proof. Since v is additive by Theorem 3.2, it is well-known that the nucleolus coincides

with the Shapley value and is equal to the unique core element, as given in Theorem 4.3.

It is immediate that the truncated debt forgiveness is equal to 0 for every creditor and that

all excesses at the nucleolus are equal to zero. 2
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When ˆ̀(C) ≤ A, then the liability game v is additive, so the nucleolus and the Shapley value

coincide. The firm pays every creditor an amount equal to the corresponding truncated

liability, so truncated debt forgiveness is equal to zero. In an additive game, all excesses

are equal to zero at the nucleolus.

The case ˆ̀(C) ≤ A means that either the firm is solvent or the firm is insolvent and

has only one positive liability. The next result derives the nucleolus for liability problems

with an insolvent firm and two positive liabilities, thereby generalizing Example 2.4, and

shows it to coincide with the Shapley value.

Theorem 4.7. Let (A, `) ∈ L be a liability problem with two positive liabilities, say `1 and

`2, and `(C) > A. Let v be the induced liability game. It holds that Nu(v) = φ(v),

Nu0(v) = 2 ˆ̀1+2 ˆ̀2−2A
6

,

Nu1(v) = 4A+2 ˆ̀1−4 ˆ̀2
6

,

Nu2(v) = 4A+2 ˆ̀2−4 ˆ̀1
6

,

Nui(v) = 0, i ∈ C \ {1, 2}.

Both creditors with a positive liability have the same truncated debt forgiveness:

d̂1(A, `, φ(v)) = d̂2(A, `, φ(v)) =
−4A+ 4 ˆ̀

1 + 4 ˆ̀
2

6
.

Proof. We first consider the liability subgame ṽ = v{0,1,2}, so we omit the creditors

with claims equal to zero. By Theorem 2.3 it follows that ṽ is as presented in Table 4.

S {0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}
ṽ(S) 0 A− ˆ̀

2 A− ˆ̀
1

ˆ̀
1

ˆ̀
2 A A

Table 4: The induced liability game when N = {0, 1, 2} and ˆ̀(C) > A.

The Shapley value is calculated in Table 5. It holds that

φ(ṽ) =
(

2 ˆ̀1+2 ˆ̀2−2A
6

, 4A+2 ˆ̀1−4 ˆ̀2
6

, 4A+2 ˆ̀2−4 ˆ̀1
6

)
.

We define a1 = (2A− 2 ˆ̀
1 − 2 ˆ̀

2)/6 and a2 = (−2A+ 2 ˆ̀
1 + 2 ˆ̀

2)/6. It holds that a1 < 0

and a2 > 0. Table 6 presents the excesses at φ(ṽ) for coalitions S ∈ N .
The sum of the excesses of the two-player coalitions is equal to

ṽ({0, 1}) + ṽ({0, 2}) + ṽ({1, 2})− 2x(N) = ṽ({0, 1}) + ṽ({0, 2}) + ṽ({1, 2})− 2ṽ(N)

= ˆ̀
1 + ˆ̀

2 − A.

Decreasing any of the excesses of the two-player coalitions below a2 would result in an

excess above a2 at another two-player coalition. The pre-nucleolus of ṽ therefore coincides

with the Shapley value.
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permutation marginal contribution

0 1 2

0, 1, 2 0 ˆ̀
1 A− ˆ̀

1

0, 2, 1 0 A− ˆ̀
2

ˆ̀
2

1, 0, 2 ˆ̀
1 + ˆ̀

2 − A A− ˆ̀
2 A− ˆ̀

1

1, 2, 0 0 A− ˆ̀
2

ˆ̀
2

2, 0, 1 ˆ̀
1 + ˆ̀

2 − A A− ˆ̀
2 A− ˆ̀

1

2, 1, 0 0 ˆ̀
1 A− ˆ̀

1

φ(ṽ) 2 ˆ̀1+2 ˆ̀2−2A
6

4A+2 ˆ̀1−4 ˆ̀2
6

4A+2 ˆ̀2−4 ˆ̀1
6

Table 5: The Shapley value when N = {0, 1, 2} and `(C) > A.

S {0} {1} {2} {0, 1} {0, 2} {1, 2}
e(S, φ(ṽ)) a1 a1 a1 a2 a2 a2

Table 6: The excesses at the Shapley value when N = {0, 1, 2} and `(C) > A.

We argue next that the pre-nucleolus of ṽ belongs to the set of imputations I(ṽ), so

coincides with the nucleolus of ṽ. We have that

Nu0(ṽ) = 2 ˆ̀1+2 ˆ̀2−2A
6

> 0 = ṽ({0}),
Nu1(ṽ) = 4A+2 ˆ̀1−4 ˆ̀2

6
> A− ˆ̀

2 = ṽ({1}),
Nu2(ṽ) = 4A+2 ˆ̀2−4 ˆ̀1

6
> A− ˆ̀

1 = ṽ({2}),

where the strict inequalities follow from the fact that 2ˆ̀
1 + 2ˆ̀

2 > 2A.

Since the players in C \ {1, 2} are null players, they get a payoff equal to zero in both

the Shapley value and the nucleolus. The payoffs of the other players are the same as in

the game ṽ.

We finally calculate the level of truncated debt forgiveness at the payment vector Nu(v).

It holds that

d̂1(A, `,Nu(v)) = ˆ̀
1 − Nu1(v) = ˆ̀

1 − 4A+2 ˆ̀1−4 ˆ̀2
6

= −4A+4 ˆ̀1+4 ˆ̀2
6

,

d̂2(A, `,Nu(v)) = ˆ̀
2 − Nu2(v) = ˆ̀

2 − 4A+2 ˆ̀2−4 ˆ̀1
6

= −4A+4 ˆ̀1+4 ˆ̀2
6

.

2

As demonstrated in Theorem 4.7, the nucleolus of a liability game with an insolvent

firm having two positive liabilities prescribes the same truncated debt forgiveness for both

creditors with a positive claim. The firm gets a payoff above its stand-alone value v({0}),
since Nu0(v) = 2 ˆ̀1+2 ˆ̀2−2A

6
> 0 = v({0}). The firm is therefore able to keep some of its

assets, even though it is insolvent.
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Since the liability game v is constant sum by Theorem 3.3, the worths of all two-player

coalitions are the same in the zero-normalized game. The coincidence of the nucleolus

and the Shapley value for the case with c = 2 then also follows from Yokote, Funaki, and

Kamijo (2014), who show that the two-player coalitions having the same worths in the

zero-normalized game is a sufficient condition for the coincidence of the nucleolus and the

Shapley value in games with three players.

It is easy to find examples showing that the coincidence of Theorem 4.7 does not

necessarily hold for liability problems with three or more positive liabilities.

The following result claims that the pre-nucleolus satisfies individual rationality, so the

pre-nucleolus coincides with the nucleolus.

Theorem 4.8. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

For every i ∈ N, it holds that Nu∗i (v) ≥ v({i}), so Nu(v) = Nu∗(v).

Proof. The game v is superadditive by Theorem 3.5 and therefore zero-monotonic. It

follows from Maschler, Peleg, and Shapley (1979) that, for every i ∈ N, Nu∗i (v) ≥ v({i}). 2

Since the pre-nucleolus coincides with the nucleolus, from now on we will restrict at-

tention to the nucleolus.

By Theorem 2.3 it follows immediately that, for every i ∈ N, v({i}) ≥ 0, and∑
i∈N

Nui(v) = v(N) = A.

This implies that, for every i ∈ N, Nui ≤ A. The next result shows that the nucleolus

also satisfies truncated liabilities boundedness, which implies liabilities boundedness. The

nucleolus therefore assigns a payment vector to each liability game.

Theorem 4.9. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

For every i ∈ C it holds that Nui(v) ≤ ˆ̀
i.

Proof. If ˆ̀(C) ≤ A, then v is additive by Theorem 3.2, so for every i ∈ C it holds

that Nui(v) = v({i}) = ˆ̀
i. We therefore assume ˆ̀(C) > A, which implies that `(C) > A

and hence the liability game is given by the second part of Theorem 2.3. Let x = Nu(v).

Since, for every i ∈ N, xi ≤ A, it remains to be shown that xi ≤ `i.

Suppose i ∈ C is such that xi > `i. We define y ∈ I(v) by

yi = `i,

yj = xj + xi−`i
c
, j ∈ N \ {i}.

Note that y ∈ I(v) since yi = `i ≥ v({i}), for every j ∈ N \ {i}, yj > xj ≥ v({j}), and

y(N) = A. We show next that θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the

nucleolus.
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For every non-empty proper subset S of N \ {i}, consider the pair of excesses

e(S, x) = v(S)− x(S),

e(S ∪ {i}, x) = v(S ∪ {i})− x(S)− xi.

Notice that e(S, x) > e(S ∪ {i}, x) since v(S ∪ {i}) − v(S) ≤ `i and xi > `i. The pair of

excesses at y is given by

e(S, y) = v(S)− y(S) = v(S)− x(S)− |S|(xi−`i)
c

,

e(S ∪ {i}, y) = v(S ∪ {i})− y(S ∪ {i}) = v(S ∪ {i})− x(S)− |S|(xi−`i)
c

− `i.

We have that e(S, y) < e(S, x) and

e(S, y)− e(S ∪ {i}, y) = v(S)− v(S ∪ {i}) + `i ≥ 0.

Thus for all the pairs of coalitions that we considered so far, we have lexicographically

improved the ordered excesses when replacing the imputation x by the imputation y.

The final pair of coalitions to consider is {i} and N \ {i}. We have that

e({i}, x) = v({i})−xi = max{0, A− `(C \{i})}−xi < max{0, A− `(C \{i})}− `i < 0,

where the first inequality follows from xi > `i and the second inequality from `(C) > A. It

holds that e({i}, x) < e({i}, y) and

e({i}, y) = v({i})− yi = max{0, A− `(C \ {i})} − `i < 0.

By Corollary 4.2, we now get that e(N \ {i}, x) = −e({i}, x) > 0 and e(N \ {i}, x) >

e(N \ {i}, y) > 0. Thus also this pair of ordered excesses is lexicographically improved

when x is replaced by y.

We have partitioned N in pairs and have shown that the ordered excesses of each pair

are lexicographically improved when replacing x by y. It follows that e(y) ≺lex e(x), a con-

tradiction to x being the nucleolus. Consequently, it holds that, for every i ∈ C, xi ≤ `i. 2

It follows from Theorem 4.9 that we can use the nucleolus as a liability rule.

5 Properties of the Nucleolus

In this section, we derive properties of the payment vector generated by the nucleolus.

We start by analyzing the asset value that the firm is allowed to keep after making its

payments. To do so, we first study the vector of excesses in more detail.

Theorem 5.1. Let (A, `) ∈ L be a liability problem, let v be the induced liability game,

and let x = Nu(v). For every S ⊂ T ⊂ C, we have:
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1. If ˆ̀(T ) ≤ A, then e({0} ∪ S, x) ≤ e({0} ∪ T, x).

2. If ˆ̀(T ) ≤ A, then e(C \ S, x) ≥ e(C \ T, x).

3. If ˆ̀(S) ≥ A, then e({0} ∪ S, x) ≥ e({0} ∪ T, x).

4. If ˆ̀(S) ≥ A, then e(C \ S, x) ≤ e(C \ T, x).

Proof. In case ˆ̀(C) ≤ A, all excesses are equal to zero by Theorem 4.6, so the result

follows. For the remainder of the proof, we assume ˆ̀(C) > A.

1. By Theorem 2.3, we have that

e({0} ∪ S, x) = v({0} ∪ S)− x({0} ∪ S)

= min{A, `(S)} − x({0} ∪ S) = ˆ̀(S)− x({0} ∪ S),

e({0} ∪ T, x) = v({0} ∪ T )− x({0} ∪ T )

= min{A, `(T )} − x({0} ∪ T ) = ˆ̀(T )− x({0} ∪ T ),

where the last equalities in both equations rely on ˆ̀(S) ≤ ˆ̀(T ) ≤ A. It follows that

e({0} ∪ T, x)− e({0} ∪ S, x) = ˆ̀(T \ S)− x(T \ S) ≥ 0,

where the inequality follows since the nucleolus satisfies truncated liabilities bound-

edness by Theorem 4.9.

2. This part follows from part 1 and Corollary 4.2.

3. By Theorem 2.3, we have that

e({0} ∪ S, x) = v({0} ∪ S)− x({0} ∪ S)

= min{A, `(S)} − x({0} ∪ S) = A− x({0} ∪ S),

e({0} ∪ T, x) = v({0} ∪ T )− x({0} ∪ T )

= min{A, `(T )} − x({0} ∪ T ) = A− x({0} ∪ T ),

where the last equalities in both equations follow since A ≤ ˆ̀(S) ≤ ˆ̀(T ). We have

that

e({0} ∪ S, x)− e({0} ∪ T, x) = x(T \ S) ≥
∑
i∈T\S

v({i}) ≥ 0,

where the first inequality follows from Theorem 4.8.

4. This part follows from Part 3 and Corollary 4.2.
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For coalitions containing the firm and with claims totaling to less than the asset value, the

excesses at the nucleolus are weakly increasing as the coalitions expand. Since the liability

game is constant sum, it then follows that the excesses of the complementary coalitions

are weakly decreasing. For coalitions containing the firm with total claims above the asset

value, the situation is reversed. The excesses at the nucleolus are weakly decreasing as the

coalitions expand and the excesses of the complementary coalitions are weakly increasing.

The result of Theorem 5.1 can be used to show that the coalition of all creditors C has

the highest excess at the nucleolus.

Theorem 5.2. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

For every S ∈ N it holds that e(S,Nu(v)) ≤ e(C,Nu(v)).

Proof. In case ˆ̀(C) ≤ A, all excesses are equal to zero by Theorem 4.6, so the result

follows. For the remainder of the proof, we assume ˆ̀(C) > A.

Let x = Nu(v). It holds that

e(C, x) = v(C)− x(C) = A− (x(N)− x0) = x0 ≥ v({0}) ≥ 0,

where the first inequality follows from Theorem 4.8.

We show first that, for every U ∈ N such that U ⊂ C, e(U, x) ≤ e(C, x). Let V = C \U.
If ˆ̀(V ) ≤ A, then by taking S = ∅ and T = V in Part 2 of Theorem 5.1, we have that

e(C, x) ≥ e(C \ V, x) = e(U, x).

Consider next the case ˆ̀(V ) > A. Take any i ∈ U. By setting S = V and T = C \ {i} ⊇ V

in Part 4 of Theorem 5.1, we get that

e(U, x) = e(C \ V, x) ≤ e(C \ (C \ {i}), x) = e({i}, x) = v({i})− xi ≤ 0,

where the inequality follows from Theorem 4.8. Since e(C, x) ≥ 0, it also holds that

e(U, x) ≤ e(C, x) in this case.

Let T ∈ N be a coalition with the maximal excess at x. Suppose e(C, x) < e(T, x). We

have that 0 ∈ T by the first part of the proof. Let ε ∈ (0, e(T, x) − e(C, x)) and define

y ∈ I∗(v) by

y0 = x0 + ε,

yi = xi − ε
c
, i ∈ C.

Let some S ∈ N be given. If S ⊆ C, then

e(S, y) = e(S, x) + ε |S|
c
≤ e(C, x) + ε < e(T, x).
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If 0 ∈ S, then

e(S, y) = e(S, x) + ε |S|−1
c
− ε < e(S, x).

It follows that

max
S∈N

e(S, y) < max
S∈N

e(S, x) = e(T, x),

so θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the pre-nucleolus. 2

The coalition of all creditors has the maximal excess at the nucleolus. The maximal

excess is a non-negative amount.

Next, we show that the firm gets an amount strictly exceeding its stand-alone value if

and only if the sum of the truncated liabilities strictly exceeds its asset value.

Theorem 5.3. Let (A, `) ∈ L be a liability problem and let v be the induced liability game.

It holds that Nu0(v) > v({0}) if and only if ˆ̀(C) > A.

Proof.

(⇐) Let x = Nu(v). It holds that `(C) > A, so v({0}) = 0 by Theorem 2.3. By

Theorem 4.3, Core(v) = ∅, so there is a coalition with a strictly positive excess at the

nucleolus, and by Theorem 5.2 it holds that e(C, x) > 0. The result follows by observing

that e(C, x) = v(C)− x(C) = A− (A− x0) = x0.

(⇒)

Suppose ˆ̀(C) ≤ A. Then the game v is additive by Theorem 3.2, so Nu0(v) = v({0}),
leading to a contradiction. Consequently, it holds that ˆ̀(C) > A. 2

When the nucleolus is used as a liability rule, then the firm gets a strictly higher amount

than its stand-alone value if and only if the firm is insolvent and has multiple positive

liabilities. To put it differently, the firm needs the threat to pay others in order to keep

some of its asset value in case of an insolvency. In this case the core of the liability game is

empty by Theorem 4.3 and the game is not additive by Theorem 3.2. As a consequence, the

firm receives strong debt forgiveness if and only if it is insolvent and has multiple positive

liabilities.

We now provide an upper bound on the payment an insolvent firm with multiple positive

liabilities receives at the nucleolus. The next theorem shows that it can get at most half

of the asset value.

Theorem 5.4. Let (A, `) ∈ L be a liability problem such that ˆ̀(C) ≥ A and let v be the

induced liability game. It holds that Nu0(v) ≤ A/2.
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Proof. Let x = Nu(v). Suppose x0 > A/2. Let ε ∈ (0, x0 − A/2) and define y ∈ I(v)

by

y0 = x0 − ε,
yi = xi + ε

c
, i ∈ C.

Let some S ∈ N be given. If S ⊆ C, then

e(S, y) = e(S, x)− ε |S|
c
< e(C, x),

where the inequality follows from Theorem 5.2.

If 0 ∈ S, then e(S, x) = v(S)− x(S) < A− A/2 = A/2 and

e(S, y) = e(S, x)− ε |S|−1
c

+ ε ≤ e(S, x) + ε ≤ A/2 + ε < x0 = e(C, x).

It follows that

max
S∈N

e(S, y) < e(C, x) = max
S∈N

e(S, x),

so θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the nucleolus. 2

We show in Section 6 that the firm can get arbitrarily close to A/2 when the nucleolus

is used as a liability rule, so the upper bound as provided in Theorem 5.4 is tight.

An interesting question is whether every creditor with a positive claim faces a loss in

case the firm is insolvent, so whether there is positive debt forgiveness by each creditor

with a positive claim on the firm. The following example shows this is not always the case.

Example 5.5. Consider the liability problem (`, A) ∈ L with 3 creditors, where A = 10,

`1 = 1, and `2 = `3 = 8. Notice that the firm is insolvent. The induced liability game v is

depicted in Table 7.

It is easily verified that the nucleolus of the liability game v is equal to Nu(v) = x =

(7/3, 1, 10/3, 10/3), at which x1 = `1 = 1. There is no debt forgiveness by creditor 1,

even though the insolvent firm receives strong debt forgiveness and ends up with a strictly

positive amount of x0 = 7/3. There is positive debt forgiveness by creditors 2 and 3,

d2(A, `, x) = d3(A, `, x) = 14/3.

The feature in Example 5.5, an insolvent firm paying some of its liabilities in full, can

only occur for some of its smaller liabilities. Our last result in this section shows that there

is higher debt forgiveness by creditors with higher claims at the nucleolus. We also show

that creditors with higher claims receive higher payments at the nucleolus.

Theorem 5.6. Let (A, `) ∈ L be a liability problem and let v the induced liability game.

Let i, j ∈ C be such that `i ≤ `j. At x = Nu(v) it holds that xi ≤ xj and `i − xi ≤ `j − xj.
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S {0} {1} {2} {3} {0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3}
v(S) 0 0 1 1 1 8 8 2 2 9

x(S) 7
3

1 10
3

10
3

10
3

17
3

17
3

13
3

13
3

20
3

e(S, x) −7
3
−1 −7

3
−7

3
−7

3
7
3

7
3

−7
3

−7
3

7
3

S {0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}
v(S) 9 9 10 10

x(S) 20
3

20
3

9 23
3

e(S, x) 7
3

7
3

1 7
3

Table 7: The induced liability game when N = {0, 1, 2, 3}, A = 10, `1 = 1, and `2 = `3 = 8,

and the excesses at the nucleolus x = (7/3, 1, 10/3, 10/3).

Proof. Suppose xi > xj. We define y ∈ I(v) by yi = xi − ε and yj = xj + ε, where ε is

chosen sufficient small such that yi > yj. The other components of y are set equal to the

corresponding components of x. For coalitions S ∈ N such that both i and j belong to S

or both i and j belong to C \ S, it clearly holds that e(S, x) = e(S, y).

Take some S ⊆ N \ {i, j}. We demonstrate that

max{e(S ∪ {i}, x), e(S ∪ {j}, x)} > max{e(S ∪ {i}, y), e(S ∪ {j}, y)}.

It holds that

max{e(S ∪ {i}, x), e(S ∪ {i}, x)} = max{v(S ∪ {i})− x(S ∪ {i}), v(S ∪ {j})− x(S ∪ {j})}
= v(S ∪ {j})− x(S ∪ {j})},

where the last equality follows from v(S ∪ {i}) ≤ v(S ∪ {j}) and xi > xj.

It holds that

max{e(S ∪ {i}, y), e(S ∪ {i}, y)} = max{v(S ∪ {i})− y(S ∪ {i}), v(S ∪ {j})− y(S ∪ {j})}
= v(S ∪ {j})− y(S ∪ {j})},
= v(S ∪ {j})− x(S ∪ {j})− ε},

where the second equality follows from v(S ∪ {i}) ≤ v(S ∪ {j}) and yi > yj.

It follows that θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the nucleolus.

Consequently, it holds that xi ≤ xj.

Suppose `i − xi > `j − xj. We define y ∈ I(v) by yi = xi + ε and yj = xj − ε, where

ε is chosen sufficient small such that `i − yi > `j − yj. The other components of y are set

equal to the corresponding components of x. For coalitions S ∈ N such that both i and j

belong to S or both i and j belong to C \ S, it clearly holds that e(S, x) = e(S, y).
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Take some S ⊆ N \ {i, j}. We demonstrate that

max{e(S ∪ {i}, x), e(S ∪ {j}, x)} > max{e(S ∪ {i}, y), e(S ∪ {j}, y)}.

It holds that

max{e(S ∪ {i}, x), e(S ∪ {i}, x)} = max{v(S ∪ {i})− x(S ∪ {i}), v(S ∪ {j})− x(S ∪ {j})}
= v(S ∪ {i})− x(S ∪ {i})},

where the last equality follows from v(S ∪{i})− v(S ∪{j}) ≥ `i− `j and `i− xi > `j − xj.
It holds that

max{e(S ∪ {i}, y), e(S ∪ {i}, y)} = max{v(S ∪ {i})− y(S ∪ {i}), v(S ∪ {j})− y(S ∪ {j})}
= v(S ∪ {i})− y(S ∪ {i})},
= v(S ∪ {i})− x(S ∪ {i})− ε},

where the second equality follows from v(S∪{i})−v(S∪{j}) ≥ `i−`j and `i−yi > `j−yj.
It follows that θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the nucleolus.

Consequently, it holds that `i − xi ≤ `j − xj. 2

Theorem 5.6 implies using the nucleolus as a liability rule leads to the same payment to

creditors with identical claims. In terms of debt forgiveness, we have seen in Example 5.5

that there is no debt forgiveness by creditors with low claims even when the firm is insolvent.

Theorem 5.6 generalizes this insight and implies that there is a threshold such that there

is no debt forgiveness by creditors with claims below the threshold and positive debt

forgiveness by creditors with claims above the threshold.

6 The Generalized Proportional Rule

In principe, it is possible to compute the nucleolus by solving a linear programming prob-

lem. However, the size of the linear programming problem is related to the number of

coalitions, which increases exponentially in the number of players. For instance, in a game

with n players, Owen (1974) presents a linear programming formulation to compute the

nucleolus that involves 2n+1 + n variables and 4n + 1 constraints. In this section, we ar-

gue that for liability problems there is a relation between the nucleolus and the so-called

generalized truncated proportional rule and we have a closed from solution for the latter.

A well-known liability rule in bankruptcy situations is the proportional rule. Under

the proportional rule, in case of an insolvency, the entire asset value is distributed to the

creditors in proportion to their liabilities. The insolvent agent is then left without any

assets. We define the generalized proportional rule by making payments in proportion

to the liabilities, but by allowing for a non-negative payment to the firm even in case of

insolvency.
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Definition 6.1. The liability rule p : L → RN
+ is a generalized proportional rule if for every

(A, `) ∈ L there is λ ∈ R+ such that for every i ∈ C it holds that pi(A, `) = λ`i.

Recall that by definition of a liability rule it holds that 0 ≤ p0(A, `), for every i ∈ C,
0 ≤ pi(A, `) ≤ `i, and

∑
i∈N pi(A, `) = A. Given the amount p0(A, `) the firm is allowed to

keep for itself, the payments to the creditors are uniquely determined under the generalized

proportional rule.

The truncated proportional rule distributes the entire asset value in proportion to the

truncated liabilities. The generalized truncated proportional rule does the same, but allows

the insolvent agent to keep some of its asset value.

Definition 6.2. The liability rule p̂ : L → RN
+ is a generalized truncated proportional rule

if for every (A, `) ∈ L there is λ ∈ R+ such that for every i ∈ C it holds that pi(A, `) = λˆ̀
i.

Again, once the amount p̂0(A, `) ∈ [0, A] the firm is allowed to keep has been decided

upon, the payments to the creditors are uniquely determined under the generalized trun-

cated proportional rule. Let p̂∗ : L → RN
+ denote the generalized truncated proportional

rule obtained when

p̂∗0(A, `) =

{
A− ˆ̀(C), if ˆ̀(C) ≤ A,
(ˆ̀(C)−A)A

2ˆ̀(C)−A , if ˆ̀(C) > A.

It is easily verified that p̂∗0(A, `) ∈ [0, A].

We first study liability problems with ˆ̀(C) ≤ A, so the firm is either solvent or has a

single positive liability. The following result is an immediate corollary of Theorem 4.6.

Corollary 6.3. Let (A, `) ∈ L be a liability problem such that ˆ̀(C) ≤ A and let v be the

induced liability game. It holds that Nu(v) = p̂∗(A, `).

We next turn to the case of an insolvent firm with multiple positive liabilities.

For a given liability problem (A, `) ∈ L, let C̃ be the set of creditors with a liability

strictly in between 0 and A, so C̃ = {i ∈ C | 0 < `i < A}, and denote the cardinality of

C̃ by c̃. For each non-empty S ⊆ C̃, let m̃(S) ∈ RC̃ denote the membership vector of S,

so m̃i(S) = 1 if i ∈ S and m̃i(S) = 0 if i ∈ C̃ \ S. Let S̃ be a collection of non-empty

coalitions of creditors in C̃, so for every S ∈ S̃ it holds that ∅ 6= S ⊆ C̃. The collection S̃ is

independent if {m̃(S)|S ∈ S̃} is a set of independent vectors. The collection S̃ is balanced

if there are weights (λS)S∈S̃ ∈ RS̃++ such that
∑

S∈S̃ λSm̃(S) = m̃(C̃).

Assumption 6.4. The liability problem (A, `) ∈ L is such that ˆ̀(C) > A and there exists

an independent and balanced collection of coalitions S̃ with |S̃| = c̃ such that for every

S ∈ S̃ we have that `(S) = A.
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As an illustration, the following example presents a number of cases where Assump-

tion 6.4 is satisfied.

Example 6.5.

Case 1. The liability problem (A, `) ∈ L is such that ˆ̀(C) > A and for every i ∈ C, `i = 0

or `i ≥ A. It holds that C̃ = ∅ and Assumption 6.4 is trivially satisfied.

Case 2. The liability problem (A, `) ∈ L has exactly three creditors with a claim in

(0, A), without loss of generality, C̃ = {1, 2, 3}, and (`1, `2, `3) = (1
2
A, 1

2
A, 1

2
A). Then

Assumption 6.4 is satisfied with S̃ = {{1, 2}, {1, 3}, {2, 3}} and λS = 1/2 for all S ∈ S̃.

Case 3. The liability problem (A, `) ∈ L has exactly four creditors with a claim in

(0, A), without loss of generality, C̃ = {1, 2, 3, 4}, and (`1, `2, `3, `4) = (1
3
A, 1

3
A, 1

3
A, 2

3
A).

Then Assumption 6.4 is satisfied with S̃ = {{1, 4}, {2, 4}, {3, 4}, {1, 2, 3}} and λ{1,4} =

λ{2,4} = λ{3,4} = 1/3 and λ{1,2,3} = 2/3.

The next result shows that under Assumption 6.4, the nucleolus corresponds to the

payment generated by the generalized truncated proportional rule p̂∗.

Theorem 6.6. Let (A, `) ∈ L be a liability problem satisfying Assumption 6.4 and let v be

the induced liability game. It holds that Nu(v) = p̂∗(A, `), so

Nu0(v) = (ˆ̀(C)−A)A

2ˆ̀(C)−A ,

Nui(v) = A

2ˆ̀(C)−A
ˆ̀
i, for all i ∈ C.

Proof. Let x = p̂∗(A, `). We show that x is the nucleolus of v.

We show first that the excesses of all coalitions are less than or equal to x0.

Let some S ∈ N be given. We distinguish the cases 0 ∈ S and 0 /∈ S.

Case 1. 0 ∈ S.

We have that

e(S, x) = v(S)− x(S)

= min{A, `(S \ {0})} − x0 − A

2ˆ̀(C)−A
ˆ̀(S \ {0})

= min{A, ˆ̀(S \ {0})} − x0 − A

2ˆ̀(C)−A
ˆ̀(S \ {0})

= (1− A

2ˆ̀(C)−A) min{A, ˆ̀(S \ {0})} − x0
≤ (1− A

2ˆ̀(C)−A)A− x0
= x0,

where the second equality follows from Theorem 2.3.

Case 2. 0 /∈ S.

By Theorem 2.3 it holds that

e(S, x) = v(S)− x(S) = max{0, A− `(C \ S)} − (A− x0 − x(C \ S)).
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If A− `(C \ S) ≥ 0, then the right-hand side of the equation above equals

A− `(C \ S)− A+ x0 + x(C \ S) ≤ x0.

Otherwise, A− `(C \ S) < 0 and the right-hand side is equal to

−A+ x0 + x(C \ S) ≤ x0.

Let S̃ be an independent and balanced collection of coalitions with |S̃| = c̃ such that for

all S ∈ S̃ we have that `(S) = A and let (λS)S∈S̃ ∈ RS̃+ be the corresponding vector of

balancing weights. We define C = {i ∈ C | `i > 0} as the set of creditors with a positive

claim and denote its cardinality by c. We define S = S̃ ∪ {{i} | i ∈ C \ C̃} as the collection

of coalitions in S̃ together with the singletons whose members have a claim greater than or

equal to A. For a non-empty subset S of C, we define the membership vector m(S) ∈ RC

by mi(S) = 1 if i ∈ S and mi(S) = 0 if i ∈ C \ S. We denote m(C) by 11.

Since the set {m̃(S) | S ∈ S̃} is a set of independent vectors of cardinality c̃ and

{m({i}) | i ∈ C \ C̃} is a set of unit vectors with coordinate one at a player not being part

of some S ∈ S̃, the set {m(S) | S ∈ S} is a set of independent vectors of cardinality c. For

i ∈ C \ C, we define λ{i} = 1. We have that∑
S∈S

λSm(S) = 11,

or in matrix notation, with M being the matrix with columns equal to m(S) for S ∈ S,

Mλ = 11.

It holds that∑
S∈S

λS > 1, (6.1)

since by Assumption 6.4 ˆ̀(C) > A, so c ≥ 2, and the set S therefore contains at least two

coalitions, whereas the sum of the weights over the members of each coalition is equal to

1.

Let some S ∈ S be given. We have by Theorem 2.3 that v({0}∪S) = min{A, `(S)} = A,

where the last equality follows from Assumption 6.4 if S ∈ S̃ and from `i ≥ A if S = {i}
for i ∈ C \ C̃. It follows that

e({0} ∪ S, x) = v({0} ∪ S)− x({0} ∪ S)

= A− x0 − A

2ˆ̀(C)−A
ˆ̀(S)

= A− (ˆ̀(C)−A)A

2ˆ̀(C)−A −
A

2ˆ̀(C)−AA

= (ˆ̀(C)−A)A

2ˆ̀(C)−A = x0.
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For the coalition of all creditors, we have that

e(C, x) = v(C)− x(C) = A− (A− x0) = x0

as well.

Let y = Nu(v) and suppose y 6= x. We have that θ(e(y)) ≺lex θ(e(x)). From

e(C, y) = v(C)− y(C) = A− A+ y0 = y0,

it follows that y0 ≤ x0.

For every S ∈ S it holds that

e({0} ∪ S, y) = v({0} ∪ S)− y({0} ∪ S) = A− y({0} ∪ S)

≤ x0 = e({0} ∪ S, x) = A− x({0} ∪ S).

It follows that, for every S ∈ S, x0 + x(S) ≤ y0 + y(S), or in matrix notation

x011 +M>xC ≤ yC11 +M>yC . (6.2)

Consider first the case x0 = y0. Since x 6= y and M has full rank, we have that

M>xC < M>yC .

Taking the inner product with the vector of balancing weights λ, we obtain

11>xC = λ>M>xC < λ>M>yC = 11>yC . (6.3)

For every i ∈ C such that `i = 0, it holds that xi = yi = 0 since x and y are payment

vectors. Also, x0 = y0 and x(N) = y(N), so we find that 11>xC = 11>yC , leading to a

contradiction with (6.3).

Consider next the case y0 < x0. We take the inner product of (6.2) with the vector of

balancing weights λ. Since

λ>M>xC = 11>xC = 11>xC = A− x0,
λ>M>yC = 11>yC = 11>yC = A− y0,

we get

x0λ
>11 + A− x0 ≤ y0λ

>11 + A− y0,

which is equivalent to

(x0 − y0)(λ>11− 1) ≤ 0.
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Since x0 > y0 and λ>11 =
∑

S∈S λS > 1 by (6.1), we obtain a contradiction. Consequently,

it holds that x = y as was to be shown. 2

The intuition behind Theorem 6.6 is as follows. By Theorem 5.2, the coalition of all

creditors C has the highest excess among all coalitions at the nucleolus. By Theorem 5.1, a

coalition S such that ˆ̀(S) = A is such that at the nucleolus the excess of coalition {0}∪S
is greater than or equal to the excess of coalition {0} ∪ T if S contains T or T contains S.

Assumption 6.4 ensures that we can find c̃ coalitions S that are balanced and independent

such that `(S) = ˆ̀(S) = A. Together with singleton coalitions consisting of i ∈ C such that

`i ≥ A, this leads to c coalitions S that are balanced and independent such that ˆ̀(S) = A,

where c is the number of positive liabilities. The system of equations that results from

equating the excess of all these coalitions with the excess of coalition C and specifying

payments of zero for liabilities equal to zero has full rank and therefore a unique solution.

The solution is then shown to be the nucleolus.

Let (A, `) ∈ L be a liability problem such that `i ≥ A for every i ∈ C. Case 1 in

Example 6.5 is satisfied, so the nucleolus Nu(v) of the induced liability game is equal to

p̂∗(A, `). We have that

p̂∗0(A, `) =
(ˆ̀(C)− A)A

2ˆ̀(C)− A
=

(cA− A)A

2cA− A
=

(c− 1)A

2c− 1
.

Theorem 5.4 states that the payment received by an insolvent firm is at most equal to half

of the asset value. The expression above shows that debt forgiveness can get arbitrarily

close to A/2 for large values of c.

Assumption 6.4 is not satisfied in Example 2.4. According to the generalized truncated

proportional rule p̂∗, the payoff vector should be (2, 4, 6), whereas the nucleolus assigns

(1, 4, 7). The reason is that there are no coalitions S in Example 2.4 such that `(S) = A.

However, in many examples it is possible to find a collection of coalitions that is balanced

and independent such that `(S) is approximately equal to A for every coalition S in the

collection. The generalized truncated proportional rule p̂∗ is therefore approximately equal

to the nucleolus in many examples. Our last example demonstrates this point for the case

where the firm is insolvent and all liabilities are the same.

Example 6.7. Consider a liability problem (`, A) ∈ L where all liabilities are identical

and equal to a < A. We assume the firm is insolvent, so ca > A. Let k ∈ N be such that

ka ≤ A and (k + 1)a > A. If S ⊂ C is a coalition with k creditors, then v({0} ∪ S) = ka

and if T ⊆ C is a coalition with k + 1 creditors than v({0} ∪ T ) = A. We denote the

nucleolus Nu(v) of the liability game v by x. Since all liabilities are identical, all creditors
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receive the same payoff, x1. We have that

e({0} ∪ S, x) = ka− x0 − kx1,
e({0} ∪ T, x) = A− x0 − (k + 1)x1.

It holds that v(C) = A and e(C, x) = x0. It holds that ka− x0− kx1 ≥ A− x0− (k+ 1)x1

if and only if x1 ≥ A− ka.
We solve for

ka− x0 − kx1 = x0,

x0 + cx1 = A,

and find

x0 = cka−kA
2c−k ,

x1 = 2A−ka
2c−k .

The condition x1 ≥ A− ka is then equivalent to

ka
2c− k − 1

2c− k − 2
≥ A.

This condition is clearly satisfied whenever ka = A. In that case, we get exactly the

payment vector of the generalized truncated proportional rule p̂∗(A, `) of Theorem 6.6, so

x0 = (c−k)A
2c−k ,

x1 = A
2c−k .

To the extent that ka is almost equal to A, we get that the nucleolus is almost equal to

the generalized truncated proportional rule p̂∗(A, `).

In case ka(2c− k − 1) < A(2c− k − 2), we find the nucleolus by solving

A− x0 − (k + 1)x1 = x0,

x0 + cx1 = A,

and find

x0 = cA−(k+1)A
2c−k−1 ,

x1 = A
2c−k−1 .

Again, to the extent that (k+ 1)a is almost equal to A, we get that the nucleolus is almost

equal to the payment vector of the generalized truncated proportional rule p̂∗(A, `).
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7 Conclusion

A liability problem consists of a firm with a certain asset value having liabilities towards a

group of creditors. We study the allocation of the asset value of the firm among the creditors

using transferable utility games and, contrary to the large body of game-theoretic work

on bankruptcy games, treat the firm as a player. A major advantage of using transferable

utility games is that we can avoid the specification of the fine details of the negotiation

process.

We show that the core of the game is non-empty if and only if the firm is insolvent

and has multiple positive liabilities. This means that in most situations with insolvency,

irrespective of the allocation of the asset value of the firm to the creditors, there is always

some coalition that has a complaint. We are therefore interested in payment vectors that

are generated by the nucleolus of liability game as these are payment vectors that minimize

the complaints coalitions can have. We show that the nucleolus assigns a payoff to the firm

above the firm’s stand-alone value if and only if it is insolvent and has multiple positive

liabilities. In these cases, the firm is allowed to keep part of its asset value, and there is,

therefore, debt forgiveness by some of its creditors. The reason for debt forgiveness is that

the firm in a liability game has the “threat to pay others.”

We show that an insolvent firm ends up with at most one half of its asset value and

that this upper bound is tight. We also show that creditors with higher claims get higher

payments, but they also have higher debt forgiveness. It follows that there is a threshold

on the size of the liabilities such that below the threshold there is no debt forgiveness and

above the threshold there is positive debt forgiveness. In many cases, this threshold is

equal to zero, but we show that there are examples where the threshold is positive.

In general, there is no closed-form solution for the liability rule that is generated by

the nucleolus. However, we provide conditions under which it coincides with a generalized

truncated proportional rule. We have a closed-form solution for the amount of the asset

value that the firm is allowed to keep. The remainder of the asset value is allocated to the

creditors in proportion to their claim on the firm, where that claim is truncated by the

firm’s asset value.

In the game-theoretic literature on bankruptcy games, the bankrupt agent is not treated

as a player, but rather as an exogenous estate. As shown by Aumann and Maschler (1985),

the nucleolus corresponds to the constrained equal awards rule if the value of the estate is

below the sum of the half-claims and the constrained equal losses rule if it is above. It is

striking that the case where the bankrupt agent is a player makes such a big difference in

the allocation of the asset value.

We believe there to be quite some potential for future research on liability games. One

question is whether the generalized truncated proportional rule we find can be axiomatized.
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One may also study the properties of solutions different from the nucleolus. We have taken

the theory of transferable utility games to bypass the exact modeling of the negotiation

process. It would also be interesting to study the equilibria of non-cooperative bargaining

models. The model can be generalized and extended in many different ways. One possible

extension is to go from a single bankrupt agent with creditors to the case where the

creditors are agents themselves and may also have solvency issues. The model then becomes

an extension of the seminal model of Eisenberg and Noe (2001) to study bankruptcy in

financial networks.
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