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Parallel computing techniques

Junji Nakano1

The Institute of Statistical Mathematics nakanoj@ism.ac.jp

1 Introduction

Parallel computing means to divide a job into several tasks and use more
than one processor simultaneously to perform these tasks. Assume you have
developed a new estimation method for the parameters of a complicated sta-
tistical model. After you prove the asymptotic characteristics of the method
(for instance, asymptotic distribution of the estimator), you wish to perform
many simulations to assure the goodness of the method for reasonable num-
bers of data values and for different values of parameters. You must generate
simulated data, for example, 100 000 times for each length and parameter
value. The total simulation work requires a huge number of random number
generations and takes a long time on your PC. If you use 100 PCs in your in-
stitute to run these simulations simultaneously, you may expect that the total
execution time will be 1/100. This is the simple idea of parallel computing.

Computer scientists noticed the importance of parallel computing many
years ago (Flynn, 1966). It is true that the recent development of computer
hardware has been very rapid. Over roughly 40 years from 1961, the so called
“Moore’s law” holds: the number of transistors per silicon chip has doubled
approximately every 18 months (Tuomi, 2002). This means that the capac-
ity of memory chips and processor speeds have also increased roughly expo-
nentially. In addition, hard disk capacity has increased dramatically. Conse-
quently, modern personal computers are more powerful than “super comput-
ers” were a decade ago. Unfortunately, even such powerful personal comput-
ers are not sufficient for our requirements. In statistical analysis, for example,
while computers are becoming more powerful, data volumes are becoming
larger and statistical techniques are becoming more computer intensive. We
are continuously forced to realize more powerful computing environments for
statistical analysis. Parallel computing is thought to be the most promising
technique.

However, parallel computing has not been popular among statisticians
until recently (Schervish, 1988). One reason is that parallel computing was
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available only on very expensive computers, which were installed at some
computer centers in universities or research institutes. Few statisticians could
use these systems easily. Further, software for parallel computing was not well
prepared for general use.

Recently, cheap and powerful personal computers changed this situation.
The Beowulf project (Sterling et al., 1999), which realized a powerful com-
puter system by using many PCs connected by a network, was a milestone in
parallel computer development. Freely available software products for paral-
lel computing have become more mature. Thus, parallel computing has now
become easy for statisticians to access.

In this chapter, we describe an overview of available technologies for par-
allel computing and give examples of their use in statistics. The next section
considers the basic ideas of parallel computing, including memory architec-
tures. Section 3 introduces the available software technologies such as process
forking, threading, OpenMP, PVM (Parallel Virtual Machine), MPI (Message
Passing Interface) and HPF (High Performance Fortran). The last section de-
scribes some examples of parallel computing in statistics.

2 Basic ideas

Two important parts of computer hardware are the processor, which performs
computations, and memory, in which programs and data are stored. A pro-
cessor is also often called a central processing unit (CPU). Modern computer
systems adopt a stored programming architecture: all the program instruc-
tions are stored in memory together with processed data and are executed
sequentially by a processor according to the instructions.

In a traditional single processor computer, a single stream of instructions
is generated from the program, and these instructions operate on a single
stream of data. Flynn (1966) called this arrangement a single instruction
stream–single data stream (SISD) computer.

On the other hand, a parallel computer system uses several processors, and
is realized as a single instruction stream–multiple data stream (SIMD) com-
puter or a multiple instruction stream–multiple data stream (MIMD) com-
puter. SIMD refers to a form of parallel execution in which all processors
execute the same operation on different data at the same time, and is often
associated with performing the same operation on every element of a vector
or array. MIMD refers to parallel execution in which each processor works
independently; for example, one processor might update a database file while
another processor handles a graphic display.

The fundamental software of a modern computer system is an operating
system such as UNIX or Microsoft Windows. They support multiple users
and multiple tasks, even on single processor systems, by adopting time-slicing
mechanisms, in which a processor executes tasks cyclically. In parallel com-
puter systems, some tasks are executed on different processors simultaneously.
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2.1 Memory architectures of parallel computers

The traditional computer system has a single processor (or CPU) that can ac-
cess all of the memory (Fig. 1). Parallel computers use more than one processor
simultaneously for a single calculation task. There are two simple methods to
increase the number of available processors in a single system. One method is
to add processors to the traditional single processor system without changing
other parts. Because all the memory is shared by all processors, such systems
are called shared memory systems (Fig. 2). An example of a shared memory
system is a dual processor personal computer, where the motherboard has
two sockets for CPUs. When we mount one CPU, it works as a traditional
single processor system. If we mount two CPUs, both processors can access
all the memory in the PC, and it works as a shared memory system. A second
method is to connect traditional single processor computers by a network.
This is called a distributed memory system, because the memory is used by
a single processor locally and is “distributed” over the whole system (Fig. 3).
An example of a distributed memory system is a network of workstations, in
which each node computer works independently and communicates with the
others through a network to solve a single problem.

Integration of shared memory and distributed memory is possible (Fig. 4).
Network-connected PCs that each have two processors can be considered a
distributed shared memory system.

Memory

CPU

Fig. 1. Traditional system

Memory

CPU CPU CPU

Fig. 2. Shared memory system

Shared memory systems

In the simple shared memory realization, all the processors can access all the
memory at the same speed by using a common memory bus. This is known as a
uniform memory access (UMA) configuration. Performance in a UMA system
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Fig. 4. Distributed shared memory system

is limited by the memory bus bandwidth; adding processors to the system
beyond some point does not increase performance linearly, because signals
from processors flow on the same memory bus and often cause collisions.
Typically, UMA configurations do not scale well beyond 10 to 20 processors.

To improve communication between processors and memory, a non-uniform
memory access (NUMA) configuration is used. In NUMA systems, all proces-
sors have access to all the memory, but the cost of accessing a specific location
in memory is different for different processors, because different regions of
memory are on physically different buses. Even if we adopt a NUMA configu-
ration, it is not efficient to use more than 100 processors in a shared memory
system.

A shared memory system is also a symmetric multiprocessor (SMP) sys-
tem, in which any processor can do equally well any piece of work.

In a shared memory system, a single copy of an operating system is in
charge of all the processors and the memory. It usually uses a programming
model called “fork–join”. Each program begins by executing just a single task,
called the master. When the first parallel work is reached, the master spawns
(or forks) additional tasks (called slaves or workers), which will “join” to the
master when they finish their work (the middle figure in Fig. 5). Such activities
can be programmed by using software technologies such as process, thread or
OpenMP, which will be explained in the next section.

Distributed memory systems

In a distributed memory system, each node computer is an independent com-
puter that has, at least, processor and memory, and the nodes are connected
together by a network. This so called “network of workstations” (NOW) is
the cheapest way to construct a distributed memory system, because we can
utilize many different kinds of workstations available, connected by a network,
without adding any new hardware. However, NOW is sometimes ineffective
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Fig. 5. Typical parallel computing execution

for heavy computation, because, for example, general purpose networks are
slow, and nodes may be unexpectedly used for other work, so that it is difficult
to schedule them efficiently.

Nowadays, “Beowulf class cluster computers” are popular for distributed
memory parallel computing (Sterling et al., 1999). These are a kind of NOW,
but there are slight differences. First, the nodes in the cluster are the same kind
of workstation or PC, and are dedicated to the cluster calculation tasks. Typ-
ically, node computers share the working directory on the hard disk and have
no display or keyboard. The interconnection network is isolated from external
networks and is also dedicated to the cluster, and communication among the
nodes can be done without further authentication. Operating system param-
eters are tuned to improve the total performance for parallel computing. All
these characteristics help the performance of the parallel computing on the
cluster.

Distributed memory systems have no memory bus problem. Each proces-
sor can use the full bandwidth to its own local memory without interference
from other processors. Thus, there is no inherent limit to the number of pro-
cessors. The size of the system is constrained only by the network used to
connect the node computers. Some distributed memory systems consist of
several thousand processors.

As nodes in a distributed memory system share no memory at all, ex-
change of information among processors is more difficult than in a shared
memory system. We usually adopt a message passing programming model on
a distributed memory system; we organize a program as a set of independent
tasks that communicate with each other via messages. This introduces two
sources of overhead: it takes time to construct and send a message from one
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processor to another, and the receiving processor must be interrupted to deal
with messages from other processors.

Available message passing libraries are PVM and MPI The right figure
in Fig. 5 shows an execution image of MPI. HPF is also mainly used in dis-
tributed memory systems. These libraries are illustrated in the next section.

2.2 Costs for parallel computing

We expect that the calculation speed increases n times if we use n proces-
sors instead of one. We also wish to use multiprocessor systems just like an
ordinary single processor system. However, some costs are incurred in real-
izing parallel computing. They include the non-parallel characteristics of the
problem, communication costs such as distributing and gathering data and/or
programs, the difficulty of programming for synchronization among executions
and unexpected influences of cache memory. All these factors reduce the effect
of parallelization.

Amdahl’s law

All programming tasks include non-parallelizable or serial parts, which can-
not be executed on several processors, for example, summarizing calculation
results and writing them to the display or file. Assume the ratio of computing
time for the serial parts to the whole task is f (0 < f < 1). If a single processor
requires ts time to complete the task, (1 − f)ts computation time is used for
the parallelizable task and fts computation time is used for the serial task.
If we use n processors, the elapsed time for execution of the parallelizable
task will be at least (1 − f)ts/n, while the execution time of the serial task
remains fts. Thus, the ratio of execution time for n processors to that for one
processor, S(n), which is called the speedup factor, is

S(n) =
ts

fts + (1 − f)ts/n
=

n

1 + (n − 1)f
.

This equation is known as “Amdahl’s law” (Amdahl, 1967). When n is large,
it converges to 1/f , that is, the effect of parallel computing is limited. For
example, if f = 5%, the maximum possible speedup is 20, even if we use
an infinite number of processors. This may discourage the use of parallel
computing.

Of course, as f goes to zero, S(n) converges to n, which is an ideal situa-
tion.

Gustafson’s law

Amdahl’s law considers the situation where the task size is fixed and the
number of processors increases. In real problems, however, we wish to per-
form larger tasks when the number of processors increases. For example, as-
sume time s is required for preparing a task, and time p is required for the
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(moderate) simulation task. When a parallel computer is available, we wish
to perform more simulations, typically, n times larger simulations than the
original ones by n processors. To perform this simulation, a single processor
system requires s+np time, while the n-processor system requires s+ p time.
The speedup factor is

S(n) =
s + np

s + p
.

This equation is called “Gustafson’s law” (Gustafson, 1988). Note that if we
define f = s/(s + np), this is as same as Amdahl’s law. However, when n be-
comes large, S(n) becomes large linearly. This means that parallel computing
is useful for large-scale problems in which the serial part does not increase
as the problem size increases. If s approaches zero, S(n) converges to n, the
ideal situation.

Other costs

If we divide one task into several small tasks and execute them in parallel, we
must wait until all the child tasks have been completed: we must synchronize
executions. As the slowest child task determines the total execution time, child
tasks should be designed to have almost the same execution times, otherwise
some processors may be idle while others have tasks queuing for execution.
Techniques that aim to spread tasks among the processors equally are called
load balancing and are not easy.

In a shared memory system, exchange of information among processors
is performed by variables stored in the shared memory. If several tasks use
one variable almost simultaneously, it may cause trouble. Consider two tasks
trying to decrease the value of variable x by one. Assume x = 3; task 1 obtains
this value, decreases it and writes 2 into x. If task 2 tries to do the same task
before task 1 finishes its work, task 2 also obtains the value 3, and writes 2
into x. Thus, the final result is 2, although x should have decreased twice. To
avoid such a maloperation, task 2 must wait until task 1 finishes. All parallel
computing software can handle this synchronization problem, typically by
using a lock-unlock mechanism.

An important hardware aspect of shared memory systems is cache memory.
As the advances in main memory technology do not keep up with processor
innovations, memory access is very slow compared with processor speed. In
order to solve this problem, another layer of memory has been added between
a processor and main memory, called the cache. It is a small amount of very
fast, expensive memory, that operates close to the speed of the processor.
A separate cache controller monitors memory accesses and loads data and
instructions in blocks of contiguous locations from memory into the cache.
Once the content of memory is stored in the cache, the processor can operate
at full speed by using them. Sometimes, the cache contents are different from
the necessary ones. In these cases, the processor is stalled and has to wait
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while the necessary data is newly loaded from memory into the cache. This
mechanism works well in a single processor system.

All processors in a shared memory system have their own caches. Suppose
several processors access the same location of memory and copy them into
their caches. If one processor changes the value of the memory in that location,
other processors should not use the value in their caches. A cache coherence
protocol is used to notify this information among caches. A common cache
coherence protocol is an invalidate policy; when one copy of memory is altered,
the same data in any other cache is invalidated (by resetting a valid bit in the
cache). In shared memory systems, cache coherence is done in the hardware
and the programmer need not worry about cache coherence. However, it may
cause the slowdown of the calculation speed. Note that caches handle blocks of
memory. If one processor writes to one part of the block, copies of the whole
block in other caches are invalidated though the actual data is not shared.
This is known as false sharing and can damage the performance of the cache
in a shared memory system. We are sometimes required to write programs
considering the amount of the cache memory in a shared memory system to
achieve enough performance.

Distributed memory systems require communication among node com-
puters. Such communication is affected by several factors, including network
bandwidth, network latency and communication latency. Network bandwidth
is the number of bits that can be transmitted in unit time. Network latency is
the time to prepare a message for sending it through the network. Communica-
tion latency is the total time to send the message, including software overhead
and interface delays. Generally, communication is expensive compared with
processor work.

If a problem can be divided into small tasks that are completely indepen-
dent and require no or very little synchronization and communication, the
problem is called “embarrassingly parallel”. Clearly, embarrassingly parallel
problems are particularly suitable for parallel computing.

3 Parallel computing software

Several well-designed software technologies are available for utilizing parallel
computing hardware. Note that each of them is suitable for a specific hardware
architecture.

In this section, we use as an example the calculation of the value of π by
the approximation formula

π =
∫ 1

0

4
1 + x2

dx ∼ 1
n

n∑
i=1

4
1 + ( i−0.5

n )2
.

The case n = 10 is illustrated in Fig. 6.
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Fig. 6. Calculation of π

A C program to calculate the last term is given in Listing 1. The main
calculation is performed in the for statement, which is easily divided into
parallel-executed parts; this is an example of an embarrassingly parallel prob-
lem. We show several parallel computing techniques by using this example in
this section. We choose this simple example to keep the length of following
example source codes as small as possible and to give a rough idea of paral-
lel computing techniques. Note that this example is so simple that only the
most fundamental parts of each technique will be used and explained. Many
important details of each technique are left to references.

Listing 1

#include <stdio.h>

main(int argc, char **argv)
{
int n, i;
double d, s, x, pi;
n = atoi(argv[1]);
d = 1.0/n;
s = 0.0;
for (i=1; i<=n; i++){
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
pi = d*s;

}

3.1 Process forking

Modern operating systems have multi-user and multi-task features even on
a single processor; many users can use a single processor system and can
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seemingly perform many tasks at the same time. This is usually realized by
multi-process mechanisms (Tanenbaum, 2001).

UNIX-like operating systems are based on the notion of a process. A pro-
cess is an entity that executes a given piece of code, has its own execution
stack, its own set of memory pages, its own file descriptors table and a unique
process ID. Multiprocessing is realized by time-slicing the use of the processor.
This technology repeatedly assigns the processor to each process for a short
time. As the processor is very fast compared with human activities, it looks
as though it is working simultaneously for several users. In shared memory
systems, multiprocessing may be performed simultaneously on several pro-
cessors. Multiprocessing mechanisms are a simple tool for realizing parallel
computing.

We can use two processes to calculate the for loop in Listing 1, by using the
process-handling functions of UNIX operating systems: fork(), wait() and
exit(). The function fork() creates a new copy process of an existing process.
The new process is called the child process, and the original process is called
the parent. The return value from fork() is used to distinguish the parent
from the child; the parent receives the child’s process id, but the child receives
zero. By using this mechanism, an if statement, for example, can be used to
prescribe different work for the parent and the child. The child process finishes
by calling the exit() function, and the parent process waits for the end of
the child process by using the wait() function. This fork–join mechanism is
fundamental to the UNIX operating system, in which the first process to start
invokes another process by forking. This procedure is repeated until enough
processes are invoked. Although this mechanism was originally developed for
one processor and a time-slicing system, UNIX operating systems that support
shared memory can run processes on different processors simultaneously.

As processes are independent and share only a limited set of common
resources automatically, we must write a program for information exchange
among processes. In our example, we use functions to handle shared memory
segments: shmget(), shmat() and shmctl(). shmget() allocates a shared
memory segment, shmat() attaches the shared memory segment to the pro-
cess, and shmctl() allows the user to set information such as the owner,
group and permissions on the shared memory segment. When the parent pro-
cess uses fork(), the shared memory segment is inherited by the child process
and both processes can access it.

Listing 2 shows a two-process version of Listing 1. In the for statement,
the parent process works for i = 2, 4, 6, . . ., while the child process works for
i = 1, 3, 5, . . .. The child process stores its result to *shared and the parent
process receives the value and adds it to its own result, then prints the final
result.

Listing 2

#include <stdio.h>
#include <sys/types.h>



Parallel computing techniques 11

#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>

main(int argc, char **argv)
{
int n, i;
double d, s, x, pi;
int shmid, iproc;
pid_t pid;
double *shared;
n = atoi(argv[1]);
d = 1.0/n;
shmid = shmget(IPC_PRIVATE,

sizeof(double), (IPC_CREAT | 0600));
shared = shmat(shmid, 0, 0);
shmctl(shmid, IPC_RMID, 0);
iproc = 0;
if ((pid = fork()) == -1) {
fprintf(stderr, "The fork failed!\n");
exit(0);

} else {
if (pid != 0) iproc = 1 ;

}
s = 0.0;
for (i=iproc+1; i<=n; i+=2) {
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
pi = d*s;
if (pid == 0) {
*shared = pi;
exit(0);

} else {
wait(0);
pi = pi + *shared;

}
}

Forking, however, is not appropriate for parallel computing. Much time and
memory is required to duplicate everything in the parent process. Further, a
complete copy is not always required, because, for example, the forked child
process starts execution at the point of the fork.

3.2 Threading

As a process created using the UNIX fork() function is expensive in setup
time and memory space, it is sometimes called a “heavyweight” process. Of-
ten a partial copy of the process is enough and other parts can be shared.
Such copies can be realized by a thread or “lightweight” process. A thread
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is a stream of instructions that can be scheduled as an independent unit. It
is important to understand the difference between a thread and a process. A
process contains two kinds of information: resources that are available to the
entire process such as program instructions, global data and working direc-
tory, and schedulable entities, which include program counters and stacks. A
thread is an entity within a process that consists of the schedulable part of
the process.

In a single processor system, threads are executed by time-slicing, but
shared memory parallel computers can assign threads to different processors.

Pthread library

There were many thread libraries in the C language for specific shared mem-
ory systems. Now, however, the Pthread library is a standard thread li-
brary for many systems (Butenhof, 1997). The Pthread API is defined in
the ANSI/IEEE POSIX 1003.1-1995 standard, which can be purchased from
IEEE.

Listing 3 is an example program to calculate π by using the Pthread library.
The program creates a thread using the function pthread create(), then as-
signs a unique identifier to a variable of type pthread t. The caller provides a
function that will be executed by the thread. The function pthread exit() is
used to terminate itself. The function pthread join() is analogous to wait()
for forking, but any thread may join any other thread in the process, that is,
there is no parent–child relationship.

As multi-threaded applications execute instructions concurrently, access
to process-wide (or interprocess) shared memory requires a mechanism for
coordination or synchronization among threads. It is realized by mutual
exclusion (mutex) locks. Mutexes furnish the means to guard data struc-
tures from concurrent modification. When one thread has locked the mu-
tex, this mechanism precludes other threads from changing the contents
of the protected structure until the locker performs the corresponding mu-
tex unlock. Functions pthread mutex init(), pthread mutex lock() and
pthread mutex unlock() are used for this purpose.

The compiled executable file is invoked from a command line with two
arguments: n and the number of threads, which is copied to the global
variable num threads. The ith thread of the function PIworker, which re-
ceives the value i from the original process, calculates a summation for about
n/num threads times. Each thread adds its result to a global variable pi. As
the variable pi should not be accessed by more than one thread simultane-
ously, this operation is locked and unlocked by the mutex mechanism.

Listing 3

#include <stdio.h>
#include <pthread.h>
int n, num_threads;
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double d, pi;
pthread_mutex_t reduction_mutex;
pthread_t *tid;

void *PIworker(void *arg)
{
int i, myid;
double s, x, mypi;
myid = *(int *)arg;
s = 0.0;
for (i=myid+1; i<=n; i+=num_threads) {
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
mypi = d*s;
pthread_mutex_lock(&reduction_mutex);
pi += mypi;
pthread_mutex_unlock(&reduction_mutex);
pthread_exit(0);

}

main(int argc, char **argv)
{
int i;
int *id;
n = atoi(argv[1]);
num_threads = atoi(argv[2]);
d = 1.0/n;
pi = 0.0;
id = (int *) calloc(n,sizeof(int));
tid = (pthread_t *) calloc(num_threads,

sizeof(pthread_t));
if(pthread_mutex_init(&reduction_mutex,NULL)) {
fprintf(stderr, "Cannot init lock\n");
exit(0);

};
for (i=0; i<num_threads; i++) {
id[i] = i;
if(pthread_create(&tid[i],NULL,

PIworker,(void *)&id[i])) {
exit(1);

};
};
for (i=0; i<num_threads; i++)
pthread_join(tid[i],NULL);

}

We note that it is not easy to write multi-threaded applications in the C
language, even if we use the Pthread library. As the Pthread library was added
to the C language later, there are no assurances that original basic libraries
are “thread-safe”. The term thread-safe means that a given library function
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is implemented in such a manner that it can be executed correctly by mul-
tiple concurrent threads of execution. We must be careful to use thread-safe
functions in multi-thread programming. The Pthread library is mainly used
by professional system programmers to support advanced parallel computing
technologies such as OpenMP.

Java threads

The Java language supports threads as one of its essential features (Oaks and
Wong, 1999). The Java library provides a Thread class that supports a rich
collection of methods: for example, the method start() causes the thread
to execute the method run(), the method join() waits for the thread to
finish execution. The lock–unlock mechanism can be easily realized by the
synchronized declaration. All fundamental libraries are thread-safe. These
features make Java suitable for thread programming.

Listing 4

public class PiJavaThread {
int n, numThreads;
double pi = 0.0;
synchronized void addPi(double p) {
pi += p;

}
public PiJavaThread(int nd, int nt) {
n = nd;
numThreads = nt;
Thread threads[] = new Thread[numThreads];
for (int i=0; i<numThreads; i++) {
threads[i] = new Thread(new PIworker(i));
threads[i].start();

}
for (int i=0; i<numThreads; i++) {
try {
threads[i].join();

} catch (InterruptedException e) {
e.printStackTrace();

}
}

}
class PIworker implements Runnable {
int myid;
public PIworker(int id) {
myid = id;

}
public void run() {
double d, s, x;
d = 1.0/n;
s = 0.0;
for (int i=myid+1; i<=n; i+=numThreads) {
x = (i-0.5)*d;
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s += 4.0/(1.0+x*x);
}
addPi(d*s);

}
}
public static void main(String[] args) {
PiJavaThread piJavaThread

= new PiJavaThread(Integer.parseInt(args[0]),
Integer.parseInt(args[1]));

System.out.println(" pi = " + piJavaThread.pi);
}

}

Listing 4 is an example program to calculate the value of π using the Java
language. This program is almost the same as the Pthread example. As the
method declaration for addPi() contains the keyword synchronized, it can
be performed by only one thread; other threads must wait until the addPi()
method of the currently executing thread finishes.

Although the Java language is designed to be thread-safe and provides
several means for thread programming, it is still difficult to write efficient
application programs in Java. Java’s tools are generally well suited to system
programming applications, such as graphical user interfaces and distributed
systems, because they provide synchronization operations that are detailed
and powerful, but unstructured and complex. They can be considered an
assembly language for thread programming. Thus, it is not easy to use them
for statistical programming.

3.3 OpenMP

OpenMP is a directive-based parallelization technique (Chandra et al., 2001)
that supports fork–join parallelism and is mainly for shared memory systems.
The MP in OpenMP stands for “Multi Processing”. It supports Fortran (77
and 90), C and C++, and is suitable for numerical calculation, including sta-
tistical computing. It is standardized for portability by the OpenMP Archi-
tecture Review Board (OpenMP Architecture Review Board, 2004). The first
Fortran specification 1.0 was released in 1997, and was updated as Fortran
specification 1.1 in 1999. New features were added as Fortran specification 2.0
in 2000. Several commercial compilers support OpenMP.

We use the Fortran language for our examples in this section, because
Fortran is still mainly used for high-performance computers focused on large
numerical computation. Fortran is one of the oldest computer languages and
has many reliable and efficient numerical libraries and compilers. The Fortran
program for the simple π computation is shown in Listing 5.

We note that C (and C++) are also used for large numerical computations
and are now supported to the same extent as Fortran. The following examples
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can easily be replaced by C programs (except the HPF examples) but we omit
them for space reasons.

Listing 5

integer n, i
double precision d, s, x, pi
write(*,*) ’n?’
read(*,*) n
d = 1.0/n
s = 0.0
do i=1, n
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
end

We can parallelize this program simply by using OpenMP directives (List-
ing 6).

Listing 6

integer n, i
double precision d, s, x, pi
write(*,*) ’n?’
read(*,*) n
d = 1.0/n
s = 0.0

!$OMP PARALLEL PRIVATE(x), SHARED(d)
!$OMP& REDUCTION(+: s)
!$OMP DO

do i = 1, n
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

end do
!$OMP END DO
!$OMP END PARALLEL

pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
end

Lines started by !$OMP are OpenMP directives to specify parallel com-
puting. Each OpenMP directive starts with !$OMP, followed by a directive
and, optionally, clauses. For example, “!$OMP PARALLEL” and “!$OMP END
PARALLEL” encloses a parallel region and all code lexically enclosed is executed
by all threads. The number of threads is usually specified by an environmental
variable OMP NUM THREADS in the shell environment. We also require a process
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distribution directive “!$OMP DO” and “!$OMP END DO” to enclose a loop that
is to be executed in parallel. Within a parallel region, data can either be
private to each executing thread, or be shared among threads. By default,
all data in static extents are shared (an exception is the loop variable of the
parallel loop, which is always private). In the example, shared scope is not
desirable for x and s, so we use a suitable clause to make them private: “!$OMP
PARALLEL PRIVATE (x, s)”. By default, data in dynamic extent (subroutine
calls) are private ( an exception is data with the SAVE attribute), and data in
COMMON blocks are shared.

An OpenMP compiler will automatically translate this program into a
Pthread program that can be executed by several processors on shared mem-
ory systems.

3.4 PVM

PVM (Parallel Virtual Machine) is one of the first widely used message passing
programming systems. It was designed to link separate host machines to form
a virtual machine, which is a single manageable computing resource (Geist
et al., 1994). It is (mainly) suitable for heterogeneous distributed memory
systems. The first version of PVM was written in 1989 at Oak Ridge National
Laboratory, but was not released publicly. Version 2 was written at the Uni-
versity of Tennessee Knoxville and released in 1991. Version 3 was redesigned
and released in 1993. Version 3.4 was released in 1997. The newest minor
version, 3.3.4, was released in 2001 (PVM Project Members, 2004).

PVM is freely available and portable (available on Windows and several
UNIX systems). It is mainly used in Fortran, C and C++, and extended to
be used in many other languages, such as Tcl/Tk, Perl and Python.

The PVM system is composed of two parts: a PVM daemon program
(pvmd) and libraries of PVM interface routines. Pvmd provides communica-
tion and process control between computers. One pvmd runs on each host of
a virtual machine. It serves as a message router and controller, and provides a
point of contact, authentication, process control and fault detection. The first
pvmd (which must be started by the user) is designated the master, while the
others (started by the master) are called slaves or workers.

PVM libraries such as libpvm3.a and libfpvm3.a allow a task to interface
with the pvmd and other tasks. They contain functions for packing and un-
packing messages, and functions to perform PVM calls by using the message
functions to send service requests to the pvmd.

Example Fortran programs are in Listings 7.1 and 7.2.

Listing 7.1

program pimaster
include ’/usr/share/pvm3/include/fpvm3.h’
integer n, i
double precision d, s, pi
integer mytid,numprocs,tids(0:32),status
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integer numt,msgtype,info
character*8 arch
write(*,*) ’n, numprocs?’
read(*,*) n, numprocs
call PVMFMYTID(mytid)
arch = ’*’
call PVMFSPAWN(’piworker’,PVMDEFAULT,arch,
$ numprocs,tids,numt)
if( numt .lt. numprocs) then

write(*,*) ’trouble spawning’
call PVMFEXIT(info)
stop

endif
d = 1.0/n
msgtype = 0
do 10 i=0, numprocs-1
call PVMFINITSEND(PVMDEFAULT,info)
call PVMFPACK(INTEGER4, numprocs, 1, 1, info)
call PVMFPACK(INTEGER4, i, 1, 1, info)
call PVMFPACK(INTEGER4, n, 1, 1, info)
call PVMFPACK(REAL8, d, 1, 1, info)
call PVMFSEND(tids(i),msgtype,info)

10 continue
s=0.0
msgtype = 5
do 20 i=0, numprocs-1

call PVMFRECV(-1,msgtype,info)
call PVMFUNPACK(REAL8,x,1,1,info)
s = s+x

20 continue
pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
call PVMFEXIT(info)
end

Listing 7.2

program piworker
include ’/usr/share/pvm3/include/fpvm3.h’
integer n, i
double precision s, x, d
integer mytid,myid,numprocs,msgtype,master,info
call PVMFMYTID(mytid)
msgtype = 0
call PVMFRECV(-1,msgtype,info)
call PVMFUNPACK(INTEGER4, numprocs, 1, 1, info)
call PVMFUNPACK(INTEGER4, myid, 1, 1, info)
call PVMFUNPACK(INTEGER4, n, 1, 1, info)
call PVMFUNPACK(REAL8, d, 1, 1, info)
s = 0.0
do 10 i = myid+1, n, numprocs
x = (i-0.5)*d
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s = s+4.0/(1.0+x*x)
10 continue

call PVMFINITSEND(PVMDEFAULT,info)
call PVMFPACK(REAL8, s,1,1, info)
call PVMFPARENT(master)
msgtype = 5
call PVMFSEND(master,msgtype,info)
call PVMFEXIT(info)
end

Listing 7.1 is the master program, and Listing 7.2 is the slave program,
and its compiled executable file name should be piworker. Both programs
include the Fortran PVM header file fpvm3.h.

The first PVM call PVMFMYTID() in the master program informs the pvmd
of its existence and assigns a task id to the calling task.

After the program is enrolled in the virtual machine, the master program
spawns slave processes by the routine PVMFSPAWN(). The first argument is
a string containing the name of the executable file that is to be used. The
fourth argument specifies the number of copies of the task to be spawned
and the fifth argument is an integer array that is to contain the task ids of
all tasks successfully spawned. The routine returns the number of tasks that
were successfully created via the last argument.

To send a message from one task to another, a send buffer is created to
hold the data. The routine PVMFINITSEND() creates and clears the buffer and
returns a buffer identifier. The buffer must be packed with data to be sent
by the routine PVMFPACK(). The first argument specifies the type of data to
be packed. The second argument is the first item to be packed, the third
is the total number of items to be packed and the fourth is the stride to
use when packing. A single message can contain any number of different data
types; however, we should ensure that the received message is unpacked in the
same way it was originally packed by the routine PVMFUNPACK(). The routine
PVMFSEND() attaches an integer label of msgtype and sends the contents of
the send buffer to the task specified by the first argument.

After the required data have been distributed to each worker process, the
master program must receive a partial sum from each of the worker processes
by the PVMFRECV() routine. This receives a message from the task specified
by the first argument with the label of the second argument and places it into
the receive buffer. Note that a value of -1 for an argument will match with
any task id and/or label. The master program expects a label value of 5 on
messages from the worker tasks.

The unpacking routine PVMFUNPACK() has the same arguments as PVMFPACK().
The second argument shows where the first item unpacked is to be stored.

After the sum has been computed and printed, the master task informs
the PVM daemon that it is withdrawing from the virtual machine. This is
done by calling the routine PVMFEXIT().
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The worker program uses the same PVM routines as the master program.
It also uses PVMFPARENT() routine to find the task id of the master task that
spawned the current task.

When we compile Fortran PVM codes, we must link in both the PVM
Fortran library and the standard PVM library compiled for the target machine
architecture. Before executing the program, the executables of the worker
program should be available in a specific directory on all the slave nodes. The
default authentication is performed by rsh call.

3.5 MPI

MPI (Message Passing Interface) is the most widely used parallel computing
technique. It specifies a library for adding message passing mechanisms to
existing languages such as Fortran or C. MPI is mainly used for homogeneous
distributed memory systems.

MPI appeared after PVM. PVM was a research effort and did not address
the full spectrum of issues: it lacked vendor support, and was not implemented
at the most efficient level for a particular hardware. The MPI Forum (Mes-
sage Passing Interface (MPI) Forum, 2004) was organized in 1992 with broad
participation by vendors (such as IBM, Intel, SGI), portability library writers
(including PVM), and users such as application scientists and library writers.
MPI-1.1 was released in 1995, MPI-1.2 was released in 1997, and MPI-2 was
released in 1997.

MPI-1 has several functions that were not implemented in PVM. Commu-
nicators encapsulate communication spaces for library safety. Data types re-
duce copying costs and permit heterogeneity. Multiple communication modes
allow precise buffer management. MPI-1 has extensive collective operations
for scalable global communication, and supports process topologies that per-
mit efficient process placement and user views of process layout (Gropp et al.,
1999a).

In MPI-2, other functions were added: extensions to the message passing
model, dynamic process management, one-sided operations (remote memory
access), parallel I/O, thread support, C++ and Fortran 90 bindings, and
extended collective operations (Gropp et al., 1999b).

MPI implementations are released from both vendors and research groups.
MPICH (MPICH Team, 2004) and LAM/MPI (LAM Team, 2004) are widely
used free implementations.

Although MPI has more than 150 routines, many parallel programs can be
written using just six routines, only two of which are non-trivial: MPI INIT(),
MPI FINALIZE(), MPI COMM SIZE(), MPI COMM RANK(), MPI SEND() and MPI RECV().
An example program is shown in Listing 8.

Listing 8

include ’mpif.h’
integer n, i
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double precision d, s, x, pi, temp
integer myid, numprocs, ierr, status(3)
integer sumtag, sizetag, master
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)
sizetag = 10
sumtag = 17
master = 0
if (myid .eq. master) then
write(*,*) ’n?’
read(*,*) n
do i = 1, numprocs-1

call MPI_SEND(n,1,MPI_INTEGER,i,sizetag,
$ MPI_COMM_WORLD,ierr)

enddo
else
call MPI_RECV(n,1,MPI_INTEGER,master,sizetag,

$ MPI_COMM_WORLD,status,ierr)
endif
d = 1.0/n
s = 0.0
do i = myid+1, n, numprocs

x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
pi = d*s
if (myid .ne. master) then
call MPI_SEND(pi,1,MPI_DOUBLE_PRECISION,

$ master,sumtag,MPI_COMM_WORLD,ierr)
else
do i = 1, numprocs-1

call MPI_RECV(temp,1,MPI_DOUBLE_PRECISION,
$ i,sumtag,MPI_COMM_WORLD,status,ierr)

pi = pi+temp
enddo

endif
if (myid .eq. master) then
write(*, 100) pi

100 format(’ pi = ’, f20.15)
endif
call MPI_FINALIZE(ierr)
end

MPI follows the single program–multiple data (SPMD) parallel execution
model. SPMD is a restricted version of MIMD in which all processors run the
same programs, but unlike SIMD, each processor may take a different flow
path in the common program.

If the example program is stored in file prog8.f, typical command lines
for executing it are

f77 -o prog8 prog8.f -lmpi
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mpirun -np 5 prog8

where the command mpirun starts five copies of process prog8 simultaneously.
All processes communicate via MPI routines.

The first MPI call must be MPI INIT(), which initializes the message pass-
ing routines. In MPI, we can divide our tasks into groups, called communica-
tors. MPI COMM SIZE() is used to find the number of tasks in a specified MPI
communicator. In the example, we use the communicator MPI COMM WORLD,
which includes all MPI processes. MPI COMM RANK() finds the rank (the name
or identifier) of the tasks running the code. Each task in a communicator is
assigned an identifying number from 0 to numprocs-1.

MPI SEND() allows the passing of any kind of variable, even a large array,
to any group of tasks. The first argument is the variable we want to send, the
second argument is the number of elements passed. The third argument is the
kind of variable, the fourth is the id number of the task to which we send the
message, and the fifth is a message tag by which the receiver verifies that it
receives the message it expects. Once a message is sent, we must receive it on
another task. The arguments of the routine MPI RECV() are similar to those
of MPI SEND(). When we finish with the message passing routines, we must
close out the MPI routines by the call MPI FINALIZE().

In parallel computing, collective operations often appears. MPI supports
useful routines for them. MPI BCAST distributes data from one process to all
others in a communicator. MPI REDUCE combines data from all processes in a
communicator and returns it to one process. In many numerical algorithms,
SEND/RECEIVE can be replaced by BCAST/REDUCE, improving both simplicity
and efficiency. Listing 8 can be replaced by Listing 9 (some parts of Listing 8
are omitted).

Listing 9
...

master = 0
if (myid .eq. master) then
write(*,*) ’n?’
read(*,*) n

endif
call MPI_BCAST(n,1,MPI_INTEGER,master,
$ MPI_COMM_WORLD,ierr)
d = 1.0/n
s = 0.0

...
enddo
pi = d*s
call MPI_REDUCE(pi,temp,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,master,MPI_COMM_WORLD,ierr)
pi = temp
if (myid .eq. master) then
write(*, 100) pi

...
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In distributed shared memory systems, both OpenMP and MPI can be
used together to use all the processors efficiently. Again, Listing 8 can be re-
placed by Listing 10 (the same parts of Listing 8 are omitted) to use OpenMP.

Listing 10

...
d = 1.0/n
s = 0.0

!$OMP PARALLEL PRIVATE(x), SHARED(d)
!$OMP& REDUCTION(+: s)
!$OMP DO

do i = myid+1, n, numprocs
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
!$OMP END DO
!$OMP END PARALLEL

pi = d*s
if (myid .ne. master) then

...

3.6 HPF

HPF (High Performance Fortran) is a Fortran 90 with further data parallel
programming features (Koelbel et al., 1993). In data parallel programming,
we specify which processor owns what data, and the owner of the data does
the computation on the data (Owner-computes rule).

Fortran 90 provides many features that are well suited to data parallel
programming, such as array processing syntax, new functions for array calcu-
lations, modular programming constructs and object-oriented programming
features.

HPF adds additional features to enable data parallel programming. We
use compiler directives to distribute data on the processors, to align arrays
and to declare that a loop can be calculated in parallel without affecting the
numerical results. HPF also has a loop control structure that is more flexible
than DO, and new intrinsic functions for array calculations.

The High Performance Fortran Forum (HPFF) (High Performance Fortran
Forum, 2004) is a coalition of industry, academic and laboratory representa-
tives, and defined HPF 1.0 in 1993. HPF 1.1 was released in 1994 and HPF
2.0 was released in 1997. Several commercial and free HPF compilers are now
available.

Listing 11 is an example program for calculating π in HPF.

Listing 11

integer n, i
double precision d, s, pi
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double precision, dimension (:),
$ allocatable :: x, y

!HPF$ PROCESSORS procs(4)
!HPF$ DISTRIBUTE x(CYCLIC) ONTO procs
!HPF$ ALIGN y(i) WITH x(i)

write(*,*) ’n?’
read(*,*) n
allocate(x(n))
allocate(y(n))
d = 1.0/n

!HPF$ INDEPENDENT
FORALL (i = 1:n)
x(i) = (i-0.5)*d
y(i) = 4.0/(1.0 + x(i)*x(i))

end FORALL
pi = d*SUM(y)
write (*, 100) pi

100 format(’ pi = ’, f20.15)
deallocate(x)
deallocate(y)
end

!HPF$ is used for all HPF compiler directives. We note that this is a com-
ment to non-HPF compilers and is ignored by them. The PROCESSORS directive
specifies the shape of the grid of abstract processors. Another example “!HPF$
PROCESSORS exprocs(6,2)” specifies a 6 × 2 array of 12 abstract processors
labelled exprocs.

The DISTRIBUTE directive partitions an array by specifying a regular dis-
tribution pattern for each dimension ONTO the arrangement of abstract pro-
cessors. The CYCLIC pattern spreads the elements one per processor, wrapping
around when it runs out of processors, i.e., this pattern distributes the data
in the same way that the program in Listing 8 performs. Another pattern is
BLOCK, which breaks the array into equal-sized blocks, one per processor. The
rank of the abstract processor grid must be equal to the number of distributed
axes of the array.

The ALIGN directive is used to specify relationships between data objects.
In the example program, elements of x and y that have the same index are
placed on the same processor.

The INDEPENDENT directive informs the compiler that in the execution of
the FORALL construct or the do loop, no iteration affects any other iteration
in any way.

The FORALL statement is a data parallel construct that defines the as-
signment of multiple elements in an array but does not restrict the order of
assignment to individual elements. Note that the do loop executes on each
element in a rigidly defined order.

The SUM intrinsic function performs reduction on whole arrays.
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We may compare HPF with OpenMP, because both systems use com-
piler directives in a standard language (Fortran) syntax. In OpenMP, the user
specifies the distribution of iterations, while in HPF, the user specifies the
distribution of data. In other words, OpenMP adopts the instruction paral-
lel programming model while HPF adopts data parallel programming model.
OpenMP is suitable for shared memory systems whereas HPF is suitable for
distributed memory systems.

4 Parallel computing in statistics

4.1 Parallel applications in statistical computing

The most important thing in parallel computing is to divide a job into small
tasks for parallel execution. We call the amount of independent parallel pro-
cessing that can occur before requiring some sort of communication or syn-
chronization the “granularity”. Fine granularity may allow only a few arith-
metic operations between processing one message and the next, whereas coarse
granularity may allow millions. Although the parallel computing techniques
described above can support programming of any granularity, coarse granu-
larity is preferable for many statistical tasks. Fine granularity requires much
information exchange among processors and it is difficult to write the re-
quired programs. Fortunately, many statistical tasks are easily divided into
coarse granular tasks. Some of them are embarrassingly parallel.

In data analysis, we often wish to perform the same statistical calculations
on many data sets. Each calculation for a data set is performed independently
from other data sets, so the calculations can be performed simultaneously.
For example, Hegland et al. (1999) implemented the backfitting algorithm
to estimate a generalized additive model for a large data set by dividing it
into small data sets, fitting a function in parallel and merging them together.
Beddo (2002) performed parallel multiple correspondence analysis by dividing
an original data set and merging their calculation results.

Another embarrassingly parallel example is a simulation or a resampling
computation, which generates new data sets by using a random number gen-
erating mechanism based on a given data set or parameters. We calculate
some statistics for those data sets, repeat such operations many times and
summarize their results to show empirical distribution characteristics of the
statistics. In this case, all calculations are performed simultaneously except
the last part. Beddo (2002) provided an example of bootstrapping from par-
allel multiple correspondence analysis.

We must be careful that random numbers are appropriately generated in
parallel execution. For example, random seeds for each process should all be
different values, at least. SPRNG (Mascagni, 1999) is a useful random num-
ber generator for parallel programming. It allows for the dynamic creation
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of independent random number streams on parallel machines without inter-
processor communication. It is available in the MPI environment and the
macro SIMPLE SPRNG should be defined to invoke the simple interface. Then
the macro USE MPI is defined to instruct SPRNG to make MPI calls during
initialization. Fortran users should include the header file sprng f.h and call
sprng() to obtain a double precision random number in (0, 1). In compiling,
the libraries liblcg.a and the MPI library should be linked.

The maximum likelihood method requires much computation and can be
parallelized. Jones et al. (1999) describes a parallel implementation of the
maximum likelihood estimation using the EM algorithm for positron emission
tomography image reconstruction. Swann (2002) showed maximum likelihood
estimation for a simple econometric problem with Fortran code and a full
explanation of MPI. Malard (2002) solved a restricted maximum likelihood
estimation of variance-covariance matrix by using freely available toolkits: the
portable extensible toolkit for scientific computation (PETSc) and the toolkit
for advanced optimazation (TAO) (Balay et al., 2001) which are built on MPI.

Optimization with dynamic programming requires much computation and
is suitable for parallel computing. Hardwick et al. (1999) used this technique
to solve sequential allocation problems involving three Bernoulli populations.
Christofides et al. (1999) applied it to the problem of discretizing multidimen-
sional probability functions.

Racine (2002) demonstrated that kernel density estimation is also calcu-
lated efficiently in parallel.

4.2 Parallel software for statistics

Several commercial and non-commercial parallel linear algebra packages that
are useful for statistical computation are available for Fortran and/or C.
We mention two non-commercial packages with freely available source codes:
ScaLAPACK (Blackford et al., 1997) supports MPI and PVM, and PLAPACK
(van de Geijin, 1997) supports MPI. Murphy et al. (1999) described the work
to transfer sequential libraries (Gram-Schmidt orthogonalization and linear
least squares with equally constraints) to parallel systems by using Fortran
with MPI.

Although we have many statistical software products, few of them have
parallel features. Parallel statistical systems are still at the research stage.
Bull et al. (1999) ported a multilevel modeling package MLn into a shared
memory system by using C++ with threads. Yamamoto and Nakano (2002)
explained a system for time series analysis that has functions to use several
computers via Tkpvm, an implementation of PVM in the Tcl/Tk language.

The statistical systems R (The R Development Core Team, 2004) and
S (Chambers, 1998) have some projects to add parallel computing features.
Temple Lang (1997) added thread functions to S. PVM and MPI are directly
available from R via the rpvm (Li and Rossini, 2001) and Rmpi (Yu, 2002)
packages. They are used to realize the package “snow” (Rossini et al., 2003),
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which implements simple commands for using a workstation cluster for em-
barrassingly parallel computations in R. A simple example session is:

> cl <- makeCluster(2, type = "PVM")
> clusterSetupSPRNG(cl)
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.749391854 0.007316102 0.152742874

[[2]]
[1] 0.8424790 0.8896625 0.2256776

where a PVM cluster of two computers is started by the first command and the
SPRNG library is prepared by the second command. Three uniform random
numbers are generated on each computer and the results are printed by the
third command.

The statistical system “Jasp” (Nakano et al., 2000) is implementing ex-
perimental parallel computing functions via network functions of the Java
language (see also http://jasp.ism.ac.jp/).
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