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Markov Chain Monte Carlo Technology

Siddhartha Chib

Washington University in Saint Louis chib@wustl.edu

1 Introduction

In the past fifteen years computational statistics has been enriched by a power-
ful, somewhat abstract method of generating variates from a target probabil-
ity distribution that is based on Markov chains whose stationary distribution
is the probability distribution of interest. This class of methods, popularly
referred to as Markov chain Monte Carlo methods, or simply MCMC meth-
ods, have been influential in the modern practice of Bayesian statistics where
these methods are used to summarize the posterior distributions that arise in
the context of the Bayesian prior-posterior analysis (Tanner and Wong, 1987;
Gelfand and Smith, 1990; Smith and Roberts, 1993; Tierney, 1994; Besaget
al., 1995; Chib and Greenberg, 1995, 1996; Gilks et al., 1996; Tanner, 1996;
Gammerman, 1997; Robert and Casella, 1999; Carlin and Louis, 2000; Chen
et al., 2000; Chib, 2001; Congdon, 2001; Liu, 2001; Robert, 2001; Gelman
at al, 2003). MCMC methods have proved useful in practically all aspects of
Bayesian inference, for example, in the context of prediction problems and in
the computation of quantities, such as the marginal likelihood, that are used
for comparing competing Bayesian models.

A central reason for the widespread interest in MCMC methods is that
these methods are extremely general and versatile and can be used to sam-
ple univariate and multivariate distributions when other methods (for example
classical methods that produce independent and identically distributed draws)
either fail or are difficult to implement. The fact that MCMC methods pro-
duce dependent draws causes no substantive complications in summarizing
the target distribution. For example, if {ψ(1), ..., ψ(M)} are draws from a (say
continuous) target distribution π(ψ), where ψ ∈ �d, then the expectation of
h(ψ) under π can be estimated by the average

M−1
M∑
j=1

h(ψ(j)) , (1)
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as in the case of random samples, because suitable laws of large numbers for
Markov chains can be used to show that

M−1
M∑
j=1

h(ψ(j)) →
∫
�d

h(ψ)π(ψ)dψ ,

as the simulation sample size M becomes large.
Another reason for the interest in MCMC methods is that, somewhat

surprisingly, it is rather straightforward to construct one or more Markov
chains whose limiting invariant distribution is the desired target distribution.
One way to construct the appropriate Markov chain is by a method called
the Metropolis method which was introduced by Metropolis et al. (1953) in
connection with work related to the hydrogen bomb project. In this method,
the Markov chain simulation is constructed by a recursive two step process.
Given the current iterate ψ(j), a proposal value ψ′ is drawn from a distribution
q(ψ(j), ·), such that ψ′ is symmetrically distributed about the current value
ψ(j). In the second step, this proposal value is accepted as the next iterate
ψ(j+1) of the Markov chain with probability

α(ψ(j), ψ′) = min
{

1,
π(ψ′)
π(ψ(j)

}

If the proposal value is rejected, then ψ(j+1) is taken to be the current value.
The method is simple to implement, even in multivariate settings, and was
widely used by physicists in computational statistical mechanics and quantum
field theory to sample the coordinates of a point in phase space. In those
settings, and in subsequent statistical problems, it is helpful that the method
can be implemented without knowledge of the normalizing constant of π since
that constant cancels in the determination of the probability α(ψ(j), ψ′).

The requirement that the proposal distribution be symmetric about the
current value was relaxed by Hastings (1970). The resulting method, com-
monly called the Metropolis-Hastings (M-H) method, relies on the same two
steps of the Metropolis method except that the probability of move is given
by

α(ψ(j), ψ′) = min
{

1,
π(ψ′)
π(ψ(j))

q(ψ′, ψ(j))
q(ψ(j), ψ′)

}
which clearly reduces to the Metropolis probability of move when the proposal
distribution is symmetric in its arguments. Starting with an arbitrary value
ψ(0) in the support of the target distributions, iterations of this two step
process produce the (correlated) sequence of values{

ψ(0), ψ(1), ψ(2), ...
}

Typically, a certain number of values (say n0) at the start of this sequence
are discarded and the subsequent (say) M values are used as variates from
the target distribution.
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In applications when the dimension of ψ is large it may be preferable to
construct the Markov chain simulation by first grouping the variables ψ into
smaller blocks. For simplicity suppose that two blocks are adequate and that
ψ is written as (ψ1, ψ2), with ψk ∈ Ωk ⊆ �dk . In that case, the M-H chain
can be constructed by

• updating ψ1 given (ψ(j),
1 ψ

(j)
2 ) to produce ψ(j)

1 and then
• updating ψ2 given (ψ(j+1)

1 , ψ
(j)
2 ) to produce ψ(j+1)

2 ,

which completes one cycle through two sub-moves. Chib and Greenberg (1995)
who emphasized and highlighted such M-H chains have referred to them as
multiple-block M-H algorithms.

Despite the long vintage of the M-H method, the contemporary interest in
MCMC methods was sparked by work on a related MCMC method, the Gibbs
sampling algorithm. The Gibbs sampling algorithm is one of the simplest
Markov chain Monte Carlo algorithms and has its origins in the work of Besag
(1974) on spatial lattice systems, Geman and Geman (1984) on the problem
of image processing, and Tanner and Wong (1987) on missing data problems.
The paper by Gelfand and Smith (1990) helped to demonstrate the value
of the Gibbs algorithm for a range of problems in Bayesian analysis. In the
Gibbs sampling method, the Markov chain is constructed by simulating the
conditional distributions that are implied by π(ψ). In particular, if ψ is split
into two components ψ1 and ψ2, then the Gibbs method proceeds through
the recursive sampling of the conditional distributions π(ψ1|ψ2) and π(ψ2 |ψ1),
where the most recent value of ψ2 is used in the first simulation and the most
recent value of ψ1 in the second simulation. This method is most simple to
implement when each conditional distribution is a known distribution that is
easy to sample. As we show below, the Gibbs sampling method is a special
case of the multiple block M-H algorithm.

1.1 Organization

The rest of the chapter is organized as follows. In Section 2 we summarize the
relevant Markov chain theory that justifies simulation by MCMC methods. In
particular, we provide the conditions under which discrete-time and contin-
uous state space Markov chains satisfy a law of large numbers and a central
limit theorem. The M-H algorithm is discussed in Section 3 followed by the
Gibbs sampling algorithm in Section 4. Section 5 deals with MCMC methods
with latent variables and Section 6 with ways of estimating the marginal den-
sities based on the MCMC output. Issues related to sampler performance are
considered in Section 7 and strategies for improving the mixing of the Markov
chains in Section 8. Section 9 concludes with brief comments about new and
emerging directions in MCMC methods.
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2 Markov chains

Markov chain Monte Carlo is a method to sample a given multivariate distri-
bution π∗ by constructing a suitable Markov chain with the property that its
limiting, invariant distribution, is the target distribution π∗. In most prob-
lems of interest, the distribution π∗ is absolutely continuous and, as a result,
the theory of MCMC methods is based on that of Markov chains on contin-
uous state spaces outlined, for example, in Nummelin (1984) and Meyn and
Tweedie (1993). Tierney (1994) is the fundamental reference for drawing the
connections between this elaborate Markov chain theory and MCMC meth-
ods. Basically, the goal of the analysis is to specify conditions under which the
constructed Markov chain converges to the invariant distribution, and condi-
tions under which sample path averages based on the output of the Markov
chain satisfy a law of large numbers and a central limit theorem.

2.1 Definitions and results

A Markov chain is a collection of random variables (or vectors) Φ = {Φi :
i ∈ T} where T = {0, 1, 2, . . .}. The evolution of the Markov chain on a space
Ω ⊆ �p is governed by the transition kernel

P (x,A) ≡ Pr(Φi+1 ∈ A|Φi = x,Φj , j < i)
= Pr(Φi+1 ∈ A|Φi = x) , x ∈ Ω, A ⊂ Ω,

where the second line embodies the Markov property that the distribution of
each succeeding state in the sequence, given the current and the past states,
depends only on the current state.

Generally, the transition kernel in Markov chain simulations has both a
continuous and discrete component. For some function p(x,y) : Ω×Ω → �+,
the kernel can be expressed as

P (x, dy) = p(x,y)dy + r(x)δx(dy) , (2)

where p(x,x) = 0, δx(dy) = 1 if x ∈ dy and 0 otherwise, r(x) = 1 −∫
Ω
p(x,y)dy. This transition kernel specifies that transitions from x to y

occur according to p(x,y) and transitions from x to x occur with probability
r(x).

The transition kernel is thus the distribution of Φi+1 given that Φi = x.
The n-th step ahead transition kernel is given by

P (n)(x,A) =
∫
Ω

P (x, dy)P (n−1)(y, A) ,

where P (1)(x, dy) = P (x, dy) and

P (x,A) =
∫
A

P (x, dy) . (3)
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The goal is to find conditions under which the nth iterate of the transition
kernel converges to the invariant distribution π∗ as n → ∞. The invariant
distribution is one that satisfies

π∗(dy) =
∫
Ω

P (x, dy)π(x)dx (4)

where π is the density of π∗ with respect to the Lebesgue measure. The in-
variance condition states that if Φi is distributed according to π∗, then all
subsequent elements of the chain are also distributed as π∗. Markov chain
samplers are invariant by construction and therefore the existence of the in-
variant distribution does not have to be checked.

A Markov chain is reversible if the function p(x,y) in (2) satisfies

f(x)p(x,y) = f(y)p(y,x) , (5)

for a density f(·). If this condition holds, it can be shown that f(·) = π(·) and
has π∗ as an invariant distribution (Tierney, 1994). To verify this we evaluate
the right hand side of (4):∫

P (x,A)π(x)dx =
∫ {∫

A

p(x,y)dy
}
π(x)dx +

∫
r(x)δx(A)π(x)dx

=
∫
A

{∫
p(x,y)π(x)dx

}
dy +

∫
A

r(x)π(x) dx

=
∫
A

{∫
p(y,x)π(y)dx

}
dy +

∫
A

r(x)π(x)dx

=
∫
A

(1 − r(y))π(y)dy +
∫
A

r(x)π(x) dx

=
∫
A

π(y)dy. (6)

A minimal requirement on the Markov chain for it to satisfy a law of large
numbers is the requirement of π∗-irreducibility. This means that the chain is
able to visit all sets with positive probability under π∗ from any starting point
in Ω. Formally, a Markov chain is said to be π∗-irreducible if for every x ∈ Ω,

π∗(A) > 0 ⇒ P (Φi ∈ A|Φ0 = x) > 0

for some i ≥ 1. If the space Ω is connected and the function p(x,y) is positive
and continuous, then the Markov chain with transition kernel given by (3)
and invariant distribution π∗ is π∗-irreducible.

Another important property of a chain is aperiodicity, which ensures that
the chain does not cycle through a finite number of sets. A Markov chain
is aperiodic if there exists no partition of Ω = (D0,D1, . . . ,Dp−1) for some
p ≥ 2 such that P (Φi ∈ Di mod(p)|Φ0 ∈ D0) = 1 for all i.

These definitions allow us to state the following results from Tierney (1994)
which form the basis for Markov chain Monte Carlo methods. The first of these
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results gives conditions under which a strong law of large numbers holds and
the second gives conditions under which the probability density of the Mth
iterate of the Markov chain converges to its unique, invariant density.

Theorem 1. Suppose {Φi} is a π∗-irreducible Markov chain with transition
kernel P (·, ·) and invariant distribution π∗, then π∗ is the unique invariant
distribution of P (·, ·) and for all π∗-integrable real-valued functions h,

1
M

M∑
i=1

h(Φi) →
∫
h(x)π(x)dx as M → ∞, a.s.

Theorem 2. Suppose {Φi} is a π∗-irreducible, aperiodic Markov chain with
transition kernel P (·, ·) and invariant distribution π∗. Then for π∗-almost
every x ∈ Ω, and all sets A

‖ PM (x,A) − π∗(A) ‖→ 0 as M → ∞

where ‖ · ‖ denotes the total variation distance.

A further strengthening of the conditions is required to obtain a central
limit theorem for sample-path averages. A key requirement is that of an er-
godic chain, i.e., chains that are irreducible, aperiodic and positive Harris-
recurrent (for a definition of the latter, see Tierney (1994). In addition, one
needs the notion of geometric ergodicity. An ergodic Markov chain with in-
variant distribution π∗ is a geometrically ergodic if there exists a non-negative
real-valued function (bounded in expectation under π∗) and a positive con-
stant r < 1 such that

‖ PM (x,A) − π∗(A) ‖≤ C(x)rn

for all x and all n and sets A. Chan and Ledolter (1995) show that if the
Markov chain is ergodic, has invariant distribution π∗, and is geometrically
ergodic, then for all L2 measurable functions h, taken to be scalar-valued
for simplicity, and any initial distribution, the distribution of

√
M(ĥM − Eh)

converges weakly to a normal distribution with mean zero and variance σ2
h ≥ 0,

where

ĥM =
1
M

M∑
i=1

h(Φi)

Eh =
∫
h(Φ)π(Φ)dΦ

and

σ2
h = Varh(Φ0) + 2

∞∑
k=1

Cov[{h(Φ0), h(Φk)} (7)
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2.2 Computation of numerical accuracy and inefficiency factor

The square root of σ2
h is the numerical standard error of ĥM . To describe

estimators of σ2
h that are consistent in M , let Zi = h(Φi) (i ≤M). Then, due

to the fact that {Zi} is a dependent sequence

Var(ĥM ) = M−2
∑

j,k Cov(Zj , Zk)
= s2M−2

∑M
j,k=1 ρ|j−k|

= s2M−1
{
1 + 2

∑M
s=1(1 − s

M )ρs
}

where s2 is the sample variance of {Zi} and ρs is the estimated autocorrelation
at lag s (see Ripley, 1987, Ch. 6). If ρs > 0 for each s, then this variance is
larger than s2/M which is the variance under independence. Another estimate
of the variance can be found by consistently estimating the spectral density
f of {Zi} at frequency zero and using the fact that Var(ĥM ) = τ 2/M , where
τ 2 = 2πf(0). Finally, a traditional approach to finding the variance is by the
method of batch means. In this approach, the data (Z1, ..., ZM ) is divided into
k batches of length m with means Bi = m−1[Z(i−1)m+1 + ... + Zim] and the
variance of ĥM estimated as

Var(ĥM ) =
1

k(k − 1)

k∑
i=1

(Bi − B̄)2, (8)

where the batch size m is chosen to ensure that the first order serial correlation
of the batch means is less than 0.05.

Given the numerical variance it is common to calculate the inefficiency
factor, which is also called the autocorrelation time, defined as

κĥ =
Var(ĥM )
s2/M

(9)

This quantity is interpreted as the ratio of the numerical variance of ĥM
to the variance of ĥM based on independent draws, and its inverse is the
relative numerical efficiency defined in Geweke (1992). Because independence
sampling produces an autocorrelation time that is theoretically equal to one
and Markov chain sampling produces autocorrelation times that are bigger
than one, the inefficiency factor serves to quantify the relative efficiency loss
in the computation of ĥM from correlated versus independent samples.

3 Metropolis-Hastings Algorithm

This powerful algorithm provides a general approach for producing a corre-
lated sequence of draws from the target density that may be difficult to sample
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by a classical independence method. The goal is to simulate the d-dimensional
distribution π∗( ψ), ψ ∈ Ψ ⊆ �d that has density π(ψ) with respect to some
dominating measure. To define the algorithm, let q(ψ,ψ′) denote a source
density for a candidate draw ψ′ given the current value ψ in the sampled
sequence. The density q(ψ,ψ′) is referred to as the proposal or candidate gen-
erating density. Then, the M-H algorithm is defined by two steps: a first step
in which a proposal value is drawn from the candidate generating density and
a second step in which the proposal value is accepted as the next iterate in
the Markov chain according to the probability α(ψ,ψ′), where

α(ψ,ψ′) =

{
min

[
π(ψ′)q(ψ′,ψ)
π(ψ)q(ψ,ψ′) , 1

]
if π(ψ)q(ψ,ψ′) > 0;

1 otherwise .
(10)

If the proposal value is rejected, then the next sampled value is taken to be
the current value. In algorithmic form, the simulated values are obtained by
the following recursive procedure.

Algorithm 1: Metropolis-Hastings

1. Specify an initial value ψ(0) :
2. Repeat for j = 1, 2, ...,M .

a) Propose
ψ′ ∼ q(ψ(j), .)

b) Let

ψ(j+1) =
{
ψ′ if Unif(0, 1) ≤ α(ψ(j), ψ′);
ψ(j) otherwise .

3. Return the values {ψ(1), ψ(2), ..., ψ(M)} .

Typically, a certain number of values (say n0) at the start of this sequence
are discarded after which the chain is assumed to have converged to it invariant
distribution and the subsequent draws are taken as approximate variates from
π. Because theoretical calculation of the burn-in is not easy it is important
that the proposal density is chosen to ensure that the chain makes large moves
through the support of the invariant distribution without staying at one place
for many iterations. Generally, the empirical behavior of the M-H output is
monitored by the autocorrelation time of each component of ψ and by the
acceptance rate, which is the proportion of times a move is made as the
sampling proceeds.

One should observe that the target density appears as a ratio in the
probability α(ψ,ψ′) and therefore the algorithm can be implemented without
knowledge of the normalizing constant of π(·). Furthermore, if the candidate-
generating density is symmetric, i.e. q(ψ,ψ′) = q( ψ′, ψ), the acceptance prob-
ability only contains the ratio π(ψ′)/π(ψ); hence, if π(ψ′) ≥ π(ψ), the chain
moves to ψ′, otherwise it moves with probability given by π(ψ′)/π(ψ). The
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π(ψ(∗))

ψ(∗)

π(
ψ

)

Current point

Lower density point

Higher density proposal

ψ(j)

π(ψ(j))

ψ(∗∗)

π(ψ(∗∗))

Fig. 1. Original Metropolis algorithm: higher density proposal is accepted with
probability one and the lower density proposal with probability α.

latter is the algorithm originally proposed by Metropolis et al. (1953). This
version of the algorithm is illustrated in Fig. 2.

Different proposal densities give rise to specific versions of the M-H algo-
rithm, each with the correct invariant distribution π. One family of candidate-
generating densities is given by q(ψ,ψ′) = q(ψ′−ψ). The candidate ψ′ is thus
drawn according to the process ψ′ = ψ + z, where z follows the distribution
q. Since the candidate is equal to the current value plus noise, this case is
called a random walk M-H chain. Possible choices for q include the multivari-
ate normal density and the multivariate-t. The random walk M-H chain is
perhaps the simplest version of the M-H algorithm (and was the one used by
Metropolis et al., 1953) and popular in applications. One has to be careful,
however, in setting the variance of z; if it is too large it is possible that the
chain may remain stuck at a particular value for many iterations while if it
is too small the chain will tend to make small moves and move inefficiently
through the support of the target distribution. In both cases the generated
draws that will be highly serially correlated. Note that when q is symmetric,
q(z) = q(−z) and the probability of move only contains the ratio π(ψ′)/π(ψ).
As mentioned earlier, the same reduction occurs if q(ψ,ψ′) = q(ψ′, ψ).

Hastings (1970) considers a second family of candidate-generating densities
that are given by the form q(ψ,ψ′) = q(y). Tierney (1994) refers to this as an
independence M-H chain because, in contrast to the random walk chain, the
candidates are drawn independently of the current location ψ. In this case,
the probability of move becomes

α(ψ,ψ′) = min
{
w(ψ′)
w(ψ)

, 1
}
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where w(ψ) = π(ψ)/q(ψ) is the ratio of the target and proposal densities. For
this method to work and not get stuck in the tails of π, it is important that
the proposal density have thicker tails than π. A similar requirement is placed
on the importance sampling function in the method of importance sampling
(Geweke, 1989). In fact, Mengersen and Tweedie (1996) show that if w(ψ) is
uniformly bounded then the resulting Markov chain is ergodic.

Chib and Greenberg (1994, 1995) discuss a way of formulating proposal
densities in the context of time series autoregressive-moving average models
that has a bearing on the choice of proposal density for the independence M-H
chain. They suggest matching the proposal density to the target at the mode
by a multivariate normal or multivariate-t distribution with location given
by the mode of the target and the dispersion given by inverse of the Hessian
evaluated at the mode. Specifically, the parameters of the proposal density
are taken to be

m = arg max log π(ψ) and

V = τ

{
−∂

2 logπ(ψ)
∂ψ∂ψ′

}−1

ψ=ψ̂

(11)

where τ is a tuning parameter that is adjusted to control the acceptance rate.
The proposal density is then specified as q(ψ′) = f(ψ′|m,V), where f is some
multivariate density. This may be called a tailored M-H chain.

Another way to generate proposal values is through a Markov chain ver-
sion of the accept-reject method. In this version, due to Tierney (1994), and
considered in detail by Chib and Greenberg (1995), a pseudo accept-reject
step is used to generate candidates for an M-H algorithm. Suppose c > 0 is
a known constant and h(ψ) a source density. Let C = {ψ : π(ψ) ≤ ch(ψ)}
denote the set of value for which ch(ψ) dominates the target density and as-
sume that this set has high probability under π∗. Given ψ(n) = ψ, the next
value ψ(n+1) is obtained as follows: First, a candidate value ψ′ is obtained,
independent of the current value ψ, by applying the accept-reject algorithm
with ch(·) as the “pseudo dominating” density. The candidates ψ′ that are
produced under this scheme have density q(ψ′) ∝ min{π(ψ′), ch(ψ′)}. If we
let w(ψ) = c−1π(ψ)/h( ψ) then it can be shown that the M-H probability of
move is given by

α(ψ,ψ′) =




1 if ψ ∈ C
1/w(ψ) if ψ /∈ C,ψ′ ∈ C
min {w(ψ′)/w(ψ), 1} if ψ /∈ C,ψ′ /∈ C

(12)

3.1 Convergence results

In the M-H algorithm the transition kernel of the chain is given by

P (ψ,dψ′) = q(ψ,ψ′)α(ψ,ψ′)dψ′ + r(ψ)δψ(dψ′) (13)
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where δψ(dψ′) = 1 if ψ ∈ dψ′ and 0 otherwise and

r(ψ) = 1 −
∫
Ω

q(ψ,ψ′)α(ψ,ψ′)dψ′.

Thus, transitions from ψ to ψ′ (ψ′ �= ψ) are made according to the density

p(ψ,ψ′) ≡ q(ψ, ψ′)α(ψ,ψ′), ψ �= ψ′

while transitions from ψ to ψ occur with probability r(ψ). In other words, the
density function implied by this transition kernel is of mixed type,

K(ψ,ψ′) = q(ψ,ψ′)α(ψ,ψ′) + r(ψ)δψ(ψ′) , (14)

having both a continuous and discrete component, where now, with change of
notation, δψ(ψ′) is the Dirac delta function defined as δψ(ψ′) = 0 for ψ′ �= ψ
and

∫
Ω
δψ(ψ′)dψ′ = 1.

Chib and Greenberg (1995) provide a way to derive and interpret the
probability of move α(ψ,ψ′). Consider the proposal density q(ψ,ψ′). This
proposal density q is not likely to be reversible for π (if it were then we
would be done and M-H sampling would not be necessary). Without loss of
generality, suppose that π(ψ)q(ψ,ψ′) > π(ψ′)q(ψ′, ψ) implying that the rate
of transitions from ψ to ψ′ exceed those in the reverse direction. To reduce
the transitions from ψ to ψ′ one can introduce a function 0 ≤ α(ψ,ψ′) ≤ 1
such that π(ψ)q( ψ,ψ′)α(ψ,ψ′) = π(ψ′)q(ψ′, ψ). Solving for α(ψ,ψ′) yields
the probability of move in the M-H algorithm. This calculation reveals the
important point that the function p(ψ,ψ′) = q(ψ,ψ′)α(ψ,ψ′) is reversible by
construction, i.e., it satisfies the condition

q(ψ,ψ′)α(ψ, ψ′)π(ψ) = q(ψ′, ψ)α(ψ′, ψ)π(ψ′) (15)

It immediately follows, therefore, from the argument in (6) that the M-H
kernel has π(ψ) as its invariant density.

It is not difficult to provide conditions under which the Markov chain
generated by the M-H algorithm satisfies the conditions of Propositions 1-2.
The conditions of Proposition 1 are satisfied by the M-H chain if q(ψ,ψ′) is
positive for (ψ,ψ′) and continuous and the set ψ is connected. In addition,
the conditions of Proposition 2 are satisfied if q is not reversible (which is
the usual situation) which leads to a chain that is aperiodic. Conditions for
ergodicity, required for use of the central limit theorem, are satisfied if in
addition π is bounded. Other similar conditions are provided by Robert and
Casella (1999).

3.2 Example

To illustrate the M-H algorithm, consider the binary response data in Table
1, taken from Fahrmeir and Tutz (1994), on the occurrence or non-occurrence
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of infection following birth by caesarean section. The response variable y is
one if the caesarean birth resulted in an infection, and zero if not. There are
three covariates: x1, an indicator of whether the caesarean was non-planned;
x2, an indicator of whether risk factors were present at the time of birth and
x3, an indicator of whether antibiotics were given as a prophylaxis. The data
in the table contains information from 251 births. Under the column of the
response, an entry such as 11/87 means that there were 98 deliveries with
covariates (1, 1, 1) of whom 11 developed an infection and 87 did not.

Table 1. Caesarean infection data.

y (1/0) x1 x2 x3

11/87 1 1 1
1/17 0 1 1
0/2 0 0 1
23/3 1 1 0
28/30 0 1 0
0/9 1 0 0
8/32 0 0 0

Suppose that the probability of infection for the ith birth (i ≤ 251) is

Pr(yi = 1|xi, β) = Φ(x′
i β) , (16)

β ∼ N4(0, 5I4) (17)

where xi = (1, xi1, xi2, xi3)� is the covariate vector, β = (β0, β1, β2, β3) is the
vector of unknown coefficients, Φ is the cdf of the standard normal random
variable and I4 is the four-dimensional identity matrix. The target posterior
density, under the assumption that the outcomes y = (y1 , y2, ..., y251) are
conditionally independent, is

π(β|y) ∝ π(β)
251∏
i=1

Φ(x�
i β)yi

{
1 − Φ(x�

i β)
}(1−yi)

where π(β) is the density of the N(0, 10I4) distribution.

Random Walk Proposal Density

To define the proposal density, let

β̂ = (−1.093022 0.607643 1.197543 − 1.904739)�

be the MLE found using the Newton-Raphson algorithm and let
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V =




0.040745 −0.007038 −0.039399 0.004829
0.073101 −0.006940 −0.050162

0.062292 −0.016803
0.080788




be the symmetric matrix obtained by inverting the negative of the Hessian
matrix (the matrix of second derivatives) of the log-likelihood function eval-
uated at β̂. Now generate the proposal values by the random walk:

β = β(j−1) + ε(j)

ε(j) ∼ N4(0,V) , (18)

which leads to the original Metropolis method. From a run of 5000 iterations
of the algorithm beyond a burn-in of a 100 iterations we get the prior-posterior
summary that is reported in Table 2, which contains the first two moments of
the prior and posterior and the 2.5th (lower) and 97.5th (upper) percentiles
of the marginal densities of β.

Table 2. Caesarean data: Prior-posterior summary based on 5000 draws (beyond a
burn-in of 100 cycles) from the random-walk M-H algorithm.

Prior Posterior

Mean Std dev Mean Std dev Lower Upper

β0 0.000 3.162 -1.110 0.224 -1.553 -0.677
β1 0.000 3.162 0.612 0.254 0.116 1.127
β2 0.000 3.162 1.198 0.263 0.689 1.725
β3 0.000 3.162 -1.901 0.275 -2.477 -1.354

As expected, both the first and second covariates increase the probability
of infection while the third covariate (the antibiotics prophylaxis) reduces the
probability of infection.

To get an idea of the form of the posterior density we plot in Fig. 1 the four
marginal posterior densities. The density plots are obtained by smoothing the
histogram of the simulated values with a Gaussian kernel. In the same plot we
also report the autocorrelation functions (correlation against lag) for each of
the sampled parameter values. The autocorrelation plots provide information
of the extent of serial dependence in the sampled values. Here we see that the
serial correlations start out high but decline to almost zero by lag twenty.

Tailored Proposal Density

To see the difference in results, the M-H algorithm is next implemented with a
tailored proposal density. In this scheme one utilizes both β̂ and V that were
defined above. We let the proposal density be fT (β|β̂,V, 15), a multivariate-t
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Fig. 2. Caesarean data with random-walk M-H algorithm: Marginal posterior den-
sities (top panel) and autocorrelation plot (bottom panel).

density with fifteen degrees of freedom. This proposal density is similar to the
random-walk proposal except that the distribution is centered at the fixed
point β̂. The prior-posterior summary based on 5000 draws of the M-H algo-
rithm with this proposal density is given in Table 3. We see that the marginal
posterior moments are similar to those in Table 1. The marginal posterior
densities are reported in the top panel of Fig. 2. These are virtually identical
to those computed using the random-walk M-H algorithm. The most notable
difference is in the serial correlation plots which decline much more quickly
to zero indicating that the algorithm is mixing well. The same information is
revealed by the inefficiency factors which are much closer to one than those
from the previous algorithm.

Table 3. Caesarean data: Prior-posterior summary based on 5000 draws (beyond a
burn-in of 100 cycles) from the tailored M-H algorithm.

Prior Posterior

Mean Std dev Mean Std dev Lower Upper

β0 0.000 3.162 -1.080 0.220 -1.526 -0.670
β1 0.000 3.162 0.593 0.249 0.116 1.095
β2 0.000 3.162 1.181 0.254 0.680 1.694
β3 0.000 3.162 -1.889 0.266 -2.421 -1.385
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Fig. 3. Caesarean data with tailored M-H algorithm: Marginal posterior densities
(top panel) and autocorrelation plot (bottom panel).

The message from this analysis is that the two proposal densities produce
similar results, with the differences appearing only in the autocorrelation plots
(and inefficiency factors) of the sampled draws.

3.3 Multiple-block M-H algorithm

In applications when the dimension of ψ is large, it can be difficult to construct
a single block M-H algorithm that converges rapidly to the target density. In
such cases, it is helpful to break up the variate space into smaller blocks and
to then construct a Markov chain with these smaller blocks. Suppose, for
illustration, that ψ is split into two vector blocks (ψ1, ψ2). For example, in a
regression model, one block may consist of the regression coefficients and the
other block may consist of the error variance. Next, for each block, let

q1(ψ1, ψ
′
1|ψ2) ; q2(ψ2, ψ

′
2|ψ1) ,

denote the corresponding proposal density. Here each proposal density qk is
allowed to depend on the data and the current value of the remaining block.
Also define (by analogy with the single-block case)

α(ψ1, ψ
′
1|ψ2) = min

{
1,
π(ψ′

1 |ψ2)q1(ψ′
1, ψ1|ψ2)

π(ψ1|ψ2)q1( ψ1, ψ
′
1|ψ2)

}
, (19)

and

α(ψ2, ψ
′
2|y, ψ1) = min

{
1,
π(ψ′

2|ψ1)q2(ψ′
2, ψ2|ψ1)

π(ψ2|ψ1)q2(ψ2, ψ′
2|ψ1)

}
, (20)
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as the probability of move for block ψk (k = 1, 2) conditioned on the other
block. The conditional densities

π(ψ1|ψ2) and π(ψ2|ψ1)

that appear in these functions are called the full conditional densities. By
Bayes theorem each is proportional to the joint density. For example,

π(ψ1|ψ2) ∝ π(ψ1, ψ2) ,

and, therefore, the probabilities of move in (19) and (20 ) can be expressed
equivalently in terms of the kernel of the joint posterior density π(ψ1, ψ2)
because the normalizing constant of the full conditional density (the norming
constant in the latter expression) cancels in forming the ratio.

With these inputs, one sweep of the multiple-block M-H algorithm is com-
pleted by updating each block, say sequentially in fixed order, using a M-H
step with the above probabilities of move, given the most current value of the
other block.

Algorithm 2: Multiple-block Metropolis-Hastings

1. Specify an initial value ψ(0) = (ψ(0)
1 , ψ

(0)
2 ) :

2. Repeat for j = 1, 2, ..., n0 +M .
a) Repeat for k = 1, 2

i. Propose a value for the kth block, conditioned on the previous
value of kth block, and the current value of the other block ψ−k:

ψ′
k ∼ qk(ψ

(j−1)
k , ·|ψ−k) .

ii. Calculate the probability of move

αk(ψ
(j−1)
k , ψ′

k|y, ψ−k) = min

{
1,

π(ψ′
k|ψ−k)qk(ψ′

k , ψ
(j−1)
k |ψ−k)

h(ψ(j−1)
k |ψ−k)qk(ψ

(j−1)
k , ψ′

k|ψ−k)

}
.

iii. Update the kth block as

ψ
(j)
k =

{
ψ′
k with prob αk(ψ

(j−1)
k , ψ′

k|ψ−k)
ψ

(j−1)
k with prob 1 − αk(ψ

(j−1)
k , ψ′

k|ψ−k)
.

3. Return the values {ψ(n0+1), ψ(n0+2), ..., ψ(n0+M)} .

The extension of this method to more than two blocks is straightforward.
The transition kernel of the resulting Markov chain is given by the product

of transition kernels

P (ψ,dψ′) =
2∏
k=1

Pk(ψk , dψ′
k|ψ−k) (21)
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This transition kernel is not reversible, as can be easily checked, because un-
der fixed sequential updating of the blocks updating in the reverse order never
occurs. The multiple-block M-H algorithm, however, satisfies the weaker con-
dition of invariance. To show this, we utilize the fact that each sub-move
satisfies local reversibility (Chib and Jeliazkov, 2001) and therefore the tran-
sition kernel P1(ψ1, dψ1|ψ2) has π∗

1|2(·|ψ2) as its local invariant distribution
with density π∗

1|2(·|ψ2), i.e.,

π∗
1|2(dψ1|ψ2) =

∫
P1(ψ1, dψ1|ψ2)π1|2(ψ1 | ψ2)dψ1. (22)

Similarly, the conditional transition kernel P2(ψ2, d ψ2|ψ1) has π∗
2|1(·|ψ1) as

its invariant distribution, for a given value of ψ1. Then, the kernel formed by
multiplying the conditional kernels is invariant for π∗(·, ·):∫ ∫

P1(ψ1, dψ
′
1| ψ2)P2(ψ2, dψ

′
2|ψ′

1)π(ψ1, ψ2)dψ1 dψ2

=
∫
P2(ψ2, dψ

′
2|ψ′

1)
[∫

P1(ψ1, dψ
′
1|ψ2)π1|2(ψ1 |ψ2)d ψ1

]
π2(ψ2)dψ2

=
∫
P2(ψ2, dψ

′
2|ψ′

1)π
∗
1|2(dψ

′
1|ψ2)π2(ψ2)dψ2

=
∫
P2(ψ2, dψ

′
2|ψ′

1)
π2|1(ψ2 |ψ′

1)π∗1 (dψ′
1)

π2(ψ2)
π2(ψ2)dψ2

= π∗
1 (dψ′

1)
∫
P2(ψ2, dψ

′
2|ψ′

1)π2|1( ψ2|ψ′
1)dψ2

= π∗
1 (dψ′

1)π
∗
2|1(dψ

′
2 |ψ′

1)

= π∗(dψ′
1, dψ

′
2),

where the third line follows from (22), the fourth from Bayes theorem, the
sixth from assumed invariance of P2, and the last from the law of total prob-
ability.

The implication of this result is that it allows us to take draws in succession
from each of the kernels, instead of having to run each to convergence for every
value of the conditioning variable.

Remark. Versions of either random-walk or tailored proposal densities
can be used in this algorithm, analogous to the single-block case. For example,
Chib and Greenberg (1995) determine the proposal densities qk by tailoring
to π(ψk, ψ−k) in which case the proposal density is not fixed but varies across
iterations. An important special case occurs if each proposal density is taken
to be the full conditional density of that block. Specifically, if we set

q1(ψ
(j−1)
1 , ψ′

1|ψ2) = π(ψ′
1|ψ2) ,

and
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q2(ψ
(j−1)
2 , ψ′

2|ψ1) = π(ψ′
2|ψ1) ,

then an interesting simplification occurs. The probability of move (for the first
block) becomes

α1(ψ
(j−1)
1 , ψ′

1|ψ2) = min

{
1,
π(ψ′

1 |ψ2)π(ψ(j−1)
1 |ψ2)

π(ψ(j−1)
1 |ψ2)π(ψ′

1 |ψ2)

}

= 1 ,

and similarly for the second block, implying that if proposal values are drawn
from their full conditional densities then the proposal values are accepted
with probability one. This special case of the multiple-block M-H algorithm
(in which each block is proposed using its full conditional distribution) is
called the Gibbs sampling algorithm.

4 The Gibbs sampling algorithm

The Gibbs sampling algorithm is one of the simplest Markov chain Monte
Carlo algorithms. It was introduced by Geman and Geman (1984) in the
context of image processing and then discussed in the context of missing data
problems by Tanner and Wong (1987). The paper by Gelfand and Smith
(1990) helped to demonstrate the value of the Gibbs algorithm for a range of
problems in Bayesian analysis.

4.1 The algorithm

To define the Gibbs sampling algorithm, let the set of full conditional distri-
butions be

{π(ψ1 |ψ2, ..., ψp); π(ψ2 |ψ1, ψ3, ..., ψp); ..., π(ψp|ψ1, ..., ψd−1)} .

Now one cycle of the Gibbs sampling algorithm is completed by simulating
{ψk}pk=1 from these distributions, recursively refreshing the conditioning vari-
ables. When d = 2 one obtains the two block Gibbs sampler that appears in
Tanner and Wong (1987). The Gibbs sampler in which each block is revised
in fixed order is defined as follows.

Algorithm 3: Gibbs sampling

1. Specify an initial value ψ(0) = (ψ(0)
1 , ..., ψ

(0)
p ) :

2. Repeat for j = 1, 2, ...,M .

Generate ψ
(j+1)
1 from π(ψ1 |ψ(j)

2 , ψ
(j)
3 , ..., ψ

(j)
p )

Generate ψ(j+1)
2 from π(ψ2 |ψ(j+1)

1 , ψ
(j)
3 , . . . , ψ

(j)
p )

...
Generate ψ(j+1)

p from π(ψp|ψ(j+1)
1 , . . . , ψ

(j+1)
p−1 ).
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Fig. 4. Gibbs sampling algorithm in two dimensions starting from an initial point
and then completing three iterations.

3. Return the values {ψ(1), ψ(2), ..., ψ(M)} .

It follows that the transition density of moving from ψ
(j)
k to ψ(j+1)

k is given
by

π(ψk|ψ(j+1)
1 , . . . , ψ

(j+1)
k−1 , ψ

(j)
k+1, .., ψ

(j)
p )

since when the kth block is reached, the previous (k − 1) blocks have been
updated. Thus, the transition density of the chain, under the maintained as-
sumption that π is absolutely continuous, is given by the product of transition
kernels for each block:

K(ψ,ψ′) =
p∏
k=1

π(ψk|ψ(j+1)
1 , . . . , ψ

(j+1)
k−1 , ψ

(j)
k+1, .., ψ

(j)
p ) (23)

To illustrate the manner in which the blocks are revised, we consider a
two block case, each with a single component, and trace out in Fig. 4 a pos-
sible trajectory of the sampling algorithm. The contours in the plot represent
the joint distribution of ψ and the labels “(0)”, “(1)” etc., denote the simu-
lated values. Note that one iteration of the algorithm is completed after both
components are revised. Also notice that each component is revised along the
direction of the coordinate axes. This feature can be a source of problems
if the two components are highly correlated because then the contours get
compressed and movements along the coordinate axes tend to produce small
moves. We return to this issue below.

4.2 Invariance of the Gibbs Markov chain

The Gibbs transition kernel is invariant by construction. This is a consequence
of the fact that the Gibbs algorithm is a special case of the multiple-block M-H
algorithm which is invariant, as was established in the last section. Invariance
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can also be confirmed directly. Consider for simplicity a two block sampler
with transition kernel density

K(ψ,ψ′) = π(ψ′
1|ψ2)π(ψ′

2 |ψ′
1)

To check invariance we have to show that∫
K(ψ,ψ′)π(ψ1 , ψ2)dψ1dψ2

=
∫
π(ψ′

1|ψ2)π(ψ′
2|ψ′

1)π(ψ1 , ψ2)dψ1dψ2

is equal to π(ψ′
1 , ψ

′
2). This holds because π(ψ′

2| ψ′
1) comes out of the integral,

and the integral over ψ1 and ψ2 produces π(ψ′
1). This calculation can be

extended to any number of blocks. It may be noted that the Gibbs Markov
chain is not reversible. Reversible Gibbs samplers are discussed by Liu et al.
(1995).

4.3 Sufficient conditions for convergence

Under rather general conditions, the Markov chain generated by the Gibbs
sampling algorithm converges to the target density as the number of iterations
become large. Formally, if we let K(ψ,ψ′) represent the transition density of
the Gibbs algorithm and let K(M)(ψ0, ψ

′) be the density of the draw ψ′ after
M iterations given the starting value ψ0, then

‖ K(M)(ψ(0), ψ′) − π(ψ′) ‖→ 0, as M → ∞. (24)

Roberts and Smith (1994) (see also Chan, 1993) have shown that the condi-
tions of Proposition 2 are satisfied under the following conditions: (i) π(ψ) > 0
implies there exists an open neighborhood Nψ containing ψ and ε > 0 such
that, for all ψ′ ∈ Nψ, π(ψ′) ≥ ε > 0; (ii)

∫
f(ψ)dψk is locally bounded for all

k, where ψk is the kth block of parameters; and (iii) the support of ψ is arc
connected.

These conditions are satisfied in a wide range of problems.

4.4 Example: Simulating a truncated multivariate normal

Consider the question of sampling a trivariate normal distribution truncated
to the positive orthant. In particular, suppose that the target distribution is

π(ψ) =
1

Pr(ψ ∈ A)
fN (µ,Σ)I(ψ ∈ A)

∝ fN (µ,Σ)I(ψ ∈ A)

where µ = (.5, 1, 1.5)′, Σ is in equi-correlated form with units on the diagonal
and 0.7 on the off-diagonal, A = (0,∞) × (0,∞) × (0,∞) and Pr(ψ ∈ A)
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Fig. 5. Marginal distributions of ψ in truncated multivariate normal example (top
panel). Histograms of the sampled values and Rao-Blackwellized estimates of the
densities are shown. Autocorrelation plots of the Gibbs MCMC chain are in the
bottom panel. Graphs are based on 10,000 iterations following a burn-in of 500
cycles.

is the normalizing constant which is difficult to compute. In this case, the
Gibbs sampler is defined with the blocks ψ1, ψ2, ψ3 and the full conditional
distributions

π(ψ1|ψ2, ψ3) ;π(ψ2 |ψ1, ψ3) ; π(ψ3|ψ1, ψ2)

where each of the these full conditional distributions is univariate truncated
normal restricted to the interval (0,∞):

π(ψk|ψ−k) ∝ fN (ψk |µk+C′
kΣ

−1
−k(ψ−k−µ−k),Σk−C′

kΣ
−1
−kCk)I(ψk ∈ (0,∞)) ,

(25)
Ck = Cov(ψk, ψ−k), Σ−k = V ar(ψ−k) and µ−k = E(ψ−k). Fig. 5 gives the
marginal distribution of each component of ψk from a Gibbs sampling run of
M = 10000 iterations with a burn-in of 100 cycles. The figures includes both
the histograms of the sampled values and the Rao-Blackwellized estimates of
the marginal densities (see Section 6 below) based on the averaging of (25)
over the simulated values of ψ−k. The agreement between the two density
estimates is close. In the bottom panel of Fig. 5 we plot the autocorrelation
function of the sampled draws. The rapid decline in the autocorrelations for
higher lags indicates that the sampler is mixing well.

5 MCMC Sampling with Latent Variables

In designing MCMC simulations, it is sometimes helpful to modify the target
distribution by introducing latent variables or auxiliary variables into the



22 Siddhartha Chib

sampling. This idea was called data augmentation by Tanner and Wong (1987)
in the context of missing data problems. Slice sampling, which we do not
discuss in this chapter, is a particular way of introducing auxiliary variables
into the sampling, for example see Damien et al. (1999).

To fix notations, suppose that z denotes a vector of latent variables and let
the modified target distribution be π(ψ,z). If the latent variables are tactically
introduced, the conditional distribution of ψ (or sub components of ψ) given
z may be easy to derive. Then, a multiple-block M-H simulation is conducted
with the blocks ψ and z leading to the sample(

ψ(n0+1), z(n0+1)
)
, ...,

(
ψ(n0+M), z(n0+M)

)
∼ π(ψ, z) ,

where the draws on ψ, ignoring those on the latent data, are from π(ψ), as
required.

To demonstrate this technique in action, we return to the probit regression
example discussed in Section 3.2 to show how a MCMC sampler can be de-
veloped with the help of latent variables. The approach, introduced by Albert
and Chib (1993), capitalizes on the simplifications afforded by introducing
latent or auxiliary data into the sampling.

The model is rewritten as

zi|β ∼ N(x′
iβ, 1) ,

yi = I[zi > 0] , i ≤ n ,

β ∼ Nk(β0,B0) . (26)

This specification is equivalent to the probit regression model since

Pr(yi = 1|xi, β) = Pr(zi > 0|xi, β) = Φ(x′
iβ) .

Now the Albert-Chib algorithm proceeds with the sampling of the full condi-
tional distributions

β|y, {zi} ; {zi}|y, β ,
where both these distributions are tractable (i.e., requiring no M-H steps).
In particular, the distribution of β conditioned on the latent data becomes
independent of the observed data and has the same form as in the Gaussian
linear regression model with the response data given by {zi} and is multi-
variate normal with mean β̂ = B(B−1

0 β0 +
∑n
i=1 xizi) and variance matrix

B = (B−1
0 +

∑n
i=1 xix′

i)
−1. Next, the distribution of the latent data condi-

tioned on the data and the parameters factor into a set of n independent
distributions with each depending on the data through yi:

{zi}|y, β d=
n∏
i=1

zi|yi, β ,

where the distribution zi|yi, β is the normal distribution zi|β truncated by
the knowledge of yi; if yi = 0, then zi ≤ 0 and if yi = 1, then zi > 0. Thus,
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one samples zi from T N (−∞,0)(x′
iβ, 1) if yi = 0 and from T N (0,∞)(x′

iβ, 1) if
yi = 1, where T N (a,b)(µ, σ2) denotes the N (µ, σ2) distribution truncated to
the region (a, b).

The results, based on 5000 MCMC draws beyond a burn-in of a 100 iter-
ations, are reported in Fig. 4. The results are close to those presented above,
especially to the ones from the tailored M-H chain.
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Fig. 6. Caesarean data with Albert-Chib algorithm: Marginal posterior densities
(top panel) and autocorrelation plot (bottom panel).

6 Estimation of density ordinates

We mention that if the full conditional densities are available, whether in the
context of the multiple-block M-H algorithm or that of the Gibbs sampler,
then the MCMC output can be used to estimate posterior marginal density
functions (Tanner and Wong, 1987; Gelfand and Smith, 1990). We exploit the
fact that the marginal density of ψk at the point ψ∗

k is

π(ψ∗
k) =

∫
π(ψ∗

k |ψ−k)π(ψ−k)dψ−k

where as before ψ−k = ψ\ψk. Provided the normalizing constant of π(ψ∗
k| ψ−k)

is known, an estimate of the marginal density is available as an average of the
full conditional density over the simulated values of ψ−k:

π̂(ψ∗
k) = M−1

M∑
j=1

π(ψ∗
k |ψ(j)

−k).
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Under the assumptions of Proposition 1,

M−1
M∑
j=1

π(ψ∗
k|ψ(j)

−k) → π(ψ∗
k) , as M → ∞ .

Gelfand and Smith (1990) refer to this approach as Rao-Blackwellization be-
cause of the connections with the Rao-Blackwell theorem in classical statistics.
That connection is more clearly seen in the context of estimating (say) the
mean of ψk, E(ψk) =

∫
ψkπ(ψk)dψk. By the law of the iterated expectation,

E(ψk) = E{E(ψk|ψ−k)}
and therefore the estimates

M−1
M∑
j=1

ψjk

and

M−1
M∑
j=1

E(ψk|ψ(j)
−k)

both converge to E(ψk) as M → ∞. Under iid sampling, and under Markov
sampling provided some conditions are satisfied - see Liu et al. (1994), Casella
and Robert (1996) and Robert and Casella (1999), it can be shown that the
variance of the latter estimate is smaller than that of the former. Thus, it
can help to average the conditional mean E(ψk|ψ−k), if that were available,
rather than average the draws directly. Gelfand and Smith (1990) appeal to
this analogy to argue that the Rao-Blackwellized estimate of the density is
preferable to that based on the method of kernel smoothing. Chib (1995)
extends the Rao-Blackwellization approach to estimate reduced conditional
ordinates defined as the density of ψk conditioned on one or more of the
remaining blocks. Finally, Chen (1994) provides an importance weighted esti-
mate of the marginal density for cases where the conditional posterior density
does not have a known normalizing constant. Chen’s estimator is based on
the identity

π(ψ∗
k) =

∫
w(ψk|ψ−k)

π(ψ∗
k , ψ−k)

π(ψk , ψ−k)
π(ψ)dψ

where w(ψk |ψ−k) is a completely known conditional density whose support is
equal to the support of the full conditional density π(ψk |ψ−k). In this form,
the normalizing constant of the full conditional density is not required and
given a sample of draws {ψ(1), ..., ψ(M)} from π(ψ), a Monte Carlo estimate
of the marginal density is given by

π̂(ψ∗
k) = M−1

M∑
j=1

w(ψ(j)
k |ψ(j)

−k)
π(ψ∗

k , ψ
(j)
−k)

π(ψ(j)
k , ψ

(j)
−k)

.

Chen (1994) discusses the choice of the conditional density w. Since it depends
on ψ−k, the choice of w will vary from one sampled draw to the next.
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7 Sampler performance and diagnostics

In implementing a MCMC method it is important to assess the performance
of the sampling algorithm to determine the rate of mixing and the size of
the burn-in, both having implications for the number of iterations required
to get reliable answers. A large literature has emerged on these issues, for
example, Robert (1995), Tanner (1996, Section 6.3), Cowles and Carlin (1996),
Gammerman (1997, Section 5.4) and Robert and Casella (1999), but the ideas,
although related in many ways, have not coalesced into a single prescription.

One approach for determining sampler performance and the size of the
burn-in time is to employ analytical methods to the specified Markov chain,
prior to sampling. This approach is exemplified in the work of, for example,
Polson (1996), Roberts and Tweedie (1996) and Rosenthal (1995). Two fac-
tors have inhibited the growth and application of these methods. The first is
that the calculations are difficult and problem-specific and, second, the up-
per bounds for the burn-in that emerge from such calculations are usually
conservative.

At this time the more popular approach is to utilize the sampled draws to
assess both the performance of the algorithm and its approach to the invariant
distribution. Several such relatively informal methods are available. Gelfand
and Smith (1990) recommend monitoring the evolution of the quantiles as the
sampling proceeds. Another useful diagnostic, one that is perhaps the most
direct, are autocorrelation plots (and autocorrelation times) of the sampled
output. Slowly decaying correlations indicate problems with the mixing of the
chain. It is also useful in connection with M-H Markov chains to monitor the
acceptance rate of the proposal values with low rates implying “stickiness” in
the sampled values and thus a slower approach to the invariant distribution.

Somewhat more formal sample-based diagnostics are summarized in the
CODA routines provided by Best et al. (1995). Although these diagnostics
often go under the name “convergence diagnostics” they are in principle ap-
proaches that detect lack of convergence. Detection of convergence based en-
tirely on the sampled output, without analysis of the target distribution, is
perhaps impossible. Cowles and Carlin (1996) discuss and evaluate thirteen
such diagnostics (for example, those proposed by Geweke, 1992, Raftery and
Lewis, 1992, Ritter and Tanner, 1992, Gelman and Rubin, 1992, Gelman and
Rubin, 1992, and Zellner and Min, 1995, amongst others) without arriving
at a consensus. Difficulties in evaluating these methods stem from the fact
that some of these methods apply only to Gibbs Markov chains (for example,
those of Ritter and Tanner, 1992, and Zellner and Min, 1995) while others
are based on the output not just of a single chain but on that of multiple
chains specifically run from “disparate starting values” as in the method of
Gelman and Rubin (1992). Finally, some methods assess the behavior of uni-
variate moment estimates (as in the approach of Geweke, 1992, and Gelman
and Rubin, 1992) while others are concerned with the behavior of the entire
transition kernel (as in Ritter and Tanner, 1992, and Zellner and Min, 1995).
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8 Strategies for improving mixing

In practice, while implementing MCMC methods it is important to construct
samplers that mix well, where mixing is measured by the autocorrelation time,
because such samplers can be expected to converge more quickly to the in-
variant distribution. Over the years a number of different recipes for designing
samplers with low autocorrelation times have been proposed although it may
sometimes be difficult, because of the complexity of the problem, to apply any
of these recipes.

8.1 Choice of blocking

As a general rule, sets of parameters that are highly correlated should be
treated as one block when applying the multiple-block M-H algorithm. Oth-
erwise, it would be difficult to develop proposal densities that lead to large
moves through the support of the target distribution.

Blocks can be combined by the method of composition. For example, sup-
pose that ψ1, ψ2 and ψ3 denote three blocks and that the distribution ψ1|ψ3

is tractable (i.e., can be sampled directly). Then, the blocks (ψ1 , ψ2) can be
collapsed by first sampling ψ1 from ψ1|ψ3 followed by ψ2 from ψ2|ψ1, ψ3. This
amounts to a two block MCMC algorithm. In addition, if it is possible to
sample ( ψ1, ψ2) marginalized over ψ3 then the number of blocks is reduced
to one. Liu et al. (1994) and Liu et al. (1994) discuss the value of these strate-
gies in the context of a three-block Gibbs MCMC chains. Roberts and Sahu
(1997) provide further discussion of the role of blocking in the context of Gibbs
Markov chains used to sample multivariate normal target distributions.

8.2 Tuning the proposal density

As mentioned above, the proposal density in a M-H algorithm has an impor-
tant bearing on the mixing of the MCMC chain. Fortunately, one has great
flexibility in the choice of candidate generating density and it is possible to
adapt the choice to the given problem. For example, Chib et al. (1998) develop
and compare four different choices in longitudinal random effects models for
count data. In this problem, each cluster (or individual) has its own random
effects and each of these has to be sampled from an intractable target dis-
tribution. If one lets n denote the number of clusters, where n is typically
large, say in excess of a thousand, then the number of blocks in the MCMC
implementation is n + 3 (n for each of the random effect distributions, two
for the fixed effects and one for the variance components matrix). For this
problem, the multiple-block M-H algorithm requires n + 1 M-H steps within
one iteration of the algorithm. Tailored proposal densities are therefore com-
putationally expensive but one can use a mixture of proposal densities where
a less demanding proposal, for example a random walk proposal, is combined
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with the tailored proposal to sample each of the n random effect target dis-
tributions. Further discussion of mixture proposal densities is contained in
Tierney (1994).

8.3 Other strategies

Other approaches have also been discussed in the literature. Marinari and
Parsi (1992) develop the simulated tempering method whereas Geyer and
Thompson (1995) develop a related technique that they call the Metropolis-
coupled MCMC method. Both these approaches rely on a series of transition
kernels {K1, ..., Km} where only K1 has π∗ as the stationary distribution. The
other kernels have equilibrium distributions πi, which Geyer and Thompson
(1995) take to be πi(ψ) = π(ψ)1/i, i = 2, ..., m. This specification produces a
set of target distributions that have higher variance than π∗. Once the tran-
sition kernels and equilibrium distributions are specified then the Metropolis-
coupled MCMC method requires that each of them kernels be used in parallel.
At each iteration, after the m draws have been obtained, one randomly selects
two chains to see if the states should be swapped. The probability of swap is
based on the M-H acceptance condition. At the conclusion of the sampling,
inference is based on the sequence of draws that correspond to the distribu-
tion π∗. These methods promote rapid mixing because draws from the various
“flatter” target densities have a chance of being swapped with the draws from
the base kernel K1. Thus, variates that are unlikely under the transition K1

have a chance of being included in the chain, leading to more rapid exploration
of the parameter space.

9 Concluding remarks

In this survey we have provided an outline of Markov chain Monte Carlo meth-
ods. These methods provide a set of general recipes for sampling intractable
multivariate distributions and have proved vital in the recent virtually revo-
lutionary evolution and growth of Bayesian statistics. Refinements and exten-
sions of these methods continue to occur. Two recent developments are the
slice sampling method discussed by Mira and Tierney (2002), Damien et al.
(1999) and Roberts and Rosenthal (1999) and the perfect sampling method
proposed by Propp and Wilson (1996). The slice sampling method is based on
the introduction of auxiliary uniform random variables to simplify the sam-
pling and improve mixing while the perfect sampling method uses Markov
chain coupling to generate an exact draw from the target distribution.
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