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1 Robust statistics; Examples and Introduction

1.1 Two examples

The first example involves the real data given in Table 1 which are the results
of an interlaboratory test. The boxplots are shown in Fig. 1 where the dotted
line denotes the mean of the observations and the solid line the median.

Table 1. The results of an interlaboratory test involving 14 laboratories

1 2 3 4 5 6 7 9 9 10 11 12 13 14

1.4 5.7 2.64 5.5 5.2 5.5 6.1 5.54 6.0 5.1 5.5 5.9 5.5 5.3
1.5 5.8 2.88 5.4 5.7 5.8 6.3 5.47 5.9 5.1 5.5 5.6 5.4 5.3
1.4 5.8 2.42 5.1 5.9 5.3 6.2 5.48 6.1 5.1 5.5 5.7 5.5 5.4
0.9 5.7 2.62 5.3 5.6 5.3 6.1 5.51 5.9 5.3 5.3 5.6 5.6

We note that only the results of the Laboratories 1 and 3 lie below the
mean whereas all the remaining laboratories return larger values. In the case
of the median, 7 of the readings coincide with the median, 24 readings are
smaller and 24 are larger. A glance at Fig. 1 suggests that in the absence of
further information the Laboratories 1 and 3 should be treated as outliers.
This is the course which we recommend although the issues involved require
careful thought. For the moment we note simply that the median is a robust
statistic whereas the mean is not.

The second example concerns quantifying the scatter of real valued ob-
servations x1, . . . , xn. This example is partially taken from Huber (1981) and
reports a dispute between Eddington (1914, p.147) and Fisher (1920, p.762)
about the relative merits of
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Fig. 1. A boxplot of the data of Table 1. The dotted line and the solid line denote
respectively the mean and the median of the observations.

sn =

(

1

n

∑

(xi − x̄)2
)

1

2

and dn =
1

n

∑

|xi − x̄|.

Fisher argued that for normal observations the standard deviation sn is about
12% more efficient than the mean absolute deviation dn. In contrast Eddington
claimed that his experience with real data indicates that dn is better than
sn. In Tukey (1960) and Huber (1977) we find a resolution of this apparent
contradiction. Consider the model

Nε =
(

1 − ε)N(µ, σ2) + εN(µ, 9σ2
)

(1)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2

and 0 ≤ ε ≤ 1. For data distributed according to (1) one can calculate the
asymptotic relative efficiency ARE of dn with respect to sn,

ARE(ε) = lim
n→∞

REn(ε) = lim
n→∞

V ar(sn)/E(sn)2

V ar(dn)/E(dn)2
.

As Huber states, the result is disquieting. Already for ε ≥ 0.002 ARE exceeds
1 and the effect is apparent for samples of size 1000. For ε = 0.05 we have
ARE(ε) = 2.035 and simulations show that for samples of size 20 the relative
efficiency exceeds 1.5 and increases to 2.0 for samples of size 100. This is a
severe deficiency of sn as models such as Nε with ε between 0.01 and 0.1 often
give better descriptions of real data than the normal distribution itself. We
quote Huber (1981)
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“thus it becomes painfully clear that the naturally occurring devia-
tions from the idealized model are large enough to render meaningless
the traditional asymptotic optimality theory”.

1.2 General philosophy

The two examples of the previous section illustrate a general phenomenon. An
optimal statistical procedure based on a particular family of models M1 can
differ considerably from an optimal procedure based on another family M2

even though the families M1 and M2 are very close. This may be expressed
by saying that optimal procedures are often unstable in that small changes
in the data or the model can lead to large changes in the analysis. The basic
philosophy of robust statistics is to produce statistical procedures which are
stable with respect to small changes in the data or model and even large
changes should not cause a complete breakdown of the procedure.

Any inspection of the data and the removal of aberrant observations may
be regarded as part of robust statistics but it was only with Pearson (1931)
that the consideration of deviations from models commenced. He showed that
the exact theory based on the normal distribution for variances is highly non-
robust. There were other isolated papers on the problem of robustness (Pear-
son, 1929; Bartlett, 1935; Geary, 1936, 1947; Gayen, 1950; Box, 1953; Box
and Andersen, 1955). Tukey (1960) initiated a wide spread interest in robust
statistics which has continued to this day. The first systematic investigation
of robustness is due to Huber (1964) and was expounded in Huber (1981).
Huber’s approach is functional analytic and he was the first to investigate the
behaviour of a statistical functional over a full topological neighbourhood of
a model instead of restricting the investigation to other parametric families
as in (1). Huber considers three problems. The first is that of minimizing the
bias over certain neighbourhoods and results in the median as the most robust
location functional. For large samples deviations from the model have conse-
quences which are dominated by the bias and so this is an important result.
The second problem is concerned with what Tukey calls the statistical version
of no free lunches. If we take the simple model of i.i.d. N(µ, 1) observations
then the confidence interval for µ based on the mean is on average shorter than
that based on any other statistic. If short confidence intervals are of interest
then one can not only choose the statistic which gives the shortest interval but
also the model itself. The new model must of course still be consistent with
the data but even with this restriction the confidence interval can be made as
small as desired (Davies, 1995). Such a short confidence interval represents a
free lunch and if we do not believe in free lunches then we must look for that
model which maximizes the length of the confidence interval over a given fam-
ily of models. If we take all distributions with variance 1 then the confidence
interval for the N(µ, 1) distribution is the longest. Huber considers the same
problem over the family F = {F : dko(F,N(0, 1)) < ε} where dko denotes
the Kolmogoroff metric. Under certain simplifying assumptions Huber solves
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this problem and the solution is known as the Huber distribution (see Huber,
1981). Huber’s third problem is the robustification of the Neyman-Pearson
test theory. Given two distributions P0 and P1 Neyman and Pearson (1933)
derive the optimal test for testing P0 against P1. Huber considers full neigh-
bourhoods P0 of P0 and P1 of P1 and then derives the form of the minimax
test for the composite hypothesis of P0 against P1. The weakness of Huber’s
approach is that it does not generalize easily to other situations. Neverthe-
less it is the spirit of this approach which we adopt here. It involves treating
estimators as functionals on the space of distributions, investigating where
possible their behaviour over full neighbourhoods and always being aware of
the danger of a free lunch.

Hampel (1968) introduced another approach to robustness, that based on
the influence function I(x, T, F ) defined for a statistical functional T as follows

I(x, T, F ) = lim
ε→0

T ((1 − ε)F + εδx) − T (F )

ε
(2)

where δx denotes the point mass at the point x. The influence function has
two interpretations. On the one hand it measures the infinitesimal influence
of an observation situated at the point x on the value of the functional T .
On the other hand if Pn(F ) denotes the empirical measure of a sample of n
i.i.d. random variables with common distribution F then under appropriate
regularity conditions

lim
n→∞

√
n(T (Pn(F )) − T (F ))

D
= N

(

0,

∫

I(x, T, F )2 dF (x)

)

(3)

where
D
= denotes equality of distribution. Given a parametric family P ′ =

{Pθ : θ ∈ Θ} of distributions we restrict attention to those functionals which
are Fisher consistent that is

T (Pθ) = θ, θ ∈ Θ. (4)

Hampel’s idea was to minimize the asymptotic variance of T as an estimate
of a parameter θ subject to a bound on the influence function

min
T

∫

I(x, T, Pθ)
2 dPθ(x) under (4) and sup

x
|I(x, T, Pθ)| ≤ k(θ) (5)

where k(θ) is a given function of θ. Hampel complemented the infinitesimal
part of his approach by considering also the global behaviour of the functional
T . He introduced the concept of breakdown point which has had and continues
to have a major influence on research in robust statistics. The approach based
on the influence function was carried out in Hampel et al. (1986). The strength
of the Hampel approach is that it can be used to robustify in some sense the
estimation of parameters in any parametric model. The weaknesses are that
(5) only bounds infinitesimally small deviations from the model and that the
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approach does not explicitly take into account the free lunch problem. Hampel
is aware of this and recommends simple models but simplicity is an addition
to and not an integral part of his approach. The influence function is usually
used as a heuristic tool and care must be taken in interpreting the results.
For examples of situations where the heuristics go wrong we refer to Davies
(1993).

Another approach which lies so to speak between that of Huber and Ham-
pel is the so called shrinking neighbourhood approach. It has been worked
out in full generality by Rieder (1994). Instead of considering neighbourhoods
of a fixed size (Huber) or only infinitesimal neighbourhoods (Hampel) this
approach considers full neighbourhoods of a model but whose size decreases
at the rate of n−1/2 as the sample size n tends to infinity. The size of the
neighbourhoods is governed by the fact that for larger neighbourhoods the
bias term is dominant whereas models in smaller neighbourhoods cannot be
distinguished. The shrinking neighbourhoods approach has the advantage that
it does not need any assumptions of symmetry. The disdavantage is that the
size of the neighbourhoods goes to zero so that the resulting theory is only
robustness over vanishingly small neighbourhoods.

1.3 Functional approach

Although a statistic based on a data sample may be regarded as a function of
the data a more general approach is often useful. Given a data set (x1, . . . , xn)
we define the corresponding empirical distribution Pn by

Pn =
1

n

n
∑

i=1

δxi
(6)

where δx denotes the unit mass in x. Although Pn clearly depends on the
sample (x1, . . . , xn) we will usually suppress the dependency for the sake of
clarity. With this notation we can now regard the arithmetic mean x̄n =
∑n

i=1 xi/n either as a function of the data or as a function Tav of the empirical
measure Pn,

x̄n =

∫

xdPn(x) = Tav(Pn).

The function Tav can be extended to all measures P which have a finite mean

Tav(P ) =

∫

xdP (x) (7)

and is now a functional defined on a certain subset of the family P of probabil-
ity measures on R. This manner of treating statistics is one whose origins go
back to von Mises (1937). In the context of robust statistics it was introduced
by Huber (1964) and has proved very useful (see Fernholz, 1983). Another
example is given by the functional Tsh defined as the length of the shortest
interval which carries a mass of at least 1/2
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Tsh(P ) = argmin{|I| : P (I) ≥ 1/2, I ⊂ R} (8)

where |I| denotes the length of the interval I. The idea of using the shortest
half interval goes back to Tukey (see Andrews et al., 1972) who proposed using
the mean of the observations contained in it as a robust location functional.

The space P may be metricized in many ways but we prefer the Kolmogo-
roff metric dko defined by

dko(P,Q) = sup
x∈R

|P ((−∞, x]) −Q((−∞, x])|. (9)

The Glivenko-Cantelli theorem states

lim
n→∞

dko(Pn(P ), P ) = 0, a.s. (10)

where Pn(P ) denotes the empirical measure of the n random variables
X1(P ), . . . , Xn(P ) of the i.i.d. sequence (Xi(P ))∞1 . In conjunction with (10)
the metric dko makes it possible to connect analytic properties of a functional
T and its statistical properties. As a first step we note that a functional T
which is locally bounded in the Kolmogoroff metric

sup{|T (Q)− T (P )| : dko(P,Q) < ε)} <∞ (11)

for some ε > 0 offers protection against outliers. On moving from local bound-
edness to continuity we see that if a functional T is continuous at P then the
sequence T (Pn(P )) is a consistent statistic in that

lim
n→∞

T (Pn(P )) = T (P ), a.s.

Finally we consider a functional T which is differentiable at P , that is

T (Q) − T (P ) =

∫

I(x, P, T ) d(Q− P )(x) + oP (dko(P,Q)) (12)

for some bounded function I(·, P, T ) : R → R where, without loss of generality,
∫

I(x, P, T ) dP (x) = 0 (see Clarke, 1983). On putting

Q = Qε = (1 − ε)P + εδx

it is seen that I(x, P, T ) is the influence function of (2). As

dko(Pn(P ), P ) = OP (1/
√
n) (13)

the central limit theorem (3) follows immediately. Textbooks which make use
of this functional analytic approach are as already mentioned Huber (1981),
Hampel et al. (1986), Rieder (1994), and also Staudte and Sheather (1990) a
book which can be strongly recommended to students as a well written and
at the same time deep introductory text.
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2 Location and scale in R

2.1 Location, scale and equivariance

Changes in measurement units and baseline correspond to affine transforma-
tions on R. We write

A = {A : R → R with A(x) = ax+ b, a 6= 0, b ∈ R}. (14)

For any probability measure P and for any A ∈ A we define

PA(B) = P ({x : A(x) ∈ B}), B ∈ B, (15)

B denoting all Borel sets on R. Consider a subset P ′ of P which is closed
under affine transformations, that is

P ∈ P ′ ⇒ PA ∈ P ′ for all P ∈ P ′, A ∈ A. (16)

A functional Tl : P ′ → R will be called a location functional on P ′ if

Tl(P
A) = A(Tl(P )), A ∈ A, P ∈ P ′. (17)

Similarly we define a functional Ts : P ′ → R+ to be a scale functional if

Ts(P
A) = |a|Ts(P ), A ∈ A, A(x) = ax+ b, P ∈ P ′. (18)

2.2 Existence and uniqueness

The fact that the mean Tav of (7) cannot be defined for all distributions is
an indication of its lack of robustness. More precisely the functional Tav is
not locally bounded (11) in the metric dko at any distribution P. The median
MED(P ) can be defined at any distribution P as the mid-point of the interval
of m-values for which

P ((−∞,m]) ≥ 1/2 and P ([m,∞)) ≥ 1/2. (19)

Similar considerations apply to scale functionals. The standard deviation re-
quires the existence of the second moment of a distribution. The median
absolute deviation MAD (see Andrews et al., 1972) of a distribution can be
well defined at all distributions as follows. Given P we define P ′ by

P ′(B) = P ({x : |x− MED(P )| ∈ B}), B ∈ B.

and set
MAD(P ) = MED(P ′). (20)
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2.3 M-estimators

An important family of statistical functionals is the family of M-functionals
introduced by Huber (1964) Let ψ and χ be functions defined on R with values
in the interval [−1, 1]. For a given probability distribution P we consider the
following two equations for m and s

∫

ψ

(

x−m

s

)

dP (x) = 0 (21)

∫

χ

(

x−m

s

)

dP (x) = 0. (22)

If the solution exists and is uniquely defined we denote it by

T (P ) = (Tl(P ), Ts(P )) = (m, s).

In order to guarantee existence and uniqueness conditions have to be placed
on the functions ψ and χ as well as on the probability measure P . The ones
we use are due to Scholz (1971) (see also Huber, 1981) and are as follows:

(ψ1) ψ(−x) = −ψ(x) for all x ∈ R.
(ψ2) ψ is strictly increasing
(ψ3) limx→∞ ψ(x) = 1

(ψ4) ψ is continuously differentiable with derivative ψ(1).

(χ1) χ(−x) = χ(x) for all x ∈ R.
(χ2) χ : R+ → [−1, 1] is strictly increasing
(χ3) χ(0) = −1
(χ4) limx→∞ χ(x) = 1

(χ5) χ is continuously differentiable with derivative χ(1).

(ψχ1) χ(1)/ψ(1) : R+ → R+ is strictly increasing

If these conditions hold and P satisfies

∆(P ) = max
x

P ({x}) < 1/2 (23)

then the equations (21) and (22) have precisely one solution. If we set

P ′ = {P : ∆(P ) < 1/2}
then P ′ satisfies (16) and Tl : P ′ → R and Ts : P ′ → R+ are a location and a
scale functional respectively. Two functions which satisfy the above conditions
are

ψ(x) =
exp(x/c) − 1

exp(x/c) + 1
(24)

χ(x) =
x4 − 1

x4 + 1
(25)
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where c < 0.39 is a tuning parameter. The restriction on c is to guarantee
(ψχ1). Algorithms for calculating the solution of (21) and (22) are given in
the Fortran library ROBETH (Marazzi, 1992) which also contains many other
algorithms related to robust statistics.

The main disadvantage of M-functionals defined by (21) and (22) is (ψχ1)
which links the location and scale parts in a manner which may not be de-
sirable. In particular there is a conflict between the breakdown behaviour
and the efficiency of the M-functional (see below). There are several ways of
overcoming this. One is to take the scale function Ts and then to calculate a
second location functional by solving

∫

ψ̃

(

x−m

Ts(P )

)

dP (x) = 0. (26)

If now ψ̃ satisfies (ψ1)-(ψ4) then this new functional will exist only under
the assumption that the scale functional exists and is non-zero. Furthermore
the functional can be made as efficient as desired by a suitable choice of ψ̃ re-
moving the conflict between breakdown and efficiency. One possible choice for
Ts(P ) is the MAD of (20) which is simple, highly robust and which performed
well in the Princeton robustness study (Andrews et al., 1972).

In some situations there is an interest in downweighting outlying observa-
tions completely rather than in just bounding their effect. A downweighting to
zero is not possible for a ψ-function which satisfies (ψ2) but can be achieved
by using so called redescending ψ-functions such as Tukey’s biweight

ψ̃(x) = x(1 − x2)2{|x| ≤ 1}. (27)

In general there will be many solutions of (26) for such ψ-functions and to
obtain a well defined functional some choice must be made. One possibility is
to take the solution closest to the median, another is to take

argminm

∫

ρ

(

x−m

Ts(P )

)

dP (x) (28)

where ρ(1) = ψ̃. Both solutions pose algorithmic problems. The effect of down-
weighting outlying observations to zero can be attained by using a so called
one-step functional Tom defined by

Tom(P ) = Tm(P ) + Ts(P )

∫

ψ̃
(

x−Tm(P )
Ts(P )

)

dP (x)

∫

ψ̃(1)
(

x−Tm(P )
Ts(P )

)

dP (x)
(29)

where Tm is as above and ψ̃ is redescending. We refer to Hampel et al. (1986)
and Rousseeuw and Croux (1994) for more details.

So far all scale functionals have been defined in terms of a deviation from a
location functional. This link can be broken as follows. Consider the functional
Tss defined to be the solution s of
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∫

χ

(

x− y

s

)

dP (x) dP (y) = 0. (30)

where χ satisfies the conditions above. It may be shown that the solution is
unique with 0 < s <∞, if

∑

ai

P ({ai})2 < 1/4 (31)

where the ai denote the countably many atoms of P. The main disadvantage
of this method is the computational complexity of (30) requiring as it does
O(n2) operations for a sample of size n. If χ is of the form

χ(x) =

{

a > 0, |x| > 1,
b < 0, |x| ≤ 1

then Tss reduces to a quantile of the |xi − xj | and much more efficient al-
gorithms exist which allow the functional to be calculated in O(n logn) op-
erations (see Croux and Rousseeuw, 1992, Rousseeuw and Croux, 1992, and
Rousseeuw and Croux, 1993).

Although we have defined M -functionals as a solution of (21) and (22)
there are sometimes advantages in defining them as a solution of a minimiza-
tion problem. Consider the Cauchy distribution with density

f(x : µ, σ) =
1

π

σ

σ2 + (x− µ)2
. (32)

We now define T c(P ) = (Tcm(P ), Tcs(P )) by

T c(P ) = argmin(m,s)

(

−
∫

log(f(x : m, s)) dP (x) +
1

2
log(s)

)

. (33)

This is simply the standard maximum likelihood estimate for a Cauchy dis-
tribution but there is no suggestion here that the data are so distributed. If
∆(P ) < 1/2 it can be shown that the solution exists and is unique. Moreover
there exists a simple convergent algorithm for calculating (Tcm(P ), Tcs(P ))
for a data sample. We refer to Kent and Tyler (1991) for this and the multidi-
mensional case to be studied below. By differentiating the right hand side of
(33) it is seen that (Tcm(P ), Tcs(P )) may be viewed as an M-functional with
a redescending ψ-function.

Another class of functionals defined by a minimization problem is the class
of S-functionals. Given a function ρ : R → [0, 1] which is symmetric, continu-
ous on the right and non-increasing on R+ with ρ(1) = 1 and limx→∞ ρ(x) = 0.
We define (Tsm(P ), Tss(P )) by

(Tsm(P ), Tss(P )) = argmin(m,s)

{

s :

∫

ρ((x−m)/s) dP (x) ≥ 1/2

}

. (34)
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A special case is a minor variation of the shortest-half functional of (8) which
is obtained by taking ρ to be the indicator function of the interval [0, 1). Al-
though the existence of solutions of (34) is guaranteed if ∆(P ) < 1/2 the
problem of uniqueness is not trivial and requires the existence of a density
subject to certain conditions. If ρ is smooth then by differentiation it is seen
that (Tsm(P ), Tss(P )) may be regarded as an M-functional with a redescend-
ing ψ-function given by ψ̃ = ρ(1). The minimization problem (34) acts as a
choice function. We refer to Davies (1987).

2.4 Bias and breakdown

Given a location functional Tl the bias is defined by

b(Tl, P, ε, dko) = sup{|Tl(Q) − Tl(P )| : dko(P,Q) < ε} (35)

where by convention Tl(Q) = ∞ if Tl is not defined atQ. For a scale functional
Ts we set

b(Ts, P, ε, dko) = sup{| log(Ts(Q)/Ts(P ))| : dko(P,Q) < ε} (36)

where again by convention Ts(Q) = ∞ if Ts is not defined at Q. A popu-
lar although weaker form of bias function based on the so called gross error
neighbourhood is given by

b(Tl, P, ε,GE) = sup{|Tl(Q) − Tl(P )| : Q = (1 − ε)P + εH,H ∈ P} (37)

with a corresponding definition for b(Ts, P, ε,GE). We have

b(Tl, P, ε,GE) ≤ b(Tl, P, ε, dko). (38)

We refer to Huber (1981) for more details.
The breakdown point ε∗(Tl, P, dko) of Tl at P with respect to dko is defined

by
ε∗(Tl, P, dko) = sup{ε : b(Tl, P, ε, dko) <∞} (39)

with the corresponding definitions for scale functionals and the gross error
neighbourhood. Corresponding to (38) we have

ε∗(Tl, P, dko) ≤ ε∗(Tl, P,GE). (40)

If a functional Tl has a positive breakdown point at a distribution P then
it exhibits a certain degree of stability in a neighbourhood of P as may be
seen as follows. Consider a sample x1, . . . , xn and add to it k further obser-
vations xn+1, . . . , xn+k. If Pn and Pn+k denote the empirical measures based
on x1, . . . , xn and x1, . . . , xn+k respectively then dko(Pn, Pn+k) ≤ k/(n+ k).
In particular if k/(n + k) < ε∗(Tl, Pn, dko) then it follows that Tl(Pn+k) re-
mains bounded whatever the added observations . This finite sample concept
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of breakdown was introduced by Donoho and Huber (1983). Another version
replaces k observations by other values instead of adding k observations and
is as follows. Let xk

1 , . . . , x
k
n denote a sample differing from x1, . . . , xn in at

most k readings. We denote the empirical distributions by P k
n and define

ε∗(Tl, Pn, fsbp) = max{k/n : |Tl(P
k
n )| <∞} (41)

where P k
n ranges over all possible xk

1 , . . . , x
k
n. This version of the finite sample

breakdown point is called the replacement version as k of the original obser-
vations can be replaced by arbitrary values. The two breakdown points are
related (see Zuo, 2001). There are corresponding versions for scale functionals.

For location and scale functionals there exist upper bounds for the break-
down points. For location functionals Tl we have

Theorem 1.

ε∗(Tl, P, dko) ≤ 1/2, (42)

ε∗(Tl, P,GE) ≤ 1/2, (43)

ε∗(Tl, Pn, fsbp) ≤ bn/2c/n. (44)

We refer to Huber (1981) It may be shown that all breakdown points of the
mean are zero whereas the median attains the highest possible breakdown
point in each case.The corresponding result for scale functionals is more com-
plicated. Whereas we know of no reasonable metric in (42) of Theorem 1 which
leads to a different upper bound this is not the case for scale functionals. Hu-
ber (1981) shows that for the Kolmogoroff metric dko the corresponding upper
bound is 1/4 but is 1/2 for the gross error neighbourhood. If we replace the
Kolmogoroff metric dko by the standard Kuiper metric dku defined by

dku(P,Q) = sup{|P (I) −Q(I)| : I an interval} (45)

then we again obtain an upper bound of 1/2. For scale functionals Ts we have

Theorem 2.

ε∗(Ts, P, dku) ≤ (1 −∆(P ))/2, (46)

ε∗(Ts, P,GE) ≤ (1 −∆(P ))/2, (47)

ε∗(Ts, Pn, fsbp) ≤ (1 −∆(P ))/2. (48)

Similarly all breakdown points of the standard deviation are zero but, in
contrast to the median, the MAD does not attain the upper bounds of (44).
We have

ε∗(MAD,Pn, fsbp) = max{0, 1/2 −∆(Pn)}.
A simple modification of the MAD, namely
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MMAD(P ) = min{|I| : P̃ (I) ≥ (1 +∆(I))/2} (49)

where P̃ (B) = P ({x : |x − MED(P )| ∈ B}) and ∆(I) = max{P ({x}), x ∈ I}
can be shown to obtain the highest possible finite sample breakdown point of
(48).

The M-functional defined by (21) and (22) has a breakdown point ε∗ which
satisfies

ψ−1

(

ε∗

1 − ε∗

)

= χ−1

( −ε∗
1 − ε∗

)

(50)

(see Huber, 1981). For the functions defined by (24) and (25) the breakdown
point is a decreasing function of c. As c tends to zero the breakdown point
tends to 1/2. Indeed, as c tends to zero the location part of the functional tends
to the median. For c = 0.2 numerical calculations show that the breakdown
point is 0.48. The calculation of breakdown points is not always simple. We
refer to Huber (1981) and Gather and Hilker (1997).

The breakdown point is a simple but often effective measure of the ro-
bustness of a statistical functional. It does not however take into account the
size of the bias. This can be done by trying to quantify the minimum bias
over some neighbourhood of the distribution P and if possible to identify a
functional which attains it. We formulate this for P = N(0, 1) and consider
the Kolmogoroff ball of radius ε. We have (Huber, 1981)

Theorem 3. For every ε < 1/2 we have

b(MED,P, ε, dko) ≤ b(Tl, P, ε, dko)

for any translation functional Tl.

In other words the median minimizes the bias over any Kolmogoroff neigh-
bourhood of the normal distribution. This theorem can be extended to other
symmetric distributions and to other situations (Riedel, 1989a,b). It is more
difficult to obtain such a theorem for scale functionals because of the lack of
a property equivalent to symmetry for location. Nevertheless some results in
this direction have been obtained and indicate that the length of the shortest
half Tsh of (8) has very good bias properties (Martin and Zamar, 1993b).

2.5 Confidence intervals and differentiability

Given a sample x1, . . . , xn with empirical measure Pn we can calculate a
location functional Tl(Pn) which in some sense describes the location of the
sample. Such a point value is rarely sufficient and in general should be supple-
mented by a confidence interval, that is a range of values consistent with the
data. If Tl is differentiable (12) and the data are i.i.d. random variables with
distribution P then it follows from (3) (see Section 1.3) that an asymptotic
α-confidence interval for Tl(P ) is given by

[Tl(Pn(P ))−z((1+α)/2)Σ(P )/
√
n, Tl(Pn(P ))+z((1+α)/2)Σ(P )/

√
n]. (51)
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Here z(α) denotes the α-quantile of the standard normal distribution and

Σ(P )2 =

∫

I(x, Tl, P )2 dP (x). (52)

At first glance this cannot lead to a confidence interval as P is unknown. If
however Σ(P ) is also Fréchet differentiable at P then we can replace Σ(P )
by Σ(Pn(P )) with an error of order OP (1/

√
n). This leads to the asymptotic

α-confidence interval

[Tl(Pn(P ))−z((1+α)/2)Σ(Pn(P ))/
√
n, Tl(Pn(P ))+z((1+α)/2)Σ(Pn(P ))/

√
n].

(53)
A second problem is that (53) depends on asymptotic normality and the ac-
curacy of the interval in turn will depend on the rate of convergence to the
normal distribution which in turn may depend on P . Both problems can be
overcome if Tl is locally uniformly Fréchet differentiable at P. If we consider
the M-functionals of Section 2.3 then they are locally uniformly Fréchet dif-
ferentiable if the ψ- and χ-functions are sufficiently smooth (see Bednarski
et al., 1991, Bednarski, 1993, Bednarski and Clarke, 1998, and Davies, 1998).
The influence function I(·, Tl, P ) is given by

I(x, Tl, P ) = Ts(P )
D(P )ψ̃

(

x−Tl(P )
Ts(P )

)

−B(P )χ
(

x−Tl(P )
Ts(P )

)

A(P )D(P ) −B(P )C(P )
(54)

where

A(P ) =

∫

ψ̃(1)

(

x− Tl(P )

Ts(P )

)

dP (x) (55)

B(P ) =

∫ (

x− Tl(P )

Ts(P )

)

ψ̃(1)

(

x− Tl(P )

Ts(P )

)

dP (x) (56)

C(P ) =

∫

χ(1)

(

x− Tl(P )

Ts(P )

)

dP (x) (57)

D(P ) =

∫ (

x− Tl(P )

Ts(P )

)

χ(1)

(

x− Tl(P )

Ts(P )

)

dP (x). (58)

Simulations suggest that the covering probabilities of the confidence interval
(53) are good for sample sizes of 20 or more as long as the distribution P is
almost symmetric. For the sample x1, . . . , xn this leads to the interval

[Tl(Pn) − z((1 + α)/2)Σ(Pn)/
√
n, Tl(Pn) + z((1 + α)/2)Σ(Pn)/

√
n] (59)

with Σ(P ) given by (52) and I(x, Tl, P ) by (54). Similar intervals can be
obtained for the variations on M-functionals discussed in Section 2.3.

2.6 Efficiency and bias

The precision of the functional T at the distribution P can be quantified by
the length 2z((1+α)/2)Σ(P )/

√
n of the asymptotic confidence interval (51).
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As the only quantity which depends on T is Σ(P ) we see that an increase
in precision is equivalent to reducing the size of Σ(P ). The question which
naturally arises is then that of determining how small Σ(P ) can be made. A
statistical functional which attains this lower bound is asymptotically optimal
and if we denote this lower bound byΣopt(P ), the efficiency of the functional T
can be defined as Σopt(P )2/Σ(P )2. The efficiency depends on P and we must
now decide which P or indeed P s to choose. The arguments given in Section
1.2 suggest choosing a P which maximizes Σopt(P ) over a class of models. This
holds for the normal distribution which maximizes Σopt(P ) over the class of
all distributions with a given variance. For this reason and for simplicity and
familiarity we shall take the normal distribution as the reference distribution.
If a reference distribution is required which also produces outliers then the
slash distribution is to be preferred to the Cauchy distribution. We refer to
Cohen (1991) and the discussion given there.

If we consider the M-functionals defined by (24) and (25) the efficiency at
the normal distribution is an increasing function of the tuning parameter c. As
the breakdown point is a decreasing function of c this would seem to indicate
that there is a conflict between efficiency and breakdown point. This is the
case for the M-functional defined by (24) and (25) and is due to the linking of
the location and scale parts of the functional. If this is severed by, for example,
recalculating a location functional as in (26) then there is no longer a conflict
between efficiency and breakdown. As however the efficiency of the location
functional increases the more it behaves like the mean with a corresponding
increase in the bias function of (35) and (37). The conflict between efficiency
and bias is a real one and gives rise to an optimality criterion, namely that
of minimizing the bias subject to a lower bound on the efficiency. We refer to
Martin and Zamar (1993a).

2.7 Outliers in R

One of the main uses of robust functionals is the labelling of so called outliers
(see Barnett and Lewis, 1994, Hawkins, 1980, Atkinson, 1994, Gather, 1990,
Gather et al., 2003, and Simonoff, 1984, 1987). In the data of Table 1 the
laboratories 1 and 3 are clearly outliers which should be flagged. The discus-
sion in Section 1.1 already indicates that the mean and standard deviation
are not appropriate tools for the identification of outliers as they themselves
are so strongly influenced by the very outliers they are intended to identify.
We now demonstrate this more precisely. One simple rule is to classify all
observations more than three standard deviations from the mean as outliers.
A simple calculation shows that this rule will fail to identify 10% arbitrarily
large outliers with the same sign. More generally if all observations more than
λ standard deviations from the mean are classified as outliers then this rule
will fail to identify a proportion of 1/(1+λ2) outliers with the same sign. This
is known as the masking effect (Pearson and Chandra Sekar, 1936) where the
outliers mask their presence by distorting the mean and, more importantly,
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the standard deviation to such an extent as to render them useless for the
detection of the outliers. One possibility is to choose a small value of λ but
clearly if λ is too small then some non-outliers will be declared as outliers. In
many cases the main body of the data can be well approximated by a normal
distribution so we now investigate the choice of λ for samples of i.i.d. normal
random variables. One possibility is to choose λ dependent on the sample size
n so that with probability say 0.95 no observation will be flagged as an outlier.
This leads to a value of λ of about

√

2 log(n) (Davies and Gather, 1993) and
the largest proportion of one-sided outliers which can be detected is approx-
imately 1/(1 + 2 log(n)) which tends to zero with n. It follows that there is
no choice of λ which can detect say 10% outliers and at the same time not
falsely flag non-outliers. In order to achieve this the mean and standard devi-
ation must be replaced by functionals which are less effected by the outliers.
In particular these functionals should be locally bounded (11). Considerations
of asymptotic normality or efficiency are of little relevance here. Two obvious
candidates are the median and MAD and if we use them instead of the mean
and standard deviation we are led to the identification rule (Hampel, 1985)
of the form

|xi − MED(xn)| ≥ λMAD(xn). (60)

Hampel (1975) proposed setting λ = 5.2 as a general all purpose value. The
concept of an outlier cannot in practice be very precise but in order to com-
pare different identification rules we require a precise definition and a precise
measure of performance. To do this we shall restrict attention to the normal
model as one which is often reasonable for the main body of data. In other
situations such as waiting times the exponential distribution may be more ap-
propriate. The following is based on Davies and Gather (1993). To define an
outlier we introduce the concept of an α- outlier. For the normal distribution
N(µ, σ2) and α ∈ (0, 1) we define the α-outlier region by

out(α,N(µ, σ2)) = {x ∈ R : |x− µ| > σ z1−α/2}. (61)

which is just the union of the lower and the upper α/2-tail regions. Here
z1−α/2 denotes the 1 − α/2-quantile of the standard normal distribution. For
the exponential distribution Exp(λ) with parameter λ we set

out(α,Exp(λ)) = {x ∈ R : x > −λ lnα} (62)

which is the upper α-tail region (Gather and Schultze, 1999). The extension
to other distributions P is clear. Each point located in the outlier region is
called an α-outlier, otherwise it is called an α-inlier. This definition of an
outlier refers only to its position in relation to the statistical model for the
good data. No assumptions are made concerning the distribution of these
outliers or the mechanism by which they are generated.

We can now formulate the task of outlier identification for the normal
distribution as follows: For a given sample xn = (x1, . . . , xn) which contains
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at least [n/2]+1 i.i.d. observations distributed according to N(µ, σ2), we have
to find all those xi that are located in out(α,N(µ, σ2)). The level α can be
chosen to be dependent on the sample size. If for some α̃ ∈ (0, 1) we set

α = αn = 1 − (1 − α̃)1/n, (63)

then the probability of finding at least one observation of a N(µ, σ2)−sample
of size n within out(αn, N(µ, σ2)) is not larger than α̃. Consider now the
general Hampel identifier which classifies all observations xi in

ORH(xn, αn) = {x ∈ R : |x−Med(xn)| > gn(αn) MAD(xn)} (64)

as outliers. The region ORH(xn, αn) may be regarded as an empirical version
of the outlier region out(αn, N(µ, σ2)). The constant gn(αn) standardizes the
behaviour of the procedure for i.i.d. normal samples which may be done in
several ways. One is to determine the constant so that with probability at
least 1 − α̃ no observation Xi is identified as an outlier, that is

P
(

Xi /∈ OR(Xn, αn), i = 1, . . . , n
)

≥ 1 − α̃. (65)

A second possibility is to require that

P
(

OR(Xn, αn) ⊂ out(αn, P )
)

≥ 1 − α̃. (66)

If we use (65) and set α̃ = 0.05 then for n = 20, 50 and 100 simulations give
gn(αn) = 5.82, 5.53 and 5.52 respectively. For n > 10 the normalizing con-
stants gn(αn) can also be approximated according to the equations given in
Section 5 of Gather (1990).
To describe the worst case behaviour of an outlier identifier we can look at the
largest nonidentifiable outlier, which it allows. From Davies and Gather (1993)
we report some values of this quantity for the Hampel identifier (HAMP) and
contrast them with the corresponding values of a sophisticated high break-
down point outwards testing identifier (ROS), based on the non-robust mean
and standard deviation (Rosner, 1975; Tietjen and Moore, 1972). Both iden-
tifiers are standardized by (65) with α̃ = 0.05. Outliers are then observa-
tions with absolute values greater than 3.016(n = 20), 3.284(n = 50) and
3.474(n = 100). For k = 2 outliers and n = 20 the average sizes of the largest
non-detected outlier are 6.68 (HAMP) and 8.77 (ROS), for k = 5 outliers and
n = 50 the corresponding values are 4.64 (HAMP) and 5.91 (ROS) and finally
for k = 15 outliers and n = 100 the values are 5.07 (HAMP) and 9.29 (ROS).

3 Location and scale in R
k

3.1 Equivariance and metrics

In Section 2.1 we discussed the equivariance of estimators for location and
scale with respect to the affine group of transformations on R. This carries
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over to higher dimensions although here the requirement of affine equivariance
lacks immediate plausibility. A change of location and scale for each individ-
ual component in R

k is represented by an affine transformation of the form
Λ(x) + b where Λ is a diagonal matrix. A general affine transformation forms
linear combinations of the individual components which goes beyond argu-
ments based on units of measurement. The use of affine equivariance reduces
to the almost empirical question as to whether the data, regarded as a cloud
of points in R

k, can be well represented by an ellipsoid. If this is the case as
it often is then consideration of linear combinations of different components
makes data analytical sense. With this proviso in mind we consider the affine
group A of transformations of R

k into itself,

A = {A : A(x) = A(x) + b} (67)

where A is a non-singular k × k-matrix and b is an arbitrary point in R
k.

Let P ′
k denote a family of distributions over R

k which is closed under affine
transformations

P ∈ P ′
k ⇒ PA ∈ P ′

k, for all A ∈ A. (68)

A function Tl : P ′
k → R

k is called a location functional if it is well defined and

Tl(P
A) = A(Tl(P )), for all A ∈ A, P ∈ P ′

k. (69)

A functional Ts : P ′
k → Σk where Σk denotes the set of all strictly positive

definite symmetric k × k matrices is called a scale or scatter functional if

Ts(P
A) = ATl(P )A>, for all A ∈ A, P ∈ P ′

k with A(x) = A(x) + b. (70)

The requirement of affine equivariance is a strong one as we now indicate.
The most obvious way of defining the median of a k-dimensional data set is
to define it by the medians of the individual components. With this definition
the median is equivariant with respect to transformations of the form Λ(x)+b
with Λ a diagonal matrix but it is not equivariant for the affine group. A second
possibility is to define the median of a distribution P by

MED(P ) = argminµ

∫

(‖x− µ‖ − ‖x‖) dP (x).

With this definition the median is equivariant with respect to transformations
of the form x → O(x) + b with O an orthogonal matrix but not with respect
to the affine group or the group x → Λ(x) + b with Λ a diagonal matrix.
The conclusion is that there is no canonical extension of the median to higher
dimensions which is equivariant with respect to the affine group.

In Section 2 use was made of metrics on the space of probability distri-
butions on R. We extend this to R

k where all metrics we consider are of the
form
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dC(P,Q) = sup
C∈C

|P (C) −Q(C)| (71)

where C is a so called Vapnik-Cervonenkis class (see for example Pollard
(1984)). (see for example Pollard, 1984). The class C can be chosen to suit the
problem. Examples are the class of all lower dimensional hyperplanes

H = {H : H lower dimensional hyperplane} (72)

and the class of all ellipsoids

E = {E : E an ellipsoid}. (73)

These give rise to the metrics dH and dE respectively. Just as in R metrics
dC of the form (71) allow direct comparisons between empirical measures and
models. We have

dC(Pn(P ), P ) = O(1/
√
n) (74)

uniformly in P (see Pollard, 1984).

3.2 M-estimators of location and scale

Given the usefulness of M-estimators for one dimensional data it seems natural
to extend the concept to higher dimensions. We follow Maronna (1976). For
any positive definite symmetric k×k-matrix Σ we define the metric d(·, · : Σ)
by

d(x, y : Σ)2 = (x− y)>Σ−1(x− y), x, y ∈ R
k.

Further, let u1 and u2 be two non-negative continuous functions defined on
R+ and be such that sui(s), s ∈ R+, i = 1, 2 are both bounded. For a given
probability distribution P on the Borel sets of R

k we consider in analogy to
(21) and (22) the two equations in µ and Σ

∫

(x − µ)u1(d(x, µ;Σ)) dP = 0 (75)

∫

u2(d(x, µ;Σ)2)(x− µ)(x − µ)> dP = 0. (76)

Assuming that at least one solution (µ,Σ) exists we denote it by TM (P ) =
(µ,Σ). The existence of a solution of (75) and (76) can be shown under weak
conditions as follows. If we define

∆(P ) = max{P (H) : H ∈ H} (77)

with H as in (73) then a solution exists if ∆(P ) < 1 − δ where δ depends
only on the functions u1 and u2 (Maronna, 1976). Unfortunately the problem
of uniqueness is much more difficult than in the one-dimensional case. The
conditions placed on P in Maronna (1976) are either that it has a density
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fP (x) which is a decreasing function of ‖x‖ or that it is symmetric P (B) =
P (−B) for every Borel set B. Such conditions do not hold for real data sets
which puts us in an awkward position. Furthermore without existence and
uniqueness there can be no results on asymptotic normality and consequently
no results on confidence intervals. The situation is unsatisfactory so we now
turn to the one class of M -functionals for which existence and uniqueness
can be shown. The following is based on Kent and Tyler (1991) and is the
multidimensional generalization of (33). The k-dimensional t-distribution with
density fk,ν(· : µ,Σ) is defined by

fk,ν(x : µ,Σ) =
Γ (1

2 (ν + k))

(νk)k/2Γ (1
2ν)

|Σ|− 1

2

(

1 +
1

ν
(x− µ)topΣ−1(x− µ)

)− 1

2
(ν+k)

(78)
and we consider the minimization problem

TM (p) = (Tl(P ), Ts(P )) = argminµ,Σ

∫

fk,ν(x : µ,Σ) dP (x) +
1

2
log(|Σ|)

(79)
where |Σ| denotes the determinant of the positive definite matrix Σ. For
any distribution P on the Borel sets of R

k we define ∆(P ) which is the k-
dimensional version of (23). It can be shown that if ∆(P ) < 1/2 then (79) has
a unique solution. Moreover for data sets there is a simple algorithm which
converges to the solution. On differentiating the right hand side of (79) it is
seen that the solution is an M-estimator as in (75) and (76). Although this
has not been proven explicitly it seems clear that the solution will be locally
uniformly Fréchet differentiable, that is, it will satisfy (12) where the influence
function I(x, TM , P ) can be obtained as in (54) and the metric dko is replaced
by the metric dH. This together with (74) leads to uniform asymptotic normal-
ity and allows the construction of confidence regions. The only weakness of the
proposal is the low gross error breakdown point ε∗(TM , P,GE) defined below
which is at most 1/(k+1). This upper bound is shared with the M-functionals
defined by (75) and (76) (Maronna, 1976). The problem of constructing high
breakdown functionals in k dimensions will be discussed below.

3.3 Bias and breakdown

The concepts of bias and breakdown developed in Section 2.4 carry over to
higher dimensions. Given a metric d on the space of distributions on R

k and
a location functional Tl we follow (37) and define

b(Tl, P, ε, d) = sup{‖Tl(Q)‖ : d(P,Q) < ε} (80)

and

b(Tl, P, ε,GE) = sup{‖Tl(Q)‖ : Q = (1 − ε)P + εG, G ∈ P} (81)
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where by convention ‖Tl(Q)‖ = ∞ if Tl is not defined at Q. The extension to
scale functionals is not so obvious as there is no canonical definition of bias.
We require a measure of difference between two positive definite symmetric
matrices. For reasons of simplicity and because it is sufficient for our purposes
the one we take is | log (|Σ1|/|Σ2|) |. Corresponding to (36) we define

b(Ts, P, ε, d) = sup{| log(|Ts(Q)|/|Ts(P )|)| : d(P,Q) < ε} (82)

and

b(Ts, P, ε,GE) = sup{| log(|Ts(Q)|/|Ts(P )|)| : Q = (1 − ε)P + εG, G ∈ P}.
(83)

Most work is done using the gross error model (81)and (83). The breakdown
points of Tl are defined by

ε∗(Tl, P, d) = sup{ε : b(Tl, P, ε, d) <∞} (84)

ε∗(Tl, P,GE) = sup{ε : b(Tl, P, ε,GE) <∞} (85)

ε∗(Tl, Pn, fsbp) = max{k/n : |Tl(P
k
n )| <∞} (86)

where (86) corresponds in the obvious manner to (41). The breakdown points
for the scale functional Ts are defined analogously using the bias functional
(82). We have

Theorem 4. For any translation equivariant functional Tl

ε∗(Tl, P, dH) ≤ 1/2 and ε∗(Tl, Pn, fsbp) ≤ bn/2c/n (87)

and for any affine equivariant scale functional

ε∗(Ts, P, dE ) ≤ (1 −∆(P ))/2 and ε∗(Ts, Pn, fsbp) ≤ (1 −∆(Pn))/2. (88)

In Section 2.4 it was shown that the M-estimators of Section 2.3 can attain
or almost attain the upper bounds of Theorem 1. Unfortunately this is not
the case in k dimensions where as we have already mentioned the breakdown
points of M-functionals of Section 3.2 are at most 1/(k + 1). In recent years
much research activity has been directed towards finding high breakdown
affinely equivariant location and scale functionals which attain or nearly attain
the upper bounds of Theorem 4. This is discussed in the next section.

3.4 High breakdown location and scale functionals in R
k

The first high breakdown affine equivariant location and scale functionals were
proposed independently of each other by Stahel (1981) and Donoho (1982).
They were defined for empirical data but the construction can be carried over
to measures satisfying a certain weak condition. The idea is to project the
data points onto lines through the origin and then to determine which points
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are outliers with respect to this projection using one-dimensional functions
with a high breakdown point. More precisely we set

o(xi, θ) = |x>i θ − MED(x>1 θ, . . . , x
>
n θ)|/MAD(x>1 θ, . . . , x

>
n θ) (89)

and
o(xi) = sup{o(xi, θ) : ‖θ‖ = 1}. (90)

This is a measure for the outlyingness of the point xi and it may be checked
that it is affine invariant. Location and scale functionals may now be obtained
by taking for example the mean and the covariance matrix of those bn/2+1c
observations with the smallest outlyingness measure. Although (90) requires
a supremum over all values of θ this can be reduced for empirical distributions
as follows. Choose all linearly independent subsets xi1 , . . . , xik

of size k and
for each such subset determine a θ which is orthogonal to their span. If the
sup in (90) is replaced by a maximum over all such θ then the location and
scale functionals remain affine equivariant and retain the high breakdown
point. Although this requires the consideration of only a finite number of
directions namely at most

(

n
k

)

this number is too large to make it a practicable
possibility even for small values of n and k. The problem of calculability
has remained with high breakdown methods ever since and it is their main
weakness. There are still no high breakdown affine equivariant functionals
which can be calculated exactly except for very small data sets. Huber (1995)
goes as far as to say that the problem of calculability is the breakdown of high
breakdown methods. This is perhaps too pessimistic but the problem remains
unsolved.

Rousseeuw (1985) introduced two further high breakdown location and
scale functionals as follows. The first, the so called minimum volume ellip-
soid (MVE) functional, is a multidimensional version of Tukey’s shortest half-
sample (8) and is defined as follows. We set

E = argminẼ{|Ẽ| : |{i : xi ∈ Ẽ}| ≥ bn/2c} (91)

where |E| denotes the volume of E and |{ }| denotes the number of elements
of the set { }. In other words E has the smallest volume of any ellipsoid which
contains more than half the data points. For a general distribution P we define

E(P ) = argminẼ{|Ẽ| :

∫

Ẽ

dP ≥ 1/2}. (92)

Given E the location functional Tl(P ) is defined to be the centre µ(E) of E
and the covariance functional Ts(P ) is taken to be c(k)Σ(E) where

E = {x : (x − µ(E))>Σ−1(x− µ(E)) ≤ 1}. (93)

The factor c(k) can be chosen so that c(k)Σ(E) = Ik for the standard normal
distribution in k dimensions.
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The second functional is based on the so called minimum covariance de-
terminant (MCD) and is as follows. We write

µ(B) =

∫

B

xdP (x)/P (B) (94)

Σ(B) =

∫

B

(x− µ(B))(x − µ(B))> dP (x)/P (B) (95)

and define
MCD(P ) = argminB {|Σ(B)| : P (B) ≥ 1/2} (96)

where |Σ(B)| is defined to be infinite if either of (94) or (95) does not
exist. The location functional is taken to be µ(MCD(B)) and the scat-
ter functional c(k)Σ(MCD(B)) where again c(k) is usually chosen so that
c(k)Σ(MCD(B)) = Ik for the standard normal distribution in k-dimensions.
It can be shown that both these functionals are affinely equivariant.

A smoothed version of the minimum volume estimator can be obtained by
considering the minimization problem

minimize |Σ| subject to

∫

ρ
(

(x− µ)>Σ−1(x− µ)
)

dP (x) ≥ 1/2 (97)

where ρ : R+ → [0, 1] satisfies ρ(0) = 1, limx→∞ ρ(x) = 0 and is continuous
on the right (see Davies, 1987). This gives rise to the class of so called S-
functionals. The minimum volume estimator can be obtained by specializing
to the case ρ(x) = {0 ≤ x < 1}.

On differentiating (97) it can be seen that an S-functional can be regarded
as an M -functional but with redescending functions u1 and u2 in contrast to
the conditions placed on u1 and u2 in (75) and (76) (Lopuhaä, 1989). For
such functions the defining equations for an M-estimator have many solutions
and the minimization problem of (97) can be viewed as a choice function.
Other choice functions can be made giving rise to different high breakdown M-
estimators. We refer to Lopuhaä (1991) and Kent and Tyler (1996). A further
class of location and scatter functionals have been developed from Tukey’s
concept of depth (Tukey, 1975). We refer to Donoho and Gasko (1992), Liu
at al. (1999) and Zuo and Serfling (2000a,b). Many of the above functionals
have breakdown points close to or equal to the upper bound of Theorem 4 .
For the calculation of breakdown points we refer to Davies (1987), Lopuhaä
and Rousseeuw (1991), Donoho and Gasko (1992), Davies (1993) and Tyler
(1994).

The problem of determining a functional which minimizes the bias over
a neighbourhood was considered in the one-dimensional case in Section 2.4.
The problem is much more difficult in R

k but some work in this direction has
been done (see Adrover, 1998). The more tractable problem of determining
the size of the bias function for particular functionals or classes of functionals
has also been considered (Yohai and Maronna, 1990; Maronna et al., 1992).
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All the above functionals can be shown to exist but there are problems
concerning the uniqueness of the functional. Just as in the case of Tukey’s
shortest half (8) restrictions must be placed on the distribution P which gen-
erally include the existence of a density with given properties (see Davies, 1987
and Tatsuoka and Tyler, 2000) and which is therefore at odds with the spirit
of robust statistics. Moreover even uniqueness and asymptotic normality at
some small class of models are not sufficient. Ideally the functional should exist
and be uniquely defined and locally uniformly Fréchet differentiable just as in
Section 2.5. It is not easy to construct affinely equivariant location and scatter
functionals which satisfy the first two conditions but it has been accomplished
by Dietel (1993) using the Stahel-Donoho idea of projections described above.
To go further and define functionals which are also locally uniformly Fréchet
differentiable with respect to some metric dC just as in the one-dimensional
case considered in Section 2.5 is a very difficult problem. The only result in this
direction is again due to Dietel (1993) who managed to construct functionals
which are locally uniformly Lipschitz. The lack of locally uniform Fréchet dif-
ferentiability means that all derived confidence intervals will exhibit a certain
degree of instability. Moreover the problem is compounded by the inability to
calculate the functionals themselves. To some extent it is possible to reduce
the instability by say using the MCD functional in preference to the MVE
functional, by reweighting the observations or by calculating a one-step M-
functional as in (29) (see Davies, 1992a). However the problem remains and
for this reason we do not discuss the research which has been carried out on
the efficiency of the location and scatter functionals mentioned above. Their
main use is in data analysis where they are an invaluable tool for detecting
outliers. This will be discussed in the following section.

A scatter matrix plays an important role in many statistical techniques
such as principal component analysis and factor analysis. The use of robust
scatter functionals in some of these areas has been studied by among others
Croux and Haesbroeck (2000), Croux and Dehon (2001) and Willems et al.
(2002).

As already mentioned the major weakness of all known high breakdown
functionals is their computational complexity. For the MCD functional an
exact algorithm of the order of nk(k+3)/2 exists and there are reasons for
supposing that this cannot be reduced to below nk (Bernholt and Fischer,
2001). This means that in practice for all but very small data sets heuristic
algorithms have to be used. We refer to Rousseeuw and Van Driesen (1999)
for a heuristic algorithm for the MCD-functional.

3.5 Outliers in R
k

Whereas for univariate, bivariate and even trivariate data outliers may of-
ten be found by visual inspection, this is not practical in higher dimensions
(Caroni and Prescott, 1992; Hadi, 1994; Barme-Delcroix and Gather, 2000;
Gnanadesikan and Kettenring, 1972; Hadi and Simonoff, 1997). This makes
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it all the more important to have methods which automatically detect high
dimensional outliers. Much of the analysis of the one-dimensional problem
given in Section 2.7 carries over to the k-dimensional problem. In particular
outlier identification rules based on the mean and covariance of the data suffer
from masking problems and must be replaced by high breakdown functionals
(see also Rocke and Woodruff, 1996, 1997). We restrict attention to affine
equivariant functionals so that an affine transformation of the data will not
alter the observations which are identified as outliers. The identification rules
we consider are of the form

(xi − Tl(Pn))>Ts(Pn)−1(xi − Tl(Pn)) ≥ c(k, n) (98)

where Pn is the empirical measure, Tl and Ts are affine equivariant location
and scatter functionals respectively and c(k, n) is a constant to be determined.
This rule is the k-dimensional counterpart of (60). In order to specify some
reasonable value for c(k, n) and in order to be able to compare different outlier
identifiers we require, just as in Section 2.7, a precise definition of an outlier
and a basic model for the majority of the observations. As our basic model
we take the k-dimensional normal distribution N (µ,Σ). The definition of an
αn-outlier corresponds to (62) and is

out(αn, µ,Σ) =
{

x ∈ R
k : (x− µ)>Σ−1(x− µ) > χ2

k;1−αn

}

, (99)

where αn = 1 − (1 − α̃)1/n for some given value of α̃ ∈ (0, 1). Clearly for an
i.i.d. sample of size n distributed according to N (µ,Σ) the probability that
no observation lies in the outlier region of (99) is just 1 − α. Given location
and scale functionals Tl and Ts and a sample x̃n we write

ORH(x̃n, αn) =
{

x ∈ R
k : (x− Tl(Pn))>Ts(Pn)−1(x− Tl(Pn)) ≥ c(k, n, αn)

}

(100)
which corresponds to (64). The region ORH(x̃n, αn) is the empirical coun-
terpart of out(αn, µ,Σ) of (99) and any observation lying in ORH(x̃n, αn)
will be identified as an outlier. Just as in the one-dimensional case we deter-
mine the c(k, n, αn) by requiring that with probability 1 − α̃ no observation
is identified as an outlier in i.i.d. N (µ,Σ) samples of size n. This can be done
by simulations with appropriate asymptotic approximations for large n. The
simulations will of course be based on the algorithms used to calculate the
functionals and will not be based on the exact functionals assuming these
to be well defined. For the purpose of outlier identification this will not be
of great consequence. We give results for three multivariate outlier identi-
fiers based on the MVE- and MCD-functionals of Rousseeuw (1985) and the
S-functional based on Tukey’s biweight function as given in Rocke (1996).
There are good heuristic algorithms for calculating these functionals at least
approximately (Rocke, 1996; Rousseeuw and Van Driesen, 1999; Rousseeuw
and van Zoomeren, 1990). The following is based on Becker and Gather (2001).
Table 2 gives the values of c(k, n, αn) with α = 0.1 The results are based on
10 000 simulations for each combination of k and n.
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Table 2. Normalizing constants c(k, n, αn) for ORMV E ,ORMCD ,ORBW for α =
0.1

n k cMV E cMCD cBW

20 2 19.14222 85.58786 21.35944
20 3 23.47072 167.61310 26.87044
20 4 33.72110 388.84680 33.17018

50 2 17.54896 28.51695 16.93195
50 3 20.61580 41.83594 19.78682
50 4 24.65417 64.18462 23.14061

Becker and Gather (2001) show by simulations that although none of the
above rules fails to detect arbitrarily large outliers it still can happen that
very extreme observations are not identified as outliers. To quantify this we
consider the identifier ORMV E and the constellation n = 50, k = 2 withm = 5
observations replaced by other values. The mean norm of the most extreme
nonidentifiable outlier is 4.17. The situation clearly becomes worse with an
increasing proportion of replaced observations and with the dimension k (see
Becker and Gather, 1999). If we use the mean of the norm of the most extreme
non-identifiable outlier as a criterion then none of the three rules dominates
the others although the biweight identifier performs reasonably well in all
cases and is our preferred choice.

4 Linear regression

4.1 Equivariance and metrics

The linear regression model may be written in the form

Yi = x>
i β + εi, i = 1, . . . , n (101)

where xi, i = 1 . . . , n and β ∈ R
k. The assumptions of the standard model

are that the xi are fixed and that the εi are i.i.d. random variables with
the default distribution being the normal distribution N(0, σ2). There are of
course many other models in the literature including random xi-values and
a covariance structure for the errors εi. For the purpose of robust regression
we consider probability distributions P on R

k+1 where the first k components
refer to the covariates x and the last component is the corresponding value of
y. We restrict attention to the family Pk+1 of probability measures given by

Pk+1 = {P : P (H × R) < 1 for all lower dimensional subspaces H ⊂ R
k}.
(102)

The metric we use on Pk+1 is dH with H given by (73).
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Consider the regression group G of transformations g : R
k+1 → R

k+1 of
the form

g(x, y) = (A(x), sy + x>γ) (103)

where A is a non-singular k×k-matrix, s ∈ R, s 6= 0, and γ ∈ R
k. A functional

T : Pk+1 → R
k × R+ is called a regression functional if for all g ∈ G and

P ∈ Pk+1

T (P g) = hg(T (P )) (104)

where
hg(β, σ) = (s(A−1)>(β + γ), sσ). (105)

with A and γ as in (103). The first k components of T (P ) specify the value of
β ∈ R

k and the last component that of σ. The restriction to models P ∈ Pk+1

of (102) is that without such a restriction there is no uniquely defined value
of β.

4.2 M-estimators for regression

Given a distribution P ∈ Pk+1 we define an M-functional by T (P ) = (β∗, σ∗)
where (β∗, σ∗) is a solution of the equations

∫

φ(x, (y − x>β)/σ)x dP (x, y) = 0 (106)

∫

χ((y − x>β)/σ) dP (x, y) = 0 (107)

for given functions φ : R
k+1 → R and χ : R → R. Just as in Section 3.2

for M -functionals of location and scatter there are problems concerning the
existence and uniqueness. Maronna and Yohai (1981) give sufficient conditions
for existence which depend only on the properties of φ and χ and the values
of supθ{P (θ>x = 0) : θ 6= 0} and supα,θ{P (αy + θ>x = 0) : |α| + ‖θ‖ 6= 0}.
Uniqueness requires additional strong assumptions such as either symmetry
or the existence of a density for the conditional distribution of y − θ>0 x for
each fixed x. Huber (1981) considers the minimization problem

(β∗, σ∗) = argmin

(
∫

ρ((y − x>β)/σ) dP (x, y) + a

)

σ (108)

where ρ : R → R+ is convex with ρ(0) = 0 and a > 0. Under appropriate
conditions on ρ it can be shown that the solution is unique and that there
exists a convergent algorithm to calculate it. On differentiating (108) we obtain
(106) and (107) with

φ(x, u) = ρ(1)(u) and χ(u) = uρ(1)(u) − ρ(u) − a. (109)

Even if the solution of (106) and (107) exists and is unique it is not nec-
essarily regression equivariant. To make it so we must introduce a scatter
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functional TΣ on the marginal distributions P ′, P ′(B) = P (B × R) of the
covariate x. Such a functional satisfies TΣ(P ′A) = ATΣ(P ′)A> for any non-
singular k× k-matrix A and is required not only for equivariance reasons but
also to downweight outlying x-values or so called leverage points. For this
latter purpose the functional TΣ must also be robust. We now replace (106)
by

∫

φ(x>TΣ(P )−1x, (y − x>β)/σ)x dP (x, y) = 0. (110)

The resulting functional is now regression equivariant but its analysis is more
difficult requiring as it does an analysis of the robustness properties of the
scatter functional TΣ.

Finally we note that in the literature most φ functions of (106) are of the
form

φ(x, u) = π(x)ψ(u) (111)

and the resulting functionals are known as GM-functionals. We refer to Ham-
pel et al. (1986).

4.3 Bias and Breakdown

Given a regression functional Tr = (Tb, Ts) where Tb refers to the β-components
and Ts is the scale part it is usual to define breakdown just by the behaviour
of Tb and to neglect Ts. The breakdown point of Tr at the distribution P is
defined by

ε∗(Tr, P, dH) = sup{ε : b(Tr, P, ε, dH) <∞} (112)

where
b(Tr, P, ε, dH) = sup{‖Tb(Q) − Tb(P )‖ : dH(P,Q) < ε} (113)

with corresponding definitions for the gross error neighbourhood ε∗(Tr, P,GE)
and for the finite sample breakdown point ε∗(Tr, Pn, fsbp). To state the next
theorem we set

∆(P ) = sup{P (H × R) : H a plane in R
k of dimension at most k − 1}

which is the regression equivalent of (77). We have

Theorem 5. For any regression equivariant functional

ε∗(Tr, P, dh) ≤ (1 −∆(P ))/2 and ε∗(Tr, Pn, fsbp) ≤ (1 −∆(Pn))/2. (114)

If one considers L1-regression

β∗ = argmin

n
∑

i=1

|yi − x>
i β| (115)

it can be shown if one xi is sufficiently outlying then the residual at this point
will be zero and hence the finite sample breakdown point is a disappointing
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1/n. This turns out to apply to most M -functionals of the last section whose
breakdown point is at most 1/(k + 1) irrespective of their exact definition.
The literature on this point is unsatisfactory. Although some M -functionals
have been shown to have a positive breakdown point this has only been done
under the assumption that the scale part Ts is known. As obtaining the correct
magnitude of the scale of the errors is in some sense the most difficult problem
in robust regression such results are of limited value. They do not however alter
the fact that M-functionals have a disappointing breakdown point. We now
turn to the problem of constructing high breakdown regression functionals.

4.4 High breakdown regression functionals

The first high breakdown regression functional was proposed by Hampel
(1975) and is as follows.

Tlms(P ) = argmin(β,σ)

{

σ :

∫

{|y − x>β| ≤ σ} dP (x, y) ≥ 1/2

}

. (116)

The idea goes back to Tukey’s shortest half-sample of which it is the regression
counter part. It can be shown that it has almost the highest finite sample
breakdown point given by Theorem 5. By slightly altering the factor 1/2 in
(116) to take into account the dimension k of the x-variables it can attain this
bound. Rousseeuw (1984) propagated its use and gave it the name by which
it is now known, the least median of squares LMS. Rousseeuw calculated the
finite sample breakdown point and provided a first heuristic algorithm which
could be applied to real data sets. He also defined a second high breakdown
functional known as least trimmed squares LTS defined by

Tlts(P ) = argmin(β,σ)

{∫

(y − x>β)2{|y − x>β| ≤ σ} dP (x, y) :

∫

{|y − x>β| ≤ σ} dP (x, y) ≥ 1/2

}

. (117)

There are now many high breakdown regression functionals such as S-
functionals (Rousseeuw and Yohai, 1984), MM-functionals (Yohai, 1987), τ -
functionals (Yohai and Zamar, 1988), constrained M -functionals (Mendes
and Tyler, 1996), rank regression (Chang et al., 1999) and regression depth
(Rousseeuw and Hubert, 1999). Just as in the location and scale problem in
R

k statistical functionals can have the same breakdown points but very dif-
ferent bias functions. We refer to Martin et al. (1989), Maronna and Yohai
(1993) and Berrendero and Zamar (2001). All these high breakdown func-
tionals either attain or by some minor adjustment can be made to attain the
breakdown points of Theorem 5 with the exception of depth based methods
where the maximal breakdown point is 1/3 (see Donoho and Gasko, 1992).

All the above high breakdown regressional functionals can be shown to ex-
ist under weak assumptions but just as in the case of high breakdown location
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and scatter functionals in R
k uniqueness can only be shown under very strong

conditions which typically involve the existence of a density function for the
errors (see Davies, 1993). The comments made about high breakdown location
and scale functionals in R

k apply here. Thus even if a regression functional is
well defined at some particular model there will be other models arbitrarily
close in the metric dH where a unique solution does not exist. This points to an
inherent local instability of high breakdown regression functionals which has
been noted in the literature (Sheather et al., 1997; Ellis, 1998). Dietel (1993)
has constructed regression functionals which are well defined at all models
P with ∆(P ) < 1 and which are locally uniformly Lipschitz, not however
locally uniformly Fréchet differentiable. For this reason all confidence regions
and efficiency claims must be treated with a degree of caution. An increase
in stability can however be attained by using the LTS-functional instead of
the LMS-functional, by reweighting the observations or using some form of
one-step M-functional improvement as in (29).

Just as with high breakdown location and scatter functionals in R
k the

calculation of high breakdown regression functionals poses considerable dif-
ficulties. The first high breakdown regression functional was Hampel’s least
median of squares and even in the simplest case of a straight line in R

2 the
computational cost is of order n2. The algorithm is by no means simple re-
quiring as it does ideas from computational geometry (see Edelsbrunner and
Souvaine, 1990). From this and the fact that the computational complexity
increases with dimension it follows that one has to fall back on heuristic algo-
rithms. The one recommended for linear regression is that of Rousseeuw and
Van Driesen (1999) for the LTS-functional.

4.5 Outliers

To apply the concept of α-outlier regions to the linear regression model we
have to specify the distribution PY of the response and the joint distribu-
tion PX of the regressors assuming them to be random. For specificness we
consider the model

PY |X=x = N(x>β, σ2), (118)

and

PX = N (µ,Σ). (119)

Assumption (118) states that the conditional distribution of the response given
the regressors is normal and assumption (119) means that the joint distribu-
tion of the regressors is a certain p-variate normal distribution. If both as-
sumptions are fulfilled then the joint distribution of (Y,X) is a multivariate
normal distribution.

We can define outlier regions under model (101) in several reasonable ways.
If only (118) is assumed then a response-α-outlier region could be defined as
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out(α, PY |X=x) =
{

y ∈ R : u = |y − x>β| > σ z1−α/2

}

, (120)

which is appropriate if the regressors are fixed and only outliers in y-direction
are to be identified. If the regressors are random, which will be the more
frequent case in actuarial or econometric applications, outliers in x-direction
are important as well. Under assumption (119) a regressor-α-outlier region is a
special case of the α-outlier region (99). This approach leads to a population
based version of the concept of leverage points. These are the points in a
sample (yi,xi), i = 1, . . . , n, from model (101) “for which xi is far away from
the bulk of the xi in the data” (Rousseeuw and van Zoomeren, 1990).

For the identification of regressor-outliers (leverage points) the same iden-
tification rules can be applied as in the multivariate normal situation. For the
detection of response-outliers by resistant one-step identifiers, one needs ro-
bust estimators of the regression coefficients and the scale σ. Examples of high
breakdown estimators that can be used in this context are the Least Trimmed
Squares estimator and the corresponding scale estimator (Rousseeuw, 1984;
Rousseeuw and Leroy, 1987), S-estimators Rousseeuw and Yohai (1984), MM-
estimators (Yohai, 1987) or the REWLS-estimators (Gervini and Yohai, 2002).

5 Analysis of variance

5.1 One-way table

The one-way analysis of variance is concerned with the comparison of the
locations of k samples xij , j = 1, . . . , ni, i = 1, . . . , k. The term “analysis of
variance” goes back to the pioneering work of Fisher (1935) who decomposed
the variance of the combined samples as follows

∑

ij

(xij − x̄)2 =
∑

i

∑

j

(xij − x̄i)
2 +

∑

i

ni(x̄i − x̄)2. (121)

The first term of (121) is the total sum of squares, the second is the sum of
squares within samples and the third is the sum of squares between samples.
If the data are modelled as i.i.d. normal random variables with a common
variance σ2 but with the ith sample mean µi then it is possible to derive a
test for the null hypothesis that the means are equal. The single hypothesis
of equal means is rarely of interest in itself. All pairwise comparisons

µi = µl, 1 ≤ i < l ≤ k,

as well as contrasts
∑

i ciµi = 0 may also be of interest and give rise to the
problem of multiple testing and the associated difficulties. The use of the L2-
norm as in (121) is widespread perhaps because of the elegant mathematics.
The peculiarities of data analysis must however have priority over mathemat-
ical theory and as real data sets may contain outliers, be skewed to some
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extent and have different scales it becomes clear that an L2-norm and Gaus-
sian based theory is of limited applicability. We sketch a robustified approach
to the one-way table (see Davies, 2004).

As a first step gross outliers are eliminated from each sample using a
simplified version of the outlier identification rule based on the median and
MAD of the sample. Using the robust location and scale functionals Tl and Ts

an αk confidence or approximation interval Ii for location for the ith sample
is calculated. To control the error rate for Gaussian and other samples we
set αk = α1/k with for example α = 0.95. This choice guarantees that for
Gaussian samples

P (µi ∈ Ii, i = 1, . . . , k) = α. (122)

Simulations show that this holds accurately for other symmetric distributions
such as the slash, Cauchy and the double exponential. All questions relating
to the locations of the samples are now reduced to questions concerning the
intervals. For example, the samples i and l can be approximated by the same
location value if and only if Ii ∩ Il 6= ∅. Similarly if the samples are in some
order derived from a covariable it may be of interest as to whether the locations
can be taken to be non-decreasing. This will be the case if and only if there
exist ai, i = 1, . . . , k with a1 ≤ a2 ≤ . . . ≤ ak and ai ∈ Ii for each i. Because
of (122) all such questions when stated in terms of the µi can be tested
simultaneously and on Gaussian test beds the error rate will be 1−α regardless
of the number of tests. Another advantage of the method is that it allows a
graphical representation. Every analysis should include a plot of the boxplots
for the k data sets. This can be augmented by the corresponding plot of the
intervals Ii which will often look like the boxplots but if the sample sizes differ
greatly this will influence the lengths of the intervals but not the form of the
boxplots.

5.2 Two-way table

Given IJ samples

(xijk)
nij

k=1 , i = 1, . . . , I, j = 1, . . . , J

the two-way analysis of variance in its simplest version looks for a decompo-
sition of the data of the form

xijk = m+ ai + bj + cij + rijk (123)

with the the following interpretation. The overall effect is represented by m,
the row and column effects by the ai and bj respectively and the interactions by
the cij . The residuals rijk take care of the rest. As it stands the decomposition
(123) is not unique but can be made so by imposing side conditions on the
ai, bj and the cij . Typically these are of the form
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∑

i

ai =
∑

j

bj =
∑

i

cij =
∑

j

cij = 0 (124)

where the latter two hold for all j and i respectively. The conditions (124) are
almost always stated as technical conditions required to make the decompo-
sition (123) identifiable. The impression is given that they are neutral with
respect to any form of data analysis. But this is not the case as demonstrated
by Tukey (1993) and as can be seen by considering the restrictions on the in-
teractions cij . The minimum number of interactions for which the restrictions
hold is four which, in particular, excludes the case of a single interaction in
one cell. The restrictions on the row and column effects can also be criticized
but we take this no further than mentioning that the restrictions

MED(a1, . . . , aI) = MED(b1, . . . , bJ) = 0 (125)

may be more appropriate. The following robustification of the two-way table
is based on Terbeck and Davies (1998). The idea is to look for a decomposition
which minimizes the number of non-zero interactions. We consider firstly the
case of one observation per cell, nij = 1, for all i and j, and look for a
decomposition

xij = m+ ai + bj + cij (126)

with the smallest number of cij which are non-zero. We denote the positions of
the cij by a I×J-matrix C with C(i, j) = 1 if and only if cij 6= 0, the remaining
entries being zero. It can be shown that for certain matrices C the non-zero
interactions cij can be recovered whatever their values and, moreover, they
are the unique non-zero residuals of the L1-minimization problem

min
ai,bj

∑

ij

|xij − ai − bj |. (127)

We call matrices C for which this holds unconditionally identifiable. They can
be characterized and two such matrices are





1 0 0
0 0 0
0 0 0

















1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













(128)

as well as matrices obtained from any permutations of rows and columns.
The above considerations apply to exact models without noise. It can be
shown however that the results hold true if noise is added in the sense that
for unconditionally identifiable matrices sufficiently large (compared to the
noise) interactions cij can be identified as the large residuals from an L1-
fit. Three further comments are in order. Firstly Tukey’s median polish can
often identify interactions in the two-way-table. This is because it attempts to
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approximate the L1-solution. At each step the L1-norm is reduced or at least
not increased but unfortunately the median polish may not converge and,
even if it does, it may not reach the L1 solution. Secondly L1 solutions in the
presence of noise are not unique. This can be overcome by approximating the
moduls function |x| by a strictly convex function almost linear in the tails.
Thirdly, if there is more than one observation per cell it is recommended that
they are replaced by the median and the method applied to the medians.
Finally we point out that an interaction can also be an outlier. There is no a
priori way of distinguishing the two.
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Bednarski, T. (1993). Fréchet differentiability and robust estimation. In
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