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Object Oriented Computing

Miroslav Virius

Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering,
Czech Republic

virius@kml.fjfi.cvut.cz

In this contribution, the basic overview of the Object Oriented Programming
and its usage in computation is given. Concepts of class, encapsulation, in-
heritance, and polymorphism are introduced. Some additional concepts like
interface and Design Patterns are briefly discussed. Schematic examples in
C++ are given.

1 Introduction

Object Oriented Programming (OOP) is a preferred methodology in contem-
porary software development. OOP may be considered as a continuation of
the well known ideas of Structured Programming and Modular Programming.
If properly used, it leads to well structured code which is easy to debug and
easy to maintain.

1.1 First Approach to Objects

Every computer program may be considered as a software model of a real
problem. It follows, that two basic domains should be taken into account
during the analysis of the problem and design of the program: the problem
domain, which is part of the real world, and the model domain, which is a
mapping of the problem domain to the computer program.

The problem domain consists of a set of interacting objects. Selected ob-
jects of the problem domain must of course correspond to data structures in
model domain and the interactions of objects in the problem domain must
correspond to the operations with these data structures. That is, the interac-
tions of objects in the problem domain will be represented by procedures and
functions dealing with these data structures.



2 Miroslav Virius

Ezample. Consider modelling the interactions of elementary particles in a
detector using the Monte Carlo method. (Design and analysis of Monte Carlo
experiments is discussed in depth in Chapter ??.) The problem domain of
this experiment simulation consists of the detector, the particle source, the
air surrounding the experimental apparatus, of many elementary particles
and, of course, of a statistical file containing the simulation results. It follows,
that the model of the experiment should contain a suitable representation of
the detector, a suitable representation of the particle source, statistical file,
ete.

The representation of the elementary particle source may consist of the
data representing its coordinates in a given coordinate system, of a descrip-
tion of the spectrum of the source (i.e. of probability distributions describing
the emission of various types of particles, their direction, energy and other
characteristics of emitted particles) etc.

1.2 Note on Unified Modelling Language

To formalize object-oriented analysis and design, the Unified Modelling Lan-
guage (UML) is widely used. UML cousists of a set of diagrams that describe
various aspects of the problem solved. We use some UML diagrams in this
chapter. A short introduction to the UML is given in Sec. 3; full description
of the UML may be found in Booch (1999).

2 Objects and Encapsulation

In the model domain, the term object denotes the data representation of the
objects of the problem domain, together with the operations defined on this
data.

This means that we define a data structure together with the operations
with it. These operations are usually called methods. The object’s data are
denoted as attributes; the data and methods together are denoted as members
of the object.

A basic rule of OOP requires that the methods should be used for all
the manipulations with object’s data. Methods of the object are allowed to
access the data; no other access is permitted. (We shall see that under some
circumstances it is acceptable to violate this rule.) This principle is called
encapsulation and is sometimes presented by the “wall of code around each
piece of data” metaphor.

Note. Methods that return the value of the attribute (data member) X usually
have the identifier GetX(); methods that set the value of the attribute X
usually have the identifier SetX (). In some programming environments, these
identifiers may be required. These methods are called getters and setters,,
respectively.
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2.1 Benefits of Encapsulation

So far, there is nothing new in encapsulation: This is implementation hiding,
well known from modular programming. The object may be considered as a
module and the set of the methods as its interface.

The main benefit of encapsulation is that the programmer may change the
implementation of the object without affecting the whole program, if he or she
preserves the interface of the object. Any change of the data representation
will affect only the implementation of the methods.

Example. Let’s continue with the Monte Carlo simulation of the experiment
with elementary particles. The object representing the detector will, of course,
contain the coordinates of some important points of the detector. The first
idea could be to use Cartesian coordinates; in later stage of the program
development, it will be found that the spherical coordinates will suit better
— e.g., because of the detector shape and program performance.

If it were allowed to manipulate the detector data directly by any part
of the program, all the parts of the program that use this data should be
changed. But if the encapsulation is properly applied and the data is manip-
ulated only by the methods of the detector, all that has to be changed is the
implementation of some detector methods.

2.2 Objects and Messages

OOP program is considered as the program consisting only of objects that
collaborate by means of the messages. This may seem a little strange, but in
this context, to send a message to an object means to call a method of this
object. A message means a request for an operation on the object’s data, i.e.,
a request to perform a method.

The object may receive only those messages for which it has corresponding
methods. Sending a message that the object does not recognize causes an error.
It depends on the programming language whether this error is detected in the
compile time or in the run time. (In C++, it is detected in the compile time.)

2.3 Class

Objects of problem domain may often be grouped into classes; one class con-
tains objects that differ only in the values of some properties. The same holds
for the objects in the model domain. The classes of objects in the problem
domain are represented by user-defined data types in OOP programs called
object types or classes .

The term instance is used to denote a variable, constant, or parameter of
an object type. It is equivalent to the term object.
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Class Members

Up to now, we have considered the class as a data type only; it serves as a
template for the creation of instances. But in OOP, the class may have its
own data and its own methods and may receive messages.

Data members that are part of the whole class (not of particular instances)
are called class data members or class attributes and the methods that corre-
spond to messages sent to the whole class are called class methods. Non-class
members, attributes, as well as methods are, if necessary, denoted instance
members.

Class data members contain data shared among all the instances of the
class; class methods operate on class attributes. (From the non-OOP point of
view, class data members are global variables hidden in the class, and class
methods are global functions or procedures hidden in the class.)

Note. Class data members are often called static data members and class
methods are called static methods in C++, Java, and some other program-
ming languages, because they are declared using the static keyword in these
languages.

Note. The class in C++, Java and many other OOP languages may contain
definitions of other types, including other classes, as class members. Even
though the so called nested classes are sometimes very useful, we will not
discuss them in this article.

Note. The class in the OOP may be considered as an instance of another
class; this leads to the concept of metaclass. Metaclass is a class that has only
one instance — a class. You can find metaclasses in pure OOP languages like
Smalltalk. We will not discuss the concept of metaclass here.

Example. We may suppose — at some level of abstraction — that the rep-
resentation of all the particles in the Monte Carlo simulation of the experi-
ment with the particles is essentially the same. Thus, every individual par-
ticle belongs to the class of particles. It follows that the model will contain
the Particle class, and the program will contain the definition of the corre-
sponding data type (and of course some instances of this type).

Because every particle has its own mass and velocity, the Particle class
will contain the declaration of four data items representing particle mass and
three components of the particle velocity vector. The Particle class should
also contain methods to set and to get the values of these data items. (Later
on, we will see that even other methods are necessary — e.g., a method for
the interaction with the detector.)

It is also necessary to know the total number of generated particles and the
actual number of existing particles in the simulation program. These numbers
of the particles do not describe an individual particle and so they cannot be
data members of any Particle instance; it is the task of the whole Particle
class to hold these data. So they will be stored in the class attributes (because
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we use the C++, we may say in static attributes) of type int, and they will
be accessed by class methods (static methods).
Definition of the Particle class in C++4 will be as follows:

// Particle class definition in C++, first approach
class Particle
{
public:
// Constructor
Particle(double _mass, double vX,
double vY, double vZ);
// Instance methods
“Particle() { --actual; } // Destructor
double GetMass() { return mass; }
void SetMass(double m){ mass = m; }
void SetVelocity(double vX, double vY, double vZ);
double GetVelocityX() { return velocityX; }
// Performs the interaction with the detector
virtual void Interact(Detector *aDetector);
// ... and other methods
// Class methods
static int GetActual() { return actual; }
static int GetTotal() {}
private:
// Instance data members
double mass;
double velocityX, velocityY, velocityZ;
// Class data members
static int actual;
static int total;
}; // End of the class declaration

// Definition of the static attributes
int Particle::actual = O;
int Particle::total = 0O;

// Definition of the constructor
Particle::Particle(double _mass, double vX,
double vY, double vZ)
: mass(_mass), velocityX(vX), velocityY(vY), velocityZ(vZ)
{
++actual; ++total;
}
// And other method definitions
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We will not discuss the syntactic rules of the class declaration in the C++
here — this can be found in any textbook of this programming language, e.g.,
in Stroustrup (1998). We only note a few points.

This class contains the instance attributes mass, velocityX, velocityY,
and velocityZ, and the class attributes actual and total (note the static
keyword in their declarations). It follows that every instance of the Particle
class will have its own data members mass, velocityX, etc. On the other
hand, no instance will contain the data members total or actual. These are
global variables shared by all instances and they exist even before the first
instance of the Particle class is created and after the last one is destroyed.

The Particle() method is a special method called constructor and it
serves the construction of new instances. It is invoked as a response to the
message requesting the creation of a new instance of the class. (Even though
it is a class method, its declaration in C++ does not contain the static
keyword.) Its task is to initialize instance attributes. In our example, it also
actualizes the values of the two class attributes.

The “Particle () method is another special method called destructor that
prepares the instance for decay. In our example, it decreases the number of
existing particles, because the instance for which the destructor is called will
be immediately destroyed. (This is — unlike the constructor — the instance
method. Note, that in garbage collected OOP languages, e.g., in Java, de-
structors are not used.)

2.4 Object Composition

One object in a program may exploit the services of another object. It may call
the methods of any other independent object, or it may contain another object
as a data member. The second approach is usually called object composition,
even though it is typically implemented as composition of the classes.

Note. An object may not contain another object of the same class, of any
class containing an object of the same class or of any derived class as data
member. It may, of course, contain the pointers or the references to objects
of any of these classes.

Ezample. Consider the particle source in the Monte Carlo simulation. It will
be an instance of the Source class. For the simulation of the random pro-
cesses of the emission of a particle, we will need a random number generator.
The random number generator will be implemented in the program as an
instance of the Generator class and will be based on the theory discussed
in Chapter ??. (The Generator class is an example of a class that has been
found during the design of the Source class. It does not appear in the original
formulation of the problem.)

This means that the Source class will contain an instance of the Generator
class or a pointer to an instance of that class:
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class Source

{
public:
Source() ;
Particle* Generate(); // Returns pointer to new particle
// ... and other methods
private:
Generator *gen;
// ... and other private members
}

2.5 Access Control

Note the private and public access specifiers in the class declarations above.
The public specifier declares that all the subsequent members of the class
are public, i.e., they are accessible from any part of the program. The public
members of the class constitute the class interface. The class interface usually
contains only some methods and constant attributes. (Constant attributes
may be accessed directly. This does not violate the encapsulation, because
constant attributes cannot be changed.)

The private specifier means that the following members of the class are
private, i.e., accessible only from the methods of the class. In other words,
private members are implementation details of the class that can not be used
by other parts of the program. Changes of private parts of the class do not
change the class interface and do not affect other parts of the program.

Later on, we will see the third access specifier, protected. Protected mem-
bers are accessible only from the methods of this class and from all the de-
rived classes. So, they constitute the class interface for derivation, that may
be wider than the interface of the class for common use. We will discuss the
inheritance in Section 4.

The access specifiers help to implement the encapsulation. Note that in
C++, as well as in many other object oriented languages, the subject of access
control is the class, not the individual objects (instances). So any method
called for an instance of the given class may use all private members of another
instance of the same class.

3 Short Introduction to the UML

In Sec. 1.2 we have mentioned the UML. This is a modelling language based
on a set of diagrams describing various aspects of the problem solved:

e The class diagram describes the classes used in the problem and their
mutual dependencies.

e The object diagram describes all objects (instances) in the problem and
their mutual dependencies.
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The activity diagram describes activities of the objects.
The state diagram describes the states of objects and their possible changes
and transitions.

e ctc.

We will use only class diagrams in this article.

The class in the class diagram is presented as a rectangle containing the
name of the class. It usually contains also the names of the methods and
the names of the attributes; both may be prefixed by symbols representing
their access specification (the + sign for public members, the - sign for private
members and the # for protected ones). The name, the attributes and the
methods are in the class icon separated by horizontal lines. If not necessary,
attributes and methods may be omitted. Fig. 1 shows the icon of the Source
class as we have designed it in Section 2.4.

Source
-gen
+Source()
+Generate() : Particle*

Fig. 1. The full UML icon of the Source class.

Associations (i.e., any relations) among classes in UML class diagrams
are represented by lines connecting the class icons ended by arrows; as a
description, the multiplicity of the relation may be given. For example, the
number appended to the line connecting the Source and the Particle classes
in Fig. 2 express the fact that one particle source may emit any number of
particles. The number appended to the line connecting the Source and the
Generator class express the fact that one source uses only one random number
generator.

Object composition is expressed by the arrow ending with a filled diamond.
Fig. 2 shows relations among the Source, Particle, and Generator classes.
Simplified class icons are used.

4 Inheritance

Inheritance is a very powerful tool used in OOP to derive new classes from
existing ones. First, look at an example.

Ezxample. Investigating our Monte Carlo simulation more deeply, we find, that
various types of elementary particles can be involved: photons, neutrons, neu-
trinos, etc.
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-generates -is generated

Source Particle

1 0..*

Generator

Fig. 2. Relations among the Source, Particle and Generator classes.

On the one hand, we may conclude that one common data type, the
Particle class, is sufficient for the representation of all the different particles,
because they have many common features:

Every particle has a velocity vector,

every particle has a mass, a spin, and electrical charge,
every particle has its halftime of decay,

every particle may interact with the detector,

etc.

On the other hand, the way of the interaction with the detector is sub-
stantially different for different types of the particles. In some cases, it is
described by mathematical formulae, in other cases it is described by mea-
sured data only. It follows that the operation representing the interaction of
the particle in the detector must be implemented in a different way for differ-
ent types of the particles, and this leads to the conclusion that different types
of simulated particles have to be represented by different object types in the
program; but these types share many common properties.

This situation — closely related, but different classes — can be expressed
in the program model: OOP offers the mechanism of inheritance, which is the
way of deriving one class from some other one (or other ones).

The class a new type is derived from is usually called the base class.

4.1 Base class and derived class

The derived class inherits all the public and protected members of its base
class or classes. This means that the derived class contains these members and
may access them without any constrains. Private members are not inherited.
They are not directly accessible in the derived class; they may be accessed
only by the access methods inherited from the base class.

The derived class may add its own data members and methods to the
inherited ones. The derived class may also redefine (override) some of the
methods defined in the base class. (To override a method in a derived class
means to implement a different response to the same message in the derived
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class.) In this case, the signature, i.e., the identifier, the return type, the
number, and the types of the parameters of the overriding method in the
derived class should be the same as the signature of the overridden method
in the base class.

No members of the base class may be deleted in the inheritance process.

The set of all the classes connected by inheritance is usually called the
class hierarchy.

Note that in some programming languages there are exceptions to the
above rule. For example, the constructors, destructors, and overloaded as-
signment operators are not inherited in C++. Instead, the constructor of the
derived class always calls the base class constructor and the destructor of
the derived class always calls the base class destructor. The same holds for
the default assignment operator of the derived class. Of course, this may be
considered as a generalized form of inheritance.

4.2 Generalization and Specialization

The base class always represents a concept that is more general and more
abstract, than the concept represented by the derived class; it follows that
the derived class represents a more specialized concept than the base class. In
other words, the derived class always represents a subclass — or a subtype —
of its base class. Any instance of the derived class is also considered to be an
instance of the base class.

The interface of the base class is a subset of the interface of the derived
class.

Consequently, an instance of the derived class may be used everywhere
where an instance of the base class is expected. This rule may significantly
simplify the operation with instances of many similar classes.

In the UML class diagram, the inheritance is represented by an arrow
ending with triangle (not filled). The arrow leads from the derived class to
the base class.

Ezample. Consider the Particle class in our Monte Carlo simulation. This
is a general concept that can be used to describe common features of all the
particles involved. But in the simulation, concrete types of particles — e.g.,
protons, electrons, etc. — will be used.

Consequently, we will use the Particle class as the base class of the par-
ticles hierarchy that will contain the common data members and the common
methods of all the particles. All the classes representing concrete particle types
will be derived from the Particle class — see Fig 3.

We will show here only the declaration of the Electron class.

class Electron: public Particle
{
public:

Electron();
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-generates -is generated
Source Particle
1 0.*

Photon Positron
Electron Neutron

Fig. 3. The Particle class as a base class of concrete particle types.

Generator

void SetCharge(double _charge) { charge = _charge; }
virtual void Interact(Detector *aDetector);

private:
double charge;

}

The declaration of the Electron class contains only the declaration of
the constructor, two access methods and one data member. Nevertheless,
the methods GetvelocityX (), SetVelocityX(), GetActual() etc., inherited
from the base class, may be called for any instance of this class. This class
changes — overrides — the implementation of the Interact () method.

On the other hand, data members mass, velocityX, actual, etc. are not
directly accessible in the Electron class. These data members are in the base
class declared as private and the derived class must manipulate them only
using the public access methods. So the following fragment of the definition
of the Electron: : Interact () method is incorrect:

// Error: velocityX, velocityY and velocityZ
// are inaccessible in the Electron class.
void Electron::Interact(Detector *aDetector)

{
double velocity = sqrt(velocityX*velocityX +
velocityY*velocityY + velocityZ*velocityZ);
// ... and so on ...
}

The correct form uses the access methods inherited from the base class:

// Correct form of the previous code fragment
void Electron::Interact(Detector *aDetector)
{
double velocity = sqrt(GetVelocityX()*GetVelocityX() +
GetVelocityY () *GetVelocityY() +
GetVelocityZ()*GetVelocityZ());
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// ... and so on ...

}

Of course, this is sometimes inconvenient. If we change the access specifiers
of these data members in the base class to protected,

// Particle class definition revised
class Particle
{
public:
// Public members as before
protected:
// Instance data members
double mass;
double velocityX, velocityY, velocityZ;
// Class data members
static int actual;
static int total;

};

the problems with access to data members will not appear. On the other hand,
this violates the encapsulation of the base class and it may have a negative
impact on the clarity and maintainability of the program.

4.3 Using Base Class as Common Interface

As stated above, instances of derived classes may be used anywhere instances
of the base class are expected. This gives us very powerful tool to deal with the
objects of the classes derived from the same base class in a uniform manner.

Ezample. In the Monte Carlo simulation of the particle experiment, we may
first store all the emitted particles in a suitable container, exclude particles,
that do not hit the detector etc., and after that preprocessing, let the remain-
ing particles interact with the detector. Consider the following fragment of
code:

const int N = 1000000; // Number of particles to emit
vector<Particle*> store; // Store for particles

Source scel; // Particle source

Detector det; // Detector in the experiment

for(int i = 0; i < N; i++)
store.push_back(scel.Generate());
// ... some preprocessing of the set of the particles
for(int i = 0; i < store.size(); i++)
storel[i] -> Interact(det);

The store variable is a vector (dynamically sized array) of pointers to
Particle, the base class of all the elementary particles involved. This allows
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us to store pointers to instances of any class derived from the Particle class
in this container.
The expression

storel[i] -> Interact(det);

represents the call of the Interact () method of the particle pointed to by
store[i]. (In fact, this statement calls the method of the Particle class. To
ensure that the method of the actual class of the particle is called, the method
needs to be declared with the virtual specifier. This will be discussed later
in Section 5, Polymorphism.)

This example demonstrates that the base class defines the common inter-
face for all the derived classes.

Technical Note

The conversion from the derived class to the base class is automatic, but in
some situations deserve special attention. Consider the following assignment:

Electron e; // Non-dynamical instances
Particle p;

P =e;

After this statement has been executed, the p variable will contain an
instance of the Particle class, not an instance of the Electron class! The
reason is simple: The declaration

Particle p;

reserves store only for the Particle instance, so there is no place for the
additional data members declared in the Electron class. The only way how
to execute the assignment is to convert the derived class instance e to the
base class first.

The same problem arises in the case of passing function arguments by
value. Having the function

void process(Particle p); // Pass by value
it is possible to write
process(e); // e is Electron

but the instance e of type Electron will be first cast (converted) to the
Particle type. This cast leads to the loss of information.

These problems may be avoided if we use dynamical instances only. If we
rewrite the preceding declarations into the form

Electron *ep = new Electron; // Dynamical instances
Particle *pp;
pp = €p; // OK
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the pp variable will still contain the pointer to the instance of the Electron
class. (The type of the pointer is converted, not the type of the instance.)

The parameter of the process () function should be passed by the pointer
or by the reference. In both cases, the original instance is accessible in the
function body and no information is lost.

In Java, C# and other OOP languages, that use dynamical instances of
the object types only and manipulate them by references, these problems do
not appear.

4.4 Inheritance, or Composition?

In some cases, it is not clear, whether a new class should be derived from some
suitable class by inheritance or whether object composition should be used.
There are two questions that should be answered in this case:

e Is the new class a special case of the base class proposed?
e Has the new class a data member of the proposed class?

This is known as the IS A — HAS A test. Only if the answer to the first
question is yes, the inheritance may be considered, otherwise the composition
should be used.

Ezample. Consider the Source class, representing the source of elementary
particles in the Monte Carlo simulation. It will be based on some generator
of random numbers represented in our program by the Generator class. In
other words, the Source seems to be the Generator class with some added
functionality. Should we derive the Source class from the Generator class?

If we apply the IS A — HAS A test, we find that the particle source is not
a special case — a subclass — of the random number generator. It uses the
random number generator, so it may contain it as a data member, however,
the inheritance should be avoided in this case.

Consider for an instant that we use the inheritance to derive the Source
class from the Generator class,

// Wrong use of the inheritance
class Source: public Generator
{

// Body of the class
}

This would mean that we can use a Source instance everywhere the Generator
instance is expected. But in the Monte Carlo simulation, the random number
generator is necessary even in other parts of the program, e.g. for the deter-
mination of the interaction type, for the determination of the features of the
secondary particles resulting from the interaction (if any) etc. However, in
these parts of the program, the Source class may not serve as the random
number generator.
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Such a design of the Source class may cause that some typing errors in the
program will not be properly detected and some mysterious error messages
during the compilation will be reported; or even worse — it may lead to
runtime errors hard to discover.

4.5 Multiple Inheritance

The class may have more than one base class; this is called multiple inher-
itance. The class derived from multiple base classes is considered to be the
subclass if all its base classes.

Multiple inheritance may be used as a means of the class composition.

This feature is supported only in a few programming languages — e.g., in
C++ (see Stroustrup, 1998) or in Eiffel (see Meyer, 1988). In Java, C#, Object
Pascal and some other languages it is not supported. Multiple inheritance
poses special problems, that will not be discussed here.

5 Polymorphism

At the end of the previous section, we have seen that instances of many
different classes were dealt with in the same way. We did not know the exact
type of the instances stored in the store container; it was sufficient that they
were instances of any class derived from the Particle class.

This feature of the OOP is called polymorphism. Polymorphism means that
instances of various classes may be used in the same way — they accept the
same messages, so their methods may be called without any regard to the exact
type of the instance. In some programming languages (e.g., in Java), this is
automatic behavior of the objects (or of their methods), in some programming
languages (e.g. in C++) this behavior must be explicitly declared.

There are at least two ways to achieve polymorphic behavior: The use of
the inheritance and the use of the interfaces. The interfaces will be discussed
in 5.4.

Example. Let’s consider once again the example given at the end of the Inher-
itance section. The expression store[i] is of type “pointer to the Particle
class”, even though it in fact points to an instance of the Electron, Photon,
or some other derived class.

It follows that the statement

store[i] -> Interact(det); // Which method is called?

might be interpreted as the call of the Particle::Interact () method, even
though it should be interpreted as the call of the Interact () method of some
derived class.
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5.1 Early and Late Binding

The previous example shows that there are two possible approaches to the
resolution of the type of the instance for which the method is called, if the
pointer (or reference) to the instance is used:

e Farly binding. The type of the instance is determined in the compile time.
It follows that the static (declared) type of the pointer or reference is used.
This is the default for all methods in C++, C#, or Object Pascal.

e Late binding. The type of the instance is determined in the run time. It
follows that the actual type of the instance is used and the method of this
type is called. This is always used for the methods in Java. In C4++, the
virtual keyword denotes the methods using the late binding.

Late binding gives the class polymorphic behavior. On the other hand, late
binding is less effective than early binding, even though the difference may
be negligible. (In C++ on PCs, the difference between the late and the early
binding is usually one machine instruction per method call.)

Any method that might be overridden in any of the derived classes should
use the late binding.

Note. In C++ and other OOP languages in which the late binding must be
declared, the classes containing at least one virtual method are called polymor-
phic classes. Classes without any virtual method are called non-polymorphic
classes. In languages like Java, where all the methods use late binding by
default, all the classes are polymorphic.

5.2 Implementation of the Late Binding

In this subsection, some low level concepts will be discussed. They are not
necessary for understanding the basic concepts of the OOP, but they can give
better insight in it.

We will explore one the common way of implementation of the late binding,
i.e., of the determination of the actual type of the instance for which the
method is called.

This is based on the so called virtual method tables. The virtual method
table (VMT) is the hidden class data member that is part of any polymorphic
class. Any polymorphic class contains exactly one VMT. (The hidden class
member is a class member the programmer does not declare — the compiler
adds it automatically.)

The VMT is an array containing pointers to all the virtual methods of
the class. Any derived class has its own VMT that contains pointers to all
the virtual methods (even those that are not overridden in this class). The
pointers to the virtual methods in the VMT of the derived class are in the
same order as the pointers to corresponding methods in the base class.
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Any instance of the polymorphic class contains another hidden data mem-
ber — the pointer to the VMT. This data member is stored in all the instances
at the same place — e.g. at the beginning.

The method call is performed in the following way:

1. The program takes the instance, for which the method is called.

2. In the instance, it finds the pointer to the VMT.

3. In the VMT, it finds the pointer to the method called. In all the VMTs this
pointer is in the same entry; e.g., the pointer to the Interact () method
might be in the VMT of the Particle class and in the VMTs of all the
classes derived from the Particle in the first entry.

4. The program uses this pointer to call the method of the actual class of
the instance.

Fig. 4 illustrates this process for the Particle base class and two derived
classes. The values stored in the VMT are set usually at the start of the
program or when the class is loaded to the memory. The values of the pointer
to the VMT in the instances are set automatically by the constructor.

The Particle VMT

Interact() void
\ Particle::Interact(...)

{/l Code of the method
Il'inthe Particle class | particle *ppl = new El ectron;

} :]1
l &VMT ‘ Instance attributes of the Electron

Particle *pp2 = new El ectron;

The Electron VMT

Interact()

void &VMT ‘ Instance attributes of the Electron
Electron::Interact(...)
{ /I Code of the method

/'in the Electron class pp2 = new Phot on;

}
The Photon VMT H &VMT ‘ Instance attributes of the Photon
Interact()

void Photon::Interact(...)
{ /I Code of the method

/'in the Photon class
}

Fig. 4. Typical implementation of the late binding.



18 Miroslav Virius
5.3 Abstract Class

In some cases, the base class represents such an abstract concept that some
operations with instances of this class cannot be implemented. Nevertheless,
at least the stub of the corresponding method should be present in the class,
because this class is used as a base class and determines the common interface
for all the derived classes.

In OOP such a class is called the abstract class and such an operation
is called the abstract method. Abstract methods have no implementation (no
method body).

It is not allowed to create instances of the abstract classes and it is not
allowed to call the abstract methods. It is of course possible to define pointers
or references to abstract classes.

The abstract classes serve as base classes. If the derived class does not
implement any of the inherited abstract methods, it will be abstract like the
base class. The abstract class

defines the interface of the derived classes,
provides the implementation of non-polymorphic methods for the derived
classes, and

e offers a default implementation of non-abstract polymorphic (virtual)
methods.

Note that the abstract classes are italicized in the UML class diagrams —
see e.g. the Particle class in Fig. 5.

Ezxample. Consider the Particle class defined above. How could the Interact ()
method be implemented?

For the derived classes, the situation is clear: If it is, e.g., the Photon, the
interaction could be the photoelectric effect, the Compton scattering, or some
other interaction known to particle physicists; probabilities of these phenom-
ena are determined according to their total effective cross sections. For the
other derived classes, there are other well defined possibilities that can be
expressed in the program code.

However, there is no general interaction, that could be used to implement
the Interact() method of the general Particle. On the other hand, this
method must be declared in the Particle class as the part of the common
interface of derived classes. If we omit it, the statement

store[i] -> Interact(det);

will not compile, because store[i] is the pointer to the Particle class that
does not contain such a method.

So, the Interact () method should be declared as abstract (in C++, the
abstract methods are called pure virtual methods). In the following revision of
the Particle class, we omit all other parts of that class that are unchanged.
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// Particle as an abstract class
class Particle
{
public:
// Pure virtual method
virtual void Interact(Detector *aDetector) = 0;
// All other public members as before
protected:
// All data members as before
};

5.4 Interfaces

The interface may be defined as a named set of methods and constants. This
set may be empty.

The interface represents a way to achieve the polymorphic behavior; it is
an alternative to inheritance. This concept is relatively new in OOP; it was
first widely used in the Java language.

In languages that support interfaces, any class may declare that it imple-
ments the given interface. This means that the class will supply the imple-
mentations (bodies) of the methods in the interface.

Note the terminological difference: Even though interfaces are syntactically
similar to the classes that contain only public abstract methods, they are not
inherited, but they are implemented. In programming languages, that support
interfaces, any class may implement many interfaces, even if the language does
not support multiple inheritance.

The interface represents the type. If class C implements interfaces I1 and
I2, any instance of this class is an instance of type C and also an instance of
type I1 and of type I2.

The interface is usually represented by a small circle connected to the class
icon in the UML class diagrams (see Fig. 5). It may also be represented by
a class-like icon marked by the <interface>> label (“stereotype”). Imple-
mentation of the interface is represented by a dashed arrow pointing to the
implementing class (see Fig. 7).

5.5 Interfaces in C++

As we have chosen C++ as the language of examples, it is necessary to cover
briefly the interfaces in this language. C++ does not support interfaces di-
rectly; nevertheless, interfaces may be fully simulated by abstract classes that
contain only public abstract (pure virtual) methods, and the interface imple-
mentation may be substituted by the inheritance. This will be demonstrated
by the following example.
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Ezample. The Monte Carlo simulation may be time-consuming and it would
be convenient to have the possibility to store the status of the simulation into
a file, so that the computation might be interrupted and continued later.

It is clear that all the generated but not yet processed particles should be
stored. The status of the particle source, and consequently the status of the
random number generator, should be stored, too. This is necessary especially
for debugging, because it ensures that we could get the same sequence of
random number in repeated runs of the program, even if they are interrupted.

It follows that we have at least two different object types belonging to
different class hierarchies that have a common feature — they will be stored
in a file and later will be restored into their original state. It follows that all the
classes involved should have suitable methods, e.g., store() and restore().

The simulated experiment is represented by the Experiment class in the
program and to store the experiment status is the task of this class; so we
would like to implement in this class the storeObject() method to store
objects passed as arguments. It follows that all the parameters — all the
objects stored — should be of the same type.

The solution of this dilemma — the method requires objects of the same
type as parameters, but we have objects of at least two distinct types belonging
to different class hierarchies — is to use a suitable interface that contains the
store() and restore() methods. We will use the Storable identifier for this
interface. The Source, Generator and Particle classes should be modified
as follows:

// Interface simulation in C++
class Storable

{

public:
virtual void store(ostream&) = 0;
virtual void restore(istream&) = O;

};

class Generator: public Storable // Interface implementation
{
public:
virtual void store(ostream& out)
{/* Store the generator */}
virtual void restore(istream& in)
{/* Read the generator and reconstruct it */}
// ... Other methods and attributes as before
};

class Source: public Storable // Interface implementation
{
public:
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virtual void store(ostream& out)
{/* Store the source */}
virtual void restore(istream& in)
{/* Read the source from the file and reconstruct it*/}
// ... Other methods and attributes as before
};

class Particle: public Storable // Interface implementation
{
public:
virtual void store(ostream& out)
{/* Store the particle */}
virtual void restore(istream& in)
{/* Read the particle from the file and reconstruct it */}
// ... Other methods and attributes as before
}

(ostream and istream are base classes for output and input data streams in
the standard C++ library.) Fig. 5 shows the revised UML class diagram of
these classes.

-generates -is generated
Source Particle

1 0..*
O Storable

O Storable @ @

Storable

Fig. 5. The classes implementing the Storable interface.

Note that the Particle class is abstract, so it need not override the meth-
ods of the Storable interface. The classes representing the concrete particle
types, Electron etc., inherit the implementation of the Storable interface;
thus it is not necessary to declare this fact. Of course, if a derived class is not
abstract, it must override the methods of this interface.

Implementation of the Storable interface allows us to define the method
Experiment: :storeObject () as follows:

void Experiment::storeObject(Storable& obj, ostream& out) {
obj.store(out)
}
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Storable interface serves as the common type of all the storable objects —
particles as well as random number generators — in the program. This gives
us the possibility to treat all these objects in our program in a uniform way.

6 More about Inheritance

Inheritance can be easily misused and this is often counterproductive. Poorly
designed inheritance hierarchies lead to programs that are difficult to under-
stand, contain hard-to-find errors, and are difficult to maintain. In this section,
we give some typical examples.

6.1 Substitution Principle

In Section 4, Inheritance, we have seen that any instance of any derived class
may be used where an instance of the base class is expected. This is sometimes
called the substitution principle.

As far as we have seen, this is a syntactic rule: If you follow it, the program
compiles. But we already know that for reasonable use of the inheritance, the
derived class must be a specialization of the base class. Let’s investigate more
deeply, what it means.

“Technical” Inheritance

This problem is similar to the problem we have seen in Section 4.4. We have
two related classes, say A and B, and class B contains all the members of A and
some additional ones. Is it reasonable to use A as a base class of B?

Of course, this situation indicates, that B might be really derived from A.
But this is indication only that cannot replace the IS A — HAS A test. In
4.4, we have seen an example that leads to object composition. Here we give
another example that will be solved by inheritance.

Example. Consider the particles in our Monte Carlo simulation. The interac-
tion of electrically charged particles in the detector substantially differs form
the interaction of uncharged particles, so it would be convenient to split the
class of all the particles into two subclasses, one for the uncharged particles
and the other for the charged ones.

The class representing the charged particles contains the same data mem-
bers as the class representing the uncharged particles plus the charge at-
tribute and the methods setCharge() and getCharge () to manipulate the
charge. This might lead to the idea to define the Uncharged class representing
the uncharged particles and use it as a base for the Charged class represent-
ing the charged particles. These two classes will serve as base classes for the
classes representing concrete particle types (Fig. 6(a)).

This class hierarchy design is incorrect and leads to problems in the pro-
gram. Suppose the following two declarations:
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list<Uncharged*> ListOfUncharged;
Electron e; // Electron is charged particle

The List0fUncharged variable is a double-linked list of pointers to the
Uncharged instances. If the Charged class were derived from the Uncharged
class, it would be possible to insert any charged particle into this container of
uncharged ones. The following statement would compile and run (of course,
the results would be unpredictable):

List0fUncharged.push_back(&e); // It compiles...

The reason of this problem is evident — the charged particle is not a spe-
cial case of the uncharged particle (the IS A test), so this inheritance is not
applicable.

“Logical” Inheritance

Here we will show that the IS A — HAS A test may be insufficient in some
cases. First, consider the following example.

Ezxample. We will continue with the analysis of the Monte Carlo simulation of
the charged and uncharged particles. The uncharged particles may be consid-
ered as a special case of the charged particles with the electric charge set to
zero. Consequently, it seems to be logical to derive the Uncharged class from
the Charged class (Fig 6(b)).

However, no member of the base class may be excluded from the derived
class in the inheritance process. So the derived class, Uncharged, will contain
the charge attribute and both the access methods. In order to ensure that
the charge is zero, we have to override the setCharge () method so that it
always sets the charge value to zero,

void Uncharged: :setCharge(double ch) {
charge = 0.0; // Parameter value not used

}
Nevertheless, this construction may fail. Consider the following function:

void process(Charged& cp){
const double chargeValue = 1e-23;
cp.setCharge (chargeValue) ;
assert(cp.getCharge() == chargeValue);
// And some other code...

}

This is correct behavior of the process() function: It expects a charged par-
ticle, changes its charge to some predefined value and tests whether or not
this change succeeded. If the argument is really a charged particle, it works.

However, the classes representing the uncharged particles, e.g., Photon, are
derived from the Uncharged class and this class is derived from the Charged
class, so the following code fragment compiles, but fails during the execution:
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Photon p; // Uncharged particle
process(p); // Assertion fails...

This example shows, that even if the IS A test succeeds, it does not
mean that the inheritance is the right choice. In this case, the overridden
setCharge () method violates the contract of the base class method — it
does not change the charge value.

6.2 Substitution Principle Revised

The preceding example demonstrates that under some circumstances the
Uncharged class has significantly different behavior than the base class, and
this leads to problems — even to run time errors.

This is the rule: Given the pointer or reference to the base class, if it is
possible to distinguish, whether it points to an instance of the base class or of
the derived class, the base class cannot be substituted by the derived class.

The conclusion is, that the substitution principle is more than a syntactic
rule. This is a constraint imposed on derived classes, that requires, that the
derived class instances must be programmatically indistinguishable from the
base class instances, otherwise the derived class does not represent a subtype
of the base class.

This conclusion has been originally formulated by Liskov (Liskov, 1988;
Martin, 1996) as follows:

What is wanted here is something like the following substitution prop-
erty: If for each object o1 of type S there is an object oy of type T
such that for all programs P defined in terms of T, the behavior of P
is unchanged when o7 is substituted for os, then S is subtype of T.

Ezample. Let’s finish the charged and uncharged particles problem. We have
seen that the Charged and Uncharged classes may not be derived one from the
other. To avoid both kinds of problems, it is necessary to split the hierarchy
and to derive both classes directly from the Particle class:

// Proper Particle hierarchy
class Charged: public Particle { /* ... */ };
class Uncharged: public Particle { /* ... %/ };

This class hierarchy is shown in the Fig. 6(c).

6.3 Inheritance and Encapsulation

In this subsection we demonstrate that the inheritance may lead to significant
violation of the encapsulation, which may cause problems in the implementa-
tion of derived classes. We start with an example.
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Fig. 6. Class hierarchies discussed in subsections 6.1 and 6.2. Only (c) is correct.

Ezample. The particles interact in the detector in different ways. Some of the
interaction represent events that are subject to our investigation and need
to be logged in the result file and further processed. (This means to record
the particle type, energy, coordinates of the interaction etc.) But the events
may appear in groups, so the ResultFile class will contain the methods
LogEvent () and LogEventGroup (). The latter will get the vector containing
data of several events as an argument. Suppose that both these methods are
polymorphic.

At some later stage of the program development, we find that it is necessary
to be aware of the total count of recorded events. The actual implementation
of the ResultFile class does not support this feature and we cannot change
it, e.g., because it is part of some program library.

The solution seems to be easy — we derive a new class, CountedResult-
File, based on the ResultFile. The implementation could be as follows

class CountedResultFile: public ResultFile

{
public:
virtual void LogEvent (Event *e)
{
ResultFile: :LogEvent (e);
count++;
}
virtual void LogEventGroup(vector<Event*> eg)
{
ResultFile: :LogEventGroup(eg) ;
count += eg.size();
}
private:

int count;

};
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The overridden methods simply call the base class methods to log the events
and then increase the count of the recorded events.

It may happen that we find that the LogEventGroup () method increases
the count of recorded events incorrectly: After the call

LogFile *clf = new CountedLogFile;
clf -> LogEventGroup(eg); // (%)

the count value increases by twice the number of the events in eg.

The reason might be that the implementation of the LogEventGroup ()
method internally calls the LogEvent () method in a loop. This is what hap-
pens:

1. The (*) statement calls the LogEventGroup () method. This is a polymor-
phic method, so the CountedResultFile: :LogEventGroup() method is
called.

2. This method calls the base class LogEventGroup () method.

3. The base class method calls the LogEvent () method in a loop. But because
these methods are polymorphic, the method of the actual type, i.e., the
ComputedResultFile: :LogEvent () method is called.

4. This method calls the base class method to record the event and increases
the count of events. After that it returns to the CountedResultFile: :Log-
EventGroup () method. This method increases the event count once again.

To implement the derived class properly, we need to know that the Re-
sultFile: :LogEventGroup () method internally calls the ResultFile: :Log-
Event () method. But this is an implementation detail, not the part of the
contract of the methods of the ResultFile class.

Solution

This problem may easily be avoided by using interfaces and object composition

(cf. class diagram in Fig. 7); it is necessary to use another design of the

ResultFile class, as well as another design of the CountedResultFile class.
First we design the ResultFileInterface interface as follows:

class ResultFileInterface {
public:
virtual void LogEvent(Event *e) = 0;
virtual void LogEventGroup(vector<Event*> eg) = 0;

}s;
The class ResultFile will implement this interface:

class ResultFile: public ResultFilelInterface {
// Implementation as before

};
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«interface»
ResultFilelnterface
+LogEvent() : void
+LogEventGroup() : void
N V
s ~

7
~ N

ResultFile 1 1 CountedResultFile

-rs : CountedResultFile
<®-count : int

+LogEvent() : void
+LogEventGroup() : void

+LogEvent() : void
+LogEventGroup() : void

Fig. 7. Class diagram of the correct design. Only interface methods and correspond-
ing attributes are shown.

Now, CountedResultFile may be designed as an independent class that im-
plements the ResultFileInterface and uses the ResultSet as an attribute:

class CountedResultFile: public ResultFilelInterface {

public:
virtual void LogEvent(Event *e)
{
rs.LogEvent (e) ;
count++;
}
virtual void LogEventGroup(vector<Event*> eg)
{
rs.LogEventGroup(eg) ;
count += eg.size();
}
private:

int count;
ResultSet rs;
};

The problem may not appear, because the CountedResultFile is not derived
from the ResultFile now. Nevertheless, they may be treated polymorphically,
i.e. instances of the CountedResultFile may be used instead of instances of
the ResultFile, if they are used as instances of the ResultFileInterface
interface.

7 Structure of the Object Oriented Program

We conclude this chapter by describing shortly the typical structure of the
OOP program.
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As we have seen in previous sections, an OOP program consists of objects
that collaborate by messages. In this structure, one object must play the role
of a starting object. This means that one of the methods of this object will be
called as the program start. The starting object typically creates other objects
in the program and manages the their lifetime.

All the other objects represent various parts of the problem solved and are
responsible for the associated resource management, computation, etc.

Experiment

-det : Detector*
-sce : Source*
-rfile : ResultFile*

+Experiment()

+Run() : void
1 1 1
L 1.*
-detects -produces
-generates Detector

Source 1

O Storable

-records

-is detected
)
/\

*
O Storable

+is generated ResultFile

Generator

O Storable 0.*

[uncharged| | Charged |

|. Photon |'|‘| |IEIectron |'|‘|

Fig. 8. Basic structure of the simulation program.

Ezample. Here we finish the Monte Carlo simulation of an experiment with
particles. We have already mentioned the Experiment class covering the ap-
plication as a whole. The only instance of this class in the program will be the
starting object. The Experiment class will contain the public method run()
that will represent the run of the experiment.

As we are in C++, our program must have the main () function where the
program starts. It will create the starting object and let it run:

int main() { // Create the starting object
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Experiment() .Run(); // and run it
}

The Experiment class could be defined as follows:

class Experiment{

public:
Experiment () ; // Constructor
void Run(); // Run the experiment
private:
Detector *det; // Detector in this experiment
Source *sce; // Particle source

ResultFile *rfile; // Result file
};

The Experiment: :Experiment () constructor reads the input data (e.g.,
cross sections describing the probabilities of the interactions) and creates and
initializes the attributes (particle source, result file etc.).

The Experiment: : run() methods does the work — it starts particle emis-
sion in the source using the appropriate method of the Source class, de-
termines, whether the given particle hits the detector using the appropriate
Detector method, records the results of the detection into the ResultFile in-
stance and in the end processes the results using the appropriate ResultFile
methods.

Class diagram of the program at the level we have given here is presented
in Fig. 8.

Note that this is top-level design only. The extent of this chapter allows
us to demonstrate only the beginning of the object oriented approach to the
example.

8 Conclusion

Attempts to formalize the process of object oriented analysis and design have
been made since the beginning of the OOP. A widely used approach is de-
scribed in Booch (1993).

In object oriented design some common problems — or tasks — may ap-
pear in many different situations. Reusable solutions of these problems are
called Design Patterns. A well known example of design pattern is Singleton
— the class that may have at most one instance. Another example is Respon-
sibility Chain; this design pattern solves the problem how to find the proper
processing of varying data, even if the way of processing may dynamically
change.

The idea of design patterns and the 23 most common design patterns in
OOP are described in Gamma (1999).
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