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SEMIPARAMETRIC MODELS 

1.  Introduction 

Much empirical research is concerned with estimating conditional mean, median, or 

hazard functions.  For example, labor economists are interested in estimating the mean wages of 

employed individuals conditional on characteristics such as years of work experience and 

education.  The most frequently used estimation methods assume that the function of interest is 

known up to a set of constant parameters that can be estimated from data.  Models in which the 

only unknown quantities are a finite set of constant parameters are called parametric.  The use of 

a parametric model greatly simplifies estimation, statistical inference, and interpretation of the 

estimation results but is rarely justified by theoretical or other a priori considerations.  Estimation 

and inference based on convenient but incorrect assumptions about the form of the conditional 

mean function can be highly misleading.   

As an illustration, the solid line in Figure 1 shows an estimate of the mean of the 

logarithm of weekly wages, , conditional on years of work experience, EXP, for white 

males with 12 years of education who work full time and live in urban areas of the North Central 

U.S.  The estimate was obtained by applying kernel nonparametric regression (see, e.g., Härdle 

1990, Fan and Gijbels 1996) to data from the 1993 Current Population Survey (CPS).  The 

estimated conditional mean of  increases steadily up to approximately 30 years of 

experience and is flat thereafter.  The dashed and dotted lines in Figure 1 show two parametric 

estimates of the mean of the logarithm of weekly wages conditional on years of work experience.  

The dashed line is the ordinary least squares (OLS) estimate that is obtained by assuming that the 

mean of  conditional on 

logW

logW

logW EXP  is the linear function 0 1(log | )W EXP EXPβ β= +E

(log | )W EXPE

(log |W EE

(log |W EE

.  The 

dotted line is the OLS estimate that is obtained by assuming that  is the quadratic 

function .  The nonparametric estimate (solid line) 

places no restrictions on the shape of .  The linear and quadratic models give 

misleading estimates of .  The linear model indicates that  

increases steadily as experience increases.  The quadratic model indicates that  

decreases after 32 years of experience.  In contrast, the nonparametric estimate of 

 becomes nearly flat at approximately 30 years of experience.  Because the 

nonparametric estimate does not restrict the conditional mean function to be linear or quadratic, it 

is more likely to represent the true conditional mean function.   
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 The opportunities for specification error increase if Y is binary.  For example, consider a 

model of the choice of travel mode for the trip to work.  Suppose that the available modes are 
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automobile and transit.  Let Y = 1 if an individual chooses automobile and Y = 0 if the individual 

chooses transit.  Let X be a vector of explanatory variables such as the travel times and costs by 

automobile and transit.  Then  is the probability that Y = 1 (the probability that the 

individual chooses automobile) conditional on X = x.  This probability will be denoted 

.  In applications of binary response models, it is often assumed that 

( | )Y xE

( 1|Y =P

( | )Y x

)x

( )G xβ ′=P , where β  is a vector of constant coefficients and G is a known probability 

distribution function.  Often, G is assumed to be the cumulative standard normal distribution 

function, which yields a binary probit model, or the cumulative logistic distribution function, 

which yields a binary logit model.  The coefficients β  can then be estimated by the method of 

maximum likelihood (Amemiya 1985).  However, there are now two potential sources of 

specification error.  First, the dependence of Y on x may not be through the linear index xβ ′ .  

Second, even if the index xβ ′  is correct, the response function G may not be the normal or 

logistic distribution function.  See Horowitz (1993a, 1998) for examples of specification errors in 

binary response models and their consequences. 

 Many investigators attempt to minimize the risk of specification error by carrying out a 

specification search in which several different models are estimated and conclusions are based on 

the one that appears to fit the data best.  Specification searches may be unavoidable in some 

applications, but they have many undesirable properties and their use should be minimized.  

There is no guarantee that a specification search will include the correct model or a good 

approximation to it.  If the search includes the correct model, there is no guarantee that it will be 

selected by the investigator’s model selection criteria.  Moreover, the search process invalidates 

the statistical theory on which inference is based.   

 The rest of this chapter describes methods that deal with the problem of specification 

error by relaxing the assumptions about functional form that are made by parametric models.  The 

possibility of specification error can be essentially eliminated through the use of nonparametric 

estimation methods.  They assume that the function of interest is smooth but make no other 

assumptions about its shape or functional form.  However, nonparametric methods have 

important disadvantages that seriously limit their usefulness in applications.  One important 

problem is that the precision of a nonparametric estimator decreases rapidly as the dimension of 

the explanatory variable X increases.  This phenomenon is called the curse of dimensionality.  As 

a result of it, impracticably large samples are usually needed to obtain acceptable estimation 

precision if X is multidimensional, as it often is in applications. For example, a labor economist 
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may want to estimate mean log wages conditional on years of work experience, years of 

education, and one or more indicators of skill levels, thus making the dimension of X  at least 3.  

Another problem is that nonparametric estimates can be difficult to display, 

communicate, and interpret when X is multidimensional.  Nonparametric estimates do not have 

simple analytic forms.  If X is one- or two-dimensional, then the estimate of the function of 

interest can be displayed graphically as in Figure 1, but only reduced-dimension projections can 

be displayed when X has three or more components.  Many such displays and much skill in 

interpreting them can be needed to fully convey and comprehend the shape of an estimate. 

 A further problem with nonparametric estimation is that it does not permit extrapolation.  

For example, in the case of a conditional mean function it does not provide predictions of 

 at points x that are outside of the support (or range) of the random variable X.  This is a 

serious drawback in policy analysis and forecasting, where it is often important to predict what 

might happen under conditions that do not exist in the available data.  Finally, in nonparametric 

estimation, it can be difficult to impose restrictions suggested by economic or other theory.  

Matzkin (1994) discusses this issue. 

( | )Y xE

Semiparametric methods offer a compromise.  They make assumptions about functional 

form that are stronger than those of a nonparametric model but less restrictive than the 

assumptions of a parametric model, thereby reducing (though not eliminating) the possibility of 

specification error.  Semiparametric methods permit greater estimation precision than do 

nonparametric methods when X is multidimensional.  They are easier to display and interpret than 

nonparametric ones and provide limited capabilities for extrapolation and imposing restrictions 

derived from economic or other theory models.  Section 2 of this chapter describes some 

semiparametric models for conditional mean functions.  Section 3 describes semiparametric 

estimators for an important class of hazard models.  Section 4 is concerned with semiparametric 

estimation of a certain binary response model. 

2.  Semiparametric Models for Conditional Mean Functions 

The term semiparametric refers to models in which there is an unknown function in 

addition to an unknown finite dimensional parameter. For example, the binary response model 

( 1| ) (Y x G )xβ ′= =P  is semiparametric if the function G and the vector of coefficients β  are 

both treated as unknown quantities.  This section describes two semiparametric models of 

conditional mean functions that are important in applications.  The section also describes a related 

class of models that has no unknown finite-dimensional parameters but, like semiparametric 

models, mitigates the disadvantages of fully nonparametric models.  Finally, this section 
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describes a class of transformation models that is important in estimation of hazard functions 

among other applications.  Powell (1994) discusses additional semiparametric models. 

2.1  Single Index Models 

In a semiparametric single index model, the conditional mean function has the form 

(2.1) ( | ) ( )Y x G xβ ′=E , 

where β  is an unknown constant vector and G is an unknown function.  The quantity xβ ′  is 

called an index.  The inferential problem is to estimate G and β from observations of (Y, X).   in 

(2.1) is analogous to a link function in a generalized linear model, except in (2.1) G  is unknown 

and must be estimated. 

G

 Model (2.1) contains many widely used parametric models as special cases.  For 

example, if G is the identity function, then (2.1) is a linear model.  If G is the cumulative normal 

or logistic distribution function, then (2.1) is a binary probit or logit model.  When G is unknown, 

(2.1) provides a specification that is more flexible than a parametric model but retains many of 

the desirable features of parametric models, as will now be explained. 

 One important property of single index models is that they avoid the curse of 

dimensionality.  This is because the index xβ ′  aggregates the dimensions of x, thereby achieving 

dimension reduction.  Consequently, the difference between the estimator of G and the true 

function can be made to converge to zero at the same rate that would be achieved if xβ ′  were 

observable.  Moreover, β can be estimated with the same rate of convergence that is achieved in a 

parametric model. Thus, in terms of the rates of convergence of estimators, a single index model 

is as accurate as a parametric model for estimating β and as accurate as a one-dimensional 

nonparametric model for estimating G.  This dimension reduction feature of single index models 

gives them a considerable advantage over nonparametric methods in applications where X is 

multidimensional and the single index structure is plausible. 

 A single-index model permits limited extrapolation.  Specifically, it yields predictions of 

 at values of x that are not in the support of X but are in the support of ( | )Y xE Xβ ′ .  Of course, 

there is a price that must be paid for the ability to extrapolate.  A single index model makes 

assumptions that are stronger than those of a nonparametric model.  These assumptions are 

testable on the support of X but not outside of it.  Thus, extrapolation (unavoidably) relies on 

untestable assumptions about the behavior of  beyond the support of X. ( | )Y xE
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 Before β  and G can be estimated, restrictions must be imposed that insure their 

identification.  That is, β  and G must be uniquely determined by the population distribution of 

(Y, X).  Identification of single index models has been investigated by Ichimura (1993) and, for 

the special case of binary response models, Manski (1988).  It is clear that β  is not identified if 

G is a constant function or there is an exact linear relation among the components of X (perfect 

multicollinearity).  In addition, (2.1) is observationally equivalent to the model 

( | ) *Y X G ( )xγ δβ ′= +E , where γ  and 0δ ≠  are arbitrary and G* is defined by the relation 

* ( )G v v( )Gγ δ+ =  for all v in the support of Xβ ′ .  Therefore, β  and G are not identified unless 

restrictions are imposed that uniquely specify γ  and δ .  The restriction on γ  is called location 

normalization and can be imposed by requiring X to contain no constant (intercept) component.  

The restriction on δ  is called scale normalization.  Scale normalization can be achieved by 

setting the β coefficient of one component of X equal to one.  A further identification requirement 

is that X must include at least one continuously distributed component whose β coefficient is non-

zero.  Horowitz (1998) gives an example that illustrates the need for this requirement.  Other 

more technical identification requirements are discussed by Ichimura (1993) and Manski (1988). 

 The main estimation challenge in single index models is estimating β .  Given an 

estimator  of nb β , G can be estimated by carrying out the nonparametric regression of Y on 

 (e.g, by using kernel estimation).  Several estimators of nb X′ β  are available.  Ichimura (1993) 

describes a nonlinear least squares estimator.  Klein and Spady (1993) describe a semiparametric 

maximum likelihood estimator for the case in which Y is binary.  These estimators are difficult to 

compute because they require solving complicated nonlinear optimization problems.  Powell, et 

al. (1989) describe a density-weighted average derivative estimator (DWADE) that is non-

iterative and easily computed.  The DWADE applies when all components of X are continuous 

random variables.  It is based on the relation 

(3.2) [ ( ) ( ) / ] 2 [ ( ) / ]p X G X X Y p X Xβ β ′∝ ∂ ∂ = − ∂E E ∂ , 

where p is the probability density function of X and the second equality follows from integrating 

the first by parts.  Thus, β  can be estimated up to scale by estimating the expression on the right-

hand side of the second equality.  Powell, et al. (1989) show that this can be done by replacing p 

with a nonparametric estimator and replacing the population expectation E with a sample 

average.  Horowitz and Härdle (1996) extend this method to models in which some components 

of X are discrete.  Hristache, Juditsky, and Spokoiny (2001) developed an iterated average 

derivative estimator that performs well when X is high-dimensional.  Ichimura and Lee (1991) 
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and Hristache, Juditsky, Polzehl and Spokoiny (2001) investigate multiple-index generalizations 

of (2.1). 

 The usefulness of single-index models can be illustrated with an example that is taken 

from Horowitz and Härdle (1996).  The example consists of estimating a model of product 

innovation by German manufacturers of investment goods.  The data, assembled in 1989 by the 

IFO Institute of Munich, consist of observations on 1100 manufacturers.  The dependent variable 

is Y if a manufacturer realized an innovation during 1989 in a specific product category and 0 

otherwise.  The independent variables are the number of employees in the product category 

(

1=

EMPLP ), the number of employees in the entire firm ( EMPLF ), an indicator of the firm’s 

production capacity utilization ( ), and a variable CAP DEM , which is 1 if a firm expected 

increasing demand in the product category and 0 otherwise.  The first three independent variables 

are standardized so that they have units of standard deviations from their means.  Scale 

normalization was achieved by setting 1EMPLPβ = . 

 Table 1 shows the parameter estimates obtained using a binary probit model and the 

semiparametric method of Horowitz and Härdle (1996).  Figure 2 shows a kernel estimate of 

( )G ν′ .  There are two important differences between the semiparametric and probit estimates.  

First, the semiparametric estimate of EMPLFβ  is small and statistically nonsignificant, whereas 

the probit estimate is significant at the 0.05 level and similar in size to CAPβ .  Second, in the 

binary probit model, G  is a cumulative normal distribution function, so G′  is a normal density 

function.  Figure 2 reveals, however, that G′  is bimodal.  This bimodality suggests that the data 

may be a mixture of two populations.  An obvious next step in the analysis of the data would be 

to search for variables that characterize these populations.  Standard diagnostic techniques for 

binary probit models would provide no indication that G′  is bimodal.  Thus, the semiparametric 

estimate has revealed an important feature of the data that could not easily be found using 

standard parametric methods. 

2.2  Partially Linear Models 

In a partially linear model, X is partitioned into two non-overlapping subvectors, X1 and 

X2.  The model has the form 

(2.3) 1 2 1 2( | , ) ( )Y x x x G xβ ′= +E , 

where β  is an unknown constant vector and G is an unknown function.  This model is distinct 

from the class of single index models.  A single index model is not partially linear unless G is a 

linear function.  Conversely, a partially linear model is a single index model only in this case.  
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Stock (1989, 1991) and Engle et al. (1986) illustrate the use of (2.3) in applications. Identification 

of β  requires the exclusion restriction that none of the components of X1 are perfectly 

predictable by components of X2.  When β  is identified, it can be estimated with an n-1/2 rate of 

convergence regardless of the dimensions of X1 and X2.  Thus, the curse of dimensionality is 

avoided in estimating β . 

1 | x)x− =

( |Y x 1( | x

X

)df

dv

)x

( | kx Y dx

1=∫

An estimator of β can be obtained by observing that (2.3) implies 

(2.4) 2 1 2( | [ ( )]Y Y X Xβ ′ −E E , U+

where U is an unobserved random variable satisfying 1 2( | , ) 0U x x =E .  Robinson (1988) shows 

that under regularity conditions, β  can be estimated by applying OLS to (3.4) after replacing 

 and 2 )E 2 )XE  with nonparametric estimators.  The estimator of β , b , converges at 

rate n-1/2 and is asymptotically normally distributed.  G can be estimated by carrying out the 

nonparametric regression of Y b

n

1Xn
′−  on 2 .  Unlike b , the estimator of  suffers from the 

curse of dimensionality; its rate of convergence decreases as the dimension of 

n G

2X  increases.  

2.3  Nonparametric Additive Models 

Let X have d continuously distributed components that are denoted X1, ..., Xd.  In a 

nonparametric additive model of the conditional mean function, 

(2.5) 1 1( | ) ( ) ... (dY x x f xµ= + + +E , 

where µ  is a constant and 1,..., df f  are unknown functions that satisfy a location normalization 

condition such as 

(2.6) ( ) ( ) 0, 1,..,k kf v w v k d= =∫ , 

where  is a non-negative weight function.  An additive model is distinct from a single index 

model unless  is a linear function of x.  Additive and partially linear models are distinct 

unless  is partially linear and G in (2.3) is additive.   

kw

(E

( |YE

)|Y x

An estimator of ( 1,..., )kf k = d  can be obtained by observing that (2.5) and (2.6) imply 

(2.7) ( ) ) ( )k k k kf x w x− − −= ∫E , 

where kx−  is the vector consisting of all components of x except the k’th and  is a weight 

function that satisfies 

kw−

( )k k kw x dx− − − .  The estimator of kf  is obtained by replacing 

 on the right-hand side of (2.7) with nonparametric estimators.  Linton and Nielsen ( |Y xE )
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(1995) and Linton (1997) present the details of the procedure and extensions of it.  Under suitable 

conditions, the estimator of kf  converges to the true kf  at rate n-2/5 regardless of the dimension 

of X.  Thus, the additive model provides dimension reduction.  It also permits extrapolation of 

 within the rectangle formed by the supports of the individual components of X.  

Mammen, Linton, and Nielsen (1999) describe a backfitting procedure that is likely to be more 

precise than the estimator based on (2.7) when  is large.  See Hastie and Tibshirani (1990) for 

an early discussion of backfitting. 

( | )Y xE

d

1 1)x

1f

EfEDUC EXP

EXPf

0 EXP

EXP

(logWE

H β

 Linton and Härdle (1996) describe a generalized additive model whose form is 

(2.8) ( | ) [ ( ... ( )]K dY x G f f xµ= + + +E , 

where ,..., df  are unknown functions and G is a known, strictly increasing (or decreasing) 

function.  Horowitz (2001) describes a version of (2.8) in which G is unknown.  Both forms of 

(2.8) achieve dimension reduction.  When G is unknown, (2.8) nests additive and single index 

models and, under certain conditions, partially linear models. 

 The use of the nonparametric additive specification (2.5) can be illustrated by estimating 

the model (log | , ) ( ) ( )EXP DUCW EXP f EDUCµ= + +E , where W and EXP are 

defined as in Section 1, and EDUC denotes years of education.  The data are taken from the 1993 

CPS and are for white males with 14 or fewer years of education who work full time and live in 

urban areas of the North Central U.S.  The results are shown in Figure 3.  The unknown functions 

 and  are estimated by the method of Linton and Nielsen (1995) and are normalized 

so that .  The estimates of 

EDUCf

(2) (5)P EDCUf f= =EX f  (Figure 3a) and  (Figure 3b) are 

nonlinear and differently shaped.  Functions 

EDUCf

f  and  with different shapes cannot be 

produced by a single index model, and a lengthy specification search might be needed to find a 

parametric model that produces the shapes shown in Figure 3.  Some of the fluctuations of the 

estimates of 

EDUCf

EXPf  and  may be artifacts of random sampling error rather than features of 

.  However, a more elaborate analysis that takes account of the effects of 

random sampling error rejects the hypothesis that either function is linear. 

EDUCf

, )XP EDUC| E

 2.4  Transformation Models 

 A transformation model has the form 

(2.9) ( )H Y X Uβ ′= + , 

where  is an unknown increasing function,  is an unknown finite dimensional vector of 

constants, and U  is an unobserved random variable.  It is assumed here that U  is statistically 
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independent of X .  The aim is to estimate  and H β .  One possibility is to assume that  is 

known up to a finite-dimensional parameter.  For example,  could be the Box-Cox 

transformation  

H

H

lo







)j j

,

i jY

U= −

∞

−∞∫

[U= j−

G

[i jY i xβ=

iX= − β

)ijX 0ijw X =

{ (w b 0=b X′ ′−

z iji j
X

b

( 1) /  if 
( )

g if  0

y
H y

y

τ τ τ

τ

− >
=

=
 

0

where τ  is an unknown parameter.  Methods for estimating transformation models in which  

is parametric have been developed by Amemiya and Powell (1981) and Foster, et al. (2001) 

among others. 

H

 Another possibility is to assume that  is unknown but that the distribution of U  is 

known.  Cheng, Wei, and Ying (1995, 1997) have developed estimators for this version of (2.9).  

Consider, first, the problem of estimating 

H

β .  Let F  denote the (known) cumulative distribution 

function (CDF) of U .  Let  and  ( )( , )i iY X ( ,Y X i j≠  be two distinct, independent 

observations of ( .  Then it follows from (2.9) that  )Y X

(2.10)  [ ( ) | , )] ( )].i i j j i i jI Y X x X x U x x> = = > − −E P

Let G z  for any real .  Then  ( ) ( )i jU z>P z

( ) [1 ( )] ( )G z F u z dF u= − + . 

G  is a known function because F  is assumed known.  Substituting  into (2.10) gives 

[ ( ) | , )] ( )].i i j j jI Y X x X x G x′> = = − −E  

Define ij jX X .  Then it follows that  satisfies the moment condition 

(2.11) { ( ) [[ ( ) ( ]}ij i jX I Y Y Gβ β′ ′> − −E  

where  is a weight function.  Cheng, Wei, and Ying (1995) propose estimating w β  by replacing 

the population moment condition (2.11) with the sample analog 

(2.12) . 
1 1

) [ ( ) ( )]}
n n

ij ij i j ij
i j

X X I Y Y G
= =

> −∑ ∑

The estimator of β , , is the solution to (2.12).  Equation (2.12) has a unique solution if 

 for all  and the matrix 

nb

( ) 1w z = ij X′∑ ∑  is positive definite.  It also has a unique 

solution asymptotically if  is positive everywhere (Cheng, Wei, and Ying 1995).  Moreover,  w n
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converges almost surely to β .  Cheng, Wei, and Ying (1995) also give conditions under which 

1/ 2 ( nn b )β−  is asymptotically normally distributed with a mean of 0.   

X ]xE

( )nH y

1
n

i

−

=
∑

nb

[F

[0, ]t (P

H

cU

U d+

The problem of estimating the transformation function  is addressed by Cheng, Wei, 

and Ying (1997).  Equation (5.1) implies that for any real  and vector 

H

y x  that is conformable 

with , [ ( ) | [ ( ) ] 0I I Y y X F H y xβ ′≤ = − −

( )H y

.  Cheng, Wei, and Ying (1997) propose 

estimating  by the solution to the sample analog of this equation.  That is, the estimator 

 solves 

=

1
{ ( ) ( ) ]} 0i n n in I Y y H y b X′≤ − − = , 

where  is the solution to (2.12).  Cheng, Wei, and Ying (1997) show that if F  is strictly 

increasing on its support, then ( )nH y

) 0Y t> >

 converges to  almost surely uniformly over any 

interval  such that .  Moreover, n H  converges to a mean-zero 

Gaussian process over this interval.   

( )H y

1/ 2 ( n H− )

 A third possibility is to assume that  and H F  are both nonparametric in (2.9).  In this 

case, certain normalizations are needed to make identification of (2.9) possible.  First, observe 

that (2.9) continues to hold if  is replaced by cH , β  is replaced by cβ , and U  is replaced by 

 for any positive constant .  Therefore, a scale normalization is needed to make 

identification possible.  This will be done here by setting | |

c

1 1β = , where 1β  is the first 

component of β .  Observe, also, that when  and H F  are nonparametric, (2.9) is a 

semiparametric single-index model.  Therefore, identification of β  requires X  to have at least 

one component whose distribution conditional on the others is continuous and whose β  

coefficient is non-zero.  Assume without loss of generality that the components of X  are ordered 

so that the first satisfies this condition. 

It can also be seen that (2.9) is unchanged if  is replaced by H H d+  and U  is replaced 

by  for any positive or negative constant d .  Therefore, a location normalization is also 

needed to achieve identification when  and H F  are nonparametric.  Location normalization will 

be carried out here by assuming that 0( ) 0H y =  for some finite   With this location 

normalization, there is no centering assumption on U  and no intercept term in 

0y

X .   

Now consider the problem of estimating , H β , and F . Because (2.9) is a single-index 

model in this case, β  can be estimated using the methods described in Section 2.1.  Let b  n
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denote the estimator of β .  One approach to estimating  and H F  is given by Horowitz (1996).  

To describe this approach, define Z Xβ ′= .  Let ( |G )z⋅  denote the CDF of Y  conditional on 

Z z= .  Set G y  and ( | ) | ) /y z y z= ∂ ∂(G z (z | ) ) /G y z z(G |y z= ∂ ∂

w

.  Then it follows from (2.9) that 

 and that (H y′

( |zG v

) = −

z

)z

( | ) / )y zG y z G z

0

( ) [ | ) /
y

y zy
H y G z G= −∫

( |y

(v ( | )]v z dv

(w

S

0[ , ]y∈ wSz∈

( ) 1w z dz =

0

( ) ( )[
y

y S
y z G= −∫ ∫

y

z=

wS∫

H

z

( | ) / (y zv z G v

H

z

| )]z

nb X

w

w

G

nb X′

dzdv

z

Y

′ =

H T

wy S0

( ) ( )[
y

n nH y w z G= −∫ ∫ ( | ) /v z G ( | )y v ]nz z dzd

n

v

H

1/ 2n H( n − )H

F −

nF

z

nH H

( | ) /G v z1/ 2n− ( | )nzG v zny
1/ 2−n (

(2.13)  

for any  such that the denominator of the integrand is non-zero.  Now let  be a scalar-

valued, non-negative weight function with compact support  such that the denominator of 

 is bounded away from 0 for all v y

)⋅

 and .  Also assume that  

. 

Then 

(2.14)  

Horowitz (1996) obtains an estimator of  from (2.14) by replacing G  and G  by kernel 

estimators.  Specifically,  is replaced by a kernel estimator of the probability density function 

of  conditional on , and G  is replaced by a kernel estimator of the derivative with 

respect to  of the CDF of Y  conditional on 

y z

.  Denote these estimators by  and G .  

Then the estimator of  is  

nyG nz

(2.15)  

Horowitz (1996) gives conditions under which  is uniformly consistent for  and 

 converges weakly to a mean-zero Gaussian process.  Horowitz (1996) also shows 

how to estimate 

H

, the CDF of U , and gives conditions under which  converges to 

a mean-zero Gaussian process, where 

1/ 2 ( nn F F

 is the estimator.  Gørgens and Horowitz (1999) extend 

these results to a censored version of (2.9).  Integration over  in (2.14) and (2.15) accelerates 

the convergence of  to .  Kernel estimators converge in probability at rates slower than 

.  Therefore, ) is not -consistent for G v .  

However, integration over z and v in (2.15) creates an averaging effect that causes the integral 

| ) / | )z v z(y zG

)
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and, therefore, nH  to converge at the rate .  This is the reason for basing the estimator on 

(2.14) instead of (2.13).   

1/ 2n−

F

)iY y>

iX (i jZ H≥

ar i jd d= −

arg i n jd d= −

nH

|t

) =
−

 Other estimators of  when  and H H  are both nonparametric have been proposed by 

Ye and Duan (1997) and Chen (2002).  Chen uses a rank-based approach that is in some ways 

simpler than that of Horowitz (1996) and may have better finite-sample performance.  To 

describe this approach, define d I (iy =  and 
0 0(jy jd I Y y )= > .  Let .  Then 

 whenever 

i ≠ j

)0( | ,iy jy jd d X− ≥E 0 )Z y− .  This suggests that if β  were known, then 

 could be estimated by  ( )H y

0
1 1

1( ) g max ( ) ( )
( 1)

n n

n iy iy
i j

j i

H y I Z Z
n nτ

τ
= =

≠
− ∑ ∑ . − ≥

Since β  is unknown, Chen (2002) proposes 

0
1 1

1( ) max ( ) ( )
( 1)

n n

n iy iy n
i j

j i

H y I b X b X
n nτ

τ
= =

≠

′ ′
− ∑ ∑ . − ≥

Chen (2002) gives conditions under which  is uniformly consistent for  and n H  

converges to a mean-zero Gaussian process.  Chen (2002) also shows how this method can be 

extended to a censored version of (2.9). 

H 1/ 2 ( )n H−

3.  The Proportional Hazards Model with Unobserved Heterogeneity 

 Let T  denote a duration such as that of a spell of employment or unemployment.  Let 

( | )f t x  denote the probability density of T  at t  conditional on X x= , where   Let 

( | ) ( )F t x P X x=T= ≤  where X  is a vector of covariates.  Let ( | )f t x  denote the 

corresponding conditional probability density function. The conditional hazard function is 

defined as 

 ( | )( |
1 ( |

f t xt x
F t x

λ . 
)

This section is concerned with an approach to modeling ( | )t xλ  that is based on the proportional 

hazards model of Cox (1972). 

The proportional hazards model is widely used for the analysis of duration data.  Its form 

is 

(3.1) 0( | ) ( ) xt x t e βλ λ ′−= , 
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where β  is a vector of constant parameters that is conformable with X  and 0λ  is a non-negative 

function that  is called the baseline hazard function.  The essential characteristic of (3.1) that 

distinguishes it from other models is that ( | )t xλ  is the product of a function of  alone and a 

function of 

t

x  alone.  Cox (1972) developed a partial likelihood estimator of β  and a 

nonparametric estimator of 0λ .  Tsiatis (1981) derived the asymptotic properties of these 

estimators. 

 In the proportional hazards model with unobserved heterogeneity, the hazard function is 

conditioned on the covariates X  and an unobserved random variable U  that is assumed to be 

independent of X .  The form of the model is 

(3.2) ( )
0( | , ) ( ) x ut x u t e βλ λ ′− += , 

where ( | , )x uλ ⋅  is the hazard conditional on X x=  and U u= .  In a model of the duration of 

employment  might represent unobserved attributes of an individual (possibly ability) that 

affect employment duration.  A variety of estimators of 

U

0λ  and β  have been proposed under the 

assumption that 0λ  or the distribution of U  or both are known up to a finite-dimensional 

parameter.  See, for example, Lancaster (1979), Heckman and Singer (1984a), Meyer (1990), 

Nielsen, et al. (1992), and Murphy (1994, 1995).  ‘However, 0λ  and the distribution of U  are 

nonparametrically identified (Elbers and Ridder 1982, Heckman and Singer 1984b), which 

suggests that they can be estimated nonparametrically.   

 Horowitz (1999) describes a nonparametric estimator of 0λ  and the density of U  in 

model (3.2).  His estimator is based on expressing (3.2) as a type of transformation model.  To do 

this, define the integrated baseline hazard funtion, 0Λ  by 

0 00
( ) ( )

t
t dλ τ τΛ = ∫ . 

Then it is not difficult to show that (3.2) is equivalent to the transformation model 

(3.3) 0log ( )T X Uβ ε′Λ = + + , 

where ε  is a random variable that is independent of X  and U  and has the CDF 

( ) exp( )y1F yε −e |= − .  Now define 1|σ β= , where 1β  is the first component of β  and is 

assumed to be non-zero.  Then /β σ  and 1 logσ −
0H = Λ

/

 can be estimated by using the methods 

of Section 2.4.  Denote the resulting estimators of β σ  and  by H nα  and nH .  If σ  were 

known, then β  and  could be estimated by b0Λ n nσα=  and 0 exp(n )nHσΛ = .  The baseline 
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hazard function 0λ  could be estimated by differentiating 0nΛ .  Thus, it is necessary only to find 

an estimator of the scale parameter σ .  

1= − β ′

p

| )z

z

G t
∫
∫

0>

(tσ

n p

(

dz

dz
∫
∫
δ d< <

0 1( )ntΛ

1 2(n ntn n

/ 2
n )σ

n
2 / 5−

n = Hσ

n

= lo X=

 To do this, define Z Xβ ′= , and let G( | )z⋅  denote the CDF of T  conditional on Z z= .  

It can be shown that 
( )

0( | ) exp[ ( ) ] ( )x uG t z t e dF u− +−Λ∫ , 

where F  is the CDF of U .  Let  denote the probability density function of Z .  Define 

 and ( | ( /zG t G t z= ∂ ∂)z

2

2

( | ) ( )
( )

( | ) ( )

G t z p z dz
t

z p z dz
σ = . 

Then it can be shown using l’Hospital’s rule that if 0 ( )tΛ  for all , then 0t >

0
lim )
t

σ
→

= . 

To estimate σ , let np ,  and  be kernel estimators of nzG G ,  and , respectively, that are 

based on a simple random sample of .  Define  

zG G

, )T X

2

2

( | ) ( )
( )

( | ) ( )

nz n
n

n n

G t z p z
t

G t z p z
σ = . 

Let , , and c d  be constants satisfying 0 c< < ∞ , 1/ 5 1/ 4 , and 1/(2 ) 1d δ< < .  Let { }  

and {  be sequences of positive numbers such that 

1nt

2}nt
dcn−=  and 0 2( )nt

dcn δ−Λ = .  Then 

σ  is estimated consistently by 

(1 )

(1 )
( ) )d

n d
t n

n

δ

δ
σ σ

σ
− −

− −
−

= . 

Horowitz (1999) gives conditions under which (1 ) (dn σ− −  is asymptotically normally 

distributed with a mean of zero.  By choosing  to be close to 1/5, the rate of convergence in 

probability of 

d

σ  to σ  can be made arbitrarily close to n , which is the fastest possible rate 

(Ishwaran 1996).  It follows from an application of the delta method that the estimators of β , 

, and 0Λ 0λ  that are given by b n nσ α , 0 exp( )n n nΛ = , and 0 0 /n nd dtλ = Λ  are also 

asymptotically normally distributed with means of zero and  rates of convergence.  The 

probability density function of U  can be estimated consistently by solving the deconvolution 

problem 

(1 ) /d− − 2

nW U ε+ , where W 0gn n ( ) nT β′Λ − .  Because the distribution of ε  is 
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“supersmooth,” the resulting rate of convergence of the estimator of the density of U  is 

, where  is the number of times that the density is differentiable.  This is the fastest 

possible rate.  Horowitz (1999) also shows how to obtain data-based values for  and  and 

extends the estimation method to models with censoring. 

(log ) mn − m

1nt 2nt

n

( , :j jT X j Xβ ′

,

ex∫

1,R z z

S
dτ

T
tt w

∫

tw

λ

)z =

t dλ τ

nR

β

 If panel data on (  are available, then , )T X 0Λ  can be estimated with a  rate of 

convergence, and the assumption of independence of U  from 

1/ 2−

X  can be dropped.  Suppose that 

each individual in a random sample of individuals is observed for exactly two spells.  Let 

 denote the values of  in the two spells.  Define 1,2)j = ( , )T X jZ = .  Then the 

joint survivor function of T  and T  conditional on 1 2 1 1Z z=  and 2 2Z z=  is 

( , | ) ( , | , )1 2 1 2 1 1 2 2 1 2

1 2p[ ( ) ( ) ] ( | , ).0 1 0 2 1 1 2 2

S t t Z Z T t T t Z Z

z u z u
t e t e dP u Z z Z z

≡ > >

+ +
= −Λ −Λ = =

P

 

Honoré (1993) showed that 

0 11 2 1 2 1
1 2 2 1 2

1 2 1 2 2 0 2

( )( , | , ) /( , | ) exp( )
( , | , ) / ( )

tS t t z z tt t z z
S t t z z t t

λ
λ

∂ ∂
≡ =
∂ ∂

− . 

Adopt the scale normalization 

0

( ) 1
( )T

tw τ
λ τ

= , 

where  is a non-negative weight function and S  is its support.  Then T

0 2 1( ) ( )exp( ) ( , | , )
S

z z R t z zτ τ= −∫ τ . 2 1 d

Now for a weight function zω  with support ZS , define 

1 2 1 2( , , ( ) ( ) ( )t z zw z w w z w zτ τ . 

Then, 

(3.4) . 0 1 2 1 2 2 1( ) ( , , )exp( ) ( , | , )
T Z ZS S S

dz dz w z z z z R t z zτ τ= −∫ ∫ ∫ 1 2

The baseline hazard function can now be estimated by replacing R  with an estimator, , in 

(3.4).  This can be done by replacing Z  with nX b′ , where b  is a consistent estimator of n  such 

as a marginal likelihood estimator (Chamberlain 1985, Kalbfleisch and Prentice 1980, Lancaster 

2000, Ridder and Tunali 1999), and replacing  with a kernel estimator of the joint survivor 

function conditional 

S

1 n 1X b z′ =  and 2 2nX b z′ = .  The resulting estimator of 0λ  is 
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0

1 2 1 2 2 1 1 2

( )

( , , )exp( ) ( , | , )
T Z Z

n

nS S S

t

d dz dz w z z z z R t z z

λ

τ τ τ

=

−∫ ∫ ∫ .

 

The integrated baseline hazard function is estimated by 

0 00
( ) ( )

t
n nt dλ τ τΛ = ∫ . 

Horowitz and Lee (2003) give conditions under which 1/ 2
0 0( nn )Λ −Λ  converges weakly to a 

tight, mean-zero Gaussian process.  The estimated baseline hazard function 0nλ  converges at the 

rate , where  is the number of times that /(2 1)q qn− + 2q ≥ 0λ  is continuously differentiable.  

Horowitz and Lee (2003) also show how to estimate a censored version of the model. 

4.  A Binary Response Model 

 The general binary response model has the form 

(4.1) ( 0)Y I X Uβ ′= + > , 

where U  is an unobserved random variable.  If the distribution of U  is unknown but depends on 

X  only through the index Xβ ′ , then (4.1) is a single-index model, and β  can be estimated by 

the methods described in Section 2.1.  An alternative model that is non-nested with single-index 

models can be obtained by assuming that ( | )median U X x 0= =  for all x .  This assumption 

places only weak restrictions on the relation between X  and the distribution of U .  Among other 

things, it accommodates fairly general types of heteroskedasticity of unknown form, including 

random coefficients.  Under median centering, the inferential problem is to estimate β .  The 

response function,  is not identified without making assumptions about the 

distribution of U  that are stronger than those needed to identify and estimate 

( )=P 1|Y X= x

β .  Without such 

assumptions, the only restriction on ( 1| )Y X x= =P  under median centering is that 

0.5  if 0
( 1| ) 0.5  if

0.5  if 0

x
Y X x x

x

β
β
β

0
′> >

 ′= = = =
 ′< <

P  

 Manski (1975, 1985) proposed the first estimator of β  under median centering.  Let the 

data be the simple random sample { , : 1,..., }i iY X i n= .  The estimator is called the maximum score 

estimator and is 
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(4.2) 1
1 1

arg max (2 1) ( 0)
n

n i
b i

b n Y I b X−

= =

′= −∑ i ≥ , 

where b  denotes the Euclidean norm of the vector b .  The restriction 1b =  is a scale 

normalization.  Scale normalization is needed for identification because (4.1) identifies β  only 

up to scale.  Manski (1975,1985) gave conditions under which b  consistently estimates n β .  The 

rate of convergence of b  and its asymptotic distribution were derived by Cavanagh (1987) and 

Kim and Pollard (1990).  They showed that the rate of convergence in probability of b  to 

n

n β  is 

 and that 1/ 3n− 1/ 3n b( n )β−  converges in distribution to the maximum of a complicated 

multidimensional stochastic process.  The complexity of the limiting distribution of the maximum 

score estimator limits its usefulness for statistical inference.  Delgado, Rodríguez-Póo and Wolf 

(2001) proposed using subsampling methods to form confidence intervals for β . 

 The maximum score estimator has a slow rate of convergence and a complicated 

asymptotic distribution because it is obtained by maximizing a step function.  Horowitz (1992) 

proposed replacing the indicator function in (4.2) by a smooth function.  The resulting estimator 

of β  is called the smoothed maximum score estimator.  Specifically, let  be a smooth function, 

possibly but not necessarily a distribution function, that satisfies 

K

)( 0K −∞ =  and .  Let 

 be a sequence of strictly positive constants (bandwidths) that satisfies  as 

.  The smoothed maximum score estimator, b , is 

( ) 1K ∞ =

nh →{ 1,2,...}=

n

:nh n

→∞

0

ns

1
arg max (2 1) ( / )

n

ns i i nb B i
b Y K

∈
=

′= −∑ X b h , 

where B  is a compact parameter set that satisfies the scale normalization | | .  Horowitz 

(1992) shows that under assumptions that are stronger than those of Manski (1975, 1985) but still 

quite weak, 

1b =1

( )r
nsn b β−  is asymptotically normal, where 2 / 5 1/ 2r≤ <  and the exact value of  

depends on the smoothness of the distribution of 

r

X β′  and of ( 1|Y X )x= =P .  Moreover, the 

smoothed maximum score estimator has the fastest possible rate of convergence under its 

assumptions (Horowitz 1993b).  Monte Carlo evidence suggests that the asymptotic normal 

approximation can be inaccurate with samples of practical size.  However, Horowitz (2002) 

shows that the bootstrap, which is implemented by sampling the data randomly with replacement, 

provides asymptotic refinements for tests of hypotheses about β  and produces low ERPs for 

these tests.  Thus, the bootstrap provides a practical way to carry out inference with the smoothed 

maximum score estimator. 
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Horowitz (1993c) used the smoothed maximum score method to estimate the parameters 

of a model of the choice between automobile and transit for work trips in the Washington, D.C., 

area.  The explanatory variables are defined in Table 2.  Scale normalization is achieved by 

setting the coefficient of DCOST equal to 1.  The data consist of 842 observations sampled 

randomly from the Washington, D.C., area transportation study.  Each record contains 

information about a single trip to work, including the chosen mode (automobile or transit) and the 

values of the explanatory variables.  Column 2 of Table 2 shows the smoothed maximum score 

estimates of the model’s parameters.  Column 3 shows the half-widths of nominal 90% 

symmetrical confidence intervals based on the asymptotic normal approximation (half width 

equals 1.67 times the standard error of the estimate).  Column 4 shows half-widths obtained from 

the bootstrap.  The bootstrap confidence intervals are 2.5-3 times wider than the intervals based 

on the asymptotic normal approximation.  The bootstrap confidence interval for the coefficient of 

DOVTT contains 0, but the confidence interval based on the asymptotic normal approximation 

does not.  Therefore, the hypothesis that the coefficient of DOVTT is zero is not rejected at the 

0.1 level based on the bootstrap but is rejected based on the asymptotic normal approximation.   
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Table 1:  Estimated Coefficients (Standard Errors) for Model of Product Innovation 
 
 

EMPLP EMPLF CAP DEM 
Semiparametric Model 

    
     1  0.032  0.346  1.732 
 (0.023) (0.078) (0.509) 
    

Probit Model 
    
     1  0.516  0.520  1.895 
 (0.024) (0.163) (0.387) 
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Table 2:  Smoothed Maximum Score Estimates of a Work-Trip Mode-Choice 
Model 

 
 

                             Half-Width of Nominal 90%  
                             Conf. Interval Based on__  
               Estimated    Asymp. Normal  
 Variable     Coefficient   Approximation     Bootstrap 

 
 INTRCPT         -1.5761       0.2812          0.7664   

 
 AUTOS            2.2418       0.2989          0.7488   

 
 DOVTT            0.0269       0.0124          0.0310   

 
 DIVTT            0.0143       0.0033          0.0087   

 
 DCOST            1.0b                                   

 
a  Definitions of variables:  INTRCPT:  Intercept term equal to 1; 
AUTOS:  Number of cars owned by traveler’s household; DOVTT:  Transit 
out-of-vehicle travel time minus automobile out-of-vehicle travel time 
(minutes); DIVTT:  Transit in-vehicle travel time minus automobile in-
vehicle travel time; DCOST:  Transit fare minus automobile travel cost 
($). 
 
b  Coefficient equal to 1 by scale normalization 
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Figure 1:  Nonparametric and Parametric Estimates of Mean Log Wages 
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Figure 2: Estimate of G v( )′  for model of product innovation.
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