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(Non) Linear Regression Modeling

Pavel Čı́žek1

Tilburg University, Department of Econometrics & Operations Research
Room B 516, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
P.Cizek@uvt.nl

We will study causal relationships of a known form between random variables.
Given a model, we distinguish one or more dependent (endogenous) variables
Y = (Y1, . . . , Yl), l ∈ N , which are explained by a model, and independent
(exogenous, explanatory) variables X = (X1, . . . , Xp), p ∈ N , which explain
or predict the dependent variables by means of the model. Such relationships
and models are commonly referred to as regression models.

A regression model describes the relationship between the dependent and
independent variables. In this paper, we restrict our attention to models with
a form known up to a finite number of unspecified parameters. The model can
be either linear in parameters,

Y = X⊤β0 + ε,

or nonlinear,
Y = h(X, β0) + ε,

where β represents a vector or a matrix of unknown parameters, ε is the er-
ror term (fluctuations caused by unobservable quantities), and h is a known
regression function. The unknown parameters β are to be estimated from ob-
served realizations {y1i, . . . , yli}n

i=1 and {x1i, . . . , xpi}n
i=1 of random variables

Y and X.
Here we discuss both kinds of models, primarily from the least-squares

estimation point of view, in Sects. 1 and 2, respectively. Both sections present
the main facts concerning the fitting of these models and relevant inference.
The main focus is however on the estimation of regression models with near
and exact multicollinearity, whereby we are more concerned about statistical
rather than numerical side of this phenomenon.

1 Linear Regression Modeling

Let us first study the linear regression model Y = X⊤β0 + ε assuming
E(ε|X) = 0. Unless said otherwise, we consider here only one dependent
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variable Y . The unknown vector β0 = (β0
1 , . . . , β0

p) is to be estimated given
observations y = (y1, . . . , yn) ∈ Rn and {xi}n

i=1 = {(x1i, . . . , xpi)}n
i=1 of ran-

dom variables Y and X ; let us denote X = (x1, . . . ,xn)⊤ ∈ Rn×p and let x·k

be the kth column of X. Thus, the linear regression model can be written in
terms of observations as

y = Xβ0 + ε =

p
∑

k=1

x·kβ0
k + ε, (1)

where ε = (ε1, . . . , εn) ∈ Rn.
Sect. 1.1 summarizes how to estimate the model (1) by the method of least

squares. Later, we specify what ill-conditioning and multicollinearity are in
Sect. 1.2 and discuss methods dealing with it in Sects. 1.3–1.9.

1.1 Fitting of Linear Regression

Let us first review the least squares estimation and its main properties to
facilitate easier understanding of the fitting procedures discussed further. For
a detailed overview of linear regression modeling see [10].

The least squares (LS) approach to the estimation of (1) searches an esti-
mate b of unknown parameters β0 by minimizing the sum of squared differ-
ences between the observed values yi and the predicted ones ŷi(b) = x⊤

i b.

Definition 1. The least squares estimate of linear regression model (1) is
defined by

bLS = argmin
β∈Rp

n
∑

i=1

{yi − ŷi(β)}2 = argmin
β∈Rp

n
∑

i=1

(yi − x⊤
i β)2. (2)

This differentiable problem can be expressed as minimization of

(y − Xβ)⊤(y − Xβ) = y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ

with respect to β and the corresponding first-order conditions are

−X⊤y + X⊤Xβ = 0 =⇒ X⊤Xβ = X⊤y. (3)

They are commonly referred to as normal equations and identify the global
minimum of (2) as long as the second order conditions X⊤X > 0 hold; that
is, the matrix X⊤X is supposed to be positive definite, or equivalently, non-
singular.1 Provided that X⊤X > 0 and E(ε|X) = 0, the LS estimator is
unbiased and can be found as a solution of (3)

bLS = (X⊤X)−1X⊤y. (4)

Additionally, it is the best unbiased linear estimator of (1), see [1, Thm. 1.2.1].

1 This assumption is often specified in terms of the underlying random variable X:
E(XX⊤) > 0 is positive definite.
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Theorem 1. (Gauss-Markov) Assume that E(ε|X) = 0, E(ε2|X) = σ2In,
and X⊤X is non-singular. Let b = C⊤y, where C is a t×p matrix orthogonal
to X, C⊤X = I. Then V ar(b) − V ar(bLS) > 0 is a positive definite matrix
for any b 6= bLS.

Finally, the LS estimate actually coincides with the maximum likelihood
estimates provided that random errors ε are normally distributed (in addition
to the assumptions of Thm. 1) and shares then the asymptotic properties of
the maximum likelihood estimation (see [1, Chap. 1]).

Computing LS estimates

The LS estimate bLS can be and often is found by directly solving the system
of linear equations (3) or evaluating formula (4), which involves a matrix inver-
sion. Both direct and iterative methods for solving systems of linear equations
are presented in Chap. 4, Part II, of this Handbook. Although this straight-
forward computation may work well for many regression problems, it often
leads to an unnecessary loss of precision, see [9, Chap. 2], and additionally,
it is not very suitable if the matrix X⊤X is ill-conditioned2 or nearly singu-
lar (multicollinearity) because it is not numerically stable. Being concerned
mainly about statistical consequences of multicollinearity, the numerical is-
sues regarding the identification and treatment of ill-conditioned regression
models are beyond the scope of this paper; let us refer an interested reader to
[15, Chap. 9], [12, Chap. 3], [9, Chap. 2], and recent monograph [3].

Let us now briefly review a class of numerically more stable algorithms for
the LS minimization. They are based on orthogonal transformations. Assum-
ing a matrix Q ∈ Rn is an orthonormal matrix, Q⊤Q = QQ⊤ = In,

(y − Xβ)⊤(y − Xβ) = (Qy − QXβ)⊤(Qy − QXβ).

Thus, multiplying a regression model by an orthonormal matrix does not
change it from the LS point of view. Since every matrix X can be decomposed
into the product QxRx (the QR decomposition), where Qx is an orthonormal
matrix and Rx is an upper triangular matrix, pre-multiplying (1) by Q⊤

x

produces
Q⊤

x y = Rxβ + Q⊤
x ε, (5)

where Rx = (R1,R2)⊤ and R1 ∈ Rp×p is an upper triangular matrix and
R2 ∈ R(n−p)×p is a zero matrix. Hence, the sum of squares to minimize can
be written as

(Q⊤
x y − Rxβ)⊤(Q⊤

x y − Rxβ) = (y1 − R1β)⊤(y1 − R1β) + y⊤
2 y2,

where y1 ∈ Rp and y2 ∈ Rn−p form Q⊤
x y = (y⊤

1 ,y⊤
2 )⊤. The LS estimate is

then obtained from the upper triangular system R1β = y1, which is trivial to

2 A regression problem is called ill-conditioned if a small change in data causes
large changes in estimates.
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solve by backward substitution. There are many algorithms for constructing a
suitable QR decomposition for finding LS estimates, such as the Householder
or Givens transformations; see Chap. 4, Part II, of this Handbook, or [8,
Chaps. 7–8], [12, Chap. 3], [15, Chap. 9], and [3, Chaps. 1 and 2].

LS inference

Linear regression modeling does not naturally consist only of obtaining a
point estimate bLS. One needs to measure the variance of the estimates in
order to construct confidence intervals or test hypotheses. Additionally, one
should assess the quality of the regression fit. Most such measures are based
on the regression residuals e = y−Xb. We briefly review the most important
regression statistics, and next, indicate how it is possible to compute them if
the LS regression is estimated by means of the orthogonalization procedure
described in the previous paragraph.

The most important measures used in statistics to assess model fit and
inference are the total sum of squares

TSS = (y − ȳ)⊤(y − ȳ) =
n

∑

i=1

(yi − ȳ)2,

where ȳ =
∑n

i=1 yi/n, the residual sum of squares

RSS = e⊤e =

n
∑

i=1

e2
i ,

and the complementary regression sum of squares

RegSS = (y − ŷ)⊤(y − ŷ) =

n
∑

i=1

(yi − ŷi)
2 = TSS − RSS.

Using these quantities, the regression fit can be evaluated, for example, the
coefficient of determination R2 = 1−RSS/TSS as well as many information
criteria (modified R̄2, Mallows and Akaike criteria, etc.). Additionally, it can
be used to compute the variance of the estimates in simple cases. The variance
of the estimates can be estimated by

V ar(bLS) = (X⊤X)−1X⊤S−1X(X⊤X)−1, (6)

where S represents an estimate of the covariance matrix V ar(ε) = Σ. Pro-
vided that the model is homoscedastic, Σ = σ2In, the residual variance σ2

can be estimated as an average of squared residuals s2 = e⊤e/n. Apart from
the residual variance, one needs also an inverse of (X⊤X)−1, which will often
be a by-product of solving normal equations.

Let us now describe how one computes these quantities if a numerically
stable procedure based on the orthonormalization of normal equations is used.
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Let us assume we already constructed a QR decomposition of X = QxRx.
Thus, QxQ

⊤
x = I and Q⊤

x X = Rx. RSS can be computed as

RSS = e⊤e = (y − Xb)⊤(y − Xb) = (y − Xb)⊤QxQ
⊤
x (y − Xb)

= (Q⊤
x y − RxXb)⊤(Q⊤

x y − RxXb).

Consequently, RSS is invariant with respect to orthonormal transformations
(5) of the regression model (1). The same conclusion applies also to TSS
and RegSS, and consequently, to the variance estimation. Thus, it is possible
to use the data in (5), transformed to achieve better numerical stability, for
computing regression statistics of the original model (1).

1.2 Multicollinearity

Let us assume that the design matrix X fixed. We talk about multicollinearity
when there is a linear dependence among the variables in regression, that is,
the columns of X.

Definition 2. In model (1), the exact multicollinearity exists if there are real
constants a1, . . . , ap such that

∑p
k=1 |ak| > 0 and

∑p
k=1 akx·k = 0.

The exact multicollinearity (also referred to as reduced-rank data) is rela-
tively rare in linear regression models unless the number of explanatory vari-
ables is very large or even larger than the number of observations, p ≥ n.3

When the number p of variables is small compared to the sample size n,
near multicollinearity is more likely to occur: there are some real constants
a1, . . . , ap such that

∑p
k=1 |ak| > 0 and

∑p
k=1 akx·k ≈ 0, where ≈ denotes ap-

proximate equality. The multicollinearity in data does not have to arise only
as a result of highly correlated variables (e.g., more measurements of the same
characteristic by different sensors or methods), which by definition occurs in
all applications where there are more variables than observations, but it could
also result from the lack of information and variability in data.

Whereas the exact multicollinearity implies that X⊤X is singular and
the LS estimator is not identified, the near multicollinearity permits non-
singular matrix X⊤X. The eigenvalues λ1 ≤ . . . ≤ λp of matrix X⊤X can
give some indication concerning multicollinearity: if the smallest eigenvalue
λ1 equals zero, the matrix is singular and data are exactly multicollinear; if

3 This happens often in agriculture, chemometrics, sociology, etc. For example, [9]
uses data on the absorbances of infra-red rays of many different wavelength by
chopped meat, whereby the aim is to determine the moisture, fat, and protein
content of the meat as a function of these absorbances. The study employs mea-
surements at 100 wavelengths from 850 nm to 1050 nm, which gives rise to many
possibly correlated variables.
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λ1 is close to zero, near multicollinearity is present in data.4 Since measures
based on eigenvalues depend on the parametrization of the model, they are
not necessarily optimal and it is often easier to detect multicollinearity by
looking at LS estimates and their behavior as discussed in next paragraph.
See [3] and [18] for more details on detection and treatment of ill-conditioned
problems.

The multicollinearity has important implications for LS. In the case of
exact multicollinearity, matrix X⊤X does not have a full rank, hence the so-
lution of the normal equations is not unique and the LS estimate bLS is not
identified. One has to introduce additional restrictions to identify the LS esti-
mate. On the other hand, even though near multicollinearity does not prevent
the identification of LS, it negatively influences estimation results. Since both
the estimate bLS and its variance are proportional to the inverse of X⊤X,
which is nearly singular under multicollinearity, near multicollinearity inflates
bLS, which may become unrealistically large, and variance V ar(bLS). Conse-
quently, the corresponding t-statistics are typically very low. Moreover, due to
the large values of (X⊤X)−1, the least squares estimate bLS = (X⊤X)−1X⊤y

reacts very sensitively to small changes in data. See [13] for a more detailed
treatment and real-data examples of the effects of multicollinearity.

There are several strategies to limit adverse consequences of multicollinear-
ity provided that one cannot improve the design of a model or experiment or
get better data. First, one can impose an additional structure on the model.
This strategy cannot be discussed in details since it is model specific, and in
principle, it requires only to test a hypothesis concerning additional restric-
tions. Second, it is possible to reduce the dimension of the space spanned by
X, for example, by excluding some variables from the regression (Sects. 1.3
and 1.4). Third, one can also leave the class of unbiased estimators and try to
find a biased estimator with smaller variance and mean squared error. Assum-
ing we want to judge the performance of an estimator b by its mean squared
error (MSE), the motivation follows from

MSE(b) = E[(b − β0)(b − β0)⊤]

= E[{b − E(b)}{b − E(b)}⊤] + [E{E(b) − β0}][E{E(b) − β0}]⊤

= V ar(b) + Bias(b)Bias(b)⊤.

Thus, it is possible that introducing a bias into estimation in such a way that
the variance of estimates is significantly reduced can improve the estimator’s
MSE. There are many biased alternatives to the LS estimation as discussed in
Sects. 1.5–1.9 and some of them even combine biased estimation with variable
selection. In all cases, we present methods usable both in the case of near and
exact multicollinearity.

4 Nearly singular matrices are dealt with also in numerical mathematics. To mea-
sure near singularity, numerical mathematics uses the conditioning numbers
dk =

√

λk/λ1, which converge to infinity for singular matrices (as λ1 approaches
zero). Matrices with very large conditioning numbers are called ill-conditioned.
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1.3 Variable Selection

The presence of multicollinearity may indicate that some explanatory vari-
ables are linear combinations of the other ones,5 and consequently, do not
improve explanatory power of a model. Hence, they could be dropped from
the model provided there is some justification for dropping them also on the
model level rather than just dropping them to fix data problems. As a result
of removing some variables, the matrix X⊤X would not be (nearly) singular
anymore.

Eliminating variables from a model is a special case of model selection pro-
cedures, which are discussed in details in Chap. 1, Part III, of this Handbook.
An overview and comparison of many classical variable selection is given, for
example, in [9] and [69]. For discussion of computational issues related to
model selection, see [9] and [8, Chap. 8]. Here we briefly discuss methods
specific for variable selection within a single regression model and some more
general model selection methods that are useful both in the context of variable
selection and of biased estimation discussed in Sects. 1.5–1.9.

Backward elimination

A simple and often used method to eliminate non-significant variables from
regression is backward elimination, a special case of stepwise regression. Back-
ward elimination starts from the full model y = Xβ+ε and identifies variable
x·k such that

1. its omission results in smallest increase of RSS; or
2. it has the smallest t-statistics tk = bLS

k /
√

s2
k/(n − p), where s2

k is an
estimate of bLS

k variance, or any other test statistics of H0 : β0k = 0; or
3. its removal causes smallest change of prediction or information crite-

ria characterizing fit or prediction power of the model. A well-known
examples of information criteria are modified coefficient of determina-
tion R̄2 = 1 − (n + p)e⊤e/n(n − p), Akaike information criterion [21],
AIC = log(e⊤e/n) + 2p/n, and Schwarz information criterion [77],
SIC = log(e⊤e/n) + p lnn/n, where n and p represents sample size and
the number of regressors, respectively.

Next, the variable x·k is excluded from regression by setting bk = 0 if (i) one
did not reach a pre-specified number of variables yet or (ii) the test statistics
or change of the information criterion lies below some selected significance
level.

Although backward elimination, which can be also viewed as a pre-test es-
timator (see [17]), is often used in practice, it involves largely arbitrary choice
of the significance level. In addition, it has rather poor statistical properties
caused primarily by discontinuity of the selection decision, see [64]. Moreover,

5 This is more often a “feature” of data rather than of the model.
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even if a stepwise procedure is employed, one should take care of reporting cor-
rect variances and confidence intervals valid for the whole decision sequence.
Inference for the finally selected model as if it were the only model consid-
ered leads to significant biases, see [97], [91], and [35]. Backward elimination
also does not perform well in the presence of multicollinearity and it cannot
be used if p > n. Finally, let us note that a nearly optimal and admissible
alternative is proposed in [65].

Forward selection

Backward elimination cannot be applied if there are more variables than obser-
vations, and additionally, it may be very computationally expensive if there
are many variables. A classical alternative is forward selection, where one
starts from an intercept-only model and adds one after another variables that
provide the largest decrease of RSS. Adding stops when the F -statistics

R =
RSSp − RSSp+1

RSSp+1
(n − p − 2)

lies below a pre-specified critical ‘F-to-enter’ value. The forward selection can
be combined with the backward selection (e.g., after adding a variable, one
performs one step of backward elimination), which is known as a stepwise
regression [16]. Its computational complexity is discussed in [9].

Note that most disadvantages of backward elimination apply to forward se-
lection as well. In particular, correct variances and confidence intervals should
be reported, see [9, Sect. 3.3] on their approximations. Moreover, forward se-
lection can be overly aggressive in selection in the respect that if a variable
x is already included in a model, forward selection primarily adds variables
orthogonal to x, thus ignoring possibly useful variables that are correlated
with x. To improve upon this, [40] proposed least angle regression, consider-
ing correlations of to-be-added variables jointly with respect to all variables
already included in the model.

All-subsets regression

Neither forward selection, nor backward elimination guarantee the optimality
of the selected submodel, even when both methods lead to the same results.6

An alternative approach – all-subsets regression – is based on forming a model
for each subset of explanatory variables. Each model is estimated and a se-
lected prediction or information criterion, which quantifies the unexplained
variation of the dependent variable and the parsimony of the model, is evalu-
ated. Finally, the model attaining the best value of a criterion is selected and
variables missing in this model are omitted.

6 This happens especially when a pair of variables has jointly high predictive power;
for example, if the dependent variable y depends on the difference of two variables
x1 − x2.
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This approach deserves several comments. First, one can use many other
criteria instead of AIC or SIC. These could be based on the test statistics of
a joint hypothesis that a group of variables has zero coefficients, extensions
or modifications of AIC or SIC, general Bayesian predictive criteria, criteria
using non-sample information, model selection based on estimated parameter
values at each subsample and so on. See the next subsection, [25], [79], [52],
[54], [98], [55], for instance, and Chap. 1, Part III, of this Handbook for more
detailed overview.

Second, the evaluation and estimation of all submodels of a given regres-
sion model can be very computationally intensive, especially if the number
of variables is large. This motivated tree-like algorithms searching through
all submodels, but once they reject a submodel, they automatically reject all
models containing only a subset of variables of the rejected submodel, see [39].
These so-called branch-and-bound techniques are discussed in [9], for instance.

An alternative computational approach, which is increasingly used in ap-
plications where the number of explanatory variables is very large, is based
on the genetic programming (genetic algorithm, GA) approach, see [89]. GAs
searches through the space of all submodels which are represented by “chromo-
somes” – a p×1 vectors mj ∈ {0, 1}p of indicators marking whether a variable
is included in a submodel. To choose the best submodel, one has a popula-
tion P = {mj}J

j=1 of submodels that compete with each other by means of
information or prediction criteria. The submodels in the population can com-
bine their characteristics (chromosomes), sometimes additionally affected by
a random mutation, to create their offsprings m∗

j . Whenever an offspring m∗

j

performs better than the original model mj (parent), m∗

j replaces mj in pop-
ulation P . Repeating this process searches among all submodels and provides
a rather effective way of obtaining the best submodel, especially when the
number of explanatory variables is very high. See Chap. 6, Part II, of this
handbook and [4] for introduction to genetic programming.

Cross validation

Cross validation (CV) is a general model-selection principle, proposed already
in [81], which chooses a specific model in a similar way as the prediction
criteria. CV compares models, which can include all variables or exclude some,
based on their out-of-sample performance, which is measured typically by
MSE. To achieve this, a sample is split to two disjunct parts: one part is
used for estimation and the other part for checking the fit of the estimated
model on “new” data, which were not used for estimation, by comparing the
observed and predicted values.

Probably the most popular variant is the leave-one-out cross-validation
(LOU CV), which can be used not only for model selection, but also for
choosing nuisance parameters (e.g., in nonparametric regression, see [6]). As-
sume we have a set of models y = hk(X, β)+ε defined by regression functions
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hk, k = 1, . . . , M , that determine variables included or excluded from regres-
sion. For model given by hk, LOU CV evaluates

CVk =

n
∑

i=1

(yi − ŷi,−i)
2
, (7)

where ŷi,−i is the prediction at xi based on the model y−i = hk(X−i, β) +
ε−i and y−i,X−i, ε−i are the vectors and matrices y,X, ε without their ith
elements and rows, respectively. Thus, all but the ith observation are used
for estimation and the ith observation is used to check the out-of-sample
prediction. Having evaluated CVk for each model, k = 1, . . . , M , we select the
model commanding the minimum mink=1,...,M CVk.

Unfortunately, LOU CV is not consistent as far as the linear model se-
lection is concerned. To make CV a consistent model selection method, it is
necessary to omit nv observations from the sample used for estimation, where
limn→∞ nv/n = 1. This fundamental result derived in [78] places a heavy com-
putational burden on the CV model selection. Since our main use of CV in
this paper concerns nuisance parameter selection, we do not discuss this type
of CV any further. See [9, Chap. 5] and Chap. 1, Part III, of this Handbook
for further details.

Example 1. We compare several mentioned variable selection methods using
a classical data set on air pollution used originally by [68], who modeled
mortality depending on 15 explanatory variables ranging from climate and air
pollution to socioeconomic characteristics and who additionally demonstrated
instabilities of LS estimates using this data set. We refer to the explanatory
variables of data Pollution simply by numbers 1 to 15.

Table 1. Variables selected from Pollution data by different selection procedures.
RSS is in brackets.

Number of Forward Backward All-subset
variables selection elimination selection

1 9 9 9
(133695) (133695) 9 (133695)

2 6, 9 6, 9 6, 9
(99841) (99841) (99841)

3 2, 6, 9 2, 6, 9 2, 6, 9
(82389) (82389) (82389)

4 2, 6, 9, 14 2, 5, 6, 9 1, 2, 9, 14
(72250) (74666) (69154)

5 1, 2, 6, 9, 14 2, 6, 9, 12, 13 1, 2, 6, 9, 14
(64634) (69135) (64634)

We applied the forward, backward, and all-subset selection procedures to
this data set. The results reported in Table 1 demonstrate that although all
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three methods could lead to the same subset of variables (e.g, if we search
a model consisting of two or three variables), this is not the case in general.
For example, searching for a subset of four variables, the variables selected
by backward and forward selection differ, and in both cases, the selected
model is suboptimal (compared to all-subsets regression) in the sense of the
unexplained variance measured by RSS.

1.4 Principle Components Regression

In some situations, it is not feasible to use variable selection to reduce the
number of explanatory variables or it is not desirable to do so.7 Since such
data typically exhibit (exact) multicollinearity and we do not want to exclude
some or even majority of variables, we have to reduce the dimension of the
data in another way.

A general method that can be used both under near and exact multi-
collinearity is based on the principle components analysis (PCA), see Chap. 6,
Part III, of this Handbook. Its aim is to reduce the dimension of explanatory
variables by finding a small number of linear combinations of explanatory
variables X that capture most of the variation in X and to use these linear
combinations as new explanatory variables instead the original one. Suppose
that G is an orthonormal matrix that diagonalizes matrix X⊤X: G⊤G = I,
X⊤X = GΛG⊤, and G⊤X⊤XG = Λ, where Λ = diag(λ1, . . . , λp) is a
diagonal matrix of eigenvalues of X⊤X.

Definition 3. Assume without loss of generality that λ1 ≥ . . . ≥ λp and
g1, . . . ,gp are the corresponding eigenvectors (columns of matrix G). Vector
zi = Xgi for i = 1, . . . , p such that λi > 0 is called the ith principle component
(PC) of X and gi represents the corresponding loadings.

PCA tries to approximate the original matrix X by projecting it into the
lower-dimensional space spanned by the first k eigenvectors g1, . . . ,gk. It can
be shown that these projections capture most of the variability in X among
all linear combinations of columns of X, see [7, Thms. 9.1–9.3].

Theorem 2. There is no standardized linear combination Xa, where ‖a‖ = 1,
that has strictly larger variance than z1 = Xg1: V ar(Xa) ≤ V ar(z1) = λ1.
Additionally, the variance of the linear combination z = Xa, ‖a‖ = 1, that is
uncorrelated with the first k principle components z1, . . . , zk is maximized by
the (k + 1)-st principle component z = zk+1 and a = gk+1, k = 1, . . . , p − 1.

7 The first case can occur if the number of explanatory variables is large compared
to the number of observations. The latter case is typical in situations when we ob-
serve many characteristics of the same type, for example, temperature or electro-
impulse measurements from different sensors on a human body. They could be
possibly correlated with each other and there is no a priori reason why measure-
ments at some points of a skull, for instance, should be significant while other
ones would not be important at all.
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Consequently, one chooses a number k of PCs that capture a sufficient
amount of data variability. This can be done by looking at the ratio Lk =
∑k

i=1 λi/
∑p

i=1 λi, which quantifies the fraction of the variance captured by
the first k PCs compared to the total variance of X.

In the regression context, the chosen PCs are used as new explanatory
variables, and consequently, PCs with small eigenvalues can be important too
(see [56]). Therefore, one can alternatively choose the PCs that exhibit highest
correlation with the dependent variable y because the aim is to use the selected
PCs for regressing the dependent variable y on them, see [56]. Moreover, for
selecting “explanatory” PCs, it is also possible to use any variable selection
method discussed in Sect.1.3. Recently, [53] proposed a new data-driven PC
selection for PCR obtained by minimizing MSE.

Next, let us assume we selected a small number k of PCs Zk = (z1, . . . , zk)⊤

by some rule such that matrix Z⊤
k Zk has a full rank, k ≤ p. Then the prin-

ciple components regression (PCR) is performed by regressing the dependent
variable y on the selected principle components Zk, which have a (much)
smaller dimension than original data X, and consequently, multicollinearity
is diminished or eliminated, see [5, Chap. 8]. We estimate this new model by
LS,

y = Zkγ + η = XGkγ + η,

where Gk = (g1, . . . ,gk)⊤. Comparing it with the original model (1) shows
that β = Gkγ. It is important to realize that in PCR we first fix Gk by
means of PCA and then estimate γ.

Finally, concerning different PC selection criteria, [24] demonstrates the
superiority of the correlation-based PCR (CPCR) and convergence of many
model-selection procedures toward the CPCR results. See also [37] for a similar
comparison of CPRC and PCR based on GA variable selection.

Example 2. Let us use data Pollution to demonstrate several important issues
concerning PCR. First, we identify PCs of the data. The fraction of variance
explained by the first k PCs as a function of k is depicted on Fig. 1 (dashed
line). On the one side, almost all of the X variance is captured by the first
PC. On the other side, the percentage of the y variance explained by the first
k PCs (solid line) grows and reaches its maximum relatively slowly. Thus, the
inclusion of about 7 PCs seems to be necessary when using this strategy.

On the other hand, using some variable selection method or checking the
correlation of PCs with the dependent variable y reveals that PCs 1, 3, 4,
5, 7 exhibit highest correlations with y (higher than 0.25), and naturally, a
model using these 5 PCs has more explanatory power (R̄2 = 0.70) than for
example the first 6 PCs together (R̄2 = 0.65). Thus, considering not only PCs
that capture most of the X variability, but also those having large correlations
with the dependent variable enables building more parsimonious models.
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Fig. 1. Fraction of the explained variance of X (dashed line) and y (solid line) by
the first k PCs.

1.5 Shrinkage Estimators

We argued in Sect. 1.2 that an alternative way of dealing with unpleasant
consequences of multicollinearity lies in biased estimation: we can sacrifice
small bias for a significant reduction in variance of an estimator so that its
MSE decreases. Since it holds for an estimator b and a real constant c ∈ R
that V ar(cb) = c2V ar(b), a bias of the estimator b towards zero, |c| < 1,
naturally leads to a reduction in variance. This observation motivates a whole
class of biased estimators – shrinkage estimators – that are biased towards
zero in all or just some of their components. In other words, they “shrink” the
Euclidean norm of estimates compared to that of the corresponding unbiased
estimate. This is perhaps easiest to observe on the example of the Stein-rule
estimator, which can be expressed in linear regression model (1) as

bSR =

(

1 − ke⊤e

nbLS⊤X⊤XbLS

)

bLS, (8)

where k > 0 is an arbitrary scalar constant and e⊤e/n represents an estimate
of the residual variance ([13, Chap. 6]). Apparently, the Stein-rule estimator
just multiplies the LS estimator by a constant smaller than one. See [17] for
an overview of this and many other biased estimators.

In the following subsections, we discuss various shrinkage estimators that
perform well under multicollinearity and that can possibly act as variable
selection tools as well: the ridge regression estimator and its modifications
(Sect. 1.6), continuum regression (Sect. 1.7), the Lasso estimator and its vari-
ants (Sect. 1.8), and partial least squares (Sect. 1.9). Let us note that there
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are also other shrinkage estimators, which either do not perform well under
various forms of multicollinearity (e.g., Stein-rule estimator) or are discussed
in other parts of this chapter (e.g., pre-test and PCR estimators in Sects. 1.3
and 1.4, respectively).

1.6 Ridge Regression

Probably the best known shrinkage estimator is the ridge estimator proposed
and studied by [50]. Having a non-orthogonal or even nearly singular matrix
X⊤X, one can add a positive constant k > 0 to its diagonal to improve
conditioning.

Definition 4. Ridge regression (RR) estimator is defined for model (1) by

bRR = (X⊤X + kI)−1X⊤y (9)

for some ridge parameter k > 0.

“Increasing” the diagonal of X⊤X before inversion shrinks bRR compared to
bLS and introduces a bias. Additionally, [50, Thm. 4.3] also showed that the
derivative of MSE(bRR) with respect to k is negative at k = 0. This indicates
that the bias

Bias(bRR) = −k(X⊤X + kI)−1β

can be smaller than the decrease in variance (here for a homoscedastic linear
model with error variance σ2)

V ar(bRR)−V ar(bLS) = σ2(X⊤X+kI)−1X⊤X(X⊤X+kI)−1−σ2(X⊤X)−1

caused by shrinking at least for some values of k. The intervals for k
where RR dominates LS are derived, for example, in [33], [13, Chap. 7],
and [10, Sect. 3.10.2]. Moreover, the improvement in MSE(bRR) with re-
spect to MSE(bLS) is significant under multicollinearity while being negli-
gible for nearly orthogonal systems. A classical result for model (1) under
ε ∼ N(0, σ2In) states that MSE(bRR)−MSE(bLS) < 0 is negative definite
if k < kmax = 2σ2/β⊤β , see [13, Sect. 7.2], where an operational estimate of
kmax is discussed too. Notice however that the conditions for the dominance
of the RR and other some other shrinkage estimators over LS can look quite
differently in the case of non-normal errors [86].

In applications, an important question remains: how to choose the ridge
parameter k? In the original paper [50], the use of the ridge trace, a plot the
components of the estimated bRR against k, was advocated. If data exhibit
multicollinearity, one usually observes a region of instability for k close to zero
and then stable estimates for large values of ridge parameter k. One should
choose the smallest k lying in the region of stable estimates. Alternatively, one
could search for k minimizing MSE(bRR); see the subsection on generalized
RR for more details. Furthermore, many other methods for model selection
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could be employed too; for example, LOU CV (Sect. 1.3) performed on a grid
of k values is often used in this context.

Statistics important for inference based on RR estimates are discussed in
[50] and [13] both for the case of a fixed k as well as in the case of some data-
driven choices. Moreover, [13] describes algorithms for a fast and efficient RR
computation.

To conclude, let us note that the RR estimator bRR in model (1) can be
also defined as a solution of a restricted minimization problem

bRR = argmin
b:‖b‖2

2
≤r2

(y − Xb)⊤(y − Xb), (10)

or equivalently as

bRR = argmin
b

(y − Xb)⊤(y − Xb) + k‖b‖2
2, (11)

where r represents a tuning parameter corresponding to k (see [83]). This ap-
proach was used by [70], for instance. Moreover, formulation (10) reveals one
controversial issue in RR: re-scaling the original data to make X⊤X a corre-
lation matrix. Although there are no requirements of this kind necessary for
theoretical results, standardization is often recommended to make influence of
the constraint ‖b‖2

2 ≤ r2 same for all variables. There are also studies showing
adverse effects of this standardization on estimation, see [13] for a discussion.
A possible solution is generalized RR, which assigns to each variable its own
ridge parameter (see the next paragraph).

Generalized ridge regression

The RR estimator can be generalized in the sense that each diagonal element
of X⊤X is modified separately. To achieve that let us recall that this matrix
can be diagonalized: X⊤X = G⊤ΛG, where G is an orthonormal matrix and
Λ is a diagonal matrix containing eigenvalues λ1, . . . , λp.

Definition 5. Generalized ridge regression (GRR) estimator is defined for
model (1) by

bGRR = (X⊤X + GKG⊤)−1X⊤y (12)

for a diagonal matrix K = diag(k1, . . . , kp) of ridge parameters.

The main advantage of this generalization being ridge coefficients specific
to each variable, it is important to know how to choose the matrix K. In [50]
and [13], the following result is derived.

Theorem 3. Assume that X in model (1) has a full rank, ε ∼ N(0, σ2In),
and n > p. Further, let X = HΛ1/2G⊤ be the singular value decomposition
of X and γ = G⊤β0. The MSE-minimizing choice of K in (12) is K =
σ2 diag(γ−2

1 , . . . , γ−2
p ).
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An operational version (feasible GRR) is based on an unbiased estimate
γ̂i = G⊤bLS and s2 = (y − Hγ̂)⊤(y − Hγ̂). See [50] and [13], where you
also find the bias and MSE of this operational GRR estimator, and [88] for
further extensions of this approach. Let us note that the feasible GRR (FGRR)
estimator does not have to possess the MSE-optimality property of GRR be-
cause the optimal choice of K is replaced by an estimate. Nevertheless, the
optimality property of FGRR is preserved if λiγ

2
i ≤ 2σ2, where λi is the

(i, i)th-element of Λ, see [42].

Additionally, given an estimate of MSE-minimizing K̂ = diag(k̂1, . . . , k̂p),
many authors proposed to choose the ridge parameter k in ordinary RR as a
harmonic mean of k̂i, i = 1, . . . , p; see [51], for instance.

Almost unbiased ridge regression

Motivated by results of [13], [59] proposed to correct GRR for its bias using the
first-order bias approximation. This yields almost unbiased GRR (AUGRR)
estimator

bAUGRR = (X⊤X + GKG⊤)−1(X⊤y + KG⊤β0).

The true parameter value β0 being unknown, [71] defined a feasible AUFGRR
estimator by replacing the unknown β0 by bFGRR and K by the employed
ridge matrix. Additionally, a comparison of the FGRR and feasible AUGRR
estimators with respect to MSE proved that FGRR has a smaller MSE than
AUGRR in a wide range of parameter space. Similar observation was also
done under a more general loss function in [87]. Furthermore, [22] derived
exact formulas for the moments of the feasible AUGRR estimator.

Further extensions

RR can be applied also under exact multicollinearity, which arises for exam-
ple in data with more variables than observations. Although the theory and
application of RR is the same as in the case of full-rank data, [13], the compu-
tational burden O(np2 + p3) becomes too high for p > n. A faster algorithm
with computational complexity only O(np2) was found by [47].

Example 3. Using data Pollution once again, we estimated RR for ridge pa-
rameter k ∈ (0, 10) and plotted the estimated coefficients bRR as functions of
k (ridge trace plot), see Fig. 2. For the sake of simplicity, we restricted our-
selves only to variables that were selected by some variable selection procedure
in Table 1 (1, 2, 6, 9, 12, 13, 14). The plot shows the effect of ridge parameter
k on slope estimates (k = 0 corresponds to LS). Apparently, slopes of some
variables are affected very little (e.g., variable 1), some significantly (e.g.,
the magnitude of variable 14 increases more than twice), and some variables
shrink extremely (e.g., variables 12 and 13). In all cases, the biggest change
occurs between k = 0 and k = 2, after which then estimates stabilize. The
vertical dashed line in Fig. 2 represents the CV estimate of k (kCV = 6.87).
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Fig. 2. Ridge trace plot for variables 1, 2, 6, 9, 12, 13, 14 of data Pollution. The
vertical line represents the CV-choice of k.

1.7 Continuum Regression

RR discussed in Sect. 1.6 is very closely connected with the continuum re-
gression proposed by [31] as a unifying approach to the LS, PCR, and partial
least squares (see Sect. 1.9) estimation.

Definition 6. A continuum regression (CR) estimator bCR(α) of model (1)
is a coefficient vector maximizing function

Tα(c) = (c⊤s)2(c⊤Sc)α−1 = (c⊤X⊤y)2(c⊤X⊤Xc)α−1, (13)

for a given value of parameter α ≥ 0 and a given length ‖c‖, where S = X⊤X

and s = X⊤y.

This definition yields estimates proportional to LS for α = 0, PCR for α → ∞,
and yet-to-be-discussed partial least squares for α = 1. Apart from this, the
advantage of CR is that one can adaptively select among the methods by
searching an optimal α. To determine α, [31] used CV.

The relationship between RR and CR was indicated already in [82], but
the most important result came after uncovering possible discontinuities of
CR estimates as a function of data and α by [29]. In an attempt to remedy
the discontinuity of the original CR, [30] not only proposed to maximize

Tδ(c) = (c⊤s)2(c⊤Sc)−1|c⊤Sc + δ|−1,

for δ ≥ 0 instead of Tα(c) from Def. 6 (δ can be chosen by CV, see [30]), but
also proved the following proposition.
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Theorem 4. If a regressor bf is defined according to

bf = argmax
‖c‖=1

f{K2(c), V (c)},

where K(c) = y⊤Xc, V (c) = ‖Xc‖2, f(K2, V ) is increasing in K2 for
constant V , and increasing in V for constant K2, and finally, if X⊤y is not
orthogonal to all eigenvectors corresponding to the largest eigenvalue λmax of
X⊤X, then there exists a number k ∈ (−∞, λmax) ∪ [0, +∞] such that bf is
proportional to (X⊤X + kI)−1X⊤y, including the limiting cases k → 0, k →
±∞, and k → −λmax.

Thus, the RR estimator fundamentally underlies many methods dealing
with multicollinear and reduced rank data such as mentioned PCR and partial
least squares. Notice however that negative values of the ridge coefficient k
have to be admitted here.

Finally, let us note that CR can be extended to multiple-response-variables
models [32].

1.8 Lasso

The ridge regression discussed in Sect. 1.6 motivates another shrinkage
method: Lasso (least absolute shrinkage and selection operator) by [84]. For-
mulation (10) states that RR can be viewed as a minimization with respect
to an upper bound on the L2 norm of estimate ‖b‖2. A natural extension is
to consider constraints on the Lq norm ‖b‖q, q > 0. Specifically, [84] studied
case of q = 1, that is L1 norm.

Definition 7. The Lasso estimator for the regression model (16) is defined
by

bL = argmin
‖β‖1≤r

(y − Xβ)⊤(y − Xβ), (14)

where r ≥ 0 is a tuning parameter.

Lasso is a shrinkage estimator that has one specific feature compared to
ordinary RR. Because of the geometry of L1-norm restriction, Lasso shrinks
the effect of some variables and eliminates influence of the others, that is, sets
their coefficients to zero. Thus, it combines regression shrinkage with variable
selection, and as [84] demonstrated also by means of simulation, it compares
favorably to all-subsets regression. Considering variable selection, Lasso could
be formulated as a special case of least angle regression [40]. To achieve the
same kind of shrinking and variable-selection effects for all variables, they
should be standardized before used in Lasso; see [9, Sect. 3.11] for details.

As far as the inference for the Lasso estimator is concerned, [61] recently
studied the asymptotic distribution of Lasso-type estimators using Lq-norm
condition ‖β‖q ≤ r with q ≤ 1, including behavior under nearly-singular
designs.
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Further, it remains to find out how Lasso estimates can be computed.
Equation (14) indicates that one has to solve a restricted quadratic optimiza-
tion problem. Setting β+

j = max{βj , 0} and β−
j = −min{βj, 0}, the restric-

tion ‖β‖ ≤ r can be written as 2p + 1 constraints: β+
j ≥ 0, β−

j ≥ 0, and
∑p

j=1(β
+
j − β−

j ) ≤ r. Thus, convergence is assured in 2p + 1 steps. Addi-
tionally, the unknown tuning parameter r is to be selected by means of CV.
Finally, although solving (14) is straightforward in usual regression problems,
it can become very demanding for reduced-rank data, p > n. Reference [72]
treated lasso as a convex programming problem, and by formulating its dual
problem, developed an efficient algorithm usable even for p > n.

Example 4. Let us use data Pollution once more to exemplify the use of Lasso.
To summarize the Lasso results, we use the same plot as [84] and [40] used,
see Fig. 3. It contains standardized slope estimates as a function of the con-
straint ‖b‖ ≤ r, which is represented by an index r/ max ‖b‖ = ‖bL‖/‖bLS‖.8
Moreover, to keep the graph simple, we plotted again only variables that were
selected by variable selection procedures in Table 1 (1, 2, 6, 9, 12, 13, 14).
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Fig. 3. Slope coefficients for variables 1, 2, 6, 9, 12, 13, 14 of data Pollution estimated
by Lasso at different constraint levels, r/max ‖b‖. The right axis assigns to each
line the number of variable it represents and the top axis indicates the number of
variables included in the regression.

In Fig. 3, we can observe which variables are included in the regression
(have a nonzero coefficient) as tuning parameter r increases. Clearly, the order

8 The LS estimate bLS corresponds to the bL under r = ∞, and thus, renders the
maximum of ‖bL‖.
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in which the first of these variables become significant – 9, 6, 14, 1, 2 – closely
resembles the results of variable selection procedures in Table 1. Thus, lasso
combines shrinkage estimation and variable selection: at a given constraint
level r, it shrinks coefficients of some variables and removes the others by
setting their coefficients equal to zero.

1.9 Partial Least Squares

A general modeling approach to most of the methods covered so far was CR in
Sect. 1.7, whereby it has two “extremes”: LS for α = 0 and PCR for α → ∞.
The partial least squares (PLS) regression lies in between – it is a special case
of (13) for α = 1, see [31]. Originally proposed by [19], it was presented as an
algorithm that searches for linear combinations of explanatory variables best
explaining the dependent variable. Similarly to PCR, PLS also aims especially
at situations when the number of explanatory variables is large compared to
the number of observations (e.g., in chemometrics, sociology, etc.). Here we
present the PLS idea and algorithm themselves as well as the latest results
on variable selection and inference in PLS.

Having many explanatory variables X, the aim of the PLS method is to
find a small number of linear combinations T1 = Xc1, . . . ,Tq = Xcq of these
variables, thought about as latent variables, explaining observed responses

ŷ = b0 +

q
∑

j=1

Tjbj (15)

(see [45] and [48]). Thus, similarly to PCR, PLS reduces the dimension of
data, but the criterion for searching linear combinations is different. Most
importantly, it does not depend only on X values, but on y too.

Let us now present the PLS algorithm itself (see [10, Sect. 3.10] for more
details and [45] for an alternative formulation), which defines yet another
shrinkage estimator, see [58] and [46]. The indices T1, . . . ,Tq are constructed
one after another. Estimating the intercept by b0 = ȳ, let us start with cen-
tered variables z0 = y − ȳ and U0 = X − X̄ and set k = 1.

1. Define the index Tk = Uk−1(U⊤
k−1zk−1). This linear combination is

given by the covariance of the unexplained part of the response variable
zk−1 and the unused part of explanatory variables Uk−1.

2. Regress the current explanatory matrix Uk−1 on index Tk

wk = (T⊤
k Tk)−1T⊤

k Uk−1

and the yet-unexplained part of response zk−1 on index Tk

bk = (T⊤
k Tk)−1T⊤

k zk−1,

thus obtaining the kth regression coefficient.
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3. Compute residuals, that is the remaining parts of explanatory and re-
sponse variables: Uk = Uk−1 − Tkwk and zk = zk−1 − Tkbk. This
implies that the indices Tk and Tl are not correlated for k < l.

4. Iterate by setting k = k + 1 or stop if k = q is large enough.

This algorithm provides us with indices Tk, which define the analogs of
principle components in PCR, and the corresponding regression coefficients bk

in (15). The main open question is how to choose the number of components
q. The original method proposed by [93] is based on cross validation. Provided
that CVk from (7) represents the CV index of PLS estimate with k factors,
an additional index Tk+1 is added if Wold’s R criterion R = CVk+1/CVk is
smaller than 1. This selects the first local minimum of the CV index, which is
superior to finding the global minimum of CVk as shown in [73]. Alternatively,
one can stop already when Wold’s R exceeds 0.90 or 0.95 bound (modified
Wold’s R criteria) or to use other variable selection criteria such as AIC.
Recent simulation study [63] showed that modified Wold’s R is preferable to
Wold’s R and AIC. Furthermore, similarly to PCR, there are attempts to use
GA for the component selection, see [62], for instance.

Next, the first results on the asymptotic behavior of PLS appeared first
during last decade. The asymptotic behavior of prediction errors was examined
by [49]. The covariance matrix, confidence and prediction intervals based on
PLS estimates were first studied by [36], but a more compact expression was
presented in [74]. It is omitted here due to many technicalities required for
its presentation. There are also attempts to find a sample-specific prediction
error of PLS, which were compared by [41].

Finally, note that there are many extensions of the presented algorithm,
which is usually denoted PLS1. First of all, there are extensions (PLS2, SIM-
PLS, etc.) of PLS1 to models with multiple dependent variables, see [57] and
[44] for instance, which choose linear combinations (latent variables) not only
within explanatory variables, but does the same also in the space spanned by
dependent variables. A recent survey of these and other so-called two-block
methods is given in [90]. PLS was also adapted for on-line process modeling,
see [76] for a recursive PLS algorithm. Additionally, in an attempt to simplify
the interpretation of PLS results, [85] proposed orthogonalized PLS. See [96]
for further details on recent developments.

Example 5. Let us use again data Pollution, although it is not a typical appli-
cation of PLS. As explained in Sects. 1.7 and 1.9, PLS and PCR are both based
on the same principle (searching for linear combinations of original variables),
but use different objective functions. To demonstrate, we estimated PLS for
1 to 15 latent variables and plotted the fraction of the X and y variance ex-
plained by the PLS latent variables in the same way as in Fig. 1. Both curves
are in Fig. 4. Almost all of the variability in X is captured by the first latent
variable, although this percentage is smaller than in the case of PCR. On the
other hand, the percentage of the variance of y explained by the first k latent
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variables increases faster than in the case of PCR, see Fig. 4 (solid vs. dotted
line).
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Fig. 4. Fraction of the explained variance of X (dashed line) and y (solid line) by
the first k latent variables in PLS regression and by first k PCs (dotted lines).

1.10 Comparison of the Methods

Methods discussed in Sects. 1.3–1.9 are aiming at the estimation of (nearly)
singular problems and they are often very closely related, see Sect. 1.7. Here
we provide several references to studies comparing the discussed methods.

First, an extensive simulation study comparing variable selection, PCR,
RR, and PLS regression methods is presented in [44]. Although the results are
conditional on the simulation design used in the study, [44] found that PCR,
RR, and PLS are, in the case of ill-conditioned problems, highly preferable to
variable selection. The differences between the best methods, RR and PLS,
are rather small and the same holds for comparison of PLS and PCR, which
seems to be slightly worse than RR. An empirical comparison of PCR and
PLS was also done by [92] with the same result. Next, the fact that neither
PCR, nor PLS asymptotically dominates the other method was proved in [49]
and further discussed in [48]. A similar asymptotic result was also given by
[80]. Finally, the fact that RR should not perform worse than PCR and PLS
is supported by Thm. 4 in Sect. 1.7.
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2 Nonlinear Regression Modeling

In this section, we study the nonlinear regression model

yi = h(xi, β0) + εi, (16)

i = 1, . . . , n, where h : Rp × Rk → R is a known regression function and β0

is a vector of k unknown parameters. Let us note that the methods discussed
in this section are primarily meant for truly nonlinear models rather than
intrinsically linear models. A regression model is called intrinsically linear if
it can be unambiguously transformed to a model linear in parameters. For
example, the regression model y = β1x/(β2 + x) can be expressed as 1/y =
1/β1 + β2/β1x, which is linear in parameters θ1 = 1/β1 and θ2 = β2/β1.
Transforming a model to its linear form can often provide better inference,
such as confidence regions, although one has to be aware of the effects of the
transformation on the error-term distribution.

We first discuss the fitting and inference in the nonlinear regression
(Sects. 2.1 and 2.2), whereby we again concentrate on the least square es-
timation. For an extensive discussion of theory and practice of nonlinear least
squares regression see monographs [2], [11], and [14]. Second, similarly to
the linear modeling section, methods for ill-conditioned nonlinear systems are
briefly reviewed in Sect. 2.3.

2.1 Fitting of Nonlinear Regression

In this section, we concentrate on estimating the vector β0 of unknown pa-
rameters in (16) by nonlinear least squares.

Definition 8. The nonlinear least squares (NLS) estimator for the regression
model (16) is defined by

bNLS = argmin
β∈Rp

n
∑

i=1

{yi − ŷi(β)}2 = argmin
β∈Rp

n
∑

i=1

{yi − h(xi, β)}2. (17)

Contrary to the linear model fitting, we cannot express analytically the
solution of this optimization problem for a general function h. On the other
hand, we can try to approximate the nonlinear objective function using the
Taylor expansion because the existence of the first two derivatives of h is an
often used condition for the asymptotic normality of NLS, and thus, could
be readily assumed. Denoting h(b) = {h(xi,b)}n

i=1 and Sn(b) =
∑n

i=1[yi −
h(xi,b)]2, we can state the following theorem from [1, Chap. 4].

Theorem 5. Let εi in (16) are independent and identically distributed with
E(ε|X) = 0 and V ar(ε|X) = σ2In and let B be an open neighborhood of β0.
Further, assume that h(x,b) is continuous on B uniformly with respect to x

and twice continuously differentiable in B and that
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1. limn→∞ Sn(b) 6= 0 for b 6= β0;
2. [∂h(b)/∂b⊤]⊤[∂h(b)/∂b⊤]/n converges uniformly in B to a finite matrix

A(b), such that A(β0) is nonsingular;
3. h(b1)⊤[∂2h(b2)/∂bj∂bk]/n converges uniformly for b1,b2 ∈ B to a finite

matrix for all j, k = 1, . . . , k.

Then the NLS estimator bNLS is consistent and asymptotically normal
√

n
(

bNLS − β0

)

→ N(0, σ2A(β0)−1). (18)

Hence, although there is no general explicit solution to (17), we can as-
sume without loss of much generality that the objective function Sn(b) is
twice differentiable in order to devise a numerical optimization algorithm.
The second-order Taylor expansion provides then a quadratic approximation
of the minimized function, which can be used for obtaining an approximate
minimum of the function, see [14]. As a result, one should search in the direc-
tion of the steepest descent of a function, which is given by its gradient, to
get a better approximation of the minimum. We discuss here the incarnations
of these methods specifically for the case of quadratic loss function in (17).

Newton’s method

The classical method based on the gradient approach is Newton’s method, see
[8] and [14] for detailed discussion. Starting from an initial point b1, a better
approximation is found by taking

bk+1 = bk − H−1(r2,bk)J(r,bk) = (19)

= bk −
[

J(h,bk)⊤J(h,bk) +

n
∑

l=1

ri(b)H(hi,b
k)

]−1

J(h,bk)⊤r(bk),

where r(b) = {[yi−h(xi,b)]}n
i=1 represents residuals, J(f ,b) = ∂f(b)/∂b⊤ is

the Jacobian matrix of a vector function f(b), and H(f ,b) = ∂2{
∑n

i=1 f(b)}
/∂b∂b⊤ is the Hessian matrix of f(b).

To find bNLS, equation (19) is iterated until convergence is achieved. This
is often verified by checking whether the relative change from bk to bk+1 is
sufficiently small. Unfortunately, this criterion can indicate a lack of progress
rather than convergence. Instead, [2, Sect. 2.2] proposed to check convergence
by looking at some measure of orthogonality of residuals r(bk) towards the
regression surface given by h(bk), since the identification assumption of model
(16) is E(r(β0)|X) = 0. See [8], [2], [3], and [12] for more details and further
modifications.

To evaluate iteration (19), it is necessary to invert the Hessian ma-
trix H(r2,b). From the computational point of view, all issues discussed in
Sect. 1 apply here too and one should use a numerically stable procedure,
such as QR decomposition, to perform the inversion. Moreover, to guar-
antee that (19) leads to a better approximation of the minimum, that is



(Non) Linear Regression Modeling 25

r(bk+1)⊤r(bk+1) ≤ r(bk)⊤r(bk), the Hessian matrix H(r2,bk) needs to
be positive definite, which in general holds only in a neighborhood of β0 (see
the Levenberg-Marquard method for a solution). Even if it is so, the step in
the gradient direction should not be too long, otherwise we “overshoot.” Mod-
ified Newton’s method addresses this by using some fraction αk+1 of iteration
step bk+1 = bk − αk+1H

−1(r2,bk)J(r,bk). See [43], [8], and [28] for some
choices of αk+1.

Gauss-Newton method

The Gauss-Newton method is designed specifically for NLS by replacing the
regression function h(xi,b) in (17) by its first-order Taylor expansion, see [14]
and [8]. The resulting iteration step is

bk+1 = bk −
{

J(h,bk)⊤J(h,bk)
}−1

J(h,bk)⊤r(bk). (20)

Being rather similar to Newton’s method, it does not require the Hessian ma-
trix H(r2,b), which is “approximated” by J(h,bk)⊤J(h,bk) (both matrices
are equal in probability for n → ∞ under assumptions of Thm. 5, see [1,
Chap. 4]). Because it only approximates the true Hessian matrix, this method
belongs to the class of quasi-Newton methods. The issues discussed in the case
of Newton’s method apply also to the Gauss-Newton method.

Levenberg-Marquard method

Depending on data and the current approximation bk of bNLS, the Hessian
matrix H(bk) or its approximations such as J(h,bk)⊤J(h,bk) can be badly
conditioned or not positive definite, which could even result in divergence of
Newton’s method (or a very slow convergence in the case of modified Newton’s
method). The Levenberg-Marquard method addresses the ill-conditioning by
choosing the search direction dk = bk+1 − bk as a solution of

{

J(h,bk)⊤J(h,bk) + τIp
}

dk = −J(h,bk)⊤r(bk) (21)

(see [67]). This approach is an analogy of RR discussed in Sect. 1.6, and
hence, it limits the length of the innovation vector dk compared to the
(Gauss-)Newton method. See [8] and [3] for a detailed discussion of this algo-
rithm. There are also algorithms combining both Newton’s and the Levenberg-
Marquard approaches by using at each step the method that generates a larger
reduction in objective function.

Although Newton’s method and its modifications are most frequently used
in applications, the fact that they find local minima gives rise to various im-
provements and alternative methods. They range from simple starting the
minimization algorithm from several (randomly chosen) initial points to gen-
eral global-search optimization methods such as genetic algorithms mentioned
in Sect. 1.3 and discussed in more details in Chapts. 5 and 6 of this Handbook.
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2.2 Statistical Inference

Similarly to linear modeling, the inference in nonlinear regression models is
mainly based, besides the estimate bNLS itself, on two quantities: the residual
sum of squares RSS = r(bNLS)⊤r(bNLS) and the (asymptotic) variance of
the estimate V ar(bNLS) = σ2A(β0)−1, see (18). Here we discuss how to
compute these quantities for bNLS and its functions.

RSS will be typically a by-product of a numerical computation procedure,
since it constitutes the minimized function. RSS also provides an estimate of
σ2: s2 = RSS/(n− k). The same also holds for the matrix A(β0), which can
be consistently estimated by A(bNLS) = J(h,bk)⊤J(h,bk), that is, by the
asymptotic representation of the Hessian matrix H(r2,b). This matrix or its
approximations are computed at every step of (quasi-)Newton methods for
NLS, and thus, it will be readily available after the estimation.

Furthermore, the inference in nonlinear regression models may often in-
volve a nonlinear (vector) function of the estimate f(bNLS); for example,
when we test a hypothesis (see [14] for a discussion of NLS hypothesis test-
ing). Contrary to linear functions of estimates, where V ar(AbNLS + a) =
A⊤V ar(bNLS)A, there is no exact expression for V ar[f(bNLS)] in a general
case. Thus, we usually assume the first-order differentiability of f(·) and use
the Taylor expansion to approximate this variance. Since

f(b) = f(β0) +
∂f(β0)

∂b⊤
(b − β0) + o(‖b − β0‖),

it follows that the variance can be approximated by

V ar[f(bNLS)]
.
=

∂f(bNLS)

∂b⊤
V ar(bNLS)

∂f(bNLS)

∂b
.

Hence, having an estimate of V ar(bNLS), the Jacobian matrix of function
f evaluated at bNLS provides a first-order approximation of the variance of
f(bNLS).

2.3 Ill-conditioned Nonlinear System

Similarly to linear modeling, the nonlinear models can also be ill-conditioned
when the Hessian matrix H(r2,b) is nearly singular or does not even have a
full rank, see Sect. 1.2. This can be caused either by the nonlinear regression
function h itself or by too many explanatory variables relative to sample
size n. Here we discuss extensions of methods dealing with ill-conditioned
problems in the case of linear models, Sects. 1.5–1.9, to nonlinear modeling:
ridge regression, Stein-rule estimator, Lasso, and partial least squares.

First, one of early nonlinear RR was proposed by [34], who simply added
a diagonal matrix to H(r2,b) in equation (19). Since the nonlinear modeling
is done by minimizing of an objective function, a more straightforward way is
to use the alternative formulation (11) of RR and to minimize
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n
∑

i=1

{yi − h(x⊤
i , β)}2 + k

p
∑

j=1

β2
j = r(β)⊤r(β) + k‖β‖2

2, (22)

where k represents the ridge coefficient. See [70] for an application of this
approach.

Next, equally straightforward is an application of Stein-rule estimator (8)
in nonlinear regression, see [60] for a recent study of positive-part Stein-rule
estimator within the Box-Cox model. The same could possibly apply to Lasso-
type estimators discussed in Sect. 1.8 as well: the Euclidian norm ‖β‖2

2 in (22)
would just have to be replaced by another Lq norm. Nevertheless, the behavior
of Lasso within linear regression has only recently been studied in more details,
and to my best knowledge, there are no results on Lasso in nonlinear models
yet.

Finally, there is a range of modifications of PLS designed for nonlinear
regression modeling, which either try to make the relationship between de-
pendent and explanatory variables linear in unknown parameters or deploy
an intrinsically nonlinear model. First, the methods using linearization are
typically based on approximating a nonlinear relationship by higher-order
polynomials (see quadratic PLS by and INLR approach by [26]) or a piecewise
constant approximation (GIFI approach, see [27]). For their recent overview
see [96]. Second, several recent works introduced intrinsic nonlinearity into
PLS modeling. Among most important contributions, there are [75] and [66]
modeling the nonlinear relationship using a forward-feed neural network, [95]
and [38] transforming predictors by spline functions, and [23] using fuzzy-
clustering regression approach, for instance.
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53. Hwang J T G and Nettleton D (2003) Principal components regression with
data-chosen components and related methods. Technometrics 45: 70–79

54. Ibrahim J G and Ming-Hui C (1997) Predictive Variable Selection for the Mul-
tivariate Linear Model. Biometrics 53: 465–478

55. Jian W and Liu X (2003) Consistent model selection based on parameter esti-
mates. Journal of Statistical Planning and Inference, in press.

56. Jolliffe I T (1982) A note on the use of the principle components in regression.
Applied Statistics 31 / 3: 300–303

57. Jong S (1993) SIMPLS: An alternative approach to partial least squares regres-
sion. Chemometrics and Intelligent Laboratory Systems 18: 251–263

58. Jong S (1995) PLS shrinks. Journal of Chemometrics 9: 323–326
59. Kadiyala K (1984) A class of almost unbiased and efficient estimators of regres-

sion coefficients. Ecnomic Letters 16: 293–296.
60. Kim M, Hill R C (1995) Shrinkage estimation in nonlinear regression: the Box-

Cox transformation. Journal of Econometrics 66: l–33
61. Knight K and Fu W (2000) Asymptotics for Lasso-type estimators. The Annals

of Statistics 28: 1356–1389
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