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I show that rising temperatures can detrimentally affect the sovereign creditworthi- 
ness of emerging economies. To this end, I collect long-term monthly temperature 
data of 54 emerging countries. I calculate a country’s temperature deviation from 
its historical average, which approximates present day climate change trends. Run-
ning regressions from 1994m1-2018m12, I find that higher temperature anomalies 
lower sovereign bond performances (i.e. increase sovereign risk) significantly for 
countries that are warmer on average and have lower seasonality. The estimated 
magnitudes suggest that affected countries likely face significant increases in their 
sovereign borrowing costs if temperatures continue to rise due to climate change. 
However, results indicate that stronger institutions can make a country more resi-
lient towards temperature shocks, which holds independent of a country’s climate.

Keywords: climate risks, sovereign creditworthiness, international finance, emerging 
market economies, institutions

JEL classification: G15, H63, O13, Q54, Q56 

Physical Climate Change Risks and the Sovereign
Creditworthiness of Emerging Economies*

Abstract

IWH Discussion Papers No. 8/2020 III

*	 I am grateful for all the advice I received for this project, in particular from Stefan Eichler, Felix 
Noth, Thomas Krause, Christoph Schult, Gregor von Schweinitz, Lena Tonzer and Konstantin 
Wagner. Special thanks goes to Michael Barkholz for helping on temperature data and Mikael 
Homanen’s literature review on ESG & finance. All errors are my own.



1 Introduction

As of 2020, human activities are estimated to have caused approximately 1.0◦C of global

warming compared to pre-industrial levels (IPCC 2018). Climate-related natural disasters,

infectious diseases, species extinction and threats to economic prosperity as well as food,

health and water supply are projected to increase dramatically with further warming. How-

ever, the IPCC (2018) also emphasizes that the 1.0◦C increase witnessed so far has already

led to more extreme weather events, changing natural systems and economic damages. Fur-

thermore, the report states that the burden of climate change will be particularly heavy for

developing countries in the global South.

In this paper, I exploit temperature fluctuations of past years which represent physical

climate change risks in line with the 1.0◦C warming witnessed so far. I contribute to the

literature by linking these movements in temperature to the sovereign creditworthiness of,

potentially climate-vulnerable, emerging market economies. Though the literature on the

economic effects of temperature fluctuations is rich, the link to sovereign bond performances

or sovereign risk has so far been missing.

Despite this gap in the literature, climate change can pose a significant threat for the

creditworthiness of sovereigns according to several regulatory bodies. For instance, a report

on the financial risks from climate change by the Bank of England (2018) states:

“The increasing frequency of severe weather events could also impact macroeco-

nomic conditions through sustained damage to national infrastructure and weaken

fundamental factors such as economic growth, employment, and inflation. This

could have implications for the market price of sovereign debt for those countries

most susceptible to the physical impacts of climate change.”1

Furthermore, rating agencies such as Moody’s (2016) have started incorporating the credit

implications of climate change for sovereign issuers. These developments matter, as sovereign

creditworthiness and associated bond costs are crucial for all governments. Rising borrowing

costs compensate bondholders for higher risks, but can also push countries into crisis and

default. Even in the absence of debt crises, any unit of currency that is spent on borrowing

costs can no longer be used for other expenditures such as adaptions to climate change.
1Similar remarks can be found by the ECB (2019), stating: “sovereign risks could increase for countries

with carbon-intensive industries.”
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Therefore, I extend the literature on climate risks, in the form of temperature fluctua-

tions, in connection with financial markets, in the form of sovereign bond returns. Figure 1

illustrates the main idea of my empirical approach. It depicts the mean annual temperature

of the 54 countries in my panel from 1901 to 2018, showing an upward trend since the second

half of the 20th century. The red line shows the constant temperature average from 1901 to

1950. From 1994 onward, which is the start of my estimation period and the shaded area in

the graph, I calculate a country’s temperature deviation from its 1901-1950 average. This

temperature anomaly variable has a mean of 0.84◦C which is close to the global warming

trend of 1◦C estimated by the IPCC (2018).

- Figure 1 around here -

In my estimation, I follow the “new approach” outlined by Dell et al. (2014). Using

monthly data for 54 emerging economies from 1994 to 2018, I regress market returns of the

Emerging Market Bond Index (EMBI), a common measure for sovereign debt performance,

on the described temperature anomaly fluctuations. I control for precipitation and include

country and region-time fixed effects on the month-year level. The captured temperature

shocks are thus idiosyncratic and account for weather trends common to each region. Build-

ing on a rich literature that links temperature increases to lower GDP growth in poorer and

warmer countries (Burke et al. 2015, Dell et al. 2012), reduced firm productivity and output

(Zhang et al. 2018, Adhvaryuy et al. 2019), decreasing labor supply (Graff Zivin & Neidell

2014) and more interpersonal and civil conflict (Hsiang et al. 2013), I expect rising tempera-

tures compared to a country’s historical temperature average to lead to lower sovereign debt

performance (i.e. increasing sovereign risk).

My results indicate that the effect of rising temperature anomalies on sovereign credit-

worthiness critically hinges on a country’s economic and climatic profile: Warm countries are

significantly more susceptible to temperature shocks than cold or mild-tempered countries,

which echoes the results of Burke et al. (2015). For countries with very high average annual

temperatures (> 25◦C), a 1◦C increase in monthly temperature compared to a country’s

historical average lowers EMBI returns by 0.464 percentage points on average. This effect

corresponds to 11.9% of the EMBI returns’ overall standard deviation. Thus, in a 2◦C global

warming scenario, EMBI returns (in percentage points) could be lowered for affected countries
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by roughly a quarter of their overall standard deviation. This magnitude is non-negligible

and could lead to rising sovereign borrowing costs or even defaults for warmer countries in

the next decades. Such future projections must of course be treated carefully, as they ab-

stain from countries’ adaption strategies towards climate change but also from potentially

non-linearly aggravating weather effects that are entailed by continuously rising temperatures

(see Bolton et al. (2020)). However, if the past temperature anomaly shocks captured in this

paper are any guidance, warm countries could bear a major burden from future temperature

increases in the form of lower sovereign creditworthiness.

Related to the warmness of a country, I find that countries with lower temperature-

seasonality suffer statistically and economically significantly more from temperature increases

with respect to their sovereign risk level than countries with more volatile seasons. This

result holds either for grouping countries into different bins of seasonality or for dividing the

temperature anomaly measure by a country’s standard deviation of monthly temperature.

Next, I exploit the monthly frequency of my data. I test if temperature shock effects differ

in warmer compared to colder months or in summer compared to winter. However, after

adjusting the months in southern hemisphere countries to the northern hemisphere scale,

I find no statistical evidence that a temperature shock in warmer months has significantly

different implications for sovereign creditworthiness than shocks in colder months, or differs

in summer compared to winter. Put together with the previous evidence, this result suggests

that the overall warm- or coldness of a country is what matters for temperature-induced

sovereign risk, not the within-year seasonality of the weather.

Following the analysis of a country’s climatic profile, I test if different economic sector

specializations could be related to the strength of historical temperature shocks on sovereign

debt performance. To this end, I interact the temperature anomaly measure with the spe-

cialization of a country in terms of agriculture, manufacturing, services or natural resources.

However, these specifications do not yield any statistical patterns indicating that countries

with higher agricultural shares on GDP, more service sector employees or larger rents from

natural resources such as oil are more (or less) susceptible to temperature shocks with respect

to their sovereign risk. My results do not rule out that potentially stranded industries, such

as fossil fuels, may affect sovereign debt prices in the future, once their business models have
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become under stronger pressure. Still, the effect seems to be weak during my estimation

period or not connected to temperature shocks.

What instead holds remarkably well throughout the analysis is the conditioning impact

of institutional quality on temperature-induced sovereign risk. Countries with weaker rule

of law, control of corruption, civil rights, democratic governments or less progressive tax

systems face a statistically significantly stronger marginal effect of temperature increases that

is detrimental to their sovereign creditworthiness. Next to these more traditional institutional

variables, climate-related metrics yield a similar conclusion: Countries with lower values in

the ND-Gain index, which measures both the adaptiveness and vulnerability of a country

towards climate change, face significantly higher temperature shock effects on their sovereign

risk level. Disentangling the ND-Gain index reveals that this effect is driven more by the

adaptive readiness than the vulnerability part of the index. These results suggest that higher

overall institutional quality, both traditional and climate-related, could improve the resilience

and adaptiveness of emerging economies towards climate change.

I conduct encompassing robustness tests to demonstrate the stability of my results. These

procedures include changing the fixed effects specification, dependent variable, historical

average period and lag structure of temperature shocks. I also drop certain countries from the

analysis, firstly if they have few EMBI data points, secondly if their landmass is among the ten

largest countries. In addition, I test if more volatile weather periods can also impair sovereign

bond performance, for which I find confirmation. Lastly, I analyze if the temperature effects

changed after the Paris Agreement in December 2015, which does not seem to be the case.

In sum, my evidence suggests that historical temperature deviations, approximating phys-

ical climate change, lower sovereign bond performances (i.e. increase sovereign risk) signif-

icantly for countries that are: (i) warmer, (ii) have lower seasonality, (iii) and have lower

institutional quality, both for traditional and climate-related metrics. I also find evidence

that poorer countries suffer more from temperature shocks. However, these factors are cor-

related as poorer countries tend to have worse institutions. In addition, it is difficult to

disentangle the long-run effects of climate zones on the creation of institutions or the wealth

of nations (see Acemoglu et al. (2002) for a discussion).

I shed some light on these interrelations by combining all relevant channels, i.e. warmness,

poverty and institutional quality, in one regression. My evidence suggests that the effect
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of poorer countries suffering stronger from temperature shocks is indeed driven by these

countries’ tendencies to have worse institutions. However, both the institutional and the

warmness channel remain statistically significant in the same specification, suggesting that

stronger institutions can provide resilience towards temperature shocks, independent of the

warmness of a country.

Though any further disentanglement of these channels is beyond the scope of this paper,

what matters for the policy implications is the finding that countries with warmer weather and

lower institutional quality have so far been hit significantly harder by temperature anomaly

shocks with respect to their sovereign creditworthiness. This result is an important extension

to the still young literature on climate risks and financial markets. If past trends are any

guidance, affected countries could face meaningful increases in their sovereign debt costs or

even debt crises as climate change intensifies.

The rest of the paper is structured as follows. Section 2 provides a framework on how

to think about physical climate change risk and its relationship to sovereign risk. Section 3

introduces the data and provides summary statistics. In the following, Section 4 describes

the empirical framework and main regression results. Section 5 investigates the climatic and

economic profiles of countries and their relationship to temperature-induced sovereign risk.

The subsequent Section 6 provides encompassing robustness checks. Section 7 concludes.

2 Physical Climate Change Risk

2.1 Physical Climate Change Risk in Contrast to Transition Risk

The following section provides a framework on how to think about climate change risks in

a sovereign bond context. Table 1 by the Bank of England (2018) depicts the distinction

between physical and transition risks as the two main channels of how climate change can

lead to economic impairments.

- Table 1 around here -

Physical risks describe the materializing damages from climate change. They can arise from

extreme weather events or natural disasters such as droughts, wildfires, sea level rises or floods.

Regions hit by such disasters can face losses in terms of human lives, critical infrastructure,

food supply, firm assets or their capital stock (see also Bolton et al. (2020)). As further

5



global warming likely entails irreversible tipping points, these damages could lead to non-

transitory, lasting disruptions (Ripple et al. 2019). According to the insurance data used by

NGO Germanwatch (2019), the damages from extreme weather events worldwide between

1999 and 2018 amounted to $3.54 trillion (in purchasing power parities). Physical climate

risks can materialize as a mortgage risk for homeowners that lose their property, a credit

risk for banks that lend to e.g. flood-impaired firms (Koetter et al. (2019)), an underwriting

risk for insurance companies (Financial Stability Institute 2019) and, as demonstrated in

this paper, a market risk for sovereigns bonds of countries most susceptible to the physical

impacts of climate change.

In contrast, transition risks describe the adjustment towards a low-carbon economy and

the expected damages and costs associated therewith. Therefore, these risks are more

forward-looking as (expected) changes in environmental policies or sentiments could threaten,

for instance, the business model of certain firms. Should investors reassess the viability of e.g.

a fossil-energy-intensive industry as tougher climate laws are implemented, the stock price

of affected firms might fall. Such a shock would likely spill-over to banks, pension funds and

other investors with exposures towards stranded industries, which is referred to as a “carbon

bubble” (see ESRB (2016) for an associated systemic risk analysis and Delis et al. (2018) for

how banks price carbon bubble risks).

An example of transition risks in a government bond context that contrasts the physical

risks in this paper is by Painter (2020). He shows that US municipalities that face stronger

sea level increases in the future have higher issuance costs for their municipality bonds today.

Because of its forward-looking nature, this effect demonstrates a transition risk. As projected

climate damages from sea level increases rise over time, the results are driven by long-term

bonds. In addition, the pricing effect increased around the release of the Stern report on

climate change in 2006. Though not shown by Painter (2020), it could likely be the case

that such re-pricing of climate-sensitive assets was even more pronounced in recent years as

global warming became a major concern for the financial industry (see Boston Common Asset

Management (2018) for a survey of global banks and Bolton & Kacperczyk (2020) for asset

pricing effects of firms’ CO2 emissions).

In contrast to forward-looking transition risks, this paper, and the literature on tempera-

ture effects in general, analyze already materialized impacts of past temperature fluctuations.
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Temperature increases are associated with extreme weather events or hotter years and in-

fluence economic activities along several dimensions, as the next section demonstrates. Of

course, both risk channels cannot be isolated completely from another: A wildfire might en-

tail vast economic damages (physical risk), but also change perceptions of investors regarding

the susceptibility of the affected region towards more wildfires in the future (transition risk).

It is beyond the scope of this paper to disentangle these risk effects. Nevertheless, I will

label temperature fluctuations as a form of physical risk in the following due to their primary

impact on current economic activities.

2.2 Physical Climate Change and Sovereign Creditworthiness

Temperature fluctuations have economic effects that can likely spill-over to sovereign risk.

Dell et al. (2012) show that higher temperatures reduce the GDP growth rate of poorer coun-

tries. This effect is driven by lower agricultural and industrial value-added and increasing

political instability during warmer years. Related, Burke et al. (2015) show that temper-

ature has a non-linear effect on GDP growth, with warmer countries’ economies being hit

significantly more negative by higher temperatures than colder or milder-tempered countries

for which temperature increases are negligible or even beneficial. Heal & Park (2014) and

Deryugina & Hsiang (2014) obtain similar results. Regarding the research agenda of this pa-

per, it is likely that macroeconomic fundamentals like GDP growth or related fiscal conditions

impact sovereign bond pricing (see Hilscher & Nosbusch (2010) or Gupta et al. (2008)).

With respect to the microeconomic channels behind the temperature-GDP relationship,

Zhang et al. (2018) find that more hot days per year in a Chinese region significantly re-

duce output and productivity of local firms. Using climate prediction models, the authors

derive that these effects could lower Chinese manufacturing output by 12% annually by 2050.

Adhvaryuy et al. (2019), Cachon et al. (2012) and Somanathan et al. (2018) obtain simi-

lar evidence, confirming that labor becomes less productive with hotter days. In addition,

Graff Zivin & Neidell (2014) demonstrate that individual labor supply decreases with more

warm days in a year. One notable exception to this micro evidence is by Addoum et al.

(2020) who find weak effects of temperature shocks on US firm sales.

Climate and weather patterns also influence conflict and political stability. Hsiang et al.

(2013) summarize in a meta study several contributions that link increasing temperatures
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to more interpersonal conflict and crime, but also riots, civil conflict or ultimately civil war

(see also Burke et al. (2009)). Sovereign bond yields are known to respond to political con-

ditions (Eichler 2014) and it is highly plausible for temperature-induced political instability

to increase sovereign risk.

Though not every natural disaster can be directly linked to climate change, the IPCC

(2018) projects climate-related disasters to increase with further global warming. Figure 2

depicts the total number of climate-related natural disasters such as floods, droughts and

wildfires of the countries in my panel next to the average sample temperature from 1901

to 2018. There is a positive correlation between the rising occurrence of natural disasters

and increasing temperature, however, this relationship is at least partially driven by better

detection and recording of disasters. Nevertheless, the temperature anomaly measure in

this paper picks up natural disasters to some extend, as shown in the next section, and it

is intuitive to assume that severe disasters are detrimental to the economy and sovereign

creditworthiness of a country (Felbermayr & Gröschl 2014).

- Figure 2 around here -

As I use the market return of a financial asset as my dependent variable, it is worth

noting that Bansal et al. (2016) demonstrate that most US equities have a negative expo-

sure coefficient towards long-run temperature fluctuations. Temperature patterns and other

climate-related measures are thus priced in financial assets (Bolton & Kacperczyk 2020).

The literature on the effects of temperature anomalies on sovereign creditworthiness is so

far scarce, which is why this paper adds significant value to this debate. Next to cited work by

Painter (2020), another paper that looks at the relationship between sovereign borrowing costs

and climate change more general is by Kling et al. (2018). The authors regress bond costs on

climate-related vulnerability metrics of countries, finding that more vulnerable countries pay

higher debt costs. Though the specifics of the estimation strategy and the included countries

differ, the results in my paper point in a similar direction.
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3 Data and Descriptive Statistics

3.1 Sovereign Creditworthiness

I measure sovereign creditworthiness using the Emerging Market Bond Index Global (EMBI)

provided by J.P. Morgan. EMBI data has several advantages: Included sovereign bonds are

U.S. Dollar-denominated which rules out exchange rate risk. Eligible debt must furthermore

have more than one year to maturity and exceed an outstanding face value of $500 million.

These features make EMBI data well standardized, liquid and widely-used to track sovereign

debt performances of emerging economies.

The start of the EMBI Global at the beginning of 1994 determines my estimation period,

which runs from 1994m1 to 2018m12. I collect monthly EMBI Global data for all countries

available and calculate month-to-month returns using natural log differences. Positive returns

imply improving sovereign creditworthiness.2 I winsorize the returns at the 1st and 99th

percentile to control for outliers. The panel is unbalanced because some countries enter only

in later years. As some countries’ EMBI series turn temporarily illiquid and hence constant

in the index level, I drop all observations with a zero percent EMBI return. To make sure

every country in the sample has sufficient variation, I only include those countries with liquid

EMBI returns of at least six years (72 months). This criterion is not critical for my results,

as shown in a robustness test. The final panel consists of 54 countries and can be found,

together with region classifications from Dell et al. (2012), in Table 2. Definition and sources

of all variables are in Table 26.

- Table 2 around here -

3.2 Temperature Data

I obtain average monthly temperature data for every panel country since 1901 from the

Climate Research Unit (CRU). The data is land-weighted and based on an extensive network

of interpolated weather station data (see Harris et al. (2020) for details).3

2I obtain somewhat stronger results using direct EMBI returns. However, the results also hold when
using EMBI spread data as shown in the robustness section. Since both measures are market returns, their
interpretation, except for the switched signs, is very similar.

3Data is freely available at: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/.
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My main variable of interest, as graphically depicted in Figure 1, measures the difference

in the observed temperature of a country during 1994m1-2018m12 towards this country’s

1901-1950 historical temperature average of that month:

HistoricalTempAnomalyit = Temperatureit − TempAveragei,t(1901−1950) (1)

For instance, temperature in March of 2003 (year-month t) in Argentina (country i) is

compared to the temperature of all Marches of Argentina from 1901-1950.

This historical temperature anomaly is a proxy for the degree of global warming witnessed

so far. Table 3 listing the summary statistics shows a corresponding mean of 0.842◦C for the

full sample period. This value approaches the 1◦C temperature increase estimated by the

IPCC (2018) compared to the pre-industrial age and lies well within their reported confidence

range of 0.8◦C to 1.2◦C. For the sample of temperature anomalies used in the main regressions,

the mean is even at 0.896◦C. This rise is likely because several countries enter the estimation

only in later years, when temperatures increased further.

In line with the assessment of the IPCC (2018) that the 1◦C warming experienced so

far has already led to impacts on natural and human systems and considering the evi-

dence on the economic effects of temperature fluctuations gathered in Section 2, I inter-

pret HistoricalTempAnomalyit as a measure for warmer than normal periods and extreme

weather events. Some statistical confirmation for this perception comes from Table 4, showing

that the mean of historical temperature anomalies is higher during periods of heat-related

natural disasters such as droughts (0.898), droughts for which there is a damage estimate

(0.946), wildfires (0.989) and heat waves (0.988).4 In addition, I collect stock market data,

which is available for 38 out of the 54 sample countries. Table 5 shows that the average tem-

perature anomaly of these sub-sample countries is almost identical to the full sample (0.843).

However, temperature anomalies are much lower when the stock market is in upswing (0.785),

i.e. stock returns are above the 75th percentile, whereas anomalies are somewhat larger during

downturns (0.863), i.e. when returns are below the 25th percentile. Temperature anomalies

are thus responsive to both climate- and economy-related news.
4Wildfires or heat waves with reported damages also have higher averages but lower number of observation.
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I include an additional temperature variable for the main regressions:

DeviationAdjustedTempAnomalyit = HistoricalTempAnomalyit

StandardDeviation(Temperaturei,t(1901−1950))
(2)

I divide the anomaly measure by a country’s historical standard deviation of monthly tem-

perature. This adjustment is suggested by Dell et al. (2014) and applied, among others,

by Barrios et al. (2010). It sets the temperature shock in relation to the usual variation in

warm- or coldness of a country. In this way, temperature anomalies in countries with lower

seasonality are stronger emphasized.

- Tables 3, 4 and 5 around here -

4 Empirical Framework

Following what Dell et al. (2014) call the “new approach”, I estimate an OLS panel regression:

∆SovereignCreditworthinessit = βTemperatureAnomalyit + δPrecipit + γi + γrt + εit (3)

Natural log changes in the EMBI index (∆SovereignCreditworthinessit) are regressed on

a temperature anomaly measure and fixed effects. The sample runs from 1994m1 to 2018m12

and consists of 54 countries. Temperature anomalies are either the difference of temperature

from its historical average (HistoricalTempAnomalyit) or the historical anomaly divided by

monthly temperature standard deviation (DeviationAdjustedTempAnomalyit) as described

in Section 3.2. Based on the gathered evidence, I expect a negative β coefficient. That is,

higher temperature anomalies lead to lower sovereign creditworthiness.

I include country fixed effects γi to control for time-invariant characteristics such as geog-

raphy or culture. In addition, year-month fixed effects enter the regression and are interacted

with the region classification of a country (γrt). This approach, suggested among others by

Dell et al. (2014), makes sure that common trends, such as shared weather patterns in each

region, are controlled for. It ensures that captured temperature shocks are idiosyncratic and

local in nature. I apply different fixed effects in the robustness section and find stable results.

Importantly, I do not include any control variables on the country level such as stock

returns or exchange rates. This decision is due to the explicit stance of the temperature
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literature against including any control variable that might be endogenous towards weather

and climate variation (Dell et al. (2014), Burke et al. (2015)).5 Given that stock returns are

subject to similar temperature-productivity effects described in Section 2 and also unavail-

able on a liquid frequency for all panel countries, I abstain from including them. Following

leading papers like Dell et al. (2012) and Burke et al. (2015), I only control for precipita-

tion (Precipit, also obtained from CRU) and include time-region fixed effects on the highest

possible frequency (year-month). Standard errors are clustered on the country level.

Table 8 presents results from several versions of equation (3), including the baseline model.

Column (1) introduces the historical temperature anomaly measure and both country and

region-time fixed effects, but only on a yearly level. The temperature measure enters negative

and statistically significant, but the overall explanatory power of the estimation is quite low.

In column (2) I include precipitation on the country level and several international control

variables such as changes in the VIX, the US term spread, US corporate risk spread, the 10-

year US treasury yield and the returns of a general government bond index. The temperature

anomaly coefficient remains negative and statistically significant to this addition. Finally,

I estimate the baseline model (column (3)) in which I introduce region times year-month

fixed effects, which subsume all non-country specific controls. The explanatory power is

now substantially larger, but the temperature anomaly measure is no longer statistically

significant. This result might not be surprising, as the literature shows that only particularly

affected countries respond to temperature shocks.6 Precipitation is statistically insignificant

in the baseline and all following regressions.

The hypothesis that only affected countries respond to temperature shocks receives con-

firmation in columns (4) to (6). In these estimations, I repeat the specifications of columns

(1)-(3) but replace the historical temperature anomaly with the deviation-adjusted temper-

ature measure (DeviationAdjustedTempAnomalyi,t). As described, this version emphasizes

temperature shocks in countries with low seasonality. It enters negative and with a stable

and strongly statistically significant coefficient (1% level) in all specifications. This result

implies that rising temperature leads to a statistically significant decrease of sovereign cred-

itworthiness for countries with low seasonality. Regarding the economic size, an increase of
5In their review article on climate and crime, Hsiang et al. (2013) explicitly exclude studies that use a

potentially biasing control variable. See also the chapter “bad control” in Angrist & Pischke (2008).
6For instance, Dell et al. (2012) also obtain a statistically insignificant baseline effect.
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deviation-adjusted temperature anomalies by one standard deviation (0.574◦C) leads to a

0.135%-point drop in EMBI returns. This magnitude corresponds to 3.47% of the standard

deviation of EMBI returns in the estimation sample. While this effect is modest for now,

the next section will investigate the susceptibility of countries towards temperature shocks in

greater detail and identify more substantial effects.

- Table 8 around here -

5 Channels

The previous literature established that temperature shocks can be particularly harmful for

warmer or poorer countries or affect certain economic sectors like agriculture or industrial

production (Burke et al. 2015, Dell et al. 2012). I investigate such channels with respect

to their impact on sovereign risk. Specifically, I analyze the general warmness of a country

(5.1), its seasonality (5.2), its within year weather fluctuations (5.3), its specialization towards

different economic sectors (5.4), the effect of institutions (5.5) and ultimately a combination

of all relevant channels (5.6) regarding their temperature-induced sovereign risk impact.

Methodically, I either analyze these channels in an interaction model as follows:

∆SovereignCreditworthinessit =λ1TemperatureAnomalyit ∗ Channelit + λ2Channelit

+ βTemperatureAnomalyit + δPrecipit + γi + γrt + εit

(4)

That is, the baseline estimation is repeated while TemperatureAnomaly is interacted with

the channel of interest, for instance institutional quality. I expect channels that increase

the detrimental impact of temperature shocks on sovereign creditworthiness to enter with a

negative, while factors that cushion the effect of temperature on sovereign bond performance

to carry a positive coefficient sign.

Some of the analyzed channels could be endogenous towards temperature, such as the

share of agriculture on the economy. However, as shown by Nizalova & Murtazashvili (2016)

and Bun & Harrison (2019) even if one of such channels could be endogenous in the single

term, the interacted effect with temperature anomalies can still yield a consistent estimate.

This inference holds as long as one of the variables in the interaction term is exogenously

determined. This assumption holds plausibly for temperature shocks, as countries can hardly
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influence their own weather or reallocate because of it. Therefore, even if some channels could

be endogenous with respect to temperature, I argue that the interaction terms allow for an

unbiased interpretation.

I apply the interaction model for economic variables, as they have a plausibly linear

effect on the temperature-sovereign risk relationship. However, some climate-related variables

could have non-linear effects that are critical to certain thresholds. For instance, Burke et al.

(2015) show that a country’s temperature has a non-linear impact on GDP growth. As

the interaction model above will only partially capture such non-linear effects, I follow the

literature (e.g. Zhang et al. (2018), Graff Zivin & Neidell (2014)) and estimate a bin-model

for all climate-related channels:

∆SovereignCreditworthinessit =
∑
m

λmTemperatureAnomalyit ∗ Channelmi

+ TemperatureAnomalyit + δPrecipit + γi + γrt + εit

(5)

In this way, a country is grouped into one of m (time-invariant) bins. For instance, a country

could be sorted into a bin for cold, mild or warm countries based on its average yearly

temperature. In order to avoid multicollinearity, one bin has to be omitted in the regression.

The estimated coefficient λm yields the effect of a temperature anomaly increase of, for

instance, the warm country group relative to the omitted reference group, for example the

mild countries. Thereby, group-specific non-linear temperature effects are taken into account.

5.1 General Warmness

Figure 3 depicts the histogram of every sample country’s 1901-2018 temperature average.

There is considerable heterogeneity visible in the warm- and coldness between the coldest

(Russia, -4.96◦C) and the hottest (Senegal, 28.03◦C) country. To investigate if these differ-

ences in climatic profiles affect the temperature-sovereign risk relationship, I construct five

bins to group every country into: very cold, cold, mild, warm and very warm.

- Figure 3 around here -

I start by grouping according to percentiles: Countries equal to or below the 20th percentile

of average annual temperature (from 1901-2018) are classified as “very cold”. Countries in the

21st to the 40th percentile of the sample-wide annual temperature distribution are classified
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as “cold” and so on. Using this data-driven procedure, I make sure that every bin has the same

number of countries. Table 6 shows the members of each bin and their mean temperature.

One drawback of this method is that the differences at the end of the distribution are

less sharp. “Warm” countries have an average temperature of 24.36◦C while “very warm”

countries have only marginally hotter climate averaging 26.25◦C. Therefore, for a second

procedure, I group according to 5◦C-intervals: “Very cold” includes countries with mean 1901-

2018 temperatures below 10◦C, “cold” ranges between 10◦C and 15◦C, “mild” between 15◦C

and 20◦C, “warm” between 20◦C and 25◦C and “very warm” above 25◦C.With this procedure,

the number of countries in each bin varies. Table 7 lists the respective categorization.

- Tables 6 and 7 around here -

I proceed by estimating both bin classifications according to equation (5). I omit the “cold”

bin to avoid multicollinearity. Table 9 reports the results and Figures 4 and 5 depict the coef-

ficients. I find that the interaction of the “very warm” category and temperature anomalies is

both times negative and statistically significant. As in Burke et al. (2015), warmer countries

seem to suffer more from temperature increases than milder tempered countries. For both

models, this effect holds with respect to the cold but also the mild and very cold category

and for the 5◦C-interval model even towards the “warm” category (unreported).

Summing the interaction coefficient of “very warm” countries and the single term coeffi-

cient of historical temperature anomalies gives the total size of the effect. For “very warm”

countries, I find that a rise in historical temperature anomalies by 1◦C, i.e. the estimated

global temperature increase since the pre-industrial age, leads to a decline in EMBI returns

by 0.432%-points in the percentile- and by 0.464%-points in the 5◦C-interval model. These

effects correspond to 11.1% or 11.9% of the EMBI returns’ standard deviation in the sample.

Consequently, for affected countries, a 2◦C warming scenario would lead to falling sovereign

creditworthiness in an amount of roughly 25% of the recent EMBI standard deviation. One

drawback of the EMBI growth data is that, as a financial market return variable, I cannot

attach a dollar value to these effects. Still, the magnitude in terms of percentage points and

standard deviation shares is quite substantial. The effect implies sharply rising sovereign

borrowing costs for sovereigns that are susceptible to climate change.

- Table 9 and Figures 4 and 5 around here -
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5.2 Seasonality

The negative and statistically significant effects of deviation-adjusted temperature anomaly

(Table 8, columns (4)-(6)) gave already some confirmation that lower seasonality makes a

country more susceptible to temperature socks. The evidence from the recent section corrob-

orates this finding, as countries that are warmer on average tend to have lower seasonality (a

country’s mean temperature and temperature standard deviation correlate at -0.89).

To test the effects of seasonality on temperature-induced sovereign risk more formally, I

group each country into one of five seasonality bins. I again sort according to the quantiles

(i.e. five percentile groups) of monthly temperature standard deviation (1901-2018). Table

10 and the depicted coefficients in Figure 6 confirm the previous results: The coefficient for

countries with very low seasonality is negative and statistically significant in its interaction

with temperature anomalies. The size is nearly identical to that of the warmest country

group in the previous section. In addition, countries in the neighboring group of low sea-

sonality have a negative and statistically significant coefficient at the 10% level. In sum,

this evidence suggests that hotter countries where seasons hardly vary in terms of warm-

ness are more sensitive towards rising temperature anomalies with respect to their sovereign

creditworthiness.

- Table 10 and Figure 6 around here -

5.3 Month and Season Effects

Temperature fluctuations in the previous literature are often on a yearly frequency. I can,

instead, exploit the monthly variation in my data to investigate if temperature shocks are

different during warmer or colder months. Such a differentiated impact could be plausible:

For instance, a warmer summer month could be associated with droughts or declining labor

productivity due to extreme heat. On the other hand, a warmer than usual winter month

might be beneficial for the economy, as the milder weather lowers heating costs or makes

seasonal business cycle fluctuations less severe, for example in the construction sector.

To test these hypotheses, I first re-scale the months of countries in the southern hemisphere

to the northern hemisphere classification (that is, the temperature anomaly in Argentina in

January is assumed to take place in an adjusted July, February becomes August and so

on). I then construct a dummy for each of these adjusted months and repeat the baseline

16



regression by interacting each month with the historical temperature anomaly variable. To

avoid multicollinearity, I omit the month May as it usually approaches the annual temperature

average. However, results are not critical towards this choice.

Column (1) in Table 11 and Figure 7 show the results of this exercise. There seems

to be no pattern that would confirm the hypothesis of more severe temperature shocks in

summer months. Some months approach statistical significance at the 10% level, however,

such findings are not stable and in general sensitive to the omitted base category. For instance,

in column (2) I omit December to see potential summer-effects more directly, which leads to

changes in signs and significance levels for several coefficients.

Lastly, I interact temperature anomaly shocks with the respective season. This specifica-

tion does not require a re-scaling of months in southern hemisphere countries (e.g. summer is

June-August in northern and December-February in southern hemisphere). Choosing autumn

as a base, column (3) of Table 11 and Figure 8 demonstrate once again that there seem to be

no statistically significant effects during certain seasons regarding the temperature-sovereign

risk relationship. These results lead to the conclusion that overall country warmness rather

than within year temperature variation is what matters for the temperatures sensitivity of a

country’s sovereign creditworthiness.

- Table 11 and Figures 7 and 8 around here -

5.4 Economic Sector Specialization

In the following, I investigate if countries that are specialized in certain economic sectors are

more susceptible towards temperature deviating positively from its historical average. For

instance, Auffhammer & Schlenker (2014) summarize empirical studies on the tight relation-

ship between agricultural production, weather outcomes and climate change. Furthermore,

the literature linking temperature and labor productivity typically looks at manufacturing

and industrial sectors (Cachon et al. 2012, Zhang et al. 2018). Lastly, countries specialized

into commodity and in particular fossil-fuel sectors could see their sovereign creditworthiness

deteriorate because these industries might no longer have viable business models as climate

change intensifies (ECB 2019).

To analyze these channels, I interact the temperature anomaly variable as described in

equation (4) with measures for industry specialization. Though pure temperature anomalies
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are the primary interest of this specification, I also run the regressions using the deviation-

adjusted anomaly measure. This addition is because the variable emphasizes countries with

lower seasonality and warmer weather, which were shown to be important characteristics for

the temperature-sovereign relationship.

Table 12 shows the results for agricultural specialization. I interact separately with the

land share devoted to agriculture in relation to a country’s total land area, the GDP share of

agriculture and the share of employees working in the agricultural sector in relation to total

employment. Negative interaction effects would indicate that higher agricultural specializa-

tion leads to more detrimental temperature impacts on sovereign creditworthiness. However,

while all coefficients of the interactions with temperature anomaly are negative in sign, none of

them are statistically significant at conventional levels. The evidence that larger agricultural

sectors differentiate temperature shock impacts is therefore weak at best.

Next, I interact with specializations in the manufacturing sector, which is captured by

the GDP share of manufacturing and the employment share of the industrial sector.7 The

results in Table 13 also include interactions with the employment and the GDP share of the

service sector and the total share of oil, gas, coal, mineral and forest rents in relation to GDP

(ResourceRentsToGDP). However, there are once again no statistically significant interaction

effects for either one of the temperature anomaly variables. Of course, it could still be the

case that fossil industries captured in the resource-rent variable will come under stronger

pressure in future years and thereby endanger the creditworthiness of their sovereign. Still,

such effects seem to be either weak during my estimation period or not connected to the

temperature shocks estimated in the model. Overall, the gathered evidence does not suggest

that countries which are specialized in a certain economic sector are more (or less) susceptible

to temperature increases with respect to their sovereign solvency.

- Tables 12 and 13 around here -

5.5 Institutions

The subsequent section investigates if the quality of a country’s institutions differentiates the

effect of temperature increases on sovereign risk. Better institutions make sure that countries
7There is no data series for the employment share in manufacturing, but I expect industrial sector employ-

ment shares to be closely correlated.

18



have a stable political and business environment, low corruption, accountable political leaders

and a government that can mobilize investments, provide common goods and respond to

market failures or natural disasters. All these factors matter in the context of climate change,

for instance if droughts or floods lead to physical damages that require swift government

intervention, or if distributional consequences of temperature-induced costs and losses need

to be managed efficiently. In sum, better institutional quality could make a country more

resilient to the various challenges global warming poses for emerging economies.

In order to capture several features of institutional quality, I interact both temperature

anomaly versions with a range of institutional measures. My main interest lies once again

in the raw temperature anomaly measure as it proxies global warming directly and is more

straightforward to interpret, but I will also post results for the deviation-adjusted version.

The first set of interactions are with the World Bank’s institutional measures for the quality

of a country’s rule of law (Table 14, columns (1)-(2)) and its control of corruption (columns

(3)-(4)) which capture most of all business and legal aspects of institutions. I continue with

interactions measuring the impact of political rights (columns (5)-(6)) and civil liberties

(columns (7)-(8)) by Freedom House to see if free elections, freedom of speech and other

politically- and societal-related aspects play a role. Next, I analyze the amount of income

redistribution from before to after taxes (Table 15, columns (1)-(2)) from Solt (2019) to see if

more equitable countries that redistribute a larger share of their income, thereby potentially

taxing elites and lowering poverty, react different to temperature shocks. Lastly, I use the

Polity2 index (columns (3)-(4)) and its components from the Center for Systemic Peace that

show which governments are more democratic (columns (5)-(6)) and hence less authoritarian

(columns (7)-(8)).

Simply put, I find strong and robust evidence for all of these channels. Interactions with

institutional variables for which higher values indicate better quality (rule of law, control of

corruption, income redistribution, polity2, democratic governments) enter with positive, while

measures which are indexed so that higher values imply lower quality (civil liberties, political

rights, authoritarian governments) carry negative signs in all cases. For the pure temperature

anomaly measure, all interactions are at statistical significance levels of 1% or 5%. In the

case of the deviation-adjusted measure, the coefficients are slightly weaker in significance but

significant at conventional levels except for the income redistribution interaction.
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- Tables 14 and 15 around here -

I expand the analysis to investigate if the results also hold for climate-related institutions.

To this end, I draw data from the Notre Dame Global Adaption Initiative, which publishes the

Notre Dame Global Adaption Index (ND-GAIN). This index takes both the climate-related

adaptive readiness of a country as well as its physical and institutional vulnerability towards

global warming into account. For instance, the index covers the economic, governance and

social-related institutions of a country that can provide resilience towards damages from

climate change. The vulnerability component measures physical and topographical exposure

risks and the dependency on climate-sensitive sectors.

Column (1) of Table 16 reports the results of the overall ND-GAIN interacted with tem-

perature anomalies. I obtain a positive coefficient that is statistically significant at the 5%

level, indicating that countries with stronger climate-related institutions suffer significantly

less from rising temperature than less well-prepared countries. Results for the interaction

between ND-GAIN and the deviation-adjusted temperature are not statistically significant,

however, the margin plot in Figure 9 provides notable confirmation that countries with lower

ND-GAIN scores suffer significant negative temperature shocks on their sovereign creditwor-

thiness, whereas the effect becomes statistically insignificant for higher ND-GAIN levels.

Interactions with the readiness component (columns (3)-(4)) and the vulnerability com-

ponent (columns (5)-(6)) of the ND-GAIN index reveal that the readiness part is driving the

results. The corresponding interactions are statistically significant at the 1% level, while the

vulnerability interactions are statistically insignificant. This finding is in line with previous

results, as the vulnerability component measures the dependency on climate-vulnerable sec-

tors, which were shown to be unrelated to the temperature-sovereign risk relationship in the

previous section. On the other hand, the readiness component captures climate-related gov-

ernance factors that correlate positively with the previous measures of institutional quality.

In sum, this section provides robust evidence that institutions strongly influence the re-

lationship between rising temperature and sovereign creditworthiness. Countries with lower

institutional quality, both in a traditional and in a climate-related context, have so far been

hit significantly harder by temperature deviating from its historical levels. This result could

suggest that better institutions can make a country more resilient towards the physical dam-

ages from climate change. As future global warming will lead to growing damages, transition
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costs and distributional issues, having stronger institutions to manage these challenges could

be a viable strategy in the adaption process towards climate change.

- Table 16 and Figure 9 around here -

5.6 Combining relevant Channels

A channel that could be related to the impact of institutional quality is economic development.

Therefore, I interact temperature anomalies with a country’s GDP per capita. Column (1) in

Table 17 confirms that the level of economic development matters, in that poorer countries’

sovereign creditworthiness is statistically significantly stronger damaged by a temperature

shock than those of economically more developed countries.

However, it could be the case that poorer countries have larger susceptibility to rising

temperature because they tend to have worse institutions. It could also be the other way

around, and the effect of worse institutions only works through the associated lower level of

economic development. More broadly, the vulnerability of the warmest countries uncovered

in Section 5.1 could also be interrelated with institutions and development. For instance,

Easterly & Levine (2003) show that countries in tropical climate zones tend to develop worse

institutions which lowers their economic progress (see also Sachs (2001)). Indeed, annual

average temperatures and the rule of law index correlate negatively in the sample (-0.165),

indicating that warmer countries tend to have worse institutions.

A possible, if not perfect way to test which channels ultimately matter for the temperature-

sovereign relationship is to combine all relevant interactions in a single model. I start by

adding the interaction of temperature anomalies and the rule of law index, as one of the in-

stitutional variables (results also hold for other measures), to the model with interacted GDP

per capita (column (2)). While the interaction coefficient for rule of law remains statistically

significant and of similar size than in Table 14, the GDP per capita interaction with tem-

perature decreases in size and becomes statistically insignificant. This finding provides some

confirmation that the effect of lower economic development on the temperature-sovereign re-

lationship is mostly driven by the fact that poorer countries tend to have worse institutions.

In column (3), I add the deviation-adjusted temperature variable to the specification of

column (2). So far, this variable has always been statistically significant, likely because it

emphasizes temperature shocks in warmer and less seasonal countries. The variable remains
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negative and statistically significant in column (3), but the interacted rule of law coefficient

also stays stable and significant. GDP per capita remains statistically insignificant. This

result suggests that, even after controlling for temperature shocks in warmer countries, insti-

tutional quality can still cushion the impact of a temperature shock to a significant degree.

This finding is confirmed in column (4) in which I replace the deviation-adjusted temperature

measure with the five bins representing very cold, cold, mild, warm and very warm countries

according to 5◦C-intervals. Leaving out the cold country bin, I find that both the interaction

of temperature anomaly with the very warm country bin and with the rule of law index

continue to stay statistically significant and similar in size than before.

While the long-run effects of climate on institutional development are difficult to en-

tangle and beyond the scope of this paper, the fact that the impact of institutions on the

temperature-sovereign relationship continues to hold even after controlling for the warmness

of country shows that the institution-channel does not work purely through the climate-

channel. In that sense, policy makers, independent of the warmness of their country, have an

incentive to improve institutional quality, as it can cushion the impact of rising temperatures

on their sovereign risk level.

- Table 17 around here -

6 Robustness Tests

6.1 Changing the Fixed Effects Specification

In order to conduct robustness checks, I repeat those specifications that yielded the most

decisive results in the previous sections. These include the deviation-adjusted temperature

variable (Table 8, column (6)), the bin-regression analyzing the warmness of countries using

5◦C-intervals (Table 9, column (2)) and the interaction with institutional characteristics

from which I choose the rule of law index (Table 14, column (1), results also hold for other

institutional variables). For the bin-regression, I omit the “cold” country category because it

provides a distinctive comparison group to the “very warm” country group. However, results

also hold for omitting other groups for the majority of robustness checks. More importantly,

I am interested in the total effect of the “very warm” country group interaction, which is

independent of the omitted bin.
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I start by changing the fixed effects setting for each of these three specifications. First, I

deconstruct the interaction of region and year-month fixed effects and instead only include

year-month time effects, thus omitting the regional component (Table 18, columns (1)-(3)).

Second, I re-include the region times month-year effects and in addition interact the country

fixed effects with a year time fixed effect (columns (4)-(6)). Though I am not aware of a

paper in the relevant literature using such a country-year effect, the interaction controls for

time-fixed differences between countries within each year. Lastly, I control for region times

month-year and additional country times quarter fixed effects (columns (7)-(9)). The latter

interaction absorbs seasonal differences that vary over each quarter.

In sum, the main results of the paper stay intact for each of these modifications. Dropping

the region fixed effects only marginally changes the coefficients. The country by year fixed

effects, in contrast, reduce the statistical significance of the deviation-adjusted temperature

anomaly to the 10% level, and also lower the total effect of very warm countries from -0.464

in the baseline to -0.320 in column (5). Still, this specification is unusual in the literature

and the overall direction of the results is the same as before. Interacting the country with

quarter fixed effects yields stable and even slightly stronger results than in the baseline.

- Table 18 around here -

6.2 Changing the Dependent Variable

Next, I test if the main results hold when using a different dependent variable. All specifica-

tions so far used monthly returns of the EMBI index. A natural alternative for this measure

are differences in the EMBI spread instead of the index level.

Table 19 repeats the three main regressions using monthly first differences of EMBI

spreads as the dependent variable (columns (1)-(3)). All results continue to stay statisti-

cally significant, if on somewhat lower levels. The coefficient signs are now reversed as rising

EMBI spread changes indicate lower sovereign creditworthiness. Regarding the economic

magnitude, an increase of 1◦C of the anomaly measure in “very warm” countries leads to

a 9.62-point increase in EMBI spread changes. This effect is 11.98% of the overall EMBI

spread change standard deviation (80.34) and thus extremely close to the 11.9% obtained for

the EMBI index returns.
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In order to investigate the validity of the results for a different variable than the EMBIs,

I collect sovereign CDS data. However, this data is only available since roughly 2008 and

only for 37 of the 54 panel countries. With these limitations in mind, I construct changes in

the CDS spread the same way as with the EMBI spread, i.e. I take first differences, set zero

returns to missing and winsorize at the 1st and 99th percentile. I use CDS spread changes

as a new dependent variable in columns (4)-(5). I do not report the regression using the

temperature bin interactions because the grouping process is significantly biased due to the

lower number of countries (though the results point in a similar direction as before). The

interaction with the rule of law index is negative and statistically significant at the 5% level,

which corroborates the previous results. The deviation-adjusted measure enters positively

but is not statistically significant. However, the imprecise estimation could likely be due

to the lower number of observations, since the coefficient size is still large. An increase of

deviation-adjusted temperature by one standard deviation of the estimation sample (0.627)

increases CDS changes by 5.19 points which is 7.3% of the CDS standard deviation (71.05).

- Table 19 around here -

6.3 Changing the Lag Structure

Dell et al. (2012) include up to ten years of lagged temperature shocks into one of their

specifications. Though their effects appear to be driven by contemporaneous temperature

fluctuations, I also extend my model with twelve months of lagged temperature anomalies.

However, columns (1)-(3) in Table 20 reveal that, similar to Dell et al. (2012), contempo-

raneous shocks are driving the results. In column (1), the current level of deviation-adjusted

temperature remains negative and statistically significant while all its lags are statistically

insignificant and without a clear trend. In column (2), I interact every temperature bin-

category with the temperature anomaly variable and each of its twelve legs (yielding 52

interaction terms). Table 20 only shows the interaction of the “very warm” category and

contemporaneous temperature to save space. The “very warm” country bin still has a nega-

tive and significant interaction effect, though the significance is slightly lower likely because

of the numerous additional interactions. Lagged interactions are again quite noisy and in

almost all cases not statistically significant (not reported). Column (3) interacts the rule of
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law index with the twelve lags of temperature anomaly but the non-lagged version remains

the only significant coefficient.

- Table 20 around here -

6.4 Changing the Historical Temperature Average Period

All main specifications have used 1901-1950 as a historical period to build temperature av-

erages over, from which deviations were calculated. I chose 1950 because it is long enough

to ensure a representable average (compared to 1930 or 1940) but with sufficient distance to

global temperatures starting to increase more measurably (such as 1960 or 1970).

In Tables 21 and 22, I repeat all three main estimations using 1930, 1940, 1960 or 1970

as endpoints for the historical average period. All coefficients of interest hardly change as

a consequence of these adjusted average periods, including the total effect of temperature

anomalies in “very warm” countries.

- Tables 21 and 22 around here -

6.5 Dropping Countries with lower Data Coverage and larger Landmass

In the main specification, I included all countries with liquid EMBI return data of at least

six years. I chose this criterion to manage the trade-off between having a large panel and

sufficient observations for each country in the sample. In columns (1)-(3) of Table 23, I set the

inclusion criterion to ten years (120 months) of liquid EMBI return data. 15 countries in the

original sample are affected by this requirement (Angola, Azerbaijan, Belarus, Bolivia, Costa

Rica, Guatemala, India, Jordan, Latvia, Lithuania, Mongolia, Namibia, Romania, Senegal,

Zambia). I drop these countries and repeat the three main regressions. The number of obser-

vations only decreases slightly as a result of this adjustment, and all the main effects retain

their statistical significance. The effect of temperature increases in the warmest countries

even rises somewhat, in both magnitude and significance.

One further concern I address deals with countries covering a huge landmass. Nations

like Russia or China could have several climate zones which makes their temperature average

only a rough measure for weather fluctuations. Therefore, I drop the ten countries with

the largest landmass from my sample (Russia, China, Brazil, India, Argentina, Kazakhstan,
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Mexico, Indonesia, Mongolia, Peru) and repeat the main regressions. Columns (4)-(6) reveal

that the number of observations now decreases more notably. However, the main results

remain broadly intact. Deviation-adjusted temperature shocks even increase, as does the

interacted effect of institutions and temperature anomalies. The “very warm” country bin is

now marginally insignificant just before the 10% level, perhaps because of the lower number

of observations or the changing number of countries in each bin. Still, the total effect of this

group still has the same size as in the main regression (-0.443).

- Table 23 around here -

6.6 Other Temperature Anomaly Measures

I construct one further measure to detect weather anomaly shocks. This variable is inspired

by the fact that not only increases in temperature levels but also in variability are verified

as one of the detrimental impacts of climate change (Bathiany et al. 2018). I take the

standard deviation of monthly temperature over 12-month rolling windows for every country.

This variable captures the volatility of weather over the previous year. I subtract from this

measure a country’s temperature standard deviation from 1901 to 1950. In this way, similar

to the historical temperature anomaly measure, I capture deviations of temperature volatility

above its pre-global warming average (HistoricalDeviationAnomaly).

Table 24 presents the results for this variable. The historical change in temperature stan-

dard deviation is negative and statistically significant as a single variable (column (1)). Its size

is similar to the deviation-adjusted temperature shocks, which suggests that periods of more

volatile weather can hurt sovereign creditworthiness. However, the interaction coefficients

of the variable with both institutional quality and the warmest countries are statistically

insignificant (columns (2)-(3)). Though the point estimates are actually comparable to the

main regressions or even larger, the effects are imprecisely estimated. This result could sug-

gest that more volatile weather hurts all countries’ sovereign bond performance, independent

of their climate zone or institutional framework.

- Table 24 around here -
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6.7 Testing for Transition Risks

Though it is, as described in Section 2, extremely difficult to differentiate between physical

and transition risks in the temperature literature, I conduct a test that could possibly detect

transition risks. To this end, I use the Paris Climate Agreement, which was sealed in De-

cember 2015, as a transition shock. With the Paris Agreement, almost all countries in the

world agreed to limit global warming to well below 2◦C. If temperature increases also fea-

ture a transition risk component, it could be the case that temperature shocks have stronger

impacts on sovereign creditworthiness since the Paris Agreement, because investors are more

sensitive towards climate issues.

To test this channel, I interact the three main regressions as well as raw temperature

anomalies with a time dummy for the Paris Agreement that is 1 after December 2015. For

the temperature anomaly and the deviation-adjusted temperature measure, the Paris dummy

does not differentiate the impact of these variables, as the interaction effects are statistically

insignificant (Table 25, columns (1)-(2)). The results are similar for “very warm” countries

and institutions (columns (3)-(4)): The double interaction of temperature and rule of law

remains statistically significant and comparable to previous results, whereas the triple in-

teraction with the Paris dummy is small and statistically insignificant. Although this is no

definitive result, it could suggest that temperature shocks are first and foremost a physical

risk source, which is largely independent of climate agreements or transition risks.

- Table 25 around here -

7 Conclusion

I extend the literature on temperature fluctuations to finance, specifically the sovereign debt

performance of emerging economies. To this end, I collect monthly temperature data since

1901 for 54 emerging countries. For each country, I calculate the temperature deviation of

every month from this month’s 1901-1950 temperature average. I run my main empirical

analysis from 1994m1 to 2018m12, up until this temperature anomaly is on average 0.84◦C,

reflecting past climate change trends. In line with previous literature, I argue that rising

temperature deviations approximate physical weather and climate damages.
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I regress Emerging-Market-Bond-Index returns on temperature anomalies while control-

ling for established country, time and region fixed-effects. My main result is that the effects of

temperature anomalies on the cost of sovereign debt critically hinge on conditioning factors.

Temperature deviations lower sovereign bond performance (i.e. increase sovereign risk) sig-

nificantly for countries that are (i) warmer on average, (ii) less seasonal, (iii) and have lower

institutional quality, both in terms of traditional- and climate-related metrics. Importantly,

the effects of institutional quality and the warmness of a country on the temperature-sovereign

risk relationship hold simultaneously, which implies that stronger institutions can improve

the resilience of a country towards climate change, independent of its climatic profile.

The economic effects of temperature increases are more than noteworthy. According to

my analysis, if a country with an average annual temperature above 25◦C faces a 1◦C increase

in monthly temperature compared to its historical mean, its EMBI returns are lowered by

0.464 percentage points on average. This effect corresponds to 11.9% of the EMBI returns’

overall standard deviation. Hence, a 2◦C global warming scenario could lower EMBI returns

of affected countries by roughly a quarter of their overall standard deviation.

This magnitude suggests that, in the absence of climate-adaption strategies, affected

countries likely face considerable increases in their sovereign borrowing costs if temperatures

continue to rise due to climate change. These results also raise distributional questions: As

of 2017, the countries in my panel were responsible for just 36.6% of accumulated historical

global CO2 emissions but posed 66.2% of the global population. Policy action to limit the

degree of global warming and to build adaptive capacities through stronger institutional

frameworks are therefore called for.
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9 Tables and Figures

Figure 1: Average annual temperature of 54 emerging economies in the sample from
1901-2018 and 1901-1950 temperature average.

Figure 2: Number of climate-related natural disasters and average temperature of panel
countries.
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Figure 3: Histogram of average temperature of every sample country.

Figure 4: Coefficients estimated in Table 9 for climatic bins according to percentiles of
average temperature.
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Figure 5: Coefficients estimated in Table 9 for climatic bins according to 5◦C-intervals of
average temperature.

Figure 6: Coefficients estimated in Table 10 for bins according to percentiles of monthly
temperature standard deviation (1901-2018).
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Figure 7: Coefficients estimated in Table 11 column (1) for month effects (adjusted for
southern hemisphere).

Figure 8: Coefficients estimated in Table 11 column (3) for season effects.
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Figure 9: Marginal effect of deviation-adjusted temperature increases interacted with
ND-GAIN index. Bars indicate 95% confidence intervals. Corresponding regressions are in

Table 16.
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Table 1: Distinction between physical and transition climate change risks. Source: Bank of
England (2018).

Risk Type Implications for
Credit

Implications for
Markets

Implications for
Business

Physical

Increasing flood risk
to mortgage portfolios;
declining agricultural output;
increasing default rates

Severe weather events can lead
to re-pricing of sovereign debt

Severe weather events can
impact business continuity

Transition

Tightening efficiency
standards impact
property exposures;
stranded assets impair
loan portfolios;
disruptive technology leads
to auto finance losses

Tightening climate-related policy
leads to re-pricing of securities
and derivatives

Changing sentiment on
climate issues leads to
reputational risks

Table 2: List of included countries and region classification

Region Countries

Asia-Pacific China, India, Indonesia, Malaysia, Mongolia, Pakistan,
Philippines, Vietnam

Eastern Europe & Central Asia Azerbaijan, Belarus, Croatia, Georgia, Hungary, Kazakhstan,
Latvia, Lithuania, Poland, Romania, Russia, Serbia, Ukraine

Latin America & Caribbean
Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica,
Dominican Republic, Ecuador, El Salvador, Guatemala, Jamaica,
Mexico, Panama, Peru, Uruguay, Venezuela

Middle East & North Africa Egypt, Iraq, Jordan, Lebanon, Morocco, Tunisia, Turkey

Sub-Sahara Africa Angola, Gabon, Ghana, Ivory Coast, Namibia, Nigeria,
Senegal, South Africa, Zambia

Table 3: Summary statistics

N mean p50 sd min max

∆EMBI 10,006 0.686 0.729 3.921 -16.23 13.47
∆EMBI (regression sample) 9,957 0.691 0.729 3.898 -16.23 13.47
HistoricalTempAnomaly 16,200 0.842 0.694 1.190 -5.514 8.830
HistoricalTempAnomaly (regression sample) 9,957 0.896 0.742 1.129 -5.254 8.830
DeviationAdjustedTempAnomaly 16,200 0.355 0.223 0.514 -1.627 4.007
DeviationAdjustedTempAnomaly
(regression sample) 9,957 0.418 0.257 0.574 -1.627 4.007

Table 4: Mean temperature anomaly measure during natural disaster periods

Full Sample
Mean Drought Droughts with

reported Damage Wildfire Heat Wave Cold Wave or
severe Winter

Historical
TempAnomaly 0.842 0.898 0.946 0.989 0.988 0.0623
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Table 5: Mean temperature anomaly measure during stock market upswings and downswings
(stock data available for 38 countries)

Sub-Sample Mean
(of countries that

report stock returns)

Stock market returns
> 75th percentile

Stock market returns
< 25th percentile

Historical
TempAnomaly 0.843 0.785 0.863

Table 6: Countries in each percentile-defined climatic bin

Very Cold Cold Mild Warm Very Warm
Belarus Argentina Angola Brazil Belize
Chile Azerbaijan Bolivia Colombia Ghana
China Croatia Ecuador Costa Rica Indonesia
Georgia Hungary Iraq Dominican Republic Ivory Coast
Kazakhstan Lebanon Jordan Egypt Malaysia
Latvia Morocco Mexico El Salvador Nigeria
Lithuania Romania Namibia Gabon Panama
Mongolia Serbia Pakistan Guatemala Philippines
Poland South Africa Peru India Senegal
Russia Turkey Tunisia Jamaica Venezuela
Ukraine Uruguay Zambia Vietnam

Average 1901-2018
annual temperature 5.198◦C 13.439◦C 20.666◦C 24.362◦C 26.256◦C

Table 7: Countries in each 5◦C-interval-defined climatic bin

Very Cold:
≤10◦C

Cold:
>10 & ≤15◦C

Mild:
>15 & ≤20◦C

Warm:
>20 & ≤25◦C

Very Warm:
>25◦C

Belarus Argentina Jordan Angola Belize
Chile Azerbaijan Lebanon Bolivia Brazil
China Croatia Morocco Colombia Gabon
Georgia Serbia Peru Costa Rica Ghana
Hungary Turkey South Africa Dominican Republic Indonesia
Kazakhstan Tunisia Ecuador Ivory Coast
Latvia Uruguay Egypt Jamaica
Lithuania El Salvador Malaysia
Mongolia Guatemala Nigeria
Poland India Panama
Romania Iraq Philippines
Russia Mexico Senegal
Ukraine Namibia Venezuela

Pakistan
Vietnam
Zambia

Average 1901-2018
annual temperature 5.863◦C 11.938◦C 18.087◦C 22.657◦C 25.986◦C
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Table 8: Baseline results

(1) (2) (3) (4) (5) (6)
∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI

HistoricalTempAnomaly -0.0614** -0.0798*** -0.0118
(0.0267) (0.0269) (0.0507)

DeviationAdjustedTempAnomaly -0.219*** -0.233*** -0.235***
(0.0681) (0.0633) (0.0798)

Precipitation 0.197 0.223 0.110 0.0385
(0.416) (0.363) (0.424) (0.375)

∆VIX -0.151*** -0.151***
(0.0164) (0.0164)

∆GlobalGovernmentBondIndex 0.0691* 0.0690*
(0.0370) (0.0370)

∆US-TermSpread -0.102 -0.106
(0.199) (0.199)

∆US-CorporateRiskPremium -2.445*** -2.443***
(0.186) (0.186)

∆US-10-YearTreasuryYield -3.689*** -3.684***
(0.437) (0.438)

Constant 0.740*** 0.688*** 0.679*** 0.777*** 0.722*** 0.786***
(0.0239) (0.0539) (0.0631) (0.0284) (0.0560) (0.0552)

Observations 10,006 10,006 9,957 10,006 10,006 9,957
R-squared 0.068 0.217 0.524 0.068 0.218 0.524
Country FE Yes Yes Yes Yes Yes Yes
Region×Year FE Yes Yes No Yes Yes No
Region×MonthYear FE No No Yes No No Yes
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to 2018m12. ∆EMBI are
monthly natural log returns of a country’s EMBI index. HistoricalTempAnomaly is the difference between
monthly temperature of a country and its 1901-1950 temperature average of the same month. Deviation-
AdjustedTempAnomaly is the anomaly measure divided by a country’s 1901-1950 average of temperature
standard deviation. Precipitation is the country-specific average in 1000 mm units. ∆VIX, ∆US-TermSpread
(10-year treasury yield minus 3-month T-Bill yield), ∆US-CorporateRiskPremium (high corporate bond yield
minus investment grade corporate bond yield) and ∆US-10-YearTreasuryYield are in simple first differences,
∆GlobalGovernmentBondIndex is in natural log differences. Standard errors (in parentheses) are clustered at
the country level, ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See
Table 26 for variable definitions and sources.
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Table 9: Results for general warmness

(1) (2)
∆EMBI ∆EMBI

HistoricalTempAnomaly 0.0596 0.0825
(0.0834) (0.117)

VeryColdCountry (percentile) × HistoricalTempAnomaly -0.0731
(0.0802)

ColdCountry (percentile; base category) × HistoricalTempAnomaly 0
(0)

MildCountry (percentile) × HistoricalTempAnomaly -0.0639
(0.114)

WarmCountry (percentile) × HistoricalTempAnomaly -0.224
(0.174)

VeryWarmCountry (percentile) × HistoricalTempAnomaly -0.491**
(0.233)

VeryColdCountry (≤ 10◦C) × HistoricalTempAnomaly -0.0492
(0.110)

ColdCountry (> 10 & ≤ 15◦C; base category) × HistoricalTempAnomaly 0
(0)

MildCountry (> 15 & ≤ 20◦C) × HistoricalTempAnomaly -0.207
(0.124)

WarmCountry (> 20 & ≤ 25◦C) × HistoricalTempAnomaly -0.125
(0.155)

VeryWarmCountry (> 25◦C) × HistoricalTempAnomaly -0.547**
(0.229)

Precipitation 0.0640 0.00819
(0.406) (0.393)

Observations 9,957 9,957
R-squared 0.524 0.524
Country FE Yes Yes
Region×MonthYear FE Yes Yes
Total “very warm” Country Effect -0.432 -0.464
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to 2018m12.
∆EMBI are monthly natural log returns of a country’s EMBI index. HistoricalTempAnomaly is
the difference between monthly temperature of a country and its 1901-1950 temperature average of
the same month. Each country is grouped into a bin either according to percentiles (see Table 6 for
respective countries) or 5◦C intervals (see Table 7 for respective countries). One bin is omitted due
to multicollinearity (base category). Single terms of the bins are subsumed by time fixed effects.
Total “very warm” country effect is the sum of the VeryWarmCountry interaction and the single
term of HistoricalTempAnomaly. Standard errors (in parentheses) are clustered at the country
level, ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See
Table 26 for variable definitions and sources.
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Table 10: Results for seasonality

(1)
∆EMBI

HistoricalTempAnomaly 0.0511
(0.102)

VeryLow Temp-StdDev (percentile) × HistoricalTempAnomaly -0.441**
(0.199)

Low Temp-StdDev (percentile) × HistoricalTempAnomaly -0.493*
(0.281)

Normal Temp-StdDev (percentile; base category) × HistoricalTempAnomaly 0
(0)

High Temp-StdDev (percentile) × HistoricalTempAnomaly 0.0502
(0.113)

VeryHigh Temp-StdDev (percentile) × HistoricalTempAnomaly -0.107
(0.111)

Precipitation -0.0100
(0.396)

Observations 9,957
R-squared 0.525
Country FE Yes
Region×MonthYear FE Yes
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to
2018m12. ∆EMBI are monthly natural log returns of a country’s EMBI index. His-
toricalTempAnomaly is the difference between monthly temperature of a country and
its 1901-1950 temperature average of the same month. Each country is grouped into a
bin according to percentiles of monthly temperature standard deviation from 1901-2018
(Temp-StdDev). One bin is omitted due to multicollinearity (base category). Single terms
of the bins are subsumed by time fixed effects. Standard errors (in parentheses) are clus-
tered at the country level, ***, ** and * indicate statistical significance at the 1%, 5%
and 10% level, respectively. See Table 26 for variable definitions and sources.
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Table 11: Results for month and season effects

(1) (2) (3)
∆EMBI ∆EMBI ∆EMBI

HistoricalTempAnomaly -0.0939 0.0890 -0.00309
(0.124) (0.106) (0.102)

January (adjusted) × HistoricalTempAnomaly 0.0155 -0.167
(0.140) (0.108)

February (adjusted) × HistoricalTempAnomaly 0.00336 -0.179
(0.146) (0.137)

March (adjusted) × HistoricalTempAnomaly 0.0532 -0.130
(0.190) (0.136)

April (adjusted) × HistoricalTempAnomaly -0.0325 -0.215
(0.176) (0.181)

May (adjusted; base category in (1)) × HistoricalTempAnomaly 0 -0.183
(0) (0.173)

June (adjusted) × HistoricalTempAnomaly 0.0704 -0.112
(0.273) (0.220)

July (adjusted) × HistoricalTempAnomaly 0.347 0.165
(0.213) (0.186)

August (adjusted) × HistoricalTempAnomaly 0.210 0.0271
(0.204) (0.160)

September (adjusted) × HistoricalTempAnomaly 0.105 -0.0779
(0.243) (0.238)

October (adjusted) × HistoricalTempAnomaly 0.309 0.127
(0.186) (0.159)

November (adjusted) × HistoricalTempAnomaly -0.0798 -0.263**
(0.173) (0.109)

December (adjusted; base category in (2)) × HistoricalTempAnomaly 0.183 0
(0.173) (0)

Spring × HistoricalTempAnomaly -0.0766
(0.0935)

Summer × HistoricalTempAnomaly 0.129
(0.134)

Autumn (base category) × HistoricalTempAnomaly 0
(0)

Winter × HistoricalTempAnomaly -0.0175
(0.0998)

Precipitation 0.362 0.362 0.439
(0.477) (0.477) (0.437)

Observations 9,957 9,957 9,957
R-squared 0.525 0.525 0.524
Single Terms Yes Yes Yes
Country FE Yes Yes Yes
Region×MonthYear FE Yes Yes Yes
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to 2018m12. ∆EMBI are
monthly natural log returns of a country’s EMBI index. HistoricalTempAnomaly is the difference between
monthly temperature of a country and its 1901-1950 temperature average of the same month. In columns
(1) and (2), months in the southern hemisphere are adjusted to northern hemisphere scaling (January
becomes July and so on). One month or season is omitted due to multicollinearity (base category). The
single terms of months or seasons are included in the regression but left out in the table to save space.
Standard errors (in parentheses) are clustered at the country level, ***, ** and * indicate statistical
significance at the 1%, 5% and 10% level, respectively. See Table 26 for variable definitions and sources.
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Table 12: Results for economic sector specialization: agriculture

(1) (2) (3) (4) (5) (6)
∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI

HistoricalTempAnomaly 0.0885 0.0388 0.0627
(0.0964) (0.0781) (0.0824)

DeviationAdjustedTempAnomaly -0.179 -0.290 -0.305*
(0.251) (0.191) (0.153)

AgricultureLandShare 0.0183 0.0164
(0.0320) (0.0316)

HistoricalTempAnomaly
× AgricultureLandShare

-0.00219
(0.00144)

DeviationAdjustedTempAnomaly
× AgricultureLandShare

-0.00199
(0.00617)

AgricultureToGDP 0.0188 0.0137
(0.0303) (0.0301)

HistoricalTempAnomaly
× AgricultureToGDP

-0.00828
(0.00970)

DeviationAdjustedTempAnomaly
× AgricultureToGDP

0.00615
(0.0186)

AgricultureEmploymentShare 0.0391** 0.0363**
(0.0167) (0.0161)

HistoricalTempAnomaly
× AgricultureEmploymentShare

-0.00364
(0.00323)

DeviationAdjustedTempAnomaly
× AgricultureEmploymentShare

0.00317
(0.00657)

Precipitation 0.298 0.0889 0.294 0.111 0.211 0.0323
(0.369) (0.387) (0.364) (0.365) (0.364) (0.379)

Observations 8,662 8,662 9,875 9,875 9,957 9,957
R-squared 0.529 0.529 0.528 0.528 0.524 0.524
Country FE Yes Yes Yes Yes Yes Yes
Region×MonthYear FE Yes Yes Yes Yes Yes Yes
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to 2018m12. ∆EMBI
are monthly natural log returns of a country’s EMBI index. HistoricalTempAnomaly is the difference
between monthly temperature of a country and its 1901-1950 temperature average of the same month.
DeviationAdjustedTempAnomaly is the anomaly measure divided by a country’s 1901-1950 average of
temperature standard deviation. Standard errors (in parentheses) are clustered at the country level, ***,
** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See Table 26 for
variable definitions and sources.
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Table 16: Results for climate-related institutional quality

(1) (2) (3) (4) (5) (6)
∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI

HistoricalTempAnomaly -0.721** -0.484*** 0.0386
(0.346) (0.168) (0.343)

DeviationAdjustedTempAnomaly -1.264* -0.957*** -1.040
(0.697) (0.275) (0.757)

ND-GAIN -0.0500 -0.0461
(0.0357) (0.0333)

HistoricalTempAnomaly
× ND-GAIN

0.0132**
(0.00631)

DeviationAdjustedTempAnomaly
× ND-GAIN

0.0211
(0.0138)

ReadinessIndex -2.293 -2.225
(1.597) (1.463)

HistoricalTempAnomaly
× ReadinessIndex

1.052***
(0.331)

DeviationAdjustedTempAnomaly
× ReadinessIndex

1.908***
(0.680)

VulnerabilityIndex 19.93 20.43
(13.81) (13.42)

HistoricalTempAnomaly
× VulnerabilityIndex

-0.186
(0.889)

DeviationAdjustedTempAnomaly
× VulnerabilityIndex

1.816
(1.802)

Precipitation 0.336 0.224 0.332 0.213 0.400 0.178
(0.365) (0.379) (0.362) (0.385) (0.356) (0.365)

Observations 9,194 9,194 9,194 9,194 9,194 9,194
R-squared 0.509 0.510 0.510 0.510 0.509 0.510
Country FE Yes Yes Yes Yes Yes Yes
Region×MonthYear FE Yes Yes Yes Yes Yes Yes
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to 2018m12. ∆EMBI
are monthly natural log returns of a country’s EMBI index. HistoricalTempAnomaly is the difference
between monthly temperature of a country and its 1901-1950 temperature average of the same month.
DeviationAdjustedTempAnomaly is the anomaly measure divided by a country’s 1901-1950 average of
temperature standard deviation. Standard errors (in parentheses) are clustered at the country level, ***,
** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See Table 26 for
variable definitions and sources.
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Table 17: Results for combining relevant channels

(1) (2) (3) (4)
∆EMBI ∆EMBI ∆EMBI ∆EMBI

HistoricalTempAnomaly -0.145* -0.233*** -0.151* -0.137
(0.0764) (0.0845) (0.0893) (0.137)

GDPPerCapita -5.83e-05 -4.19e-05 -4.04e-05 -3.57e-05
(4.14e-05) (4.06e-05) (4.03e-05) (3.98e-05)

HistoricalTempAnomaly
× GDPPerCapita

1.70e-05**
(6.54e-06)

7.21e-06
(7.80e-06)

5.97e-06
(7.54e-06)

2.71e-06
(6.80e-06)

RuleOfLaw -0.00315 -0.00235 -0.00414
(0.00477) (0.00474) (0.00467)

HistoricalTempAnomaly × RuleOfLaw 0.00326** 0.00317** 0.00381***
(0.00149) (0.00138) (0.00133)

DeviationAdjustedTempAnomaly -0.314***
(0.107)

VeryColdCountry (≤ 10◦C)
× HistoricalTempAnomaly

-0.0508
(0.101)

ColdCountry (> 10 & ≤ 15◦C; base category)
× HistoricalTempAnomaly

0
(0)

MildCountry (> 15 & ≤ 20◦C)c
× HistoricalTempAnomaly

-0.217
(0.131)

WarmCountry (> 20 & ≤ 25◦C)
× HistoricalTempAnomaly

-0.0422
(0.158)

VeryWarmCountry (> 25◦C)
× HistoricalTempAnomaly

-0.539**
(0.237)

Precipitation 0.194 0.267 0.0751 0.0683
(0.367) (0.375) (0.387) (0.392)

Observations 9,957 9,688 9,688 9,688
R-squared 0.524 0.502 0.502 0.502
Country FE Yes Yes Yes Yes
Region×MonthYear FE Yes Yes Yes Yes
This table shows OLS estimation results of a panel of 54 countries from 1994m1 to 2018m12. ∆EMBI
are monthly natural log returns of a country’s EMBI index. HistoricalTempAnomaly is the difference
between monthly temperature of a country and its 1901-1950 temperature average of the same month.
DeviationAdjustedTempAnomaly is the anomaly measure divided by a country’s 1901-1950 average
of temperature standard deviation. Standard errors (in parentheses) are clustered at the country
level, ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See
Table 26 for variable definitions and sources.
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Table 19: Robustness tests: changing dependent variable

(1) (2) (3) (4) (5)
∆EMBI
Spread

∆EMBI
Spread

∆EMBI
Spread

∆CDS
Spread

∆CDS
Spread

DeviationAdjustedTempAnomaly 3.667* 8.276
(1.837) (5.990)

HistoricalTempAnomaly -1.649 4.776** 11.17**
(2.248) (2.287) (4.513)

VeryColdCountry
× HistoricalTempAnomaly

1.354
(2.182)

ColdCountry (base category)
× HistoricalTempAnomaly

0
(0)

MildCountry
× HistoricalTempAnomaly

3.301
(2.208)

WarmCountry
× HistoricalTempAnomaly

1.766
(2.580)

VeryWarmCountry
× HistoricalTempAnomaly

11.27*
(5.734)

RuleOfLaw -0.0610 -0.0811
(0.146) (0.217)

HistoricalTempAnomaly
× RuleOfLaw

-0.0940***
(0.0350)

-0.187**
(0.0744)

Precipitation -14.57* -13.10 -15.86* 19.17 15.03
(8.247) (8.715) (8.030) (18.99) (15.71)

Observations 9,610 9,610 9,491 4,277 4,277
R-squared 0.463 0.464 0.456 0.349 0.351
Number of Countries 54 54 54 37 37
Country FE Yes Yes Yes Yes Yes
Region× MonthYear FE Yes Yes Yes Yes Yes
This table shows robustness checks for the deviation-adjusted temperature variable (Table 8,
column (6)), the bin-regression analyzing the warmness of countries using 5◦C-intervals (Table
9, column (2)) and the interaction with institutional characteristics (rule of law index, Table
14, column (1)). Columns (1)-(3) use the first difference of the EMBI spread, and columns
(4)-(5) the first difference of the CDS spread as a new dependent variable. Standard errors (in
parentheses) are clustered at the country level, ***, ** and * indicate statistical significance at
the 1%, 5% and 10% level, respectively. See Table 26 for variable definitions and sources.
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Table 20: Robustness tests: introducing lag structure

(1) (2) (3)
∆EMBI ∆EMBI ∆EMBI

DeviationAdjustedTempAnomaly -0.275**
(0.125)

HistoricalTempAnomaly 0.0474 -0.204**
(0.109) (0.0935)

VeryWarmTemp5BinDisc × HistoricalTempAnomaly -0.569*
(0.297)

RuleOfLaw -0.00739
(0.00642)

HistoricalTempAnomaly × RuleOfLaw 0.00369**
(0.00139)

Precipitation 0.364 0.291 0.282
(0.404) (0.396) (0.391)

L1.DeviationAdjustedTempAnomaly 0.0914
(0.0926)

L2.DeviationAdjustedTempAnomaly 0.0172
(0.144)

L3.DeviationAdjustedTempAnomaly 0.0130
(0.143)

L4.DeviationAdjustedTempAnomaly -0.0805
(0.156)

L5.DeviationAdjustedTempAnomaly 0.00625
(0.0976)

L6.DeviationAdjustedTempAnomaly -0.172*
(0.103)

L7.DeviationAdjustedTempAnomaly -0.121
(0.0946)

L8.DeviationAdjustedTempAnomaly 0.0379
(0.120)

L9.DeviationAdjustedTempAnomaly 0.0750
(0.0779)

L10.DeviationAdjustedTempAnomaly -0.0195
(0.134)

L11.DeviationAdjustedTempAnomaly -0.0749
(0.0991)

L12.DeviationAdjustedTempAnomaly 0.177
(0.125)

L1.HistoricalTempAnomaly × RuleOfLaw 0.00118
(0.00144)

L2.HistoricalTempAnomaly × RuleOfLaw -0.00171
(0.00144)

L3.HistoricalTempAnomaly × RuleOfLaw -0.00102
(0.00130)

L4.HistoricalTempAnomaly × RuleOfLaw 0.000323
(0.00108)

L5.HistoricalTempAnomaly × RuleOfLaw -0.000594
(0.00195)

L6.HistoricalTempAnomaly × RuleOfLaw 0.00290*
(0.00153)

L7.HistoricalTempAnomaly × RuleOfLaw -0.00241
(0.00174)

L8.HistoricalTempAnomaly × RuleOfLaw 0.00219
(0.00158)

L9.HistoricalTempAnomaly × RuleOfLaw 0.00121
(0.00151)

L10.HistoricalTempAnomaly × RuleOfLaw 0.000187
(0.00134)

L11.HistoricalTempAnomaly × RuleOfLaw 6.45e-05
(0.00207)

L12.HistoricalTempAnomaly × RuleOfLaw 0.00113
(0.00147)

Observations 9,842 9,842 9,688
R-squared 0.511 0.514 0.503
Country FE Yes Yes Yes
Region× MonthYear FE Yes Yes Yes
Lag and Single Terms Yes Yes
This table shows robustness checks for the deviation-adjusted temperature variable (Table 8, column (6)), the bin-regression
analyzing the warmness of countries using 5◦C-intervals (Table 9, column (2)) and the interaction with institutional char-
acteristics (rule of law index, Table 14, column (1)). Estimation for column (2) includes all other bin-category interactions
(“cold” country as base category). Estimations for columns (2) and (3) also include all lagged single terms and interactions of
HistoricalTempAnomaly. Standard errors (in parentheses) are clustered at the country level, ***, ** and * indicate statistical
significance at the 1%, 5% and 10% level, respectively. See Table 26 for variable definitions and sources.
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Table 21: Robustness tests: changing historical average period (1930, 1940)

(1) (2) (3) (4) (5) (6)
∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI

DeviationAdjustedTempAnomaly (1930) -0.213***
(0.0720)

HistoricalTempAnomaly (1930) 0.0789 -0.196**
(0.113) (0.0837)

VeryColdCountry
× HistoricalTempAnomaly (1930)

-0.0444
(0.107)

ColdCountry (base category)
× HistoricalTempAnomaly (1930)

0
(0)

MildCountry
× HistoricalTempAnomaly (1930)

-0.193
(0.122)

WarmCountry
× HistoricalTempAnomaly (1930)

-0.112
(0.152)

VeryWarmCountry
× HistoricalTempAnomaly (1930)

-0.531**
(0.224)

RuleOfLaw -0.00521 -0.00518
(0.00488) (0.00493)

HistoricalTempAnomaly (1930)
× RuleOfLaw

0.00376***
(0.00113)

DeviationAdjustedTempAnomaly (1940) -0.218***
(0.0743)

HistoricalTempAnomaly (1940) 0.0835 -0.201**
(0.116) (0.0850)

VeryColdCountry
× HistoricalTempAnomaly (1940)

-0.0453
(0.109)

ColdCountry (base category)
× HistoricalTempAnomaly (1940)

0
(0)

MildCountry
× HistoricalTempAnomaly (1940)

-0.199
(0.122)

WarmCountry
× HistoricalTempAnomaly (1940)

-0.113
(0.155)

VeryWarmCountry
× HistoricalTempAnomaly (1940)

-0.537**
(0.225)

HistoricalTempAnomaly (1940)
× RuleOfLaw

0.00392***
(0.00118)

Precipitation 0.0281 -0.0191 0.267 0.0423 0.0147 0.276
(0.380) (0.403) (0.375) (0.377) (0.395) (0.374)

Observations 9,957 9,957 9,688 9,957 9,957 9,688
R-squared 0.524 0.524 0.502 0.524 0.524 0.502
Country FE Yes Yes Yes Yes Yes Yes
Region×MonthYear FE Yes Yes Yes Yes Yes Yes
Total “very warm” Country Effect -0.452 -0.453
This table shows robustness checks for the deviation-adjusted temperature variable (Table 8, column (6)), the bin-
regression analyzing the warmness of countries using 5◦C-intervals (Table 9, column (2)) and the interaction with
institutional characteristics (rule of law index, Table 14, column (1)). Historical temperature averages are calculated
from 1901 to 1930 or 1940 instead of 1950, as shown in the table. Standard errors (in parentheses) are clustered at
the country level, ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See Table
26 for variable definitions and sources.
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Table 22: Robustness tests: changing historical average period (1960, 1970)

(1) (2) (3) (4) (5) (6)
∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI

DeviationAdjustedTempAnomaly (1960) -0.244***
(0.0825)

HistoricalTempAnomaly (1960) 0.0801 -0.215**
(0.116) (0.0877)

VeryColdCountry
× HistoricalTempAnomaly (1960)

-0.0517
(0.109)

ColdCountry (base category)
× HistoricalTempAnomaly (1960)

0
(0)

MildCountry
× HistoricalTempAnomaly (1960)

-0.211*
(0.123)

WarmCountry
× HistoricalTempAnomaly (1960)

-0.128
(0.156)

VeryWarmCountry
× HistoricalTempAnomaly (1960)

-0.541**
(0.229)

RuleOfLaw -0.00505 -0.00503
(0.00498) (0.00498)

HistoricalTempAnomaly (1960)
× RuleOfLaw

0.00401***
(0.00123)

DeviationAdjustedTempAnomaly (1970) -0.253***
(0.0864)

HistoricalTempAnomaly (1970) 0.0757 -0.219**
(0.116) (0.0878)

VeryColdCountry
× HistoricalTempAnomaly (1970)

-0.0470
(0.109)

ColdCountry (base category)
× HistoricalTempAnomaly (1970)

0
(0)

MildCountry
× HistoricalTempAnomaly (1970)

-0.214*
(0.123)

WarmCountry
× HistoricalTempAnomaly (1970)

-0.122
(0.155)

VeryWarmCountry
× HistoricalTempAnomaly (1970)

-0.553**
(0.233)

HistoricalTempAnomaly (1970)
× RuleOfLaw

0.00405***
(0.00124)

Precipitation 0.0384 0.0154 0.272 0.0467 0.0178 0.272
(0.375) (0.390) (0.374) (0.376) (0.389) (0.373)

Observations 9,957 9,957 9,688 9,957 9,957 9,688
R-squared 0.524 0.524 0.502 0.524 0.524 0.502
Country FE Yes Yes Yes Yes Yes Yes
Region×MonthYear FE Yes Yes Yes Yes Yes Yes
Total “very warm” Country Effect -0.461 -0.477
This table shows robustness checks for the deviation-adjusted temperature variable (Table 8, column (6)), the bin-
regression analyzing the warmness of countries using 5◦C-intervals (Table 9, column (2)) and the interaction with
institutional characteristics (rule of law index, Table 14, column (1)). Historical temperature averages are calculated
from 1901 to 1960 or 1970 instead of 1950, as shown in the table. Standard errors (in parentheses) are clustered at
the country level, ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See Table
26 for variable definitions and sources.
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Table 23: Robustness tests: dropping countries with lower data coverage and larger landmass

(1) (2) (3) (4) (5) (6)
∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI ∆EMBI

DeviationAdjustedTempAnomaly -0.239*** -0.315***
(0.0861) (0.108)

HistoricalTempAnomaly 0.0994 -0.184* -0.0587 -0.336***
(0.131) (0.0993) (0.0699) (0.0875)

VeryColdCountry
× HistoricalTempAnomaly

-0.0286
(0.120)

0.0559
(0.0898)

ColdCountry (base category)
× HistoricalTempAnomaly

0
(0)

0
(0)

MildCountry
× HistoricalTempAnomaly

-0.231*
(0.137)

-0.0797
(0.0784)

WarmCountry
× HistoricalTempAnomaly

-0.104
(0.166)

-0.0143
(0.120)

VeryWarmCountry
× HistoricalTempAnomaly

-0.642***
(0.248)

-0.384
(0.239)

RuleOfLaw -0.00479 -0.00261
(0.00501) (0.00513)

HistoricalTempAnomaly
× RuleOfLaw

0.00381***
(0.00140)

0.00514***
(0.00138)

Precipitation 0.0319 -0.0355 0.322 -0.0579 -0.0419 0.0934
(0.418) (0.445) (0.414) (0.522) (0.539) (0.523)

Observations 8,746 8,746 8,477 7,641 7,641 7,550
R-squared 0.529 0.529 0.505 0.524 0.524 0.509
Country FE Yes Yes Yes Yes Yes Yes
Region×MonthYear FE Yes Yes Yes Yes Yes Yes
Number of Countries 39 39 39 44 44 44
Total “very warm” Country Effect -0.543 -0.443
This table shows robustness checks for the deviation-adjusted temperature variable (Table 8, column (6)), the
bin-regression analyzing the warmness of countries using 5◦C-intervals (Table 9, column (2)) and the interaction
with institutional characteristics (rule of law index, Table 14, column (1)). In columns (1)-(3), all countries with
∆EMBI data of fewer than ten years are dropped. In columns (4)-(6), the ten countries with the largest landmass
are dropped. Standard errors (in parentheses) are clustered at the country level, ***, ** and * indicate statistical
significance at the 1%, 5% and 10% level, respectively. See Table 26 for variable definitions and sources.
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Table 24: Robustness tests: other temperature anomaly measures

(1) (2) (3)
∆EMBI ∆EMBI ∆EMBI

HistoricalDeviationAnomaly -0.271** -0.256* -0.445***
(0.121) (0.152) (0.155)

VeryColdCountry
× HistoricalDeviationAnomaly

-0.0280
(0.179)

ColdCountry (base category)
× HistoricalDeviationAnomaly

0
(0)

MildCountry
× HistoricalDeviationAnomaly

0.197
(0.259)

WarmCountry
× HistoricalDeviationAnomaly

-0.0638
(0.385)

VeryWarmCountry
× HistoricalDeviationAnomaly

-0.419
(0.439)

RuleOfLaw -0.00175
(0.00544)

HistoricalDeviationAnomaly
× RuleOfLaw

0.00395
(0.00356)

Precipitation 0.209 0.214 0.310
(0.361) (0.358) (0.363)

Observations 9,957 9,957 9,688
R-squared 0.524 0.524 0.502
Country FE Yes Yes Yes
Region×MonthYear FE Yes Yes Yes
This table shows robustness checks for the deviation-adjusted temperature variable (Table 8, column
(6)), the bin-regression analyzing the warmness of countries using 5◦C-intervals (Table 9, column
(2)) and the interaction with institutional characteristics (rule of law index, Table 14, column (1)).
HistoricalDeviationAnomaly is a country’s standard deviation of temperature over the (rolling) past
12 months minus its 1901-1950 standard deviation of temperature. Standard errors (in parentheses)
are clustered at the country level, ***, ** and * indicate statistical significance at the 1%, 5% and
10% level, respectively. See Table 26 for variable definitions and sources.
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Table 25: Robustness tests: Paris Agreement as transition shock

(1) (2) (3) (4)
∆EMBI ∆EMBI ∆EMBI ∆EMBI

HistoricalTempAnomaly -0.00387 0.0963 -0.211**
(0.0608) (0.147) (0.104)

HistoricalTempAnomaly × PostParis -0.0363 -0.0631 0.0255
(0.0651) (0.159) (0.129)

DeviationAdjustedTempAnomaly -0.246***
(0.0873)

DeviationAdjustedTempAnomaly × PostParis 0.0522
(0.0843)

HistoricalTempAnomaly × VeryWarmCountry -0.608**
(0.257)

VeryWarmCountry × PostParis -0.335
(0.430)

HistoricalTempAnomaly × VeryWarmCountry × PostParis 0.375
(0.340)

RuleOfLaw -0.00551
(0.00504)

HistoricalTempAnomaly × RuleOfLaw 0.00415***
(0.00146)

RuleOfLaw × PostParis 0.00255
(0.00374)

HistoricalTempAnomaly × RuleOfLaw × PostParis -0.00113
(0.00207)

Precipitation 0.224 0.0364 0.0261 0.274
(0.363) (0.376) (0.398) (0.374)

Observations 9,957 9,957 9,957 9,688
R-squared 0.524 0.524 0.525 0.502
Country FE Yes Yes Yes Yes
Region× MonthYear FE Yes Yes Yes Yes
Other Bin Terms Yes
This table shows robustness checks for the temperature anomaly measure (Table 8, column (3)), the
deviation-adjusted temperature variable (Table 8, column (6)), the bin-regression analyzing the warmness
of countries using 5◦C-intervals (Table 9, column (2)) and the interaction with institutional characteristics
(rule of law index, Table 14, column (1)). PostParis is a dummy with value 1 after the Paris Climate
Agreement in December 2015. Estimation in column (3) also includes all other bin categories (cold as base
category) and respective interactions. Standard errors (in parentheses) are clustered at the country level,
***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. See Table 26 for
variable definitions and sources.
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10 Appendix

Table 26: Description and sources of variables

Variable Description Source

Variables in Baseline Regression (Section 4)

∆EMBI Monthly change in natural logarithm of Emerging Market
Bond Index (Global) (winsorized at 1st and 99th percentile) J.P. Morgan

Historical Temperature
Anomaly
(HistoricalTempAnomaly)

Difference between monthly temperature of a country and
its 1901-1950 temperature average of the same month

Climatic Research Unit,
see Harris et al. (2020)

Deviation-Adjusted
Temperature Anomaly
(DeviationAdjusted-
TempAnomaly)

HistoricalTempAnomaly divided by a country’s 1901-1950
standard deviation of monthly temperature

Climatic Research Unit,
see Harris et al. (2020)

Precipitation Precipitation in units of 1000 mm per month Climatic Research Unit,
see Harris et al. (2020)

∆VIX Monthly first difference in VIX volatility index
(winsorized at 1st and 99th percentile) CBOE

∆US-CorporateRiskPremium
Monthly first difference in spread between the S&P US high
yield corporate bond index and the corresponding investment
grade index (winsorized at 1st and 99th percentile)

S&P

∆US-10-YearTreasuryYield Monthly first difference in the yield of the 10-year US
Treasury bond (winsorized at 1st and 99th percentile) Datastream

∆US-TermSpread
Monthly first difference in spread between 10-year US
Treasury yield and 3-month US T-Bill yield (winsorized
at 1st and 99th percentile)

Datastream,
Federal Reserve

∆GlobalGovernment
BondIndex

Monthly change in natural logarithm of Bank Of America
Merrill Lynch Global Government Index (winsorized at 1st
and 99th percentile)

Merrill Lynch

Variables in Interaction and Bin Regressions (Section 5)
Very cold, cold, mild, warm,
very warm country
(percentile)

Countries are grouped into a bin according to percentile
distribution of average annual temperature (1901-2018),
1st-20th (very cold), 21st-40th (cold) percentile and so on

Very cold, cold, mild, warm,
very warm country
(5◦C- interval)

Countries are grouped into a bin according to 5◦C- intervals
≤ 10◦C (very cold), > 10 & ≤ 15◦C (cold), > 15 & ≤ 20◦C
(mild), > 20 & ≤ 25◦C (warm), > 25◦C (very warm)

Very low, low, normal, high,
very high temperature
standard deviation
(Temp-StdDev)

Countries are grouped into a bin according to percentile
distribution of monthly temperature standard deviation
(1901-2018), 1st-20th (very low), 21st-40th (low)
percentile and so on

Spring Dummy, 1 in months March-May for northern and September-
November for southern hemisphere countries

Summer Dummy, 1 in months June-August for northern and December-
February for southern hemisphere countries

Autumn Dummy, 1 in months September-November for northern and
March-May for southern hemisphere countries

Winter Dummy, 1 in months December-February for northern and June-
August for southern hemisphere countries

Agriculture Land Share Agricultural land (% of total land area) World Bank
Agriculture to GDP Value added of agriculture (% of gross domestic product) World Bank
Agriculture Employment
Share Employment in agriculture (% of total employment) World Bank

Manufacturing to GDP Value added of manufacturing (% of gross domestic product) World Bank
Industrial Employment
Share Employment in industry (% of total employment) World Bank

Services Employment Share Employment in services (% of total employment) World Bank
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Table 26: Description and sources of variables

Services to GDP Value added of services (% of gross domestic product) World Bank

Rule of Law Rule of law rank (the extend of which agents have confidence
in and abide by the rules of society; linearly interpolated) World Bank

Control of Corruption

Control of corruption rank (the extent to which public
power is exercised for private gain, including both petty
and grand forms of corruption, as well as “capture” of the
state by elites and private interests; linearly interpolated)

World Bank

Civil Liberties
Countries and territories with a rating of 1 enjoy a wide
range of civil liberties. Countries and territories with a
rating of 7 have few or no civil liberties

Freedom House

Political Rights

Countries and territories with a rating of 1 enjoy a wide
range of political rights, including free and fair elections.
Countries and territories with a rating of 7 have few or
no political rights

Freedom House

Income Redistribution Absolute income redistribution (market income
inequality minus net-income inequality) Solt (2019)

Polity2 Unified polity scale that ranges from +10 (strongly
democratic) to -10 (strongly autocratic)

Center for Systemic
Peace

Democratic Government Scale that ranges from 0 (not democratic) to +10
(strongly democratic) government

Center for Systemic
Peace

Authoritarian Government Scale that ranges from 0 (not authoritarian) to +10
(strongly authoritarian) government

Center for Systemic
Peace

ND-GAIN
Notre Dame Global Adaption Index; ND-GAIN brings
together over 74 variables to form 45 core indicators to
measure vulnerability and readiness to climate change

Notre Dame Global
Adaption Initiative

Readiness Index
Readiness component of ND-GAIN; measures readiness
by considering a country’s ability to leverage investments
to climate adaptation actions

Notre Dame Global
Adaption Initiative

Vulnerability Index
Vulnerability component of ND-GAIN; measures propensity
or predisposition of human societies to be negatively
impacted by climate hazards

Notre Dame Global
Adaption Initiative

GDP per Capita Gross domestic product per capita in constant
2010-US-dollar prices World Bank

Variables in Robustness Tests (Section 6)

∆EMBI Spread Monthly first difference in Emerging Market Bond Spread
(Global) (winsorized at 1st and 99th percentile) J.P. Morgan

∆CDS Spread Monthly first difference in sovereign CDS Spread
(winsorized at 1st and 99th percentile)

Thomson Reuters
CDS

Historical Deviation Anomaly
(HistoricalDeviationAnomaly)

Difference between 12-month rolling temperature standard
deviation of a country and its 1901-1950 standard deviation
of temperature

Climatic Research Unit,
see Harris et al. (2020)

Post Paris Dummy that is 1 after Paris Agreement (December 2015)

Further data used

Natural Disasters

Date of drought, earthquake, epidemic, heat wave, flood,
impact, insect infestation, landslide, mass movement, storm,
volcanic activity, wildfire (total deaths, damage and affected
people for certain disasters)

International Disaster
Database

Stock Returns Natural log returns of stock market index MSCI, S&P

Accumulated CO2
Emissions

Accumulated CO2 emissions of every country and the
world since 1751

Global Carbon Project,
retrieved via
ourworldindata.org

Population Total population of every country and the world in 2017 World Bank
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