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Designing Optimal Benefit Rules
for Flexible Retirement

by

Péter Eső
and

András Simonovits

Abstract

This paper applies the techniques of mechanism design to find an optimal nonlinear
pension benefit rule for flexible old-age retirement. We assume that individuals
have private information regarding their expected lifespans. The government’s
goal is to design a pension system (a payroll tax and a function relating benefits
to employment length), which maximizes a social welfare function and satisfies a
social budget constraint. Since individuals with different expected lifespans opti-
mize their employment lengths conditional on the benefit function, the government
must also take into account incentive constraints.
We characterize the solution to this problem for various social welfare func-

tions. Under utilitarianism, the solution is a completely inflexible system, where
all individuals retire at the same age with the same (yearly) benefits; and, sur-
prisingly, the first-best (complete information) aggregate welfare is attained. If
the social welfare function is strictly concave, then individuals with shorter ex-
pected lifespans retire earlier with benefits lower than those in the first-best. In
the optimal pension system, individuals with shorter expected lifespans subsidize
those who expect to live longer. We also compute the optimal benefit rule for
several specifications with CRRA utility functions and realistic parameter values,
and discuss the numerical results.

Keywords: flexible retirement, asymmetric information, actuarial fairness, mech-
anism design
JEL Classification: D82, D91 and H55
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1 Introduction

Increasing life expectancy notwithstanding, people retire earlier nowadays than
they did decades ago. For example, Coile and Gruber (2000) report that 81% of
the 62 year old US male cohort worked in 1950, and this ratio dropped to 51%
by 1995.1 A common explanation for this phenomenon is that pension benefit
rules are poorly designed in many countries (Stock and Wise, 1990; Samwick,
1999; Gruber and Wise, eds., 1999), which, among other things, endangers the
sustainability of social security systems. It is therefore an important social task
to improve pension benefit rules so that social security systems remain feasible
(by, for example, increasing retirement age), while other goals, such as insurance,
fairness, and the accommodation of heterogeneous individual characteristics, are
also attained.
In this paper, we consider the problem of designing optimal flexible pension

benefit rules under the assumption that individuals have private information re-
garding their expected lifespans. The government’s goal is to design a pension
system (a payroll tax or contribution and a function relating benefits to employ-
ment length), which maximizes a social welfare function and satisfies a social bud-
get constraint. Since individuals with different expected lifespans optimize their
employment lengths conditional on the benefit function, the government must
also take into account incentive constraints. We will use techniques familiar from
optimal mechanism design, in particular, optimal income taxation pioneered by
Mirrlees (1971), to find the optimal solution to the government’s problem.
Some of our (preliminary and incomplete) findings confirm the intuition of clas-

sic mechanism design models (e.g., we find “no distortion at the top”), but we also
obtain surprising results. For example, if the social welfare function is utilitar-
ian, then the solution to the government’s second-best problem is a completely
inflexible system, which makes every individual retire at the same age with the
same yearly benefits, but attains the first-best (complete information) aggregate
welfare. If the social welfare function is strictly concave, then individuals with
shorter expected lifespans retire earlier with benefits that are lower than those in
the first-best.
In the pension literature, Diamond and Mirrlees (1978) were the first to study

mechanism design problems, namely, concerning disability benefits. However, the
bulk of the literature has confined attention to models where heterogeneity is
present in individual preferences (the disutility of labor), and overlooked other
important aspects, like the heterogeneity and asymmetric information regarding
individual lifespans. One recent and notable exception is the book of Diamond
(2001), where several models are analyzed, including one with heterogeneity in
individual lifespans. Independently of his work, one of the authors also proposed

1In the US, the normal retirement age is 65, while the minimum retirement age is 62.
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a model (Simonovits, 2001) where individuals know their own expected lifespans
and elasticities for leisure and the government only knows their distribution. That
paper proposed the dampening of incentives in the traditional fair benefit rule and
alluded to the possibility of solving the problem by optimal mechanism design, a
task that we carry out in the present paper. We explain how our approach and
results differ from those of the literature below.
Under the assumptions (usual in the literature, but different from those of the

present paper) that the government and the individuals have the same information
regarding expected lifespans, and that asymmetric information pertains to the
individuals’ disutilities of labor, the optimal benefit rule is the actuarially fair
schedule, bF (R) = τR/(m−R) where R is retirement age, τ is the social security
payroll tax, m is the expected lifespan of all individuals, and bF (R) is the yearly
benefit of a pensioner retiring at age R. Under this benefit rule, workers who
prefer leisure more retire earlier and receive yearly benefits corresponding to their
lifetime contributions and to their remaining lifespan.2

If there is indeed no asymmetric information regarding expected lifespans, then
the actuarially fair schedule is optimal (Börsch-Supan, 2001). However, if some
individuals know that their expected lifetime is longer than the average, then they
can retire later (closer tom) and enjoy disproportionately high benefits for the rest
of their lives. Therefore the actuarially fair benefit schedule may not be sustainable
when individuals have private information regarding their expected lifespans.
The logic of traditional fairness is undermined by the strong positive rela-

tionship between the individual lifespan and the individual length of employment
(those living longer also work longer). This positive correlation is established
empirically by Waldron (2001), and modelled by Gruber and Orszag (1999), Si-
monovits (1999), and Guegano (2000). An indirect (and disputed) argument for
the possibility of individuals anticipating their lifespans is provided by the well-
known fact that the age-specific mortality rates of people buying private annuities
are significantly lower that those of the general population (Friedmann and War-
shawski, 1990).
In chapters 6 and 7 of Diamond (2001), a model where individuals have private

information regarding their lifespan is considered and the optimal benefit rule is
derived where individuals are allowed to retire at two different pre-specified ages.
Our approach is similar to this except that we allow for a continuum of retirement
ages. On the other hand, we simplify the setup by assuming that all individuals
have the same disutility of labor. In a related paper, Simonovits (2002) considers
a case where both individual lifespans and labor disutilities are heterogeneous but
restricts the analysis to the special case of linear benefit functions.
Our main contribution to the existing literature on pension system reforms is to

2With no discounting, an individual’s contributions equal the benefits s/he receives, τR =
bF (R)(m−R).
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extend the analysis of optimal pension benefit rules in an important new direction,
by assuming that individuals have private information regarding their expected
lifespans. We analytically derive the equations that determine the optimal second-
best benefit rule. This benefit rule appears to be very much different from the
actuarially fair schedule (which would be optimal if individuals differed in their
disutilities of labor, but not in their expected lifespans). The socially optimal and
incentive compatible benefit rule leads to a redistribution from individuals with
shorter expected lifespans to individuals with longer expected lifespans.3 The
properties of the optimal benefit rule depend on the shape of the social welfare
function: more egalitarian social objectives lead to more flexible benefit rules.
We also compute the optimal benefit rule using realistic parameter values. Fig-

ures 1.a—d illustrate the results for the case when individual expected lifespans
(starting at age 20, when the individual enters the work force) are uniformly dis-
tributed between 49 and 59 (working) years, and the payroll tax is 20 percent.
The numerical results confirm that the optimal benefit rule is less steep than the
fair schedule (see Figure 1.d).4 The optimal benefit rule can be convex or concave
depending on the parameter values.
The structure of the paper is as follows: Section 2 presents the model. Sections

3 and 4 derive the first-best and the second-best solutions, respectively. Section 5
outlines the algorithm for numerical solution and Section 6 is devoted to simulation.
Section 7 concludes.

2 The Model

In the present version of the paper we analyze the following problem. There is
a (stationary) population of individuals who have private information regarding
their expected lifespan (denoted by t). Every individual enters the labor market
at age 0, and produces 1 unit of goods per year while he or she is active, 0 when he
or she is inactive (retired or dead). As usual in models of old-age pension systems,
we assume that workers cannot save for retirement.5

The pension systems we consider will be realistic in the following aspects. The
first ingredient of a pension scheme is a yearly social security payroll tax, τ < 1,

3Under asymmetric information regarding individual lifespans, every incentive compatible
benefit rule provides such redistribution, and so does the unraveling fair benefit rule, too.

4Note that this observation is similar to the one made by Diamond and Mirrlees (1986, p. 27)
in the context of disability insurance: “optimal benefits rise with the age of retirement but more
slowly than would be actuarially fair.”

5The reasons for the lack of adequate retirement savings are that goods are perishable, private
retirement annuities are expensive (due to the asymmetric information problem investigated
here), or agents are short sighted. In the model, we could use either of the first two explanations,
so there is a need for a well-designed pension system.
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which is levied on active workers (we assume away other taxes). When a worker
retires (say, at age R), he or she stops producing goods and paying the tax, and
receives a yearly retirement benefit, b > 0, until he or she dies. The government
designs the tax rate, τ , and the benefit schedule as a function of the time of
retirement, b(R). We require that the pension system be financially sound (the
expected benefit payments cannot exceed the amount of social security taxes paid
in). We do not allow the pension system to cut off or reduce the benefits of
individuals over time, or give out the benefit as a lump-sum transfer at retirement.
Tricks like these would not only make the solution trivial, but more importantly,
contradict the purpose of a social security system.6

An individual’s lifetime utility, v, is the sum of his or her utility when active
and retired. If a worker of type t retires at age R, then he or she receives utility
u(1− τ) for R years and w(b) for (t−R) years, and the lifetime utility is

v = Ru(1− τ) + (t−R)w(b). (1)

The individual’s preference for leisure is reflected in that u(·) and w(·) are
different functions. For simplicity, we may assume that u(x) = w(x) − ε, ε > 0,
where ε is the disutility of labor. The only restriction we make regarding u(·) and
w(·) is that for all τ ∈ (0, 1),

w(0)− w0(0)τ < u(1− τ) < w(1)− w0(1)(τ + 1). (2)

This (technical) condition ensures that an internal solution to the first-best prob-
lem exists (see Theorem 0 in the next section).
The government’s goal is to design an optimal pension system, hb(R), τi, max-

imizing an additive concave social welfare function,
P

t ψ(vt)ft, where ft is the
relative frequency of individuals with expected lifespan t.7

We can split the government’s problem into two problems: the optimal choice
of b(R) for a fixed τ , and the optimal choice of τ , given the optimal b(R) schedules
for all τ . In the analysis below (Sections 3 and 4), we will focus on the first issue,
the determination of b(R) given τ , because this is the part where asymmetric in-
formation on individual lifespans plays any role. In our model, the social security
tax rate is the same for everyone, thus it is only the benefit—retirement age func-
tion that enables the mechanism designer to sort individuals according to their
expected lifespans.8 Since the social planner cannot observe the individuals’ ex-

6For example, in the latter case, the individual would have to get private life annuities for the
lump-sum transfer at retirement, which would be equally prone to adverse selection due to the
asymmetry of information regarding lifespans.

7In the present version we consider a discrete-type model. Note also that adding up utilities
of individuals with different lifespans means that we consider the total utilities of a cohort or the
whole population.

8As opposed to our model, in reality the personal income tax rate depends on the age and
the benefit (cf., Diamond and Mirrlees, 1978), but we neglect this issue.
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pected lifespan, the benefit rule has to be (Bayesian) incentive compatible. We will
not impose a participation constraint as the system is mandatory for the agents.
However, we will have a cross-sectional budget balance constraint, as usual in the
optimal income taxation literature.

3 Solution to the First-Best Problem

In this section, we derive the optimal benefit—retirement age schedule (given τ)
under the assumption that every worker’s expected lifespan is commonly observ-
able. The result will serve as a benchmark for the second-best solution, which is
the subject of the next section.
Due to complete information, the social planner (the mechanism designer) can

design a first-best retirement plan by assigning a retirement age, Rt, and a yearly
benefit, bt, to a worker with expected lifespan t, for all t. Without loss of generality,
we require thatRt ≤ t. We will denote the lifetime utility of a worker with expected
lifespan t by vt, where vt = [u(1−τ)−w(bt)]Rt+w(bt)t. Types (expected lifespans)
range from S to T (both integers). Since τ is given for now, we denote ū ≡ u(1−τ).
Given τ , the social planner maximizes the frequency-weighted sum of an in-

creasing and concave function ψ of the individual utilities subject to a feasibility
constraint:

max
(bt,Rt)t

TX
t=S

ψ(vt)ft

subject to

vt = [ū− w(bt)]Rt + w(bt)t,

0 ≤
TX
t=S

[(τ + bt)Rt − tbt]ft,

We call this the first-best problem. Assign λ to the aggregate budget constraint
and write the Lagrangian as

L∗ =
TX
t=1

ψ ([ū− w(bt)]Rt + w(bt)t) ft + λ
TX
t=1

{(τ + bt)Rt − tbt} ft.

The first order conditions are

L∗0b = ψ0(vt)w0(bt)(t−Rt) + λ(Rt − t) = 0⇔ ψ0(vt)w0(bt) = λ,

L∗0R = ψ0(vt)[ū− w(bt)] + λ(τ + bt) = 0.
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The solution to the first order conditions implies,

Theorem 0. In the first-best schedule, (b∗t , R∗t )Tt=1, the benefit is invariant with
respect to the expected lifespan, b∗i ≡ b∗, where b∗ satisfies

ū− w(b∗) + w0(b∗)(τ + b∗) = 0. (3)

This equation has a solution in b∗ by assumption (2). Note that ū < w(b∗),
and the solution to (3) is unique because the derivative of the left hand side is
negative.
Under utilitarianism (i.e., if ψ(v) ≡ v), there may exist several solutions for

R∗t that satisfy R
∗
t ≤ t and the social budget balance constraint with b∗t ≡ b∗.

One particular utilitarian first-best solution is autarky (budget balance holding for
every type separately), where

RAt =
b∗

τ + b∗
t, t = S, ..., T.

If ψ is strictly concave, thenR∗t for t = S, . . . , T are determined by the aggregate
budget balance constraint together with the first order conditions,

ψ0(vt) =
λ

w0(b∗)
= ψ0(vs), s, t ∈ {S, . . . , T},

where vt = [ū−w(b∗)]Rt+w(b∗)t. Clearly, s < t if and only if R∗t < R∗s. Typically,
the first-best scheme differs from autarky.
Note that neither autarky nor the first-best solution under strictly concave

ψ is incentive compatible. That is, the social planner cannot implement these
retirement schemes by asking the workers to report their expected lifespans and
assigning them to different retirement ages accordingly. This is so because RAt
(or R∗t ) is strictly increasing in t, while b

∗
t is constant. Hence those workers who

expect to live longer have no incentive to reveal this information as it may only
extend their working years without increasing their benefit. Formally, for R∗t to be
incentive compatible with b∗t = b

∗, R∗t has to be constant, too.
What are the restrictions that incentive compatibility imposes on a feasible

mechanism, in general? We turn to the problem of finding the second-best (optimal
and incentive compatible) retirement mechanism in the next section.

4 Optimal Retirement Mechanism under Asym-
metric Information

Now we return to the model’s original informational assumption and assume that
individuals have private information regarding their expected lifespans, and only
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the distribution of these data is commonly known. Therefore, the optimal benefit—
retirement schedule will have to satisfy incentive compatibility constraints, as usual
in (Bayesian) mechanism design.
Incentive compatibility of (bt, Rt)Tt=S means that type t prefers to choose (bt, Rt)

from the schedule. The adjacent IC constraints are, for t = S, . . . , T − 1,
vt ≥ [ū− w(bt+1)]Rt+1 + w(bt+1)t = vt+1 − w(bt+1),

vt+1 ≥ [ū− w(bt)]Rt + w(bt)(t+ 1) = vt + w(bt).
which can be rewritten more compactly as,

vt + w(bt) ≤ vt+1 ≤ vt + w(bt+1), for t = S, . . . , T − 1. (4)

Note that by monotonicity of w(·), bt is weakly increasing. It is easy to show that
non-adjacent IC constraints do not bind, hence we can ignore them.
Given τ , the problem of the social planner now becomes,

max
(bt,Rt)t

TX
t=S

ψ(vt)ft

subject to

vt = [ū− w(bt)]Rt + w(bt)t,

0 ≤
TX
t=S

[(τ + bt)Rt − tbt]ft,

vt + w(bt) ≤ vt+1 ≤ vt + w(bt+1), t = S, . . . , T − 1.
We will call this the social planner’s “second-best” problem, and analyze its solu-
tion in the rest of the paper. Since the qualitative results are markedly different
depending on whether the social welfare function is utilitarian or strictly concave,
we will deal with these two cases in two separate subsections.

4.1 Solution under Utilitarianism

Assume (in this subsection only) that the social welfare function is utilitarian, that
is, ψ(v) ≡ v. Suppose that

R∗ ≡ b∗

τ + b∗

TX
t=S

tft < S, (5)

that is, the first-best retirement age of a worker with an average expected lifespan
is lower than the lower bound on the distribution of t. (This is a reasonable
assumption for old-age pension.) Then we have the following surprising result.
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Theorem 1. If the social welfare function is utilitarian and (5) holds, then the
socially optimal benefit plan is completely inflexible,

b(R) =

½
0 for R < R∗,
b∗ for R ≥ R∗. (6)

Moreover, the second-best solution attains the first-best.

Proof. The benefit rule in (6) corresponds to the mechanism bt ≡ b∗, Rt ≡ R∗
for all t. This scheme is incentive compatible because it is constant (the worker’s
allocation does not depend on his announced type). But it is also a first-best solu-
tion because the retirement benefit is set accordingly (bt ≡ b∗), and the mechanism
satisfies aggregate budget balance,

PT
t=S[(τ + b

∗)R∗ − tb∗]ft = 0. Note also that
by (5), R∗ ≤ t for all t.
The result of the theorem extends appropriately when (5) does not hold (to be

added in subsequent versions).¥

4.2 Optimal Rule under Strictly Concave ψ

Suppose that ψ(·) is strictly concave. The optimal utilititarian benefit rule, given
in equation (6), is still feasible and incentive compatible, but it is no longer socially
optimal. Evaluated according to any strictly concave social welfare function, there
is too much redistribution from short-lived individuals to long-lived ones. In other
words, the allocation where all workers have to retire at the same age with the
same benefits appears to be “unfair” to a society that puts larger weights on the
utilities of unlucky individuals (those who were born with lousy genes and will not
live very long).
In order to solve the second-best problem under strictly concave ψ, we first

rewrite the second-best problem with Mirrlees’ (1986, Section 6) method of change
of variables. Denote retirement age by

R(vt, bt, t) =
w(bt)t− vt
w(bt)− u ,

and the lifetime net contribution (or balance) of type t by

z(vt, bt, t) = (τ + bt)R(vt, bt, t)− tbt.
Also, let us (temporarily) ignore the “upward” incentive constraints, vt+1 ≤ vt +
w(bt+1), for t = S, ..., T − 1. The transformed problem becomes

max
(bt,vt)t

TX
t=S

ψ(vt)ft
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subject to

TX
t=S

z(vt, bt, t) ft ≥ 0,

vt+1 − vt − w(bt) ≥ 0, t = S, . . . , T − 1.
Assign λ to the first constraint and (µt)t to the second group of constraints. Then
the Lagrangian can be written as

L =
TX
t=S

[ψ(vt) + λz(vt, bt, t)] ft +
T−1X
t=S

µt(vt+1 − vt − w(bt)).

Application of a standard technique yields

Theorem 2. The necessary first-order conditions for the solution of the second-
best problem are for t = S, . . . T ,

L0b = λz0b(vt, bt, t) ft − µtw0(bt) = 0, (7)

L0v = [ψ0(vt) + λz0v(vt, bt, t)] ft − µt + µt−1 = 0, (8)

L0µ = vt+1 − vt − w(bt) ≥ 0, µt ≥ 0 (w/c.s.), (9)

L0λ =
TX
t=S

z(vt, bt, t)ft ≥ 0, λ ≥ 0 (w/c.s.), (10)

where µS−1 = 0, µT = 0 and vT+1 ∈ R.
By the definition of z(vt, bt, t), the partial derivatives that appear in the first

order conditions are,

z0v(vt, bt, t) = − τ + bt
w(bt)− ū ,

z0b(vt, bt, t) =
vt − tū

[w(bt)− ū]2 {(τ + bt)w
0(bt)− [w(bt)− ū]} .

Apart from the improbable corner solution, Theorem 2 implies the following

Corollary. In the optimal solution to the second-best problem, bT = b∗ (first-best).
If ψ is strictly concave, then bt < b∗ for all t < T , that is, all individuals except the
ones with the longest expected lifespan receive lower than first-best pension benefits.

Remark. Our formulation uses discrete time, and hence one cannot expect a
smooth benefit function. A continuous time formulation would yield conditions
analogous to equations (7)-(10), and result in a continuous benefit function. We
chose the discrete time formulation because in the numerical simulations we have
to use a discrete approximation anyway.
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5 Algorithm for Computing the Second-Best

Since the solution to the system of nonlinear equations in Theorem 2 is quite diffi-
cult, and analytical results may be hard (or in some cases, impossible) to obtain, it
is natural to turn to numerical simulations. Numerical computations with realistic
parameter values may also shed light on the quantitative properties of the optimal
benefit rule, and various questions (e.g., regarding the magnitudes of endogenous
variables, their sensitivity to parameter changes, etc.) can be answered.
In this Section we outline an appropriate algorithm to find a solution of the

system of nonlinear equations in Theorem 2. In Section 6 we report the results of
simulations using this algorithm.

The problem can be solved recursively as follows. Assume that parameters ū,
τ and (ft)Tt=1 are given.

1. Take an appropriate initial value for λ. This parameter is to be calibrated
to make equation (10) hold in the end.

2. Start with an initial value for vT (e.g., the static optimum) and set µT = 0.
From equation (7), get bT = b∗.

3. Iteration. For all t, if the vector (vt+1, bt+1, µt+1) is given, then obtain
(vt, bt, µt) as follows. Determine µt from equation (8) at (t+ 1). Then com-
pute (bt, vt) from equations (7) and (9).

4. The previous step results in a sequence (vT , bT , µT ), . . . , (vS, bS, µS), based
on which µS−1 can be determined from equation (8) at t = S. Adjust vT and
repeat step 3 until µS−1 = 0 holds.

5. Finally, adjust λ and repeat steps 2-4 until budget balance (equation 10)
holds.

By varying τ and recomputing the optimal schedule, one can determine the
optimal contribution (or tax) rate. Intuitively it is clear that if τ is low, then bt is
also low and Rt is high; on the other hand, if τ is high, then bt is acceptable but
Rt is low, for t = S, . . . , T .

12



6 Simulation

We turn to the description of our simulations. Assume that from the point of view
of the government, the individuals’ expected lifespans (starting from entering the
workforce at age 20) are between S = 49 and T = 59. Let the pensioner’s felicity
function be of CRRA-type, w(x) = θ−xσ/σ, 1−σ being the coefficient of relative
risk aversion and denote the disutility of labor by ε.
We shall define a CRRA family of social welfare functions as follows: ψ(v) =

vρ/ρ, ρ ≤ 1 and call ρ the social welfare inequality index. The lower the index, the
more weight is given to individuals with lower utilities, i.e., the more egalitarian
is the system.
We report several runs of simulation below.

Run 1. First we assume that the lifespans are uniformly distributed: ft ≡ 1.
We set θ = 4.1, σ = −0.5 and ε = 1.398. In the first-best case, the optimality of
the tax rate implies that the worker’s consumption is equal to pensioner’s. (This
is a consequence of the assumption that the worker’s and the pensioner’s felicity
functions only differ in an additive constant ε.) Therefore let the payroll tax rate
be τ = 0.2. Then ū = 4.1− 0.8−0.5 − 1.398 = 0.466, and the first-best retirement
benefit is b∗ = 0.8. Note that our choice means that one’s 0.8 unit consumption
as an active worker is equivalent to a 0.303 unit consumption as a pensioner. The
difference is due to the increased consumption of leisure after retirement. Observe
that the longest-lived person should retire having worked RT = Tb∗/(τ+b∗) = 47.2
years (at the age of 67.2 years).
By Theorem 1, if the social welfare function is utilitarian (a la Harsanyi), then

the optimal incentive compatible pension system will send everybody to retirement
after working 43.2 years with the first-best benefits. This cannot be improved even
under complete information regarding t and differs from autarky only in that long-
lived individuals are subsidized by short-lived individuals.

Run 2. In Runs 2—5 we consider a social welfare function with ρ = −1. We
display the optimal benefit, retirement age, and net contribution as functions of
individual lifespans in Figures 1.a—c, respectively. We also display the optimal
and the traditional (fair) benefit—retirement age functions in Figures 1.d, central
concepts of the pension incentives.
An additional 10 years in lifespan implies almost 3 years additional service and

about 17% points additional benefit, which is 21% on a relative scale. Note that the
lifetime net contributions vary from 3.1 units for the shortest-lived to —3.5 units for
the longest-lived. Note the retirement age—benefit function is mildly nonlinear. In
order to measure the nonlinearity of the benefit function, we calculate the accrual
rate αt = [bt+1 − bt]/[Rt+1 −Rt], t = S, . . . , T − 1.
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Figure 1.a
Optimal lifespan - benefit function
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Figure 1.b
Optimal lifespan - retirement year function
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Figure 1.c
Contribution balance as a function of lifespan
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Figure 1.d
Optimal and naïve/fair benefit rules
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Run 3. Increasing σ to —0.45, in the optimal pension system, the three
shortest-lived types retire at the same (legally prescribed)minimal ageRmin = 41.9
and they receive the same minimal benefit bmin = 0.69. (This “bunching” is a stan-
dard feature of optimal mechanism design. See, for example, Mirrlees (1971) where
workers of the lowest ability are excluded from work and given a minimum bene-
fit.) For the remaining eight types, the incentive constraints apply to: the longer
somebody lives, the later s/he retires. Decreasing σ to —0.55, one obtains approx-
imately linear retirement age—benefit function. Further decreasing σ to —0.6, one
obtains a convex retirement age—benefit function.

Run 4. To simplify the calculations, we compress our 11 types into 3 types,
with lifespans 51, 54 and 57 years, but retain a uniform distribution on these three
points. Table 1 illustrates the characteristics of Run 4.

Table 1. Optimal characteristics for the compressed model

Lifespan Benefit Retirement age Balance Slope of benefit
t bt Rt zt αt
51 0.666 41.437 1.916 0.060
54 0.733 42.539 0.109 0.065
57 0.800 43.573 -2.024 —

Note that the compressed model only approximates the original model, for
example, the concave benefit function turns into a convex one.

Run 5. Until now we have fixed the payroll tax rate. However, the optimal
choice of this rate is a central issue of pension economics. Let us try to determine
the socially optimal τ in our compressed model. Figure 2c shows that the social
welfare function is rather flat at the autark optimum (20%). We display the optimal
benefit and retirement age for the minimal, medium, and maximal ages as functions
of the contribution rate in Figures 2.a—b, respectively. The benefits slightly increase
or stagnate and the retirement ages sharply diminish, as the tax rate rises.
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Figure 2.a
Tax rate and optimal benefits
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Figure 2.b
Tax rate and optimal retirement year
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Figure 2.c
Tax rate and welfare
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7 Conclusion

In this paper, we have applied standard techniques of mechanism design to de-
termine optimal pension benefit rules, in the case where individuals have private
information regarding their own expected lifespan. We have characterized the opti-
mal contribution and benefit functions by a set of necessary first-order conditions.
We developed a practical algorithm to compute the optimal incentives and filled
the program with realistic data. Our simulations, however, glossed over many im-
portant details, including the heterogeneity of labor disutilities and the interaction
of the pension system with income taxation. Moreover, we have only provided nu-
merical (and not yet analytical) confirmation for some important conjectures, in
particular, that the lifetime net contribution and the ratio of benefit to the length
of employment are increasing functions of the individual lifespan. Further research
will have to clarify our exploratory results.
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