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Abstract

There are two important rules in a patent race: what an innovator must accomplish to receive

the patent and the allocation of the benefits that flow from the innovation. Most patent races

end before R&D is completed and the prize to the innovator is often less than the social benefit

of the innovation. We derive the optimal combination of prize and minimal accomplishment

necessary to obtain a patent for a dynamic multi-stage innovation race. Competing firms are

assumed to possess perfect information about each others’ innovation state and cost structures.

A planner, who cannot distinguish between the firms, chooses the innovation stage at which

the patent is awarded and the magnitude of the prize to the winner. We examine both social

surplus and consumer surplus maximizing patent race rules. A key consideration is the efficiency

costs of transfers and of monopoly power to the patentholder. If efficiency costs are low and

the planner maximizes social surplus, then races are undesirable. However, as efficiency costs of

transfers associated with the patent rise, the optimal prize is reduced and the optimal policy spurs

innovative effort through a race of nontrivial duration. Races are also used to filter out inferior

innovators since a long race (i.e. a high minimal accomplishment requirement) in innovation makes

it less likely for an inefficient firm to win through random luck. In general, races do serve to spur

innovation.
∗The authors are grateful to Mort Kamien, Ariel Pakes, Mark Satterthwaite, Christopher Sleet, and seminar audi-

ences at Stanford University, MIT, Harvard University, and the University of Texas at Austin for helpful discussions.

The authors also thank Ulrich Doraszelski for detailed comments on an earlier draft and Stuart Halliday for excellent

editorial assistance.
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1 Introduction

Races are designed to motivate agents. Firms involved in innovation race to develop a new product

first and obtain exclusive rights to sell that product as in a patent, or race to develop a product that

conforms to a buyer’s specifications. For example, airplane producers compete to build new military

planes which meet Department of Defense specifications. In both cases, there is a principal that

designs a race in which innovators compete for a prize. There are many dimensions to the design of

a patent race. Conventional discussions of patent policy focus on the optimal duration and breadth

of patent protection. These discussions typically assume that a firm does not receive the patent until

the R&D process is complete. This is not true of actual innovation processes where a firm often

bears significant expenditures after it receives a patent. For example, drug firms can patent a drug

before they have proven its efficacy and safety. The time at which a patent or exclusive contract is

awarded to a firm is an important element of patent policy design. This paper focuses on optimal

design of a patent race in a multistage model of innovation.

There are important trade-offs in constructing the rules of a patent race. A long race with a large

prize stimulates innovators to work hard. However, much of the effort is duplicative and wasteful.

A short race may reduce overall duplication of effort, but may lead to poor intertemporal resource

allocation since firms would work very hard to win the patent and but then proceed much more

slowly to finish R&D. Reducing the prize reduces all investment effort and delays the arrival of a

socially valuable product. It is not obvious which effect dominates in choosing the optimal rules.

Consideration of these issues also highlights the importance of being explicit about the preferences

of the designer of the race and the constraints he faces. We explicitly consider the efficiency costs

which naturally arise in efforts to compensate innovators, such as the inefficiencies of monopoly

pricing and the deadweight burden of cash prizes financed by distortionary taxes. We also consider

the limits a designer faces; for example, there may be many positive externalities which make the

profits from a patent small relative to the total social benefits. We examine two different objectives

for the designer; social surplus (roughly defined as the social benefit of the innovation less the total

cost of innovation and the distortionary costs of transfers to the patentholder) and consumer surplus

(roughly defined as social benefit of the innovation less the prize to the winning firm and distortionary

costs).

We use a simple multistage model of a race. In each stage of the game, a firm’s position in the

patent race represents the current state of its knowledge. Each firm’s R&D investment determines

the stochastic rate at which it advances in the race. The race is a game of perfect information where

each firm knows its opponent’s cost function and current state. Firms compete to reach the stage at

which a patent or similar monopoly is awarded. At this stage, the laggard firms are forced to leave

the race and the winner continues to invest in R&D until the innovation process is complete and a

socially valuable product is produced. A planner chooses when a patent is awarded and the winner’s
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prize. We study how the primitives of our model, i.e. the technology of innovation, the preferences

of the planner, and the heterogeneity of the firms, along with the inefficiencies associated with prizes

affect the optimal patent rules.

R&D competition and optimal patent policies have been studied widely in the industrial organi-

zation literature. Our paper bridges the gap between two lines of research on R&D competition and

optimal patent policies. The first line of research concerns the study of competition and investment

in patent races. Some earlier examples in this literature are Kamien and Schwartz (1982), Loury

(1979), Lee and Wilde (1980), Reinganum (1982a,b) and Dasgupta and Stiglitz (1980a,b). In these

models, a firm’s probability of success of obtaining a patent at a point in time depends only on that

firm’s current R&D expenditure and not on its past R&D experience. Competition takes place in

“memoryless” or “Poisson” environments (see also the survey article by Reinganum (1989)). Subse-

quent work on races incorporates learning and experience. Fudenberg et al. (1983) and Harris and

Vickers (1985a,b, 1987) formalize learning or experience effects in patent races by assuming that a

firm’s probability of discovery per unit of time depends not just on current R&D expenses, but on

experience accumulated to date. The work of Harris and Vickers and Fudenberg et al. shows that

competition in R&D may be strongly restricted by first-mover advantages and experience effects.

These models display �-preemption: once a firm attains a small leadership position, the laggard dra-

matically reduces its investment level and the leader wins with high probability. Doraszelski (2000)

and Judd (1985) introduce experience effects in an extension of Reinganum (1982a,b). Doraszelski’s

model has no �-preemption, showing that the specific modelling of dynamics dramatically affects the

nature of the race. These papers also take patent policy as fixed.

The second line of research our work is related to focuses on issues regarding optimal patent policy,

in particular optimal patent length and breadth; see Nordhaus (1969), Klemperer (1990), Gilbert

and Shapiro (1990), Denicolo (1999, 2000), and Hopenhayn and Mitchell (2000). The question of

when to issue a patent is generally ignored in the R&D literature.

Our dynamic game closely resembles games studied by Fudenberg et al. (1983), Harris and Vickers

(1985a,b, 1987). However, we do not take the rules that define the patent policy as given. We consider

the problem of a social planner who chooses the stage at which a patent is rewarded and the winning

firm’s prize once it has completed R&D. We present a simple model that shows which factors are

important in designing rules for patent races. Our results indicate that optimal patent policy may

involve both patents granted in early stages and in later stages of development, depending on the

efficiency costs of transfers to patentholders and the degree of heterogeneity between innovating firms.

For example, if the innovators differ in their cost of innovation but the planner cannot distinguish

between them, then a race is a device for filtering out the inferior competitors. On the other hand,

if all innovators have similar costs then the optimal policy is to grant a patent early, to avoid

excessive rent dissipation. Another critical factor is the efficiency cost of transfers to the winner.
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If the efficiency cost of monopoly is high, then the planner reduces the prize, which subsequently

reduces innovative effort. To stimulate investment effort in this case, the planner varies the stage

of development at which the patent is granted. The specification of the planner’s preferences also

affects the optimal rules. If the social planner maximizes social surplus, then short races with large

prizes are commonly optimal whereas if he maximizes consumer surplus, long races with smaller

prizes are chosen.

This paper basically asks what purposes do races serve. We find that the patent race serves two

purposes in our model. First, it motivates the firms to invest heavily and complete the innovation

process quickly when the prize alone cannot, due to inefficiencies or limitations, adequately serve to

motivate innovation. Second, it serves as a filtering device for the planner who can verify when a

firm has achieved the requirement for patenting, but cannot observe an individual firm’s efficiency

as an innovator.

This paper also makes a contribution to the literature on numerical solutions of dynamic games.

The standard algorithms, such as that in Pakes and McGuire (1994), are too slow for our problem

since we need to solve thousands of games to find optimal races. We develop an algorithm for solving

multistage races that exploits their natural structure. Since this structure is common in dynamic

games, the algorithm is applicable in a variety of strategic dynamic environments.

The remainder of the paper is organized as follows. Section 2 presents our model of a dynamic

game for a patent race. In Section 3 we discuss in detail our computational method for the compu-

tation of equilibria. We present results from many computations in Section 4. Section 5 concludes

the paper with a discussion of possible extensions of our research.

2 The Model

We assume two kinds of infinitely-lived agents: innovator firms and a social planner, which we call

“the patent granting authority” (PGA). Innovation requires the completion of N stages of develop-

ment. We assume that each firm controls a separate innovation process. Each firm begins at stage

0 and the firm that first reaches the stage D ≤ N obtains exclusive rights to continue. We call

that exclusive right a “patent” even though we mean to model any institutional arrangement where

a buyer constructs a race among potential seller-innovators. The choice of D corresponds to filing

requirements for a patent. After winning the race, the patentholder completes the final N−D stages

without competition. When the patentholder reaches stage N the innovation process ends, the social

benefits of the innovation become available and these benefits are allocated between the patentholder

and the rest of society.

We let B denote the present value of the innovation’s potential social benefits. This includes

the potential social surplus of a new good as well as any technological or knowledge spillovers into

other markets. We assume that the patentholder receives a fraction, γ, of these benefits as a prize
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Ω = γB. The prize may be literally a cash prize or, like a patent, it may be a grant of a monopoly

which produces a profit flow with present value Ω.

The PGA maximizes its objective by choosing γ, the fraction of potential social benefits that goes

to the patentholder, and D ∈ {0, . . . ,N}, the patent-granting stage. The case D = 0 represents the

case in which there is no race. In the game, it formally corresponds to the PGA giving the patent at

random to one of the firms. It also represents the case where the patent requirements are so minor

that the patent goes to whomever, with trivial effort, first comes up with the barest notion of the

innovation. The key assumption is that D = 0 corresponds to the case where each firm has equal

chance of winning without having made any investment.

Firms compete in a multistage innovation game in discrete time. In each period, firms have

perfect information about each other’s cost structure and position and choose their investment levels

simultaneously. The PGA, on the other hand, chooses the rules of the race before it begins. The

simplicity of the PGA’s actions corresponds to actual patent law and to the situations where it is

impractical to continuously monitor the race. We do not intend to present a full optimal mechanism

design analysis of the R&D problem. Instead, we analyze policy choices faced by actual policymakers

such as patent law officials.

We use the framework of previous papers such as Fudenberg et al. (1983), and Harris and Vickers

(1985a,b, 1987). We follow the standard race framework and ignore all possible transactions and

cooperation between the two firms for several reasons. First, these transactions may be unprofitable

for the firms for reasons not explicitly modelled here. Most research is done by multi-product firms.

Such firms have substantial amounts of private information and intellectual property which they

may not want to share with other firms. If a firm wins the patent, it may avoid any cooperation

with another firm because such technical cooperation or transactions may lead to the leakage of

other valuable private information. We do not model these considerations, but note that they clearly

reduce the likelihood that firms would engage in transactions or cooperation.

Second, cooperation may hurt overall social welfare. For example, if Ford, GM, Honda, and

Toyota all worked together on engine research, they may slow down the pace of technological progress

to reduce obsolescence of their current technologies. Furthermore, cooperation in technology may

lead to collusion in other matters such as pricing. Again, we do not explicitly model these issues,

but note that they make it less likely that any social planner would allow cooperation. Third, we

show that under certain circumstances, a social planner would shut down trades and use the race to

stimulate innovation and to filter out inefficient firms.

For the remainder of this paper, we concentrate on the two-firm case for ease of exposition and

reasons of tractability. We first present the details of the equilibrium behavior of the firms given D

and Ω. We then more precisely describe the PGA’s preferences.
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2.1 The Firms: A multistage Model of Racing

The patent race with a specific Ω and D creates a dynamic game between the two firms. Let xi,t
denote firm i’s stage at time t. We assume that each firm starts at stage 0; therefore, x1,0 = x2,0 = 0.

If firm i is at stage n then it can either stay at n or advance to n + 11, where the probability of

jumping to n+1 depends on firm i’s investment, denoted ai ∈ A = [0, Ā] ⊂ R+. The upper bound Ā
on investment is chosen sufficiently large so that it never binds in equilibrium. Firm i’s state evolves

according to

xi,t+1 =

(
xi,t, with probability p(xi,t|ai,t, xi,t)
xi,t + 1, with probability p(xi,t + 1|ai,t, xi,t).

There are many functional forms we could use for p (x|a, x). We choose a probability structure so that
innovation resembles search and sampling. Let F (x|x) = p (x|1, x), that is, F (x|x) is the probability
that there is no change in the state if a = 1. For general values of a we assume.

p(x|a, x) = F (x|x)a (1)

p(x+ 1|a, x) = 1− F (x|x)a.

This structure can be motivated by a coin tossing analogy. For a = 1, equation (1) says we toss a

coin and move ahead if heads comes up, a probability F (x|x) event, but otherwise stay put. For
integer values of a, equation (1) says that we move ahead one stage if and only if we flip a coins and

at least one comes up heads. This specification is like hiring a people to work for one period and

having them work independently on the problem of moving ahead one stage. While this specification

is a special one, its simple statistical foundation helps us interpret our results.2

During R&D, firm i’s cost function is Ci(a), i = 1, 2, assumed to be strictly increasing and weakly

convex in a. For the remainder of the paper, we assume the cost function for firm i is

Ci(a) = cia
η, η ≥ 1, ci > 0, i = 1, 2.

Firms discount future costs and revenues at the common rate of β < 1 and maximize their expected

discounted payoffs.

2.2 Equilibrium

The patent race involves two phases. When one of the firms reaches stage D, it becomes the only

innovator. The monopoly phase contains the set of states after the patent is awarded in stage

1We have computed solutions to our model with firms being able to advance more than one stage in each period.

These changes do not lead to any results that contradict the basic insights of this paper. Computational results with

larger jumps can be obtained from the authors upon request.
2This specification allows only forward movement. While this is typical of most of the patent race literature, recent

work by Doraszelski (2001) examines a model with “forgetting”, that is, xt+1 may be less than xt.
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D,XM = {D,D + 1, . . . ,N}. The duopoly phase is the set of states before the patent has been
granted. During the duopoly phase the positions of the two firms are denoted by x = (x1, x2). The

set of states in the duopoly phase is

XD = {(x1, x2)|xi ∈ {0, ...,D} , i = 1, 2} .

We first solve for the monopoly phase and then for the duopoly phase, since the monopoly phase can

be solved independently of the duopoly phase, but not vice versa.

2.2.1 Monopoly Phase

We formulate the monopolist’s problem recursively. At the terminal stage N , the innovation process

is over and the monopolist receives a prize of Ω. In stages D through N − 1, the monopolist spends
resources on investment. Let VM

i (xi) denote the value function of firm i if it is a monopoly in state

xi. VM
i solves the Bellman equation

VM
i (xi) = max

ai∈A

−Ci(ai) + β
X
x0i≥xi

p(x0i|ai, xi)VM
i (x0i)

 , D ≤ xi < N

VM
i (N) = Ω. (2)

The policy function of the monopolist is defined by

aMi (xi) = argmax
ai∈A

−Ci(ai) + β
X
x0i≥xi

p(x0i|ai, xi)VM
i (x0i)

 , D ≤ xi < N. (3)

Proposition 1 Firm i’s monopoly problem at state xi ∈ {0, 1, . . . , N} has a unique optimal solution
aMi (xi). The value function VM

i and the policy function aMi are nondecreasing in the state xi.

Proof. See Appendix.

2.2.2 Duopoly Phase

During the duopoly phase, firms compete to reachD first. We restrict attention to Markov strategies.

A pure Markov strategy σi : XD → A for firm i is a mapping from the state space X to its investment

set A.We define the firms’ value functions recursively. Let Vi(x) represent the value of firm i’s value

function if the two firms are in state x = (x1, x2) ∈ XD. If at least one of the firms has reached the

patent stage D, firm i’s value function is defined as follows:

Vi(xi, x−i) =


VM
i (xi), for x−i < xi = D

VM
i (xi)/2, for xi = x−i = D

0, for xi < x−i = D.

(4)
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If neither firm has received the patent, the Bellman equations for the two firms are defined by

Vi(xi, x−i) = max
ai∈A

−Ci(ai) + β
X
x0i,x

0
−i

p(x0i|ai, xi)p(x0−i|a−i, x−i)Vi(x
0
i, x

0
−i)

 , (5)

for xi, x−i < D, for i = 1, 2.

The optimal strategy functions of the firms must satisfy

σi(xi, x−i) = argmax
ai∈A

−Ci(ai) + β
X
x
0
i,x

0
−i

p(x0i|ai, xi)p(x0−i|a−i, x−i)Vi(x
0
i, x

0
−i)

 , (6)

for xi, x−i < D, for i = 1, 2.

We now define the Markov perfect equilibrium of the race.

Definition 1 A Markov perfect equilibrium (MPE) is a pair of value functions Vi, i = 1, 2, and a

pair of strategy functions σ∗i , i = 1, 2, such that

1. Given σ∗−i, the value function Vi solves the Bellman equation (5), i = 1, 2.

2. For a−i = σ∗−i the strategy function σ∗i solves equation (6), i = 1, 2.

A Markov perfect equilibrium always exists.

Theorem 1 There exists a Markov perfect equilibrium.

Proof. See the Appendix.

2.3 The Objective and Constraints of the Patent Granting Authority

The multistage race between the firms implicitly makes assumptions about what the PGA can

observe. We assume that the PGA does not offer different prizes to different firms, corresponding

to actual policy. However, we do assume that the PGA is aware of the technology of innovation.

Specifically, we assume that the PGA knows the parameters of the two cost functions, but does not

know any particular firm’s costs; it must therefore offer the same incentives to all firms.3

3 It may be possible to elicit information about a firm’s costs. It may also be possible to hire firms to conduct R&D

under the guidance of some central planner. However, that is not what a patent system does. Our analysis is a long

way from being a fully specified mechanism design analysis; it represents instead the nature of feasible alternatives

within a patent system. Our focus in this paper is on patent races, therefore we abstract from policies that would allow

the PGA to conduct its own research and development by employing the firms in question.
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Once a firm has invented a marketable good, the allocation of social benefits is governed by the

firm’s marketing policies and the terms of the patent. Figure 1 displays how the potential social

benefit of a new good is allocated per period. Suppose that demand is given by DD and that there

is a constant marginal cost of production. Figure 1 assumes that the patentholder can sell the new

good at the monopoly price, but not engage in price discrimination, creating a profit Pf for the

firm and leaving consumers with a surplus of CS. The area H represents the deadweight loss from

monopoly pricing.

Once the patent has expired, the good is assumed to sell competitively at marginal cost, implying

that consumers will receive all the social benefits, which equal CS + Pf +H. We assume that the

PGA chooses the prize, denoted by Ω, received by the innovator once he has completed the R&D

project. The PGA may have various tools at hand, such as direct payments and patent length and

duration, but these decisions essentially fix Ω. We assume that the prize equals a proportion γ of

the present value of potential social benefit; hence, Ω = γB. We focus on the fraction γ since profits

from patents are proportional to demand, and, therefore, roughly proportional to social benefits B.

The PGA may face constraints on its choice of γ. For example, if the PGA faced the situation

in Figure 1, then B equals the present value of CS + Pf +H, and even if the patent had infinite

life, the present value of profits is at most equal to one-half of B. Furthermore, it may be difficult

to protect a patent forever, reducing the practical size of Ω. More generally, γ may be reduced if

firms are not able to charge the full monopoly price; for example, moral considerations (and fear of

regulation) may lead drug manufacturers to restrain their prices. Therefore, we also specify an upper

limit on the PGA’s choice of γ, γ ≤ 1, which represents various constraints on what proportion of B
can be transferred to the patentholder.

In Figure 1, the deadweight loss H represents the social cost of monopoly profits in patent

system.4 More generally, we assume that the deadweight loss is proportional to the profits received

by the innovator, and equals θΩ = θγB for some θ ≥ 0. For example, θ = 0.5 in Figure 1. This

linear specification for deadweight loss captures the basic point that γ > 0 causes inefficiencies, and

is an exact description of this loss when demand is linear and marginal costs are constant, and when

demand has constant elasticity and marginal cost is zero. There are similar inefficiencies when Ω is a

cash prize financed by distortionary taxes. In that case, θ represents the marginal efficiency cost of

funds, a number which can plausibly be as low as .1 or as high as 1, depending on estimates of various

elasticities, tax policy parameters, and the source of marginal funds; see Judd (1987) for a discussion

4Price controls may be used to reduce the deadweight loss, but they would also reduce monopoly profits and the

prize. Long-lived patents will increase γ but at the expense of increasing the total deadweight losses of monopoly. Cash

prizes may be granted by the PGA along with shorter duration patents. This will reduce the time during which the

market experiences the deadweight loss H, but it only creates other inefficiencies since society bears the distortionary

cost of the taxes used to finance the prize. Therefore, there will be inefficiencies no matter what financing scheme is

used.
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Figure 1: Allocation of Potential Social Benefits

of these factors. Therefore, the θ parameter represents either the relation between deadweight loss

and profits for monopoly or the marginal efficiency cost of tax revenue.

In addition to γ, the patent authority also chooses D, the stage at which the race is ended to

maximize some objective. We consider two different specifications of the PGA’s preferences. In our

first specification, the PGA maximizes total social surplus, which equals the present discounted value

of the social benefit B minus θΩ minus total investment cost from the patent race. In our second

specification, the PGA maximizes the present discounted value of consumer surplus, (1− γ)B − θΩ.

We examine optimal patent policy when the PGA’s preferences are of the latter type because it may

represent the preferences of the median voter who is likely to be a consumer waiting for new goods.

It may also represent the preferences of a buyer who is providing incentives to two suppliers that

must engage in innovation to produce the desired product.

Given the equilibrium strategies σi (x) of the race and optimal policy function aMi (x) during the
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monopoly phase, we can define the social surplus function WS recursively as follows:

WS,D (x1, x2) = −
2X

i=1

Ci(σi (x)) + β
X
x
0
i,x

0
−i

p(x01|σ1 (x) , x1)p(x02|σ2 (x) , x2)W (x01, x
0
2), x1, x2 < D

W (x1, x2) =


WS,D (x1, x2) , x1, x2 < D
1
2

¡
WS,M (1,D) +WS,M (2,D)

¢
, x1 = x2 = D

WS,M (i, xi), xi = D and x−i < D, i = 1, 2

WS,M (i, xi) = −Ci(a
M
i (x)) + β

X
x0i≥xi

p(x0i|aMi (xi) , xi)WS,M (i, x0i), xi < N, i = 1, 2

WS,M (N) = B − θγB.

The initial social surplus at t = 0 equals

WS(D, γ; θ,B) =WS,D(0, 0).

The consumer surplus function WC is similarly defined as

WC,D (x1, x2) = β
X
x
0
i,x

0
−i

p(x01|σ1 (x) , x1)p(x02|σ2 (x) , x2)W (x01, x
0
2), x1, x2 < D

W (x1, x2) =


WC,D (x1, x2) , x1, x2 < D
1
2

¡
WC,M (1,D) +WC,M (2,D)

¢
, x1 = x2 = D

WC,M (i, xi), xi = D and x−i < D, i = 1, 2

WC,M (i, xi) = β
X
x0i≥xi

p(x0i|aMi (xi) , xi)WC,M (i, x0i), xi < N, i = 1, 2

WC,M (N) = (1− γ)B − θγB.

Initial consumer surplus at t = 0 equals

WC(D, γ; θ,B) =WC,D(0, 0).

Definition 2 The social surplus maximizing patent policy is a pair (D∗, γ∗) that maximizesWS(D, γ; θ,B)

given (θ,B). The consumer surplus maximizing patent policy is a pair (D∗, γ∗) that maximizes
WC(D,γ; θ,B) given (θ,B).

3 Computing Optimal Patent Policies

For any specific patent policy, (D, γ), we need to compute the equilibrium of the race which involves

solving two dynamic problems. First, we solve the dynamic optimization problem for each firm after

it wins the patent. Second, we solve the patent race in the duopoly phase. We discuss the solution

procedures for these two problems in detail.
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3.1 Computing the Monopoly Phase

The monopoly phase begins after one of the firms reaches stage D, which can take any value between

0 and N . Therefore, we solve the monopoly problem for all xi ∈ [0,N ], i = 1, 2. The successful firm’s
value function during the monopoly phase, VM

i , solves the Bellman equation 2. We compute it by

backward induction on states beginning at stage N and proceeding to the lower stages. At stage N,

VM
i (N) = Ω and aMi (N) = 0. Once we have computed aMi (x

0) and VM
i (x0) for x0 > xi, we can then

compute the value functions VM
i (xi) and policy functions aMi (xi) by using equations (2) and (3).

In addition to employing a standard value function iteration and implementing the Gauss-Seidel

method for dynamic programming, see p. 418 in Judd (1998), we also occasionally use a second

approach when the convergence criterion is very tight. This second approach solves a nonlinear

system of first-order necessary and sufficient conditions. These conditions are necessary and sufficient

given our assumption on the cost and Markov transition functions. The conditions are as follows:

VM
i (xi) = −Ci(ai) + β

X
x0i≥xi

p(x0i|ai, xi)VM
i (x0i) (7)

0 = −C 0i(ai) + β
X
x0i≥xi

∂

∂ai
p(x0i|ai, xi)VM

i (x0i) + λi (8)

0 = λiai (9)

0 ≤ λi, ai. (10)

To find the solution to (7)-(10), we convert it into a nonlinear system of equations that guarantees

ai to be nonnegative. For this purpose we define

ai = max{0, αi}κ and λi = max{0,−αi}κ

where κ ≥ 3 is an integer and αi ∈ <. Note that, by definition, equation (9) and inequalities (10)
are immediately satisfied. Thus, the unique solution to the nonlinear system of the two equations

(7) and (8) with ai = max{αi, 0}κ in the two unknowns VM
i (xi) and αi yields the optimal policy

and the corresponding value function of the monopolist.5

3.2 Solving the Duopoly Phase by an Upwind Procedure

The duopoly game lives on a finite set of states and could be solved using the techniques of Pakes and

McGuire (1994). However, we have a special structure which allows for much faster computation.

Since the game is over when one firm reaches D, the monopoly phase solution provides the value for

5The constraint on the effort level a can only be binding when the cost function C is linear. Nevertheless we use the

constrained-optimization approach involving a Lagrange multiplier even when we use strictly convex cost functions.

This approach is numerically much more stable than solving the first-order conditions of the unconstrained problem.
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each firm at all states (x1, x2) with max{x1, x2} = D. The solution process for the remaining stages

of the duopoly game utilizes a backward induction technique.

Figure 2 displays the critical features of equilibrium dynamics and computation. There are four

possible outcomes in each period. The state could remain unchanged because no firm advances; the

state could jump to the right indicating progress only by firm 1; similarly, the state could jump up

indicating progress only by firm 2; and finally, the state could jump up and to the right indicating

progress by both firms. The solid lines in Figure 2 display a possible sample path starting from state

(D − 3,D − 3) . After staying in state (D − 3,D − 3) for one period, the firms move through states
(D − 2,D − 3) , (D − 2,D − 2) , and (D − 1,D − 1) until the game ends in state (D,D − 1) . The
information that is needed to compute equilibrium values flows in the opposite direction, indicated

by the broken lines. For example, if we know the value at (D,D), (D − 1,D), and (D,D − 1),
then the game at (D − 1,D − 1) reduces to a simple game where the only unknowns are the values
and actions of each firm at (D − 1,D − 1). The upwind method6 computes equilibrium values by

traversing the nodes in a manner consistent with the direction of the broken lines until it has reached

and solved the game at (0, 0).

At each state (x1, x2) , we compute an equilibrium action pair (σ1(x1, x2), σ2(x1, x2)) and the

corresponding values (V1(x1, x2),V2(x1, x2)) that satisfy equations (5, 6). This computational task
is surprisingly difficult; we employ two different algorithms.

The first algorithm is a Gauss-Seidel iterated best reply approach. We choose a starting point

of actions and values. Next, we solve the first firm’s dynamic programming problem using value

function iteration just as in the monopoly problem. We update the first firm’s policy function and

solve the second firm’s dynamic programming problem. Then we update the second firm’s policy

function and solve the first firm’s problem and continue executing these steps until convergence.

Although this Gauss-Seidel iterated best reply algorithm appears to be the natural approach for

solving the stage game, it often does not converge. In particular, when the race is close (i.e., x1 is

very close to x2) and both firms continue to invest, the algorithm typically cycles. We use a second

algorithm when the two firms are close to each other. We formulate the equilibrium problem in state

(x1, x2) as a nonlinear system of equations. The following conditions are necessary and sufficient for

optimality. For i = 1, 2,

6Our solution approach for the duopoly race phase is an example of the general idea behind upwind procedures

for dynamic problems. Suppose that there is a partial order ≺ on the state space X with the following properties: if

the state can change from x to x0, x 6= x0, then x ≺ x0 and if x ≺ x0 then there is no feasible sequence of states by

which the game moves from x0 to x. There is such a partial order for our game since the states x1 and x2 can never

decline. In general, if we know that the game can only go to states in Y ⊂ X from state x /∈ Y and we already know

each player’s value function in all states in Y, then we can directly compute the players’ value functions for state x by

solving a small set of equations for the equilibrium strategies in state x. We can thus compute an equilibrium for all

states in X \ Y from which the game can only move directly to a state in Y. We sweep through X in some convenient

order and compute the equilibrium values for all states x.
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Figure 2: Movement and information flow in the state space.

0 = −Vi(xi, x−i)− Ci(ai) + β
X
x
0
i,x

0
−i

p(x0i|ai, xi)p(x0−i|a−i, x−i)Vi(x
0
i, x

0
−i) (11)

0 = − ∂

∂ai
Ci(ai) + β

X
x
0
i,x

0
−i

∂

∂ai
p(x0i|ai, xi)p(x0−i|a−i, x−i)Vi(x

0
i, x

0
−i) + λi (12)

0 = λiai (13)

0 ≤ λi, ai. (14)

We transform this system of equations and inequalities into a nonlinear system of equations

characterizing a Nash equilibrium at a state (x1, x2) with xi, x−i < D. We set ai = max{0, αi}κ
and λi = max{0,−αi}κ in equations (11) and (12) and omit the complementary slackness conditions
(13) and the inequalities (14). The solutions to the resulting four nonlinear equations in the four

unknowns Vi(xi, x−i) and αi for i = 1, 2, correspond to the Nash equilibrium of the stage game.

Again we solve a constrained problem instead of an unconstrained problem since this choice results

in a numerically much more stable procedure.
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3.3 Optimal Patent Policy

The PGA maximizes its objective function WS or WC taking into consideration the effect of its

policy (D,γ) on firms’ investment. We parameterize the PGA’s objective function in θ and B. We

solve the dynamic equilibrium of the patent race for a large discrete set of (D, γ) pairs to find the

optimal PGA policy (D∗, γ∗). The ratio γ takes values from a discrete set Γ ⊂ [0, γ̄]. We summarize
all computational steps in the following algorithm.

Algorithm 1 (Computation of welfare-maximizing policy)

1. Select an objective function W ∈ {WS ,WC}. Fix the parameters θ and B. Choose γ̄ and a grid
Γ ⊂ [0, γ̄] .

2. For each γ ∈ Γ

(a) Set Ω = γB.

(b) Solve the monopoly problem given Ω.

(c) For D = 0, compute the expected planner surplus, W (0, γ; θ,B), of giving the patent

monopoly to a firm chosen randomly with equal probabilities.

(d) For each D ∈ {1, 2, . . . , N}
i. Solve the duopoly game for x1, x2 < D.

ii. Compute the expected planner surplus, W (D,γ; θ,B)

3. Find the optimal (D∗, γ∗) which maximizes W (D, γ; θ,B).

3.4 Optimal Policy for a Simple Case

There is one case where we can immediately derive the optimal policy. We mention this special case

since it serves as a nice benchmark even though it is not robust. Suppose η = 1, c = 1, γ̄ = 1.0, and

θ = 0; that is, costs are linear and equal, there is no limit on the portion of B that can be transferred

to the winning innovator, and the transfers cause no inefficiencies. Since η = 1, there is no advantage

in having two firms working on innovation. If the PGA just gives the project to one firm, D = 0,

and sets γ = 1, which is feasible, then the firm’s profits equal social surplus and the firm chooses the

social surplus maximizing innovation effort policy.

In this special case, there is no value to a race since the PGA’s problem can be perfectly inter-

nalized in a firm’s profit maximizing strategy. A race would speed up innovation but only through

inefficiently excessive investment. Our numerical examples show that races are desirable when we

make more reasonable choices for c, θ, and γ̄, and when we examine consumer surplus maximizing

policies.
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4 Computations and Results

Except for the special parametric case discussed in Section 3.4, it is difficult to state analytical

results. Thus we use the numerical procedures outlined in Section 3 to analyze optimal patent rules

for a variety of parameterizations. Table 1 displays the set of parameters we use in our computations.

Table 1: Parameter Values

N ∈ {5, 10} number of stages of innovation

D ∈ {0, ..., N} winning stage

B ∈ {100, 1000} total social benefit

β ∈ {0.96, 0.996} discount factor

η ∈ {1, 1.5, 2} elasticity of cost

γ ∈ {.02, .04, .06, ..., 1.00} possible γ choices

γ ∈ {0.1, 0.3, 0.5, 1.0} upper bound on the prize to total benefit ratio, Ω/B

θ ∈ {0, 0.1, 0.25, 0.4, 1.0} deadweight loss parameter

c1 = 1 normalization on firm 1’s cost parameter

c ∈ {1, 2, 3, ..., 20} ratio of firms’ costs coefficients, c2/c1.

F (x|x) = 0.5 transition probability for unit investment

These parameter values represent a wide range of cases. We make two normalizations: c1 = 1 and

F (x|x) = .5. We examine 5- and 10-stage races because longer ones do not provide any additional

insights and a shorter number of stages is not enough to display the trade-offs between alternative

patent rules. The θ values are motivated by inefficiency costs of monopoly for standard demand

curves and by the excess burden results in Judd (1987). We examine two values for β to model the

unit of time. When β = .996, the unit of time is about a month, whereas β = .96 implies that the

unit of time is about a year. The two values of B were chosen so that races are neither too short nor

too long. In general, the parameter values in Table 1 are chosen to represent innovation processes

lasting from several months to a few years.

4.1 A Sample Race

Figures 3 and 4 display a sample equilibrium path of motion and investment for B = 100, η = 1.5,

θ = 0.4 , β = 0.996, c = 2, D = 3, and γ = 0.12; the policy parameters maximize social surplus.

This particular game lasts 10 periods. Although Firm 2 has a larger average cost of investment and

invests less at t = 1, it is lucky and gets ahead of Firm 1 in period 1. It then increases its investment

level considerably from a2 = 0.02 in state x = (0, 0) to a2 = 0.37 in state x = (0, 1). Firm 1 also

increases its investment effort in order to stay in the race. The firms stay in x = (0, 1) for five periods

until Firm 1 catches up with Firm 2 in period 7. At this stage, both firms decrease their level of
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investment for one period. However, Firm 2 moves ahead again and both firms increase their effort

for one period after which Firm 1 catches up. This puts the two firms one stage away from winning

the race. Firm 1 increases its effort and Firm 2 slightly reduces its effort, but they continue to make

large investments. Both firms reach stage 3 simultaneously at t = 10. Firm 2 wins the patent by a

coin toss and substantially reduces its effort since it is now protected from competition.
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Figure 3: Sample innovation path: c = 2.
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Figure 4: Sample innovation path investment levels: c = 2.
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This example illustrates several points. First, the firms react strongly to each other’s movements.

Second, once a firm wins the patent, innovation effort falls substantially. This tells us that effort

is substantially affected by the competitive environment and concerns about duplicative investment

and rent dissipation are important. Third, Firm 2 is an active competitor even though it is much

less efficient. Fourth, competition is not always most fierce when the firms are tied. In general, the

equilibrium behavior of this model is more complex than that in the models of Harris and Vickers

(1985a, 1987), and Fudenberg et al. (1983).

4.2 Social Surplus Maximization

We now examine the case of social surplus maximization and the impact of cost heterogeneity and

deadweight losses in optimal patent rules. These initial examinations assume strictly convex costs,

η > 1. We then consider the case of linear costs since new equilibrium properties arise.

4.2.1 No Deadweight Loss

Figure 5 shows the optimal prize to benefit ratio γ∗, and expected discounted social surplus WS as

a function of the cost ratio of the two firms, c for a specific case with θ = 0. Each line in Figure

5 corresponds to a different patent granting stage D. The maximized social surplus is the upper

envelope of the three lines in Figure 5. Therefore the optimal patent granting stage is the D that

corresponds to the highest line for a given cost ratio.

If the PGA maximizes social surplus and there is no deadweight loss (i.e. θ = 0), the basic trade-

off is between the total cost of innovation and its duration. The PGA would like firms to innovate

quickly but with minimal investment. To motivate firms the PGA could set a high prize. However,

a large prize also leads to fierce competition, wasteful duplication of investment and inefficient rent

dissipation in a race. In Figure 5 we see that if c = 1, the choice of D = 0 and γ = 1.0 maximizes

social surplus. Figure 5 shows that this result is robust to a nontrivial set7 of values for c. Although

a coin toss may grant the patent to the less efficient firm, the resulting loss in social surplus is less

than the inefficient rent dissipation during a race.

If D = 0, social surplus falls as c rises. At small cost ratios (less than 2.5 in Figure 5), the social

surplus from races with D > 0 has a different pattern. For small c, social surplus decreases. The

rising costs for Firm 2 result in even more rent dissipation during a race. But once the cost ratio

is sufficiently large (above 1.4 in Figure 5), social surplus begins to rise. The race now serves as a

mechanism to filter out the less efficient firm. In the lower stages of development, the presence of

7The range of c values for which the optimal policy is (D∗, γ∗) = (0, 1.0) varies with some of the key parameters

such as B, β, N and η. In Figure 3 this range is about [1, 2.5].
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Firm 2 motivates the more efficient Firm 1 to innovate quickly. Once Firm 1 has a sufficiently large

lead8, Firm 2 reduces its investment level which lowers cost of duplication, and raises social surplus.
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Figure 5: Social Surplus for γ̄ = 1.0 and θ = 0

The role of the race as a mechanism to filter out the less efficient firm becomes more pronounced

as the cost ratio increases. A coin toss, D = 0, delivers a lower surplus than a race with D > 0,

because a patent granted to the less efficient firm leads to slow and costly innovation. A race, on

the other hand, may lead to costly duplication of investment during the early stages. These costs

are offset, however, when the more efficient firm takes a lead, and the laggard firm effectively drops

out of the race. If the PGA chooses a small D, then competition is intense at the early stages of

the race and the less efficient firm may win through luck. The PGA can discourage this by reducing

the prize Ω = γB, but a reduction in the prize also reduces efficient firm’s incentive to invest and

innovates quickly after stage D∗. Thus the PGA must strike the right balance between the patent
stage D and the prize level. When deadweight loss, θ, is 0, as in Figure 5, the PGA prefers to set

D∗ = 5, which enables it to filter out the less efficient firm. The PGA also chooses a large prize to
8A laggard firm reduces its investment considerably (effectively drops out of the race), when the probability of

catching up to the leader is small and the investment cost of catching up is large. The sufficient gap between the two

firms that induces such a behavior depends on the Markov process for transition from one stage to the next and the

cost of investment.
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provide the efficient firm with the proper incentives.

When the cost ratio increases further, the optimal γ∗ increases for fixed D > 0 because the

presence of the inefficient firm poses less of a threat to the efficient firm and so the PGA must

motivate the efficient firm by giving it a larger prize. When the cost ratio becomes very large (above

15) the optimal social surplus for all values D > 0 converges to the same level as that for c = 1,

D = 0 and γ = 1.0. Firm 2’s cost of investment is very high, therefore it invests very little during the

course of the race and Firm 1 can effectively act as a monopolist. In this case the PGA is indifferent

among all positive values for D.

The patterns displayed in Figure 5 are robust, as stated in the following summary.

Summary 1 The following results hold for all values of B,N, β listed in Table 1 with η > 1, γ = 1.0

and θ = 0.

1. When firms have similar costs the social surplus maximizing patent policy is (D∗, γ∗) = (0, 1),
that is, there is no race and the prize equals the full social benefit.

2. For a nontrivial race, D ≥ 1, the optimal prize ratio γ∗ is nondecreasing in the patent stage D.

3. As the cost ratio c rises to infinity,

(a) The investment level of the less efficient firm goes to zero and the more efficient firm

proceeds as a monopolist.

(b) The PGA becomes indifferent between all positive D.

(c) The optimal prize to benefit ratio γ∗, goes to 1 for all positive D.

(d) The social surplus converges to the surplus in the case where firms have identical cost

functions.

4.2.2 Deadweight Loss

With positive θ, there is a deadweight loss, θΩ = θγB, associated with the patentholder’s prize

winnings. In this case, the choice of γ affects social surplus directly through the deadweight loss

term in the objective function of the PGA. Consequently, a social surplus maximizing PGA now

prefers a smaller prize. However, the trade-offs are now more complex. A small γ reduces the

incentives for investment and slows down innovation. The PGA can influence the competition by

varying D. The choice of D heavily depends on the degree of heterogeneity of the two firms.

Figure 6 shows the optimal prize γ∗ and the social surplus WS for a specific case with θ = 0.25.

When neither firm has a substantial cost advantage (c < 1.5 in Figure 6), competition in a race is

fierce and it allows the PGA to set a small γ (γ∗ ∈ [0.1, 0.14]) and a large D (D∗ = 5). As the cost
ratio c increases, the competition between firms is reduced because the efficient firm has a greater
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cost advantage. The less efficient firm effectively drops out of the race9 and the more efficient firm’s

incentives for large investment and quick innovation are reduced. To remedy that, the PGA responds

by increasing the prize at first. However, increasing the prize raises the deadweight loss and reduces

the social surplus. When the cost ratio increases further, the PGA tries to induce Firm 2 to stay in

the race and provide competition for Firm 1 by reducing D. For example, at cost ratios of 1.4 and

1.5, D∗ = 5 and γ∗ is 0.12 and 0.14 respectively. At cost ratios of 1.75, 2.0 and 2.5, D∗ = 4 and γ∗

is 0.14, 0.16, 0.18 respectively.
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Figure 6: Social Surplus for γ̄ = 1.0 and θ = 0.25.

Tables 2 and 3 display the optimal patent policy and the associated social surplus (as a percentage

of benefit B) for a variety of θ and γ̄ values. Table 2 reports the solutions for β = 0.996 and N = 5.

The top half examines the symmetric cost case, c = 1, and the bottom half examines the asymmetric

cost case of c = 2. Table 3 includes solutions from a smaller discount factor, β = 0.96, and symmetric

costs.
9Note that with the given parameterization C0(0) = 0 and so the laggard prefers to invest a very small but positive

amount.
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Table 2: Optimal Patent Policy for β = 0.996

γ̄ = 1.0 γ̄ = 0.5 γ̄ = 0.3 γ̄ = 0.1

c θ D∗ γ∗ WS/B D∗ γ∗ WS/B D∗ γ∗ WS/B D∗ γ∗ WS/B

1 0 0 1.00 87.7 0 0.50 87.1 0 0.30 85.6 5 0.10 83.5

0.1 0 0.34 83.0 0 0.34 83.0 0 0.30 82.9 5 0.10 82.6

0.25 5 0.10 81.3 5 0.10 81.3 5 0.10 81.3 5 0.10 81.3

0.4 5 0.10 79.9 5 0.10 79.9 5 0.10 79.9 5 0.10 79.9

1.0 5 0.08 75.5 5 0.08 75.5 5 0.08 75.5 5 0.08 75.5

2 0 0 1.00 84.9 5 0.22 84.3 5 0.22 84.3 3 0.1 80.7

0.1 5 0.20 82.4 5 0.20 82.4 5 0.20 82.4 3 0.1 79.9

0.25 4 0.16 79.9 4 0.16 79.9 4 0.16 79.9 3 0.1 78.6

0.4 3 0.12 78.0 3 0.12 78.0 3 0.12 78.0 3 0.1 77.3

1.0 3 0.10 72.3 3 0.10 72.3 3 0.10 72.3 3 0.1 72.3

In all of the cases reported, social surplus and the optimal prize/benefit ratio, γ∗ are decreasing
in θ. When c = 1, firms are identical, a race is not used to filter out one of the firms; it is used to

spur competition. Although a low D leads to intense competition between equal competitors during

the duopoly phase, it creates much rent dissipation, followed by a slow innovation process during the

monopoly phase unless the prize is large. With a higher D, competition is still fierce, but innovation

is completed quickly, without the need for a high prize.

When firms have asymmetric costs, the race fills both an incentive and filtering role. For example,

if θ = 0 and firms are symmetric, the optimal D∗ is 0 (unless γ∗ is constrained by a very low γ̄); there

is no race. However, when firms are not symmetric, i.e. when c = 2, the optimal D∗ can be 5 even in
the case of no deadweight loss. As θ rises, D∗ decreases because the PGA chooses to give innovation
incentives to the more efficient firm by reducing the stages of the duopoly phase and allowing the

less efficient firm to be a strong competitor for the efficient firm in the early stages of the race. Also,

when a race is desired (which is when θ ∈ [0.25, 1.0] in Table 2), γ∗ is higher in the asymmetric
cost case than in the case with c = 1. Again, the presence of cost heterogeneity makes it less likely

that a larger prize will lead to excessive duplication of effort. Although a combination of high θ and

γ reduces social welfare substantially, in the case with asymmetric costs, a low γ reduces the less

efficient firms’ incentives to compete and the more efficient firm’s incentives to innovate quickly.

Table 2 also shows what happens as the γ̄ limit becomes binding on the choice of γ. The impact

of γ̄ on the optimal D∗ is different in the symmetric and asymmetric cost cases. In the symmetric
cost case, when γ̄ is 0.1, D∗ jumps to 5. Since a high prize is not available to provide incentives for
quick innovation, investment effort is increased by forcing firms to compete for the full length of the

innovation. In the asymmetric cost case, even if D is chosen to be 5, competition may not be very

fierce if the efficient firm takes a strong lead and the prize is low. Therefore, with the exception in
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the case of θ = 0, the optimal D∗ is lower (compared to the cases with higher γ̄) to spur competition
at the early stages of innovation, even though the duration of the monopoly phase is extended.

As the discount factor decreases, the present value of the prize decreases and thus dampens the

incentive for a high investment level. Conditional on having a race of nontrivial duration the discount

factor is inversely related to the optimal γ∗.

Table 3: Optimal Patent Policy for β = 0.96 and c = 1.

γ̄ = 1.0 γ̄ = 0.5 γ̄ = 0.3 γ̄ = 0.1

θ D∗ γ∗ WS/B D∗ γ∗ WS/B D∗ γ∗ WS/B D∗ γ∗ WS/B

0 0 1.00 60.9 0 0.50 59.4 5 0.26 58.6 5 0.1 46.2

0.1 5 0.24 56.9 5 0.24 56.9 5 0.24 56.9 5 0.1 45.7

0.25 5 0.22 54.6 5 0.22 54.6 5 0.22 54.6 5 0.1 45.0

0.4 5 0.20 52.5 5 0.20 52.5 5 0.20 52.5 5 0.1 44.2

1.0 5 0.16 45.8 5 0.16 45.8 5 0.16 45.8 5 0.1 41.2

Summary 2 The following results hold for all values of B,N, β listed in Table 1 with η > 1.

1. The optimal prize ratio γ∗ is non-increasing in the deadweight loss coefficient θ.

2. Social surplus is decreasing in θ.

3. Conditional on the presence of a race,

(a) the optimal patent stage D∗ is nonincreasing in θ,

(b) the optimal prize ratio γ∗ is non-increasing in the discount factor.

4.2.3 Linear Cost

In the case of linear cost C 0 (0) is not zero. This implies that a firm may quit, setting a = 0, if it is

sufficiently far behind. Table 4 reports the optimal patent policy and the resulting social surplus for

linear cost functions. As in Table 2, the optimal patent policy for θ = 0, γ̄ = 1.0, β = 0.996 and c = 1

is (D∗, γ∗) = (0, 1). When θ increases, the PGA would like to reduce the prize ratio γ in order to

avoid a large deadweight loss. A small γ, however, decreases the firms’ incentive to innovate quickly.

The PGA tries to motivate to firms to increase investment by lengthening the race and prolonging

competition. With strictly convex costs the optimal patent stage is D∗ = N = 5 because the cost

from duplication of investment is less than the deadweight loss from a sufficient γ to motivate. In

the linear cost case, the cost of duplication may outweigh the deadweight loss. Consequently the

optimal D∗ in this case is lower.10

10The optimal D∗ is lower because optimal effort is less than 1 in most stages along the race in both the convex and

the linear cost cases. Under alternative parameterizations the optimal effort may be greater than 1 and consequently

lead to higher optimal D∗ in the linear cost case.
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Table 4: Optimal Patent Policy for η = 1.0.

γ̄ = 1.0 γ̄ = 0.5 γ̄ = 0.3 γ̄ = 0.1

c θ D∗ γ∗ WS/B D∗ γ∗ WS/B D∗ γ∗ WS/B D∗ γ∗ WS/B

1 0.0 0 1.00 86.3 0 0.50 85.9 0 0.30 85.1 4 0.1 81.8

0.1 0 0.26 82.4 0 0.26 82.4 0 0.26 82.4 4 0.1 80.9

0.25 3 0.12 79.7 3 0.12 79.7 3 0.12 79.7 4 0.1 79.6

0.4 4 0.10 78.2 4 0.10 78.2 4 0.10 78.2 4 0.1 78.2

1.0 4 0.10 72.8 4 0.10 72.8 4 0.10 72.8 4 0.1 72.8

2 0 5 0.28 85.0 5 0.28 85.0 5 0.28 85.0 1 0.1 79.0

0.1 5 0.26 82.5 5 0.26 82.5 5 0.26 82.5 1 0.1 78.2

0.25 2 0.20 79.6 2 0.2 79.6 2 0.20 79.6 1 0.1 76.9

0.4 1 0.14 77.3 1 0.14 77.3 1 0.14 77.3 1 0.1 75.6

1.0 1 0.12 70.5 1 0.12 70.5 1 0.12 70.5 1 0.1 70.4

Table 4 also displays results for c = 2. In this case, the PGA is concerned about the less efficient

firm reaching the patent stage D first. When θ is small, the PGA can offer a high prize and set

D high to motivate the firms to invest and to ensure that the more efficient firm wins. When θ is

large, the deadweight loss, θΩ = θγB becomes important, and the PGA becomes more concerned

about the adverse effect of giving a large prize rather than the adverse effects of selecting the less

inefficient firm. Thus the optimal patent stage and the optimal prize are reduced as θ increases.

These results are consistent with the results from the strictly convex cost case.

4.3 Consumer Surplus Maximization

We next examine the case where the planner maximizes consumer surplus. In this case, the cost of

innovation does not enter the PGA’s objective function, so the PGA is only concerned about the

duration of the race and the fraction of the benefit that consumers can retain. A reduction of the

prize to the innovator increases consumer benefits, but slows the arrival of the innovation. One way

to relieve this tension is to use races to stimulate investment.

We first examine a simple case. Figure 7 displays the optimal prize parameter γ∗ and consumer
surplus WC(·) as a function of the cost ratio c for θ = 0. Each line corresponds to a different D. The
maximized consumer surplus is the upper envelope of the four lines in the figures.
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Figure 7: Consumer Surplus for γ̄ = 1.0 and θ = 0.

Several patterns are apparent in Figure 7. Consumer surplus decreases as cost asymmetry rises.

At small cost ratios the PGA can rely on the intense competition among the firms to ensure that the

firms innovate quickly. Since the competition provides ample motivation for high investment levels,

the PGA can set the prize-to-benefit ratio γ to be very low and the patent stage to D = N = 5. As c

rises, the intensity of competition decreases since the inefficient firm reduces investment. The PGA

remedies this by increasing γ and by choosing a lower D. These changes spur both firms to work

harder in the duopoly phase without creating too much risk that the inferior firm wins. In Figure

7, γ∗ increases from 0.10 to 0.12 and D∗ decreases from 5 to 2. As c increases further, even a short

duopoly phase is not enough to motivate the firms. Since the PGA is reluctant to increase γ, the

race becomes, for all practical purposes, just a monopoly innovation process by the more efficient

firm. Thus the PGA is indifferent between setting D to any value between 1 to N .

Tables 5 and 6 display results for sensitivity analysis with respect to the parameters η,N,B,

and θ and confirm that the results displayed in Figure 7 are robust to changes in these parameters.

The optimal γ∗ is always much smaller than under the objective of social surplus maximization,
and changes only slightly as deadweight loss, θ, and the cost ratio c change. Consumer surplus is

decreasing in both of these parameters.
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The pattern of the D∗ values provides insights into the structure of our model and, in particular,
highlights the difference between strictly convex costs and linear costs. As the cost of investment for

Firm 2 increases, its investment level declines; Firm 2 poses less of a competitive threat to Firm 1.

In order to motivate both firms, the PGA lowers the optimal patent stage D∗, but this policy only
partially motivates the firms to choose higher investment levels. For the linear cost case reported in

Table 6, C 0(0) > 0 and Firm 2 reduces its investment level to zero when the cost ratio is sufficiently

large. Consequently, the probability of this firm advancing is zero, and the optimal patent stage D∗

can be equal to 1 as in the case of θ = 1, c = 3. When the cost function is strictly convex, Firm

2 never chooses a zero investment level since C 0(0) = 0, and always has a chance of reaching stage
1 before Firm 1. As a result, the optimal D∗ is always greater than 1. In some cases, for example,
at a cost ratio of c = 3 and θ = 0, D∗ may become as low as 2. As in the case of social surplus
maximization, a further increase in the cost ratio transforms the race effectively into a monopoly

and the PGA eventually becomes indifferent among all D > 1.

Table 5: Optimal Patent Policy for η = 1.5, β = 0.996.

N = 5 N = 10

B = 100 B = 1000 B = 1000 B = 100

θ c D∗ γ∗ WC/B D∗ γ∗ WC/B D∗ γ∗ WC/B D∗ γ∗ WC/B

0 1 5 0.10 80.7 5 0.04 92.6 10 0.06 85.1 6 0.18 64.6

1.5 3 0.10 78.2 5 0.04 91.7 6 0.06 83.3 3 0.18 61.8

2 3 0.12 76.4 4 0.04 90.7 5 0.06 82.3 3 0.20 60.2

3 2 0.12 74.9 3 0.04 89.8 4 0.08 81.4 2 0.20 59.0

1 1 5 0.06 73.7 5 0.02 90.5 10 0.04 80.8 10 0.12 54.0

1.5 3 0.08 70.6 4 0.02 88.7 5 0.04 78.7 3 0.14 50.5

2 2 0.08 68.7 3 0.04 87.5 4 0.04 77.6 2 0.14 48.9

3 2 0.08 66.3 3 0.04 86.0 3 0.04 76.6 2 0.14 47.6
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Table 6: Optimal Patent Policy for B = 1000, β = 0.996.

N = 5, η = 1 N = 10, η = 1 N = 5, η = 2 N = 10, η = 2

θ c D∗ γ∗ WC/B D∗ γ∗ WC/B D∗ γ∗ WC/B D∗ γ∗ WC/B

0 1.0 5 0.02 93.6 10 0.04 87.7 5 0.02 93.6 10 0.04 85.5

1.5 4 0.04 92.5 4 0.06 86.0 5 0.02 92.7 7 0.06 83.9

2.0 3 0.04 91.7 3 0.06 85.2 5 0.04 91.8 6 0.06 82.9

3.0 2 0.04 91.0 2 0.06 84.6 4 0.04 90.7 5 0.06 81.9

1 1.0 5 0.02 91.7 10 0.04 84.0 5 0.02 91.7 10 0.04 82.0

1.5 3 0.02 89.8 3 0.04 81.9 5 0.02 90.8 7 0.04 80.1

2.0 2 0.02 88.9 2 0.04 81.2 5 0.02 89.8 5 0.04 79.0

3.0 1 0.02 88.1 2 0.04 80.8 4 0.02 88.4 4 0.04 77.9

The results from consumer surplus maximization can be summarized as follows.

Summary 3 When the PGA maximizes consumer surplus the optimal patent policy exhibits the

following properties for parameters listed in Table 1.

1. The optimal patent policy has a nontrivial race, D∗ > 0.

2. The optimal prize to benefit ratio, γ∗, is smaller than when the PGA maximizes social surplus.

3. The expected duration of innovation process is longer due to lower investment level compared

to the social surplus maximization case.

4. Consumer surplus is nonincreasing in the cost ratio.

5. For sufficiently small cost ratios, the optimal patent granting stage, D∗, is nonincreasing in the
cost ratio.

6. As the cost ratio c rises to infinity,

(a) The less efficient firm essentially exits the race and the more efficient firm proceeds as if

a monopolist.

(b) The PGA sets D∗ > 0 but becomes indifferent between all positive D.

5 Conclusions and Extensions

Patent races are an integral part of the R&D process, but they do not represent the complete

innovation process. A firm that has been granted a patent typically needs to incur additional costs

and develop the product further before it can produced and sold. The parameters of the race —

27



the stage at which the patent or exclusive contract is awarded and the winning prize — are chosen

by a social policymaker or a private organization to maximize its objective. Previous patent policy

analyses have focussed on the nature of the prize — the length and breadth of the patent, and

previous multistage race analyses have taken patent policy as given. We present an analysis of how

both parameters, the innovation stage at which a patent or an exclusive contract is granted and the

size of the prize, should be chosen in a simple multistage race. Thus we bridge some of the gap

between the literature on patent races and the literature on optimal patent policies.

We find that there is no one dominant form. The choice between granting patents at an early

stage of development versus a later stage depends on the social returns to innovation, the planner’s

objective (social vs. consumer surplus), and the inefficiency costs of compensating the patent winner.

The basic trade-off for a patent policy is between the speed of innovation and costly duplication of

effort. In our setting, the patent race serves two purposes. First, it motivates the firms to invest and

complete the innovation process quickly. When the prize causes inefficiencies, such as the monopoly

grant implicit in a patent, using a race allows the planner to reduce the size of the prize and still

give firms incentives to invest in innovation. Second, a race filters out inferior innovators since they

cannot keep up with more efficient ones. This is important for the planner since he cannot observe

firms’ costs. When the planner wants to maximize consumer surplus, the important trade-off in

this case is the speed of innovation versus the prize needed to compensate the firms. If the planner

maximizes consumer surplus, prizes are lower and patent stages higher compared to the social surplus

maximization case.

Our model is simple but allows us to understand the fundamental issues of developing a patent

policy. Also, it is straightforward to relax some of the assumptions that we made for our computa-

tions. We have already computed many examples of races where firms can advance more than one

stage at a time. We did not report results from these examples in the present paper, since they

give no substantial additional insights into the workings of the model. It’s equally easy to allow the

probability distribution F to depend on the stage of the innovation process. Doing so would allow

us to incorporate different degrees of difficulty for the various steps in the innovation process.

Our results indicate that once a firm receives protection from competition, it reduces its invest-

ment level and slows the innovation process. The PGA varies the patent granting stage and the

prize to induce firms to innovate quickly. In actual patent policy, there is a time limit on how long a

product is protected under a patent. If firms develop the product too late, then they may not receive

any (substantial) prize. This time limit could also serve both as a filtering device and an incentive

for quick innovation, and therefore the planner may not rely on a race to differentiate between firms

and spur investment. In our current formulation of the problem, however, the time it takes for the

firms to move from the patent-granting stage to the terminal innovation stage is short, thus the limit

on innovation would not change our current results. However, it is possible to think of environments
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or parameterizations where such an additional policy tool would become an important component

of patent rules. Additionally, the planner may be able to stop the race once one firm is sufficiently

far ahead. So far the planner ignores the distance between firms.

In addition to varying the technology of innovation and the policy tools available to the planner,

the specification of informational asymmetry can also be altered. Currently there is an informational

asymmetry between the planner and the firms. The firms have perfect information about each other’s

cost structures and innovation stages. A more realistic model may allow firms to observe each other’s

development stage only ever so often.

Several additional extensions are also worth mentioning. In the development process of a new

product firms often face two uncertain issues. Typically it is unclear a priori how many research steps

are necessary for the development of a new product. Also, a new technology may quickly become

obsolete if a better, different technology is soon to be developed. Both issues could be modelled

in our environment. The uncertainty about the final product stage could be incorporated with a

probability distribution for the stage N, possibly one that is updated as the R&D process progresses.

A possible extension of our model may also be more explicit about the market structure after the

patent is granted or after the final product has been developed. For example, we may allow firms to

merge or buy each other’s services once the race has been terminated.

6 Appendix

Proof of Proposition 1. We present the proof of this proposition for the case of strictly convex

costs. The proof easily extends to the linear cost case, but it gets messy due to the possibility of cor-

ner solutions. In the trivial case Ω = 0 we have VM
i (xi) = 0 and a∗(xi) = 0 for all xi ∈ {0, 1, . . . , N}.

Thus, we assume throughout the proof that Ω > 0. The proof proceeds in four steps. First, we

prove that there exists a solution to the Bellman equation. Second, we show that the value function

is nondecreasing in the state. Third, we prove that there exists a unique optimal policy function.

Finally, we show that the policy function is nondecreasing in the state.

Firm i’s monopoly problem is a dynamic programming problem with discounting that satisfies

the standard assumptions for the existence of a solution, see Puterman (1994, Chapter 6) or Judd

(1998, Chapter 12). The state space is finite. The discount factor satisfies β < 1. The cost function

Ci(·) is continuous and thus bounded on the compact effort set A. The transition probability function
p(x0i|·, xi) is also continuous on A for all xi ∈ {0, 1, . . . , N}. Therefore, there exists a unique solution
VM
i to the Bellman equation and some optimal effort level a∗(xi) for each stage xi ∈ {0, 1, . . . , N}.

29



Fix a state xi < N and an optimal effort level a∗(xi). The value VM
i (xi) satisfies the equation

VM
i (xi) =

−Ci(a
∗(xi)) + βp(xi + 1|a∗(xi), xi)VM

i (xi + 1)

1− βp(xi|a∗(xi), xi) .

Since Ci(·) is nonnegative, β < 1, and VM
i (xi + 1) ≥ 0 it follows that VM

i (xi) ≤ VM
i (xi + 1).

For the remainder of the proof we make use of the special form of the transition probability

function p. Without loss of generality we assume that F is independent of the state xi and write

F (xi|xi) = F < 1. Under all our assumptions (Ω > 0, C(0) = 0, C 0(0) = 0, and p(xi|xi, ai) = F ai)

it holds that VM
i (xi) > 0 and a∗(xi) > 0 for all xi ∈ {0, 1, . . . , N}. Note that the optimal effort

level is always in the interior of the set A. Given the value function VM
i , a necessary (and sufficient)

first-order condition for the optimal effort level is

F aβ lnF (VM
i (xi)− VM

i (xi + 1))− C 0i(a) = 0.

This equation must have a least one solution according to the first step of this proof. The second

derivative of the function on the left-hand side equals F aβ(lnF )2(VM
i (xi)−VM

i (xi+1))−C 00i (a) < 0.
Hence, there is a unique optimal effort a∗(xi).

Given the value VM
i (xi + 1), the optimal effort a∗(xi) and value VM

i (xi) must be the (unique)

solution of the following system of two equations in the two variables a and V, respectively,

V (1− βF a)− β(1− F a)VM
i (xi + 1) + C(a) = 0

F aβ lnF (V − VM
i (xi + 1))−C 0i(a) = 0

An application of the Implicit Function Theorem reveals that both variables in the solution are

nondecreasing functions of the value VM
i (xi+1). The Jacobian of the function on the left-hand side

at the solution equals

J =

"
F aβ(lnF )2(V − VM

i (xi + 1))− C 00(a) 0

−F a(β lnF ) 1− βF a

#
.

The gradient of the function on the left-hand side with respect to the parameter VM
i (xi + 1) equalsÃ

−β(1− F a)

−F aβ lnF

!
.

The Implicit Function Theorem yields ∂V
∂VM

i (xi+1)

∂a
∂VM

i (xi+1)

 = − J

D

Ã
−β(1− F a)

−F aβ lnF

!
≥ 0,
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where D = (1−βF a)(F aβ(lnF )2(V −VM
i (xi+1))−C 00(a)) < 0 is the determinant of the Jacobian.

The value function VM
i is nondecreasing in the state xi and a∗(xi) in nondecreasing in the value

VM
i (xi + 1). Thus, the function a∗ in nondecreasing in the state.

Proof of Theorem 1. For a given patent policy (D, γ) the strategy functions σ∗i , i = 1, 2,

constitute a Markov perfect equilibrium if they simultaneously solve equations (6). The proof is by

backward induction. If xi = D for some i, then an optimal strategy pair σ∗i (xi, x−i), i = 1, 2, and

a pair of value functions Vi, i = 1, 2, trivially exist. It is now sufficient to prove that for any state

(x1, x2) ∈ X with xi < D, i = 1, 2, there exists a pure strategy Nash equilibrium (a∗1, a∗2). To prove
the existence of such an equilibrium we define a continuous function f on a convex and compact set

such that any fixed point of this function is a pure strategy Nash equilibrium.

Given a state (x1, x2) ∈ X with xi < D, i = 1, 2, and values Vi(xi+1, x−i),Vi(xi, x−i+1),Vi(xi+

1, x−i + 1) from the states that can be reached from (x1, x2) in one period. As in the proof of

Proposition 1 we assume without loss of generality that the transition probability distribution is

independent of the state and we write F (xi|xi) = F, i = 1, 2. We define a function f on a domain

S ≡ A×[0, γB]×A×[0, γB]. Choose an arbitrary element (âi, Vi, â−i, V−i) ∈ S. Consider the equation

0 = −C 0i(ai)
µ
1

F

¶ai

+ β lnF ·³
F â−i(Vi − Vi(xi + 1, x−i)) + (1− F â−i)(Vi(xi, x−i + 1)− Vi(xi + 1, x−i + 1))

´
with the one unknown ai. If δ ≡ F â−i(Vi − Vi(xi + 1, x−i)) + (1 − F â−i)(Vi(xi, x−i + 1) − Vi(xi +

1, x−i + 1)) is positive, then this equation has no solution. In this case we define ái = 0. If δ ≤ 0
then this equation has a unique solution ái ≥ 0 (since −C 00i (ai)

¡
1
F

¢ai + C 0i(ai) lnF
¡
1
F

¢ai < 0 for all
ai ∈ A). Note that ái ∈ A. We define fi,1(âi, Vi, â−i, V−i) = ái. Note that δ is continuous in Vi. An

application of the Implicit Function Theorem shows that fi,1 is continuous in Vi.

Next define V́i by

V́i =
1

1− βF áiF â−i

³
−C(ái) + β

³
F ái(1− F â−i)Vi(xi, x−i + 1))

+(1− F ái)F â−iVi(xi + 1, x−i)) + (1− F ái)(1− F â−i)Vi(xi + 1, x−i + 1))
´´

.

Note that V́i ∈ [0, γB] and define fi,2(âi, Vi, â−i, V−i) = V́i. Clearly, the function fi,2 is continuous.

In summary, we have defined a continuous function f = (f1,1, f1,2, f2,1, f2,2) : S → S mapping the

convex and compact domain S into itself. Brouwer’s fixed-point theorem implies that f has a fixed

point (a∗1, V ∗1 , a∗2, V ∗2 ) ∈ S. By construction of the function f this fixed point satisfies the equations

(5) and (6). This completes the proof of the existence of a pure strategy Nash equilibrium in the

state (x1, x2).
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