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Stochastic Games with Imperfect Monitoring

Dinah Rosenberg∗, Eilon Solan† and Nicolas Vieille‡§

March 10, 2002

Abstract

We study zero-sum stochastic games in which players do not observe the actions of the
opponent. Rather, they observe a stochastic signal that may depend on the state, and on the
pair of actions chosen by the players. We assume each player observes the state and his own
action.

In a companion paper we proposed a candidate for the max-min value, we proved that player
2 can defend this value, and that player 1 can guarantee it in the class of absorbing games. In
the present paper we prove that player 1 can guarantee this quantity in general stochastic games.

An analogous result holds for the min-max value.
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1 Introduction

A celebrated result of Mertens and Neyman (1981) states that in every two-player zero sum stochas-
tic game with finitely many states and actions, the uniform value exists, provided the players observe
the stage payoff.

The requirement that players observe the stage payoff is crucial for their construction, since
players determine how to play in each stage as a function of the stream of payoffs they have
received so far. It is not difficult to construct examples where the value fails to exist if players do
not observe the stage payoff (e.g. the “Big Match” with no signals).

Coulomb (1999, 2001) studied the class of absorbing games with imperfect monitoring. Those
are stochastic games in which only one state is non absorbing, and players do not observe the
action made by their opponent nor the stage payoff. Rather, they observe a signal that depends on
the actions chosen by both players. Coulomb (1999, 2001) proved that in this class of games the
uniform max-min value exists. Moreover, Coulomb provides an explicit formula for the uniform
max-min value, which is independent of the signalling structure of player 2. Analogous results hold
for the uniform min-max value.

In a companion paper (Rosenberg, Solan and Vieille, 2002a, henceforth RSVa) we studied
general stochastic games with imperfect monitoring. We proposed a candidate for the uniform
max-min value, and proved that player 2 can defend the proposed value. For the class of absorbing
games, we also proved that player 1 can guarantee the proposed value. As in the analysis of
Coulomb, our candidate is independent of the signalling structure of player 2.

In the present paper, we prove that player 1 can guarantee the proposed value in every stochastic
game with imperfect monitoring, thereby completing the proof that our candidate is indeed the
uniform max-min value of the game.

Along the paper we use the same notations and definition as in RSVa, and we use some of the
results proven there. Though we provide all the necessary definitions, we urge the interested reader
to read that paper first.

The paper is arranged as follows. The model and the main results are presented in Section 2.
Few preliminary facts appear in Section 3. The proof of the main theorem appears in Sections 4 -
6.

2 The model and the main result

For every finite set K, ∆(K) is the space of probability distributions over K. We identify each
element k ∈ K with the probability distribution in ∆(K) that gives weight 1 to k.

2.1 The model

We consider the standard model of finite two-person zero-sum stochastic games with signals. Such
a game is described by: (i) a finite set S of states, (ii) finite action sets A and B for the two players,
(iii) a daily reward function r : S×A×B → R, (iv) finite sets of signals M1 and M2 of signals for
the two players and (v) a transition function ψ : S ×A×B → ∆(M1 ×M2 × S).

The game is played in stages. The initial state s1 is known to both players. At each stage
n ∈ N, (a) the players choose independent of each other actions an and bn; (b) player 1 gains
r(sn, an, bn), and player 2 looses the same amount; (c) a triple (m1

n,m
2
n, sn+1) is drawn according
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to ψ(sn, an, bn); (d) players 1 and 2 are told respectively m1
n and m2

n, but they are not informed of
an, bn, or r(sn, an, bn); and (e) the game proceeds to stage n+ 1.

We assume throughout that each player always knows the current state, and the action he is
playing.

We assume w.l.o.g. that payoffs are non-negative and bounded by 1. All norms are supremum
norms.

We denote by Hn = S × (A × B ×M1 ×M2 × S)n−1 the set of histories up to stage n,1 by
H1
n = S × (M1)n−1 and H2

n = S × (M2)n−1 the set of histories to players 1 and 2 respectively.
We equip these spaces with the discrete topology. We also let H∞ = (S × A × B ×M1 ×M2)N

denote the set of infinite plays, Hi
n denote the cylinder algebra over H∞ induced by H i

n, and we
set H∞ = σ(H1

n ∪H2
n, n ≥ 1), the σ-algebra generated by all those cylinder algebras. We let sn,an

and bn denote respectively the state at stage n, and the action played at stage n: these are random
variables, and are respectively Hi

n, H1
n+1 and H2

n+1 measurable.
Whenever convenient, we use the convention that boldfaced letters denote random variables,

and non boldfaced letters denote the value of the random variable.
A (behavioral) strategy of player 1 (resp. player 2) is a sequence σ = (σn)n≥1 (resp. τ = (τn)n≥1)

of functions σn : H1
n → ∆(A) (resp. τn : H2

n → ∆(B)). Such a strategy is stationary if the mixed
move used at stage n depends only on sn (which is known to both players). Every stationary strategy
of player 1 (resp. player 2) can be identified with a vector x ∈ (∆(A))S (resp. y ∈ (∆(B))S), with
the interpretation that xs is the lottery used by player 1 whenever the play visits state s.

Given a pair (σ, τ) of strategies and an initial state s, we denote by Ps,σ,τ the probability
distribution induced over (H∞,H∞) by (σ, τ) and s, and by Es,σ,τ the corresponding expectation
operator. The expected average payoff up to stage n is

γn(s, σ, τ) = Es,σ,τ

[
1
n

n∑
k=1

r(sk,ak,bk)

]
.

2.2 An equivalence relation

In RSVa we defined the following equivalence relation over mixed actions of player 2. The reader
is referred to RSVa for various properties of this relation.

Given ε, λ > 0,2 s ∈ S and x ∈ ∆(A), we define a binary relation ∼λ,ε,s,x over ∆(B) as follows:

y ∼λ,ε,s,x y′ if and only if ψ(s, a, y) = ψ(s, a, y′) whenever x[a] ≥ λ/ε

and we set
r̃ελ(s, x, y) = inf

z∼λ,ε,s,xy
r(s, x, z). (1)

We define moreover r̃ελ(s, x, y) = infz∼λ,ε,s,xy r(s, x, z).
An important property of this relation is the following, proved in RSVa.

Lemma 1 For every δ > 0, there is η > 0 such that for every s ∈ S, every x ∈ ∆(A), and every
y, z ∈ ∆(B), the following is satisfied: if ‖ψ(s, a, y)− ψ(s, a, z)‖ < η for every a ∈ A that satisfies
x[a] ≥ λ/ε, then |r̃ελ(s, x, y)− r̃ελ(s, x, z)| < δ.

1Since the signal of each player contains the current state and his action, some information in this representation
is redundant.

2λ always stands for a discount factor. Here and in the sequel we omit the condition λ ≤ 1.
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We denote by q : S ×A×B → ∆(S) the transition function induced by ψ :

q(s′ | s, a, b) = ψ(s, a, b)[{s′} ×M1 ×M2].

the multi-linear extension of q to S×∆(A)×∆(B) is still denoted by q. For every s ∈ S, and every
(x, y) ∈ ∆(A)×∆(B), denote by Eq(·|s,x,y) the expectation with respect to q(· | s, x, y).

For every λ, ε > 0 let vελ : S → [0, 1] be the unique function that solves the system

vελ(s) = sup
x∈∆(A)

inf
y∈∆(B)

{λr̃ελ(s, x, y) + (1− λ)E [vελ | s, x, y]} ∀s ∈ S. (2)

The fact that the system (2) has a unique solution is proven in RSVa.

2.3 The main result

Definition 2 v(s) is the (uniform) max-min value of the game with initial state s if:

• Player 1 can guarantee v(s): for every ε > 0, there exists a strategy σ of player 1 and N ∈ N,
such that:

∀τ,∀n ≥ N, γn(s, σ, τ) ≥ v(s)− ε.

• Player 2 can defend v(s): for every ε > 0 and every strategy σ of player 1 there exists a
strategy τ of player 2 and N ∈ N, such that:

∀n ≥ N, γn(s, σ, τ) ≤ v(s) + ε.

The definition of the (uniform) min-max value is obtained by exchanging the roles of the two
players.

For every initial state s define
v(s) = lim

ε→0
lim
λ→0

vελ(s).

The existence of the limit is proven in RSVa.
Our main result is:

Theorem 3 For every initial state s, v(s) is the max-min value of the game.

Exchanging the roles of the two players, one deduces that the min-max value exists as well.
In RSVa we proved that player 2 can defend v(s), and that in the class of absorbing games,

player 1 can guarantee it. Here we prove that player 1 can guarantee v(s) in a general stochastic
game:

Proposition 4 For every initial state s ∈ S, player 1 can guarantee v(s).
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2.4 A reduction: the signal coincides with the state

It is conceptually convenient to assume that the signal structure ψ1 is such that player 1 gets no
information apart from the current state.

This assumption entails no loss of generality. Indeed, let Γ be a two-person zero-sum stochastic
game with imperfect monitoring. We let Γ1 be the game deduced from Γ by changing the signal
structure to player 2: in Γ1, player 2 observes all past play, including signals to player 1. The
strategy set of player 2 is larger in Γ1, whereas the strategy set for player 1 in Γ1 remains the
same. Therefore, if player 1 can guarantee v in Γ1, he can also guarantee v in Γ. Next, consider Γ1.
Change the definition of a state as follows:3 the state is now a four-tuple consisting of the current
state in the old sense, the previous state, the action played by player 1, and the signal received by
player 1 (the state space is thus S ×A×M1×S), and let player 1 be informed only of the current
state. Thus, we let Γ2 be the game with state space S × A ×M1 × S, action sets A and B, and
whose transition and reward functions are deduced from those of Γ1 in the natural way. In Γ2,
player 1 observes only the current state, while player 2 has full monitoring. Any strategy of player
i = 1, 2 in Γ1 can be mimicked by a strategy in Γ2, and conversely. Thus, if player 1 can guarantee
v in Γ2 he can also guarantee v in Γ1, hence in Γ.

This construction shows that we can assume that if q(t | s, a, b), q(t | s, a′, b′) > 0 then a = a′.
Put otherwise, different actions of player 1 taken at a given state necessarily lead to different states.
We will use this assumption in Lemma 12 below.

3 Preliminaries

We start by stating few simple results that are used in the sequel.

Fact 1: for a, b > 0 one has∣∣∣1− a

b

∣∣∣ ≤ ε⇒
∣∣∣∣1− b

a

∣∣∣∣ ≤ 2ε, provided ε ≤ 1.

Fact 2: For ε ∈ (0, 1/3), one has∣∣∣∣ a/bA/B
− 1
∣∣∣∣ < 3ε whenever

∣∣∣a
b
− 1
∣∣∣ < ε and

∣∣∣∣AB − 1
∣∣∣∣ < ε.

Lemma 5 Let ζ > 0 and K ∈ N. For i = 1, ...,K, let xi, yi ≥ 0 and ni ∈ N. Set n :=
∑K

i=1 ni,
and define x := 1

n

∑K
i=1 nixi, y := 1

n

∑K
i=1 niyi. Assume that for each i,

ni max{xi, yi} ≥ ζnmax{x, y} ⇒ |xi − yi| ≤ ζxi. (3)

Then
|x− y| ≤ Kζmax{x, y}.

If moreover Kζ ≤ 1 then |x− y| ≤ 2Kζx.

Proof. By (3) ni |xi − yi| ≤ ζnmax{x, y} for each i. The first assertion follows by summation
over i. The second assertion follows by Fact 1.

3This is reminiscent of the combinatorial form of Mertens, see chapter IV in Mertens, Sorin and Zamir (1994)
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4 The Proof

4.1 Overview

We fix ε > 0 once and for all. Our goal is to construct a strategy σ that guarantees v up to ε. We
will use the strategy suggested by Mertens and Neyman (1981, Section 3, see also RSVa, Section
4, Case 1). This strategy plays in blocks. The size of each block depends on the play prior to
that block. During block k, player 1 plays a stationary strategy xλk

that maximizes the right hand
side of (2) up to ελk, where ε is sufficiently small. Mertens and Neyman (1981) use λk−1 and the
average payoff in the block k − 1 to determine λk. Here the average payoff is not observed, hence
player 1 needs to estimate it.

4.2 Definition of the strategy

In this section we define a strategy for player 1. In the rest of the paper we prove that this strategy
guarantees v. The strategy depends on two parameters: α ∈ (0, 1) and Z ∈ R.

There is a semi-algebraic function λ 7→ ε(λ) such that limλ→0 ε(λ) = 0, limλ→0 v
ε(λ)
λ (s) = v(s)

for every s ∈ S, and that 1 − d ∈ (0, 1
2 ] is the degree of λ 7→ ε(λ). For notational simplicity, we

write vλ and r̃λ instead of the more cumbersome vε(λ)
λ and r̃ε(λ)

λ .
Fix a constant η0 ≤ 2

100 and ε > 0 sufficiently small so that ε < ε/(4|S|2|B|) and ε(3+2/η0) ≤ ε.
For λ > 0 and s ∈ S, we let xsλ ∈ ∆(A) be a mixed action that satisfies:

λr̃λ(s, xsλ, y) + (1− λ)E [vλ | s, xsλ, y] ≥ vλ(s)− ελ, ∀y ∈ ∆(B). (4)

Fix 1 < α′ < 1/α. Define two functions λ : (0,+∞) → (0, 1) and L : (0,+∞) → N by:

λ(z) = z−α
′
, and

L(z) = dλ−α(z)e.

Observe that limz→∞ λ(z) = 0, limz→∞ L(z) = +∞ and limz→∞ λ(z)L(z) = 0.
Let (r̂k)k∈N be a [0, 1]-valued process defined on the set of plays. We explicitly define the process

(r̂k)k∈N in the next section. Define recursively processes (zk), (Lk) and (Bk) by the formulas

z0 = Z,B0 = 1,
λk = λ(zk), Lk = L(zk), Bk+1 = Bk + Lk,

zk+1 = max

Z, zk + λk

Lkr̂k − ∑
Bk≤n<Bk+1

wλk
(sn)

+
ε

2

 .

So that this definition makes sense, r̂k should depend only on the play before stage Bk+1. In our
construction it depends only on the sequence of signals observed in block k; that is, the signals
between stages Bk and Bk+1 − 1.

Let σ(α,Z) be the strategy that plays in each stage n the mixed action xλk
(sn), where k ∈ N

satisfies Bk ≤ n < Bk+1.
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4.3 Structure results

For C ⊂ S, we denote by eC := min {n > 0 | sn /∈ C} the first exit time from C. By convention,
the minimum over an empty set is +∞.

Theorem 6 There exists: (i) a partition D of S, (ii) two real numbers α1 ∈ (d, 1) and α2 ∈
(0, 1 − α1), (iii) a non empty subset C∗ ⊆ S which is a union of some elements of D, and (iv) a
constant M > 0, such that

• For every atom Ω of D, and every s ∈ Ω, there is a pure stationary strategy y(s) and λ0 ∈
(0, 1), such that, for every s′ ∈ Ω and every λ < λ0,

Es′,xλ,y(s)[eΩ\{s}] ≤ 1/λα1 and Ps′,xλ,y(s)

(
eΩ = eΩ\{s}

)
≤ λα2.

• For every α ∈ (d, 1), there exists λ1 ∈ (0, 1) such that for every τ , every initial state s′ and
every λ < λ1, (a) if s′ 6∈ C∗,

Es′,xλ,τ [# {n < min {1/λα,min{j > 1 | sj ∈ C∗}} | sn, sn+1 belong to different atoms of D}] ≤M.

(b) If s′ ∈ C∗ and s′ ∈ D ∈ D,

Es′,xλ,τ [# {n < 1/λα | sn ∈ D, sn+1 6∈ D}] ≤Mλ1−α.

Observe that α1 and α2 may be arbitrarily close to 1 and 0 respectively.
The first condition says that if player 2 plays appropriately, the play can move in each element

of D rather fast, while keeping the probability to leave that element small. The second condition
says that whatever player 2 plays, (a) the number of visits to different elements of D until reaching
the set C∗ is uniformly bounded, and (b) the expected number of exits from elements of D that are
subsets of C∗ is extremely small. (a) and (b) together imply that the expected number of visits to
different elements of D in 1/λα stages is uniformly bounded.

Since the proof of this Theorem is quite involved, and it requires different tools that what we
use elsewhere, it is postponed to the appendix.

Atoms of the partition D are called communicating sets. This structure result is best understood
when particularized to two polar cases. Consider first the case where player 2 does not exist
(equivalently, he has only one action per state). Then, under xλ, the sequence of states follows a
Markov chain where the transition function depends on λ. This Markov chain admits the usual
partition into transient states and recurrent sets. Moreover, since λ → xλ is semi-algebraic, this
partition is independent of λ, for λ close enough to zero. The partition D refines it, by somehow
requiring that the mean recurrence time within an atom is not too small. This setup has been
extensively study under the name of Markov chains with rare transitions (see, e.g., Catoni (1999)).

Consider now the opposite polar case, where q(· | s, xλ, b) is independent of λ. The above
structure result then relates to Markov Decision Processes. It is a natural generalization of the
partition into recurrent states and transient states to the case where one agent can affect transitions.
For more in that case, we refer to Rosenberg, Solan and Vieille (2002c).

Lemma 7 For each atom Ω of D and every s, t ∈ Ω, vλ(s) ≥ vλ(t) − λα2 − 2λ1−α1, for λ close
enough to zero.
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Proof. Let s, t ∈ Ω and λ > 0 sufficiently small be given. Starting from s, we define a strategy
for player 2 by: play y(t) until eΩ\t (that is, either the play leaves Ω or reaches t); afterwards
play a λ-discounted optimal strategy.4 Since payoffs are non-negative and below one, this strategy
guarantees a payoff of at most Es,xλ,τ [(1 − (1 − λ)eΩ\t)] + vλ(t) + Ps,xλ,τ (eΩ\t = eΩ). By Jensen’s
inequality, and by Theorem 6,

Es,xλ,τ [(1− λ)eΩ\t ] ≥ (1− λ)Es,xλ,τ [eΩ\t] ≥ (1− λ)1/λ
α1 ≥ 1− 2λ1−α1

for λ close enough to zero. Since Ps,xλ,τ (eΩ\t = eΩ) ≤ λα2 the result follows.
Define a process (Ĩn) by

Ĩn = 1 if and only if sn and sn+1 belong to different elements of D,

where D is the partition over S given in Theorem 6.
Define a process (Ik) by

Ik =
∑

Bk≤n<Bk+1

Ĩn.

That is, the number of visits to different elements in the partition of D in block k.

Lemma 8 For every initial state s and every τ ,

Es,σ(α,Z),τ [
∑
j≤k

Ik] ≤M +M ×Es,σ(α,Z),τ [
∑
j≤k

λjLj ],

where M is a fixed constant.

Proof. Ik is the number of entries into elements ofD during block k. Define I∗k =
∑

Bk≤n<Bk+1,sn+1∈C∗ Ĩn
as the number of entries into elements of D which are subsets of C∗ during block k. By (a) in the
second assertion of Theorem 6, E[

∑
j≤k Ij ] ≤M +M ×E[

∑
j≤k I

∗
j ]. By (b) in the second assertion

of Theorem 6, E[I∗k ] ≤ λ1−α
k ≤ λkLk.

4.4 Definition of r̂k

4.4.1 Partition into Subsets

The value of r̂k depends only on the sequence of signals received during block k. For notational
simplicity, we drop the subscript k : we thus write L instead of Lk, λ instead of λk, etc. We also
relabel the stages of block k from 1 to L, so that Bk+1 = L+ 1.

We divide the block into nB :=
⌊
L1−α⌋ subblocks of length L′ := bLαc, and the remaining

stages (at most dLαe+
⌈
L1−α⌉). We set

r̂ =
1
nB

nB∑
p=1

ρ̂p,

where the value of ρ̂p depends only on the sequence of signals received during sub-block p. Once
again for notational simplicity, we drop the subscript p.

4The existence of an optimal strategy follows from Lemma 3 in RSVa.
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4.4.2 Notations

Here we define few r.v.s that will be used all through the paper. We restrict ourselves to a single
sub-block.

Denote Ns,a,b→t = |{n ≤ L′ | (sn,an,bn, sn+1) = (s, a, b, t)}|. This is the number of stages in
the sub-block where the actions (a, b) were chosen at state s, and the subsequent state was t.

We define Ns,a,b =
∑

t∈S Ns,a,b→t, Ns,a =
∑

b∈B Ns,a,b, Ns,b =
∑

a∈ANs,a,b, and Ns =∑
b∈B,a∈ANs,a,b. Define Ns,a→t =

∑
b∈B Ns,a,b→t, and Ns,b→t =

∑
a∈ANs,a,b→t. Finally, define

Ns→t =
∑

a∈ANs,a→t =
∑

b∈B Ns,b→t.
We define the empirical transition function given different data as follows.

q(t | s, a, b) =
Ns,a,b→t

Ns,a,b
, q(t | s, a) =

Ns,a→t

Ns,a
,

q(t | s, b) =
Ns,b→t

Ns,b
, and q(t | s) =

Ns→t

Ns
.

These quantities are defined whenever the denominator does not vanish. The empirical play is the
stationary strategy y where ys(b) := Ns,b

Ns
.

For s ∈ S, we let A(s) ⊆ A be the set of actions that are relevant for the indistinguishability
relation:

A(s) =
{
a ∈ A | xsλ(a) ≥

λ

ε(λ)
for every λ close to zero

}
.

4.4.3 The estimator

For every s ∈ S, let ŷs minimize

max{‖q(· | s, a)− q(· | s, a, y)‖ , a ∈ A(s)}, (5)

among y ∈ ∆(B), and define

ρ̂ =
1
L′

∑
s∈S

Nsr̃λ(s, xλ, ŷs).

The stationary strategy ŷ = (ŷs)s∈S is a good estimator of the strategy used by player 2, in the
sense that it provides the best fit to the observed one-step transitions. However, it fails to take into
account the temporal structure of the transitions, for instance cycles that may exist in the history.
Thus, there may exist a stationary strategy of a higher order (cyclic Markov strategy) that would
fit much more nicely to the observed signals. This is an important issue that is discussed in detail
in Rosenberg et al.

4.5 Applying the technique of Mertens and Neyman

The main result of this section is Proposition 9 below. This Proposition, together with Theorem
33 below and Lemma 8, imply that σ guarantees v − 3ε̄.

Define I =
∑

n≤L In.

Proposition 9 There exists α and Z such that the strategy σ(α,Z) satisfies the following, for
every strategy τ and every initial state s ∈ S.
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C1 Es,xλ,τ

[
1
L

∑L
n=1 r(sn,an,bn)

]
≥ Es,xλ,τ [r̂]− ε.

C2 Es,xλ,τ [λLr̂ + βI + (1− λL)vλ(sL+1)] ≥ vλ(s) − ε̄λL, where β ∈ (0, ε/12M), and M is the
constant given by Lemma 8.

We let the initial state s ∈ S and the strategy τ of player 2 be fixed. By section 2.4 and Kuhn’s
Theorem, it is enough to consider pure strategies τ , that depend only on the sequence of states
visited so far.

The proof of C1 appear in section 5. The proof of C2, which is substantially more involved,
appears in section 6.

4.6 Fixing parameters

We here offer specific values for Z and α. There are few conditions to be satisfied. Some are related
to the data of the game, and some to standard large deviations inequalities.

Fix η < ε/(6|S × A × B|) that satisfies Lemma 1 w.r.t. δ = ε, and set C1 = 201 and C2 =
220|S||S|. Fix β > 0 sufficiently small such that β < η/20|B|.

Fix ω ∈ (0, 1/9) sufficiently small so that d+ 3ω < 1.5 Apply Theorem 6 and get the constants
α1 > 1 − ω/2 and α2 < ω/2. By Lemma 7, for every D ∈ D (where D is the partition given by
Theorem 6), every two states s, s′ ∈ D, and every λ > 0 sufficiently small, |vλ(s)− vλ(s′)| < λω.

Fix ψ ∈ (0, α2), and apply Theorem 17 with ψ and β to obtain ξ, κ, δ2 and α0. Choose
δ, δ1 ∈ (0,min{ω, δ2}), and a3 > 0.

Choose α ∈ (α0, 1) sufficiently large so that the following inequalities hold. (A.i) −ω/α+αδ1 <
−1/α + α, (A.ii) −ω/α + αδ < −1/α + α, (A.iii) αψ − α2/α < −1/α + α. Observe that since
α ∈ (0, 1), we have (A.iv) −1/α+ α < 0.

Define a function L′ : (0,+∞) → N as follows.

L′(z) = bLα(z)c.

Observe that limz→∞ L′(z) = +∞.
Choose Z0 sufficiently large so that (a) Theorem 17 holds for every z ≥ Z0 (w.r.t. α), (b)

Proposition 11 holds for every z ≥ Z0, (c) 2+Lα(z)+L1−α(z)
L(z) < ε

3 for every z ≥ Z0, and (d) finitely
many inequalities of the form K1L(z)d1 ≥ K2L(z)d2 hold for every z ≥ Z0, where K1,K2 > 0 and
d1 < d2.

From now on, we fix a block, and so we omit the dependence on z from all variables.

4.7 Typical histories

We here define a set of histories that are typical, in a sense close to the meaning assigned to it in
information theory, see e.g. Cover and Thomas (1991).

5Recall that d is defined in section 4.2.
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Definition 10 TL
′

β,δ2
is the event consisting of histories of length L′ such that, for every s ∈ S,

every C ⊆ S and every b ∈ B,

Ns,b max {q(C | s, b), q(C | s, xλ, b)} ≥ L′δ2 ⇒
∣∣∣∣1− q(C | s, b)

q(C | s, xλ, b)

∣∣∣∣ ≤ β.

When no confusion may arise, we simple denote this event by Tβ,δ2 .
Thus, Tβ,δ2 is the set of histories along which empirical transitions in the first subblock accurately

reflect the expected transitions given the empirical play of player 2.
By Theorem 3.5 in Rosenberg, Solan and Vieille (2002b, henceforth RSVb),

Ps,xλ,τ (Tβ,δ2) ≥ 1− ελL′.

The set Tβ,δ2 contains only histories of length L′ + 1. It will later be convenient to speak of the
first time when the current history fails to be typical. We therefore introduce a slight extension
of the previous notion. Given n ∈ N, s ∈ S, b ∈ B we let Nn

s = |{j < n, sj = s}|, and define the

analogous counters Nn
s,b and Nn

s,b→t accordingly. Also, we let qn(t | s, b) :=
Nn

s,b→t

Nn
s,b

denote the
empirical transition function in the first n− 1 stages. We define Tnβ,δ2 to be the event consisting of
histories of length n such that, for every s ∈ S, C ⊂ S and b ∈ B,

Nn
s,b max {qn(C | s, b), q(C | s, xλ, b)} ≥ L′δ2 ⇒

∣∣∣∣1− qn(C | s, b)
q(C | s, xλ, b)

∣∣∣∣ ≤ β.

Let θ1 = inf
{
n ≤ L′,hn /∈ Tnβ,δ2

}
. Theorem 3.5 in RSVb extends to the next result.

Proposition 11 Provided λ is sufficiently small, for each τ , and s ∈ S,

Ps,xλ,τ (θ1 ≤ L′ + 1) ≤ ελL′.

5 Proof of C1

This section contains the proof of C1 in Proposition 9.

Lemma 12 On the event Tβ,δ2, the next implication holds for every s ∈ S and every a ∈ A(s) :

Ns > εL′ ⇒ ‖q(· | s, a,ys)− q(· | s, a)‖ < η/2.

Proof. Let s ∈ S and a ∈ A(s) be given, and assume that Ns > εL′.
We first prove that ∣∣∣∣xsλ(a)− Ns,a

Ns

∣∣∣∣ ≤ 2|B|βxλ(a). (6)

Denote by Sa = {s ∈ S | q(t | s, a, b) > 0 for some b ∈ B}. Recall that for every a′ 6= a and
every b ∈ B, q(Sa | s, a′, b) = 0 (see Section 2.4).

Observe that
xsλ(a) = q(Sa | s, xλ,y) =

1
Ns

∑
b∈B

Ns,bq(Sa | s, xsλ, b), (7)

11



and
Ns,a

Ns
= q(Sa | s) =

1
Ns

∑
b∈B

Ns,bq(Sa | s, b). (8)

On the event Tβ,δ2 we have

Ns,b max{q(Sa | s, xλ, b),q(Sa | s, b)} ≥ L′δ2

⇒ |q(Sa | s, xλ, b)− q(Sa | s, b)| ≤ βq(Sa | s, xλ, b). (9)

By the assumption and since δ2 > δ1, L′δ2/Ns <
1

εL′1−δ2
< βxsλ(a), hence (6) follows by (7),

(8), (9) and Lemma 5.

Fix now t ∈ Sa.
Observe that q(t | s, b) = Ns,a,b→t

Ns,b
, and q(t | s, xλ, b) = xsλ(a)q(t | s, a, b). Therefore, on the

event Tβ,δ2 we have

Ns,b max
{

Ns,a,b→t

Ns,b
, xsλ(a)q(t | s, a, b)

}
≥ L′δ2

⇒
∣∣∣∣Ns,a,b→t

Ns,b
− xsλ(a)q(t | s, a, b)

∣∣∣∣ ≤ βxsλ(a)q(t | s, a, b). (10)

Note that
∑

b∈B Ns,b
Ns,a,b→t

Ns,b
= Ns,a→t, and

∑
b∈B Ns,bx

s
λ(a)q(t | s, a, b) = Nsx

s
λ(a)q(t | s, a,y).

Since L′δ2/Ns <
1

εL′1−δ2
< βxsλ(a)q(t | s, a, b), by applying Lemma 5 we obtain

|Ns,a→t −Nsx
s
λ(a)q(t | s, a,ys)| ≤ 2β|B|Nsx

s
λ(a). (11)

By (6) and Fact 1,
∣∣∣1− Nsxλ(a)

Ns,a

∣∣∣ ≤ 4|B|β. Therefore, dividing (11) by Ns,a and since 2|B|β < 1
we get

|q(t | s, a)− q(t | s, a,y)| =
∣∣∣∣Ns,a→t

Ns,a
− q(t | s, a,y)

∣∣∣∣
≤ 4|B|β + (1 + 4|B|β)2|B|β < η/2,

where the last inequality holds by the choice of β.
Fix (a, b) ∈ A×B. Observe that Ns,a,b =

∑
t∈S Ns,b

Ns,a,b→t

Ns,b
, and Ns,bxλ(a) =

∑
t∈S Ns,bxλ(a)q(t |

s, a, b). Therefore, (10) and Lemma 5 imply in addition

|Ns,a,b −Ns,bxλ(a)| ≤ 2β|S|Ns,a,b, (12)

provided max{Ns,a,b,Ns,bxλ(a)} ≥ L′δ2/β.

Corollary 13 One has∣∣∣∣∣Es,xλ,τ [ρ̂]−Es,xλ,τ

[
1
L′

∑
s∈S

Nsr̃λ(s, xλ,y)

]∣∣∣∣∣ ≤ 4|S|ε.
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Proof. Let s ∈ S be arbitrary. By Lemma 12 and the choice of η,

|r̃λ(s, xλ,y)− r̃λ(s, xλ, ŷ)| ≤ ε on
{
Ns > εL′

}
∩ Tβ,δ2 . (13)

Whenever Ns ≤ εL′ we have Ns
L′ ≤ ε. Hence, by (13), and Proposition 11,∣∣∣∣Es,xλ,τ

[
Ns

L′
(r̃λ(s, xλ,y)− r̃λ(s, xλ, ŷ)

]∣∣∣∣ ≤ 4ε.

The result follows by summation over s.

Next, we show that the average payoff in the sub-block, Es,xλ,τ [rL′ ] = Es,xλ,τ

[
1
L′
∑L′

n=1 r(sn,an,bn)
]

is

close to Es,xλ,τ

[
1
L′
∑

s∈S Nsr(s, xλ,y)
]
.

Lemma 14 One has∣∣∣∣∣Es,xλ,τ [rL′ ]−Es,xλ,τ

[
1
L′

∑
s∈S

Nsr(s, xλ,y)

]∣∣∣∣∣ ≤ 2ε|S| × |A| × |B| < ε

3
. (14)

Proof. The left hand side in (14) is equal to

Es,xλ(a),τ

 1
L′

∑
s,a,b

(Ns,a,b − xλ(a)Ns,b)r(s, a, b)

 .
The result follows from (12), since for every a, b, whenever Ns ≤ εL′ or max{Ns,a,b,Ns,bxλ(a)} ≤
εL′ we have Ns,a,b − xλ(a)Ns,b < εL′, and since ε > 6|A×B × S|ε.

If Z0 is sufficiently large,
∣∣rL − rL′bL1−αc

∣∣ ≤ ε
3 . Since r ≥ r̃λ, assertion C1 in Proposition 9

follows from Corollary 13, Lemma 14, and by summation over the different sub-blocks.

6 Proof of C2

6.1 A decomposition

We denote by Ω the communicating set that contains the initial state s. Given a bounded stopping
time θ ≤ eΩ, we denote by Hθ the finite σ-algebra of events up to θ. Each atom of Hθ can be
identified with a history of finite length. We denote by H(θ) those atoms such that θ < eΩ.

Given h = (s1, a1, b1, ..., sk) ∈ H(θ), we now define an auxiliary probability distribution Ph on
histories of length k. Let (zn)n≤k be the nonhomogenous Markov chain defined over S as follows.
For each n, either zn = sn or zn /∈ Ω. States in Ω are absorbing. If zn = sn, zn+1 = sn+1

with probability q(Ω | sn, xsn
λ , τ(s1, ..., sn)), and, for every s ∈ Ω, zn+1 = s with probability

q(s | sn, xsn
λ , τ(s1, ..., sn)). In words, (zn) follows h up to stage k + 1 with the option of leaving Ω

and be absorbed before. We let Ph be the law of (zn) and we denote by Eh the expectation w.r.t.
Ph. Next, we set p(h) = Ps,xλ,τ (h) =

∏k−1
n=1 q(sn+1 | sn, xsn

λ , τ(s1, ..., sn)) and

ω(h) = Ph(eΩ ≤ k) = 1−
k−1∏
n=1

q(Ω | sn, xsn
λ , τ(s1, ..., sn)).

ω(h) may be interpreted as a probability that exit from Ω occurs along h.
The following lemma follows by elementary algebraic manipulations.
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Lemma 15 For each Hθ-measurable random variable X, one has

Es,xλ,τ [X] =
∑

h∈H(θ)

p(h)
1− ω(h)

Eh [X] ,

where 0/0 is defined to be 0.

The next lemma provides a rewriting of Eh [vλ(sk)], valid for typical sequences along which the
probability of exit from Ω is close to zero.

For simplicity, given a history h, we denote by Nh
s the value of the r.v. Ns at h. We define Nh

s,b

and qh(t· | s, b) similarly.

Lemma 16 Let h = (s1, a1, b1, ..., sk) be a history of length k, such that sl ∈ Ω for each l ≤ k.
Assume that ω(h) < β and h ∈ T kβ,δ2. Then∣∣∣∣∣Eh [vλ(sk)]−

(
vλ(s) +

∑
s∈Ω

Nh
s

(
Eq(·|s,xλ,y) [vλ]− vλ(s)

))∣∣∣∣∣ ≤ 2ελL′ + βC|S|ω(h).

Proof. For notational convenience, we shall establish the lower bound on Eh [vλ(sk)], all
arguments being symmetric. Since ω(h) < β and by Lemma 19 in RSVa,

|ω(h)− π| ≤ Cω(h)2, where π =
k−1∑
j=1

q(Ω | sj , xλ, bj), (15)

and by Corollary 20 in RSVa,∣∣∣∣∣∣Ph(eΩ ≤ k, seΩ = t)−
k−1∑
j=1

q(t | sj , xλ, bj)

∣∣∣∣∣∣ ≤ Cω(h)2, for t /∈ Ω. (16)

By (15) and (16), and since ω(h) < β,∣∣∣∣∣∣Eh [vλ(sk)]−

(1− π)vλ(sk) +
k−1∑
j=1

Eq(·|sj ,xλ,bj)

[
vλ1Ω

]∣∣∣∣∣∣ ≤ Cβ |S|ω(h). (17)

Next, we rewrite (1 − π)vλ(sk). By the definition of ω, |vλ(sj)− vλ(sk)| ≤ λω for j ≤ k − 1.
Therefore,

(1− π)vλ(sk) = vλ(sk) +
k−1∑
j=1

vλ(sk) (q(Ω | sj , xλ, bj)− 1)

≥ vλ(sk) +
k−1∑
j=1

(vλ(sj+1)q(Ω | sj , xλ, bj)− vλ(sj+1))− λω
k−1∑
j=1

q(Ω | sj , xλ, bj)

= vλ(s) +
k−1∑
j=1

(vλ(sj+1)q(Ω | sj , xλ, bj)− vλ(sj))− πλω, (18)
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where the last equality holds since
∑k−1

j=1 vλ(sj+1) =
∑k−1

j=1 vλ(sj) + vλ(sk)− vλ(s).
We plug (18) into (17) to get

Eh [vλ(sk)] ≥ vλ(s) +
k−1∑
j=1

(
q(Ω | sj , xλ, bj)vλ(sj+1) + Eq(·|sj ,xλ,bj)

[
vλ1Ω

]
− vλ(sj)

)
− λω − βC |S|ω(h). (19)

Note that the summation Σ on the right-hand side of (19) coincides with

Σ =
∑

s∈Ω,b∈B
Nh
s,b

(
Eq̃(·|s,b) [vλ(·)]− vλ(s)

)
, (20)

where

q̃(t | s, b) =
{
q(t | s, xλ, b) for t /∈ Ω
q(Ω | s, xλ, b)qh(t | s, b) for t ∈ Ω

.

Observe that
∑

s∈Ω,b∈B N
h
s,bq

h(t | s, b) = |{2 ≤ t ≤ k, sn = t}| and
∑

t∈Ω,b∈B N
h
s,bq

h(t | s, b) =
|{1 ≤ t ≤ k − 1, sn = s}|. In particular,∑

s,t∈Ω,b∈B
Nh
s,bq

h(t | s, b)(vλ(t)− vλ(s)) ≤ |S|λω. (21)

By (15) and the definition of ω,∑
s,t∈Ω,b∈B

Nh
s,b(q

h(t | s, b)− q̃(t | s, b))(vλ(t)− vλ(s)) =

=
∑

s,t∈Ω,b∈B
Nh
s,bq

h(t | s, b)q(Ω | s, xλ, b))(vλ(t)− vλ(s))

≤ |S|λω
∑

s∈Ω,b∈B
Nh
s,bq(Ω | s, xλ, b) ≤ |S|πλω. (22)

By (21) and (22), ∑
s∈Ω,b∈B

Nh
s,bq̃(t | s, b)(vλ(t)− vλ(s)) ≤ 2|S|λω. (23)

For the time being, we fix s ∈ Ω and b ∈ B, and we define

∆s,b = Nh
s,b

(
Eq̃(·|s,b) [vλ]−Eq(·|s,xλ,b) [vλ]

)
.

Let Ω0 =
{
t ∈ Ω, Nh

s,b max{q̃(t | s, b), q(t | s, xλ, b)} ≥ L′δ1
}

, and Ω1 = Ω\Ω0.
For t ∈ Ω1, one has

Nh
s,b max{q̃(t | s, b), q(t | s, xλ, b)} |vλ(t)− vλ(s)| < L′δ2λω. (24)

Consider t ∈ Ω0. In particular, Nh
s,b ≥ L′δ2 . Since qh(t | s, b) ≥ q̃(t | s, b), one hasNh

s,b max{qh(t |
s, b), q(t | s, xλ, b)} ≥ L′δ2 . Since h ∈ T kβ,δ2 we have

∣∣∣1− qh(t|s,b)
q(t|s,xλ,b)

∣∣∣ ≤ β. By (15), and since ω(h) < β,∑
s∈Ω,b∈B N

h
s,bq(Ω | s, xλ, b) = π ≤ β + Cβ2. Hence,∣∣∣∣ q̃(t | s, b)qh(t | s, b)

− 1
∣∣∣∣ = q(Ω | s, xλ, b) ≤

β + Cβ2

Ns,b
≤ 2β
L′δ2

≤ β, (25)
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where the last inequality holds by provided Z0 is sufficiently large. By Fact 2, this yields∣∣∣1− q̃(t|s,b)
q(t|s,xλ,b)

∣∣∣ ≤ 3β, and by Fact 1 we get∣∣∣∣1− q(t | s, xλ, b)
q̃(t | s, b)

∣∣∣∣ ≤ 6β. (26)

Since q(t | s, xλ, b) = q̃(t | s, b) for each t /∈ Ω, one has, by (26) and (24)

∆s,b = Nh
s,b

∑
t∈Ω

(q̃(t | s, b)− q(t | s, xλ, b))vλ(t)

= Nh
s,b

∑
t∈Ω

(q̃(t | s, b)− q(t | s, xλ, b)) (vλ(t)− vλ(s))

≥ − |S|L′δ1λω − 6βNh
s,b

∑
t∈Ω0

q̃(t | s, b)(vλ(t)− vλ(s))

≥ − |S| (6β + 1)L′δ1λω − 6βNh
s,b

∑
t∈Ω

q̃(t | s, b)(vλ(t)− vλ(s)). (27)

By (27) and (23), ∑
s∈Ω,b∈B

∆s,b ≥ − |S|2 |B| (6β + 1)L′δ1λω − 12β|S|2λω ≥ −ελL′ (28)

Therefore, by plugging (28) into (20) and (20) into (19), one obtains by (A.ii)

Eh [vλ(sk)]−

vλ(s) +
∑

s∈Ω,b∈B
Ns,b

(
Eq(·|s,xλ,b) [vλ]− vλ(s)

) ≥ −2ελL′ − βC |S|ω(h).

The reverse inequality follows similarly.

6.2 The case of a single communicating set

In RSVb we study the case where there is a single communicating set Ω. Recall that in this case,
for every state t ∈ Ω there is a stationary strategy y(t) such that, for every initial state s ∈ Ω,
Es,xλ,y(t)[eΩ\{t}] ≤ λ−α1 .

We consider there a history h ∈ Tβ,δ2 , and denote by yh the empirical transition function along
h. Our goal is to construct a strategy τ such that (i) in most stages the mixed action played is y,
and (ii) under (xλ, τ), with high probability the realized number of visits to each state s is close to
Nh
s .

To be more precise, we define a partition {S1, S2, . . . , SK} that satisfies certain desirable prop-
erties. SK contains all states in S that are visited infrequently. Define nk =

∑
s∈Sk

Nh
s as the

number of visits to Sk along h. We then define a strategy τ that has K − 1 phases. Phase k lasts
nk stages, and in that phase we approximate the number of visits in Sk. Phase k is divided into
rounds: we first follow yh until the play leaves Sk, we then follow y(t), for an appropriately chosen
t ∈ Sk, until the play reaches t, and so on. The properties of the partition guarantee that (a) the
number of stages the play remains out of Sk in phase k is relatively small compared to the number
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of stages it spends in Sk, and (b) with high probability, the number of times each state in Sk is
visited is close to Nh

s .

We now state the result of RSVb formally.
Let h ∈ Tβ,δ2 . For ξ > 0 let Ωh = Ωh

ξ =
{
s ∈ Ω, Nh

s ≥ L′ξ
}

denote the set of frequently visited
states along h. In RSVb we construct a sequence of stopping times (ul)l≥0 and a sequence of
S-valued r.v.s (s̃l)l≥0 such that

1. s̃l is Hul
-measurable, for each l.

2. u0 = 0 and ul+1 = inf {n > ul : sn = s̃l} for each even l.

3. sn ∈ Ωh for each ul ≤ n < ul+1 for each odd l.

Those two sequences depend only on the history h, and not on the transitions in the game.
We then define a strategy τh as follows:

• For l even, τh coincides with y(s̃l) from ul to ul+1.

• For l odd, τh coincides with yh from ul to ul+1.

If exit from Ω occurs, τh coincides with a stationary strategy that minimizes at every state s
the quantity Eq(·|s,xλ,·) [vλ]. Observe that the sequences (ul)l≥0 and (s̃l)l≥0, and therefore also τh,
depend on ξ.

Set M∗
s = {n ≤ L′|sn = s, ul ≤ n < ul+1 for some odd l} , and N∗

s = |M∗
s|. Set M∗ = ∪s∈SM∗

s.
Set also M̃s = {n ≤ L′|sn = s, ul ≤ n < ul+1 for some even l} , and Ñs =

∣∣∣M̃s

∣∣∣
The results from Section 3 in RSVb translates in our setup into the following.

Theorem 17 For every ψ ∈ (0, 1− α1) and every β > 0 sufficiently small there exist ξ, κ, δ2, α0 ∈
(0, 1) and for every α ∈ (α0, 1) there exists Z0 ∈ N such that for every z ≥ Z0 and every history
h ∈ TL

′(z)
β,δ2

the strategy τh satisfies the following.

• Es,xλ(z),τ
h [B] ≤ L′ψ(z) where B = sup {l ≥ 0, ul ≤ L′}.

• For each s ∈ Ωh , Ps,xλ(z),τ
h(
∣∣N∗

s −Nh
s

∣∣ > 56C1βN
h
s ) ≤ 1

L′κ(z) .

Remark 18 The statement we provide here is different than the one in RSVb in two respects.
First, in RSVb transitions are independent of λ, whereas in our case they are. However, for the
result in RSVb it is sufficient to require that L′1−ψ is higher than the rate of mixing of the Markov
decision process induced by xλ, which is bounded by L′α1/α2

. Second, in RSVb there is an additional
parameter ε, which can always be set to min{β/56C1, 1/20C2

1 |S|2}.

In our framework, there may be several communicating sets. We will therefore modify the
transition function q(· | s, xλ, b) by conditioning on remaining in Ω.
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6.3 On typical histories

In this section we prove the next result.

Proposition 19 For each h ∈ Tβ,δ2, such that (i) ω(h) < β, and (ii) the play along h remains in
the same communicating set, there exists a strategy τh such that∣∣∣∣∣Eh [ρ̂]−Es,xλ,τh

[
1
L′

L′∑
n=1

r̃λ(sn, xλ,yn)

]∣∣∣∣∣ ≤ ε/4, and

Eh [vλ(sL′+1)] ≥ Es,xλ,τh [vλ(sL′+1)]− (8 + |S|)ελL′ − λω − 6βCω(h).

The rest of the section is devoted to the proof of this Proposition. We first construct a strategy
τh. We then prove that it satisfies the requirements.

Let Ω be the communicating set that contains s1 = s. Recall that for every t ∈ Ω there is a
stationary strategy y(t) such that Es,xλ,y(t)[eΩ\t] ≤ 1/λα1 and Ps,xλ,y(t)(eΩ = eΩ\t) ≤ λα2 .

To invoke Theorem 17, we now modify the transitions by conditioning on remaining in Ω.
For s ∈ Ω, let B(s) = {b ∈ B, q(Ω | s, xλ, b) > 0}. For b ∈ B(s), define q̃λ(· | s, b) to be the
distribution q(· | s, xλ, b), conditional on Ω: q̃λ(t | s, b) = q(t | s, xλ, b)/q(Ω | s, xλ, b) for every
t ∈ Ω. For b /∈ B(s), the definition of q̃λ(· | s, b) ∈ ∆(Ω) is arbitrary. For every y ∈ ∆(B)
define q̃λ(· | s, y) =

∑
b∈B ybq̃λ(· | s, b). Let Vs ⊆ ∆(S) be the convex hull of the finite set

{q̃λ(· | s, b), b ∈ B}.
Let (ul)l≥0 and (s̃l)l≥0) be the sequences defined in section 6.2 w.r.t. q̃λ. Define a strategy τh

as follows. If the play ever leaves Ω, τh is defined arbitrarily. As long as the play remains in Ω, τh

is defined as follows.

• For l even, τh coincides with y(s̃l) from ul to ul+1.

• For l odd, τh coincides with yh from ul to ul+1.

Define M∗ and N∗
s as in Section 6.2.

Lemma 20 The following implication holds on Tβ,δ2 ∩ {ω(h) < β}, for each s, t ∈ Ω:

Nh
s max{q(t | s), q̃λ(t | s, yh)} ≥ L′δ

⇒
∣∣∣∣1− q(t | s)

q̃λ(t | s, yh)

∣∣∣∣ ≤ 3β |B| . (29)

Proof. Let s, t ∈ Ω, b ∈ B be given, and assume Nh
s max{q(t | s), q̃λ(t | s, yh)} ≥ L′δ. Since

h ∈ Tβ,δ2 , if Nh
s,b max{q(t | s, b), q(t | s, xλ, b)} ≥ L′δ2 , then

∣∣∣1− q(t|s,b)
q(t|s,xλ,b)

∣∣∣ ≤ β. By Lemma 5 and
since δ2 > δ we have ∣∣∣∣1− q(t | s)

q(t | s, xλ, yh)

∣∣∣∣ ≤ β |B| . (30)

We conclude by following closely the proof of (25). Since ω(h) < β, we likewise obtain Nh
s q(Ω |

s) ≤ β. Hence, by Fact 1,∣∣∣∣1− q̃λ(t | s, yh)
q(t | s, xλ, yh)

∣∣∣∣ = ∣∣∣∣1− 1
q(Ω | s, yh)

∣∣∣∣ ≤ 2β. (31)
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The result follows by (30) and (31), using Fact 2.

For every initial state s ∈ Ω and every strategy τ , let P̃s,τ be the probability distribution over
plays under the pair of strategies (xλ, τ), when the transition rule is q̃λ (rather than q). Let Ẽs,τ be
the corresponding expectation operator. Recall that, for t ∈ Ω, the stationary strategy y(t) satisfies
Es,xλ,y(t)

[
eΩ\t

]
≤ 1

λα1 and Ps,xλ,y(t)(eΩ = eΩ\t) ≤ λα2 . Under P̃s,τ , the expected time to leave Ω\t
is higher since the play bounces back to Ω in case seΩ\t /∈ Ω. Letting M := sups∈Ω Ẽs,y(t)

[
eΩ\t

]
,

one has the following identity

M ≤ Es,xλ,y(t)

[
M1eΩ=eΩ\t

+ eΩ\t

]
, hence M ≤ 1

λα1(1− λα2)
≤ 2
λα1

.

Lemma 21 On Tβ,δ2 ∩ {ω(h) < β} one has

Ps,xλ,τh(eΩ − 1 /∈ M∗) ≤ ελL′. (32)

Proof. Let an even l be given. Since sn ∈ Ωh for every n such that ul ≤ n < ul+1 for l odd,
and since Ps,xλ,y(t)(eΩ < min{ul+1, L

′ + 1} | eΩ ≥ ul) < λα2 , it follows by (A.iii) that

Ps,xλ,τh(ul < eΩ ≤ min(ul+1, L
′ + 1) for some even l) ≤ λα2 × Ẽs,xλ,τh [B] ≤ λα2L′ψ.

and (32) follows.

Proposition 22 On Tβ,δ2 ∩ {ω(h) < β} one has

Eh [vλ(sL′+1)]−Es,xλ,τh [vλ(sL′+1)] ≥ −(11 +
2
η0

+ |S|)ελL′ − 6βCω(h) + ε |S|λL′ − λω − λ |S|L′ξ.

Proof. We shall apply Theorem 17 to the transitions q̃λ. By Lemma 20, h is (3β |B| , δ)-typical.
We enrich the probability space to allow for the following construction. Whenever n ∈ M∗ (so that
sn ∈ Ωh), a random device selects a (fictitious) state s ∈S, according to q(·|sn, xλ, yh). Denote by
P̂s,τh the probability distribution over the larger probability space. Thus, the marginal of P̂s,τh

over the set of regular histories coincides with P̃s,τh . For n ≤ L′, set Zn = 1s/∈Ω and Y t
n = 1s=t for

t /∈ Ω. For n > L′, set Y t
n = 0. Let θ = inf {n ∈ M∗ : Zn = 1}. By construction and (32),∣∣∣Ps,xλ,τh(eΩ − 1 ∈ M∗, seΩ = t)− P̂s,τh(Y t

θ
= 1)

∣∣∣ ≤ ελL′. (33)

Define the final state ŝL′+1 by

ŝL′+1 =
{

t if Y t
θ

= 1
sL′+1 otherwise

.

Thus, it is the true final state if the auxiliary random device never chooses to exit from Ω, and the
exit state otherwise. By (33),∣∣∣Es,xλ,τh [vλ(sL′+1)]− Ês,τh [vλ(ŝL′+1)]

∣∣∣ ≤ ε |S|λL′ + λω. (34)
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We shall use a decomposition formula for Ês,τh [vλ(ŝL′+1)] that is similar to Lemma 15. Given a

sequence h̃ = (s̃1, ..., s̃L′ , s̃L′+1), we let P̂h̃
s,τh be the law of the process that evolves as in section

6.1: at stage l, the process moves to s̃l+1 and the auxiliary device chooses a state according to
q(·|s̃l, xλ, yh). It is straightforward to check that

Ês,τh [vλ(ŝL′+1)] =
∑
h̃

P̂s,τh(h̃)Êh̃
s,τh [vλ(ŝL′+1)] . (35)

Let T1 be the event consisting of histories such that∣∣∣N∗
s −Nh

s

∣∣∣ ≤ βNh
s for each s ∈ Ωh. (36)

By Theorem 17, and since 1
L′κ < ελL′ < β, P̂s,xλ,τh(T1) ≥ 1− ελL′.

Let h̃ ∈ T1. Plainly,

ω̃(h̃) := P̂h̃
s,τh(θ ≤ L′) = 1−

∏
l∈M∗

q(Ω|s̃l, xλ, y) (37)

and, for t /∈ Ω,

P̂h̃
s,τh(Y t

θ
= 1) = 1−

∑
l∈M∗

q(t|s̃l, xλ, y)
∏

p∈M∗,p<l

q(Ω|s̃p, xλ, y).

Since h̃ ∈ T1, one has by (36)

ω̃(h̃) ≤
∑
s∈Ωh

N∗
sq(Ω|s, xλ, y) ≤ (1 + β)

∑
s∈Ωh

Nh
s q(Ω|s, xλ, y) ≤ C(1 + β)2ω(h) ≤ Cβ(1 + β)2.

By Lemma 18 in RSVa, ∣∣∣∣∣∣ω̃(h̃)−
∑
s∈Ωh

N∗
sq(Ω|s, xλ, y)

∣∣∣∣∣∣ ≤ Cω̃(h̃)2.

By the triangle inequality,∣∣∣∣∣∣ω̃(h̃)−
∑
s∈Ωh

Nh
s q(Ω|s, xλ, y)

∣∣∣∣∣∣ ≤ Cω̃(h̃)2 + βCω(h)(1 + β)

≤ βCω(h)
(
1 + β + (1 + β)2

)
. (38)

We next use the following variant of Lemma 16.

Lemma 23 Assume h̃ ∈ Tβ,δ2 and ω̃(h̃) < β. Then∣∣∣∣∣∣Êh̃
s,τh [vλ(ŝL′+1)]−

vλ(s) +
∑
s∈Ωh

N∗
s

(
Eq(·|s,xλ,y

h) [vλ]− vλ(s)
)∣∣∣∣∣∣

≤
∑
s∈Ω

Ñsq(Ω|s, xλ,yh̃) + 2ελL′ + βC|S|ω̃(h̃),

where yh̃s is the empirical distribution of player 2’s moves in the stages of M̃s.
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Proof. We establish only the lower bound on Êh̃
s,τh [vλ(ŝL′+1)], since all arguments are symmet-

ric. The proof follows closely the proof of Lemma 16. We limit ourselves to pointing out the main
differences. One minor difference is that bj is replaced by y. This saves all the summations that
involve b ∈ B. In the first summations, q(Ω|sj , xλ, yh) is replaced by 0 whenever j /∈ M∗. The first
important difference arises in the definition of q̃(·|s). For s ∈ Ωh, we adapt the previous definition
to

q̃(t | s) =
{
q(t | s, xλ, y) for t /∈ Ω
q(Ω | s, xλ, y)qh(t | s) for t ∈ Ω

.

For the visits to s corresponding to the stages in M̃s, we set q̃(·|s) = qh(·|s). This modification
affects the estimate on ∆s (after inequality (26)), which now becomes

∆s = Ñs

∑
t∈S

(q̃(t | s)− q(t | s, xλ,yh̃))vλ(t)

= Ñs

∑
t∈S

(
q̃(t | s)− q(t | s, xλ,yh̃)

)
(vλ(t)− vλ(s))

≥ − |S|L′δ1λω − Ñsq(Ω|s, xλ,yh̃)− 6βÑs

∑
t∈Ω0

q̃(t | s)(vλ(t)− vλ(s))

The remaining part is identical.

We now conclude the proof of Proposition 22. For h̃ ∈ T1 ∩ Tβ,δ2 , one has, by Lemma 23 and
(36), ∣∣∣∣∣∣Êh̃

s,τh [vλ(ŝL′+1)]−

vλ(s) +
∑
s∈Ωh

Nh
s

(
Eq(·|s,xλ,y) [vλ]− vλ(s)

)∣∣∣∣∣∣
≤ 2ελL′ + βC|S|ω̃(h̃) + βλL′ +

∑
s∈Ω

Ñsq(Ω|s, xλ,yh̃)

≤ 3ελL′ + 5βC|S|ω(h) +
∑
s∈Ω

Ñsq(Ω|s, xλ,yh̃). (39)

We next apply Lemma 16. For s /∈ Ωh, one has Nh
s

(
Eq(·|s,xλ,y) [vλ]− vλ(s)

)
≥ −(1 + ε)λNh

s .
Therefore, by (39),

Eh [vλ(sL′+1)] ≥ Êh̃
s,τh [vλ(ŝL′+1)]− 5ελL′ − 6βC|S|ω(h)−

∑
s∈Ω

Ñsq(Ω|s, xλ,yh̃). (40)

Since ω̃(h̃) ≤ 2Cβ for each h̃ ∈ T1, and by Lemma 21, one has for each set T of histories,

Ps,xλ,τh(T1 ∩ T ) ≥ (1− 2Cβ − ελL′)P̃s,τh(T1 ∩ T ). (41)

Choosing for T the set T β,δ2 (of non-typical histories) and using Ps,xλ,τh(T β,δ2) ≤ ελL′, one gets
P̃s,τh(T1 ∩ T β,δ2) ≤ 2ελL′. Since P̃s,τh(T1) ≥ 1− ελL′, this yields P̃s,τh(T1 ∩ Tβ,δ2) ≥ 1− 3ελL′.

We shall proceed below to the summation of (40) over h̃. It is convenient to enrich further the
probability space and to add a random device that, for each stage n /∈ M∗, takes the value 1 with
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probability q(Ω|sn, xλ, bn). Let ω̂(h̃) the P̂h̃
s,τh-probability that this device takes the value 1 before

stage θ. Thus,
∑

h̃
P̃s,τh(h̃)ω̂(h̃) = Ps,xλ,τh(eΩ − 1 /∈ M∗) ≤ ελL′. In particular,

P̃s,τh(h̃ : ω̂(h̃) >
η0

2
) ≤ 2

η0
ελL′. (42)

Next, observe that for each history h̃ such that ω̃(h̃) ≤ 2β and ω̂(h̃) ≤ η0
2 , one has

∑
s∈Ω Ñsq(Ω|s, xλ,yh̃) ≤

2ω̂(h̃), by the choice of η0 and Lemma 19 in RSVa. Since ω̃(h̃) ≤ 2β on T1 ∩ Tβ,δ2 , by (41) and
(42), one obtains

Ês,τh

[∑
s∈Ω

Ñsq(Ω|s, xλ,yh̃)

]
≤ (3 +

2
η0

)ελL′ + 2Ês,τh

[
ω̂(h̃)

]
≤ (5 +

2
η0

)ελL′.

The result follows.

Lemma 24 On Tβ,δ2 ∩ {ω(h) < β} one has∣∣∣∣∣Es,xλ,τh

[
1
L′

L′∑
n=1

r̃λ(sn, xλ,yn)

]
− 1
L′

∑
s∈Ω

Nh
s r̃λ(s, xλ, y)

∣∣∣∣∣ ≤ 3ω(h) + 3β + ελL′.

Proof. Using the notations of the proof of Lemma 21, one has∣∣∣∣∣
L′∑
n=1

r̃λ(sn, xλ,yn)−
∑
s∈Ω

Nh
s r̃λ(s, xλ, y)

∣∣∣∣∣ ≤ 3βL′ on T1. (43)

Since ∣∣∣∣∣Ẽs,τh

[
L′∑
n=1

r̃λ(sn, xλ,yn)

]
−Es,xλ,τh

[
L′∑
n=1

r̃λ(sn, xλ,yn)

]∣∣∣∣∣ ≤ L′Ps,xλ,τh(eΩ ≤ L′ + 1)

and since P̃s,xλ,τh(T1) ≥ 1− ελL′, the result follows from (43), using Lemma 21.

6.4 Proof of C2

The following is a corollary of Proposition 19 and the ελ-optimality of xλ.

Corollary 25 For each h ∈ Tβ,δ2 such that ω(h) < β one has

Eh
[
λL′ρ̂+ (1− λL′)vλ(sL′+1)

]
≥ vλ(s)−

(
ε

4
+ ε

)
λL′ − Cβω(h).

Define

θ1 = inf
{
n ≥ 1,hn /∈ Tnβ,δ2

}
, θ2 = L′ + 1, θ3 = inf {n ≥ 1, ω(hn) ≥ β} ,

and θ = min{θ1, θ2, θ3, eΩ}. Set Z1 = λθρ̃ + (1 − λθ)vλ(sL′+1), where ρ̃ = ρ̂ if θ = θ2, and ρ̃ = 1
otherwise. Recall that H(θ) is the set of atoms of Hθ such that θ < eΩ.
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Lemma 26 For each h = (s1, b1, ..., sk+1) ∈ H(θ), one has

Eh [Z1] ≥ vλ(s)− 2βCω(h)−
(
ε+

ε

4

)
λL′ − 2(1− ω(h))1h/∈Tk+1

β,δ2

. (44)

Proof. Case 1: h is such that θ = θ1 < θ3. In that case, h /∈ T k+1
β,δ2

, and 1−ω(h) ≥ 1−β ≥ 1/2.
Therefore, 2(1− ω(h))1h/∈Tk+1

β,δ2

≥ 1, and (44) holds since Z1 ≥ 0 and vλ(s) ≤ 1.

Case 2: h is such that θ = θ2 < min{θ1, θ3}. Thus, h ∈ TL′+1
β,δ2

= Tβ,δ2 and ω(h) < β. The claim
then follows by Corollary 25.

Case 3: h is such that θ = θ3.
Let hk = (s1, b1, . . . , sk) the restriction of h to the first k stages. By definition of θ3, one has

ω(hk) < β and hk ∈ T kβ,δ2 . By Lemma 16, one has

Ehk [vλ(sk)] ≥ vλ(s) +
∑
s∈Ω

Nhk
s

(
Eq(·|s,xλ,y) [vλ]− vλ(s)

)
− 2ελL′ − βCω(h).

By the ελ-optimality of xλ (see (4)),

Eq(·|s,xλ,b) [vλ]− vλ(s) ≥ −λ(1 + ε), for every s ∈ Ω,

so that
Ehk [vλ(sk)] ≥ vλ(s)− (1 + 3ε)λL′ − βC|S|ω(hk). (45)

We now compare Eh [vλ(sk+1)] to Ehk [vλ(sk)]. Plainly,

Eh [vλ(sk+1)] = Ehk [vλ(sk)] + (1− ω(hk))
(
Eq(·|sk,xλ,bk) [vλ]− vλ(sk)

)
≥ Ehk [vλ(sk)]− λ(1 + ε). (46)

Finally, note that Eh [Z1] ≥ Eh [vλ(sL′+1)]− λL′, hence by (45) and (46),

Eh [Z1] ≥ vλ(s)− 2λL′ − βC|S|ω(h) ≥ vλ(s)− 2βCω(h),

where the second inequality obtains since ω(h) ≥ β and (A.iv).

For notational ease, set Yj := λL′ρ̂j + (1− λL′)vλ(s(j+1)L′+1).

Corollary 27 One has

Es,xλ,τ [Y1] ≥ vλ(s)−
(

5ε+
ε

4

)
λL′ − 2β(C + 1)Ps,xλ,τ (eΩ ≤ L′ + 1). (47)

Proof. By summing over h, one obtains, by Lemmas 15 and 26 and Proposition 11,

Es,xλ,τ [Z1] ≥ vλ(s)− 2βCPs,xλ,τ (eΩ ≤ L′ + 1)−
(
ε+

ε

4

)
λL′

− 2Ps,xλ,τ (θ1 ≤ L′ + 1)

≥ vλ(s)− 2βCPs,xλ,τ (eΩ ≤ L′ + 1)−
(

3ε+
ε

4

)
λL′. (48)

23



We now compare Es,xλ,τ [Z1] and Es,xλ,τ [Y1], by discussing according to θ.
Since ρ̂ = 1 whenever θ = eΩ, by using the ελ-optimalilty of xλ, one has

Es,xλ,τ [Y1 | Hθ] ≥ λθρ̂+ (1− λθ)vλ(sθ)− ελL′ on the event θ = eΩ.

By Proposition 11, the probability of θ = θ1 is at most ελL′, and Z1 = Y1 if θ = θ2. It re-
mains to compare Es,xλ,τ [Y11E ] and Es,xλ,τ [Z11E ], where E = {θ = θ3 < min(θ1, θ2, eΩ)}. Since
Es,xλ,τ [Y1|Hθ] ≥ Es,xλ,τ [Z1|Hθ]− λ(1 + ε)L′ on E, one obtains

Es,xλ,τ [Y11E ] ≥ Es,xλ,τ [Z11E ]− 2λL′Ps,xλ,τ (E).

On the other hand,

Ps,xλ,τ (E) ≤
∑

h∈H(θ),θ=θ3

p(h) ≤
∑

h∈H(θ),θ=θ3

p(h)
1− ω(h)

≤ 1
β

∑
h∈H(θ),θ=θ3

p(h)
1− ω(h)

ω(h) ≤ 1
β

∑
h∈H(θ)

p(h)
1− ω(h)

ω(h)

≤ 1
β
Ps,xλ,τ (eΩ ≤ L′ + 1).

By (A.iv) λL′ ≤ β2, hence

Es,xλ,τ [Y11E ] ≥ Es,xλ,τ [Z11E ]− 2λL′

β
Ps,xλ,τ (eΩ ≤ L′ + 1)

≥ Es,xλ,τ [Z11E ]− 2βPs,xλ,τ (eΩ ≤ L′ + 1).

It follows that
Es,xλ,τ [Y1] ≥ Es,xλ,τ [Z1]− 2βPs,xλ,τ (eΩ ≤ L′ + 1)− 2ελL′.

The result follows, using (48).

Set χn = 1 if sn and sn+1 belong to different communicating sets, and χn = 0 otherwise.
Inequality (47) extends to

Es,xλ,τ

[
Yj+1 | H1

jL′+1

]
≥ vλ(sj)−

(
5ε+

ε

4

)
λL′ − 2β(C + 1)Es,xλ,τ

 (j+1)L′∑
n=jL′+1

χn | H1
jL′+1

 .

By taking expectations and summing over k, and since β = ελL, this yields

Es,xλ,τ [λLr̂ + (1− λL)vλ(sL+1)] ≥ vλ(s)−
(

5ε+
ε

4

)
λL− 2εMα(C + 1)λL,

and C2 follows by the choice of ε.
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A Proof of Theorem 6

A.1 Markov chains with rare transitions

We recall few basic facts on Markov chains with rare transitions. For more details, we refer to
Catoni (1999). These tools have already been of use in the analysis of stochastic games, see for
instance Vieille (2000) and Solan and Vieille (2002).

Let (S, v) be a irreducible Markov chain with semi-algebraic transitions; that is, v = (vλ)λ>0

is a family of irreducible transition functions over S such that for every s, t ∈ S, the function
λ 7→ vλ(t | s) is a semi-algebraic function of λ.

Denote by eC := eC the first hitting time of C. For each λ > 0 we denote by Qvλ
s (· | C) the

distribution of seC (the exit law) and by Xvλ
s (C) = Es [eC ] the expected exit time. Observe that

for fixed C and s, the functions Qvs : λ 7→ Qvλ
s (· | C) and Xv

s : λ 7→ Xvλ
s (C) are semi-algebraic.

For every semi-algebraic function f we denote by df its degree.
An important notion is that of a cycle. The definition we provide below differs from the standard

one (see Catoni (1999, Definition 6), or Vieille (2000, Lemma 6)), but is easily seen to be equivalent.

Definition 28 A subset C of S is a cycle if (i) dXv
s (C) is independent of s ∈ C (it is denoted by

dXv(C)), and (ii) −dXv
s (C) > −dXv

s (D) for every proper subset D of C and every s ∈ D.

Since (s, v) is irreducible, S is a cycle. By convention, each singleton is a cycle. The set of all
cycles w.r.t. (S, v) is denoted by C(v).

If C is a cycle, then limλ→0 Qvλ
s (· | C) is independent of s ∈ C (see Catoni (1999, Proposition

9), or Vieille (2000, Lemma 5)). The limit is denoted by Qv(· | C). The boundary of a cycle C is
the set B(C) = supp(Qv(· | C)), and is disjoint of C.

The set of cycles, ordered by inclusion, has a tree structure: if two cycles intersect, then one of
them is a subset of the other (see Catoni (1999, Proposition 7) or Vieille (2002)).

The set of all cycles is denoted by C(v), and, to emphasize their relation to v, we call them
v-cycles. Finally, we denote C∗(v) = {C ∈ C(v) | −dXv(C) ≥ 1}.

A.2 Maximal communicating sets

Every stationary strategy y of player 2 defines naturally an irreducible Markov chain (S, y) with
semi-algebraic transitions:

yλ(t | s) = (1− λ2)q(t | s, xsλ, ys) + λ2/|S|.

We identify each stationary strategy with the corresponding Markov chain.
Since the number of pure stationary strategies is finite, there exists α0 < 1 such that for every

pure stationary strategy y and every y-cycle C, −dXy(C) < α0 or −dXy(C) ≥ 1.
Let α2 ∈ (0, 1−α0) be sufficiently small so that α2 < dXy

s (C)− dXy(C) for every pure stationary
strategy y, every y-cycle C, and every s ∈ C.

Let α1 ∈ (1− α2, 1) be arbitrary.
Let G be the non-directed graph with vertex set S, for which (s, s′) is an edge of G if and

only if there exists a pure stationary strategy y and a y-cycle C such that (i) s, s′ ∈ C, and (ii)
−dXy(C) < α.
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Definition 29 The maximal communicating sets (MC sets for short) are the connected components
of G. The class of all MC sets is MC.

The following lemma states that there is a pure stationary strategy y such that for every MC-set
C and every proper subset D of C, the process reaches D in much fewer than 1/λ stages. It proves
the first assertion of Theorem 6.

Lemma 30 Let C ∈MC, and let D be a proper subset of C. There exists pure stationary strategy
y, such that for every s ∈ C and every λ > 0 sufficiently small,

1. Es,xλ,y[eC∪D] < 1/λα1, and

2. Ps,xλ,y

[
eC < eD

]
< λα2.

Proof. Let C1, . . . , Cp = D be a collection of subsets of C such that (i) For i < p, Ci ∈ C(yi), for
some pure stationary strategy yi, (ii) For every i < p there is j, i < j ≤ p, such that Ci∩Cj 6= ∅, (iii)
∪pi=1Cp = C. Define y as follows. (a) If s ∈ D, ys is defined arbitrarily. (b) For s ∈ C \D ⊆ ∪p−1

i=1Ci,
let js be the maximal index such that s ∈ Cjs . Then ys = ysji .

By definition, and since α1 > α ≥ dX(Ci), i = 1, . . . , p− 1, Es,xλ,y[eC ∪ (∪pi=js+1Cj)] ≤ 1/|S|λα1

for every λ sufficiently small. Claim (1) follows.
By Aldous and Fill (2002, Corollary II.10), and by the choice of α2,

Ps,xλ,y(eC < eCjs
) ≤ λα2/|S|.

Claim (2) follows.

A.3 Number of visits to MC sets

In this section we prove the second assertion of Theorem 6.
We set C∗ = ∩yC∗(y), where the intersection is over all pure stationary strategies y. C∗ contains

all subsets C such that, whatever player 2 plays, the expected time to leave C is at least O(1/λ).
For every L ∈ N denote by

W (L) = |{n < L | sn ∈ C, sn+1 6∈ C for some MC-set C}|

the number of exits from MC-sets.
The following two lemmas are proven for pure stationary strategies y of player 2. It is not

difficult to deduce that they hold for every strategy τ of player 2 as well.

Lemma 31 There exist a constant M and λ0 > 0 such that

Es,xλ,y

[
W ( min

C∈C∗(y)
eC)
]
≤M,

for every pure stationary strategy y, every initial state s, and every λ ∈ (0, λ0).

Proof. Fix a pure stationary strategy y of player 2. We introduce a directed graph G with
vertex set C(y), and with an edge C → C ′ if and only if C /∈ C∗(y) and B(C) ∩ C ′ 6= ∅ (recall
that B(C) is the principal boundary of C). By definition of C(y), this graph has the following
property: given C /∈ C∗(y), there is a path joining C to C∗(y). Therefore, the probability that
W (minC∈C∗(y) eC) ≤ |S| is strictly positive, for each s ∈ S. The result follows.
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Lemma 32 There exists a constant M > 0 such that for every α ∈ (1− α2, 1), every initial state
s, every pure stationary strategy y, and every λ > 0 sufficiently small,

Es,xλ,y[#{n ≤ 1/λα | sn, sn+1 belong to different MC-sets, and sn ∈ C∗] ≤Mλ1−α.

Proof. Fix a pure stationary strategy y and a set C ∈ C∗(y). To prove the claim, it is sufficient
to show that for some constant M > 0,

Ps,xλ,y(eC < 1/λα) ≤Mλ1−α, (49)

for every λ sufficiently small and every s ∈ C. Indeed, (49) implies that the expected number of
exits from C until stage 1/λα is bounded by 3λ1−α/(1− λ1−α)2.

Let q > 0, and assume that there is s ∈ C such that Ps,xλ,y(eC < 1/λα) ≥ q. We show that
q ≤ Mλ1−α, for some constant M . Since C ∈ C∗(y), Et,xλ,y[eC\{s}] < 1/λ1−α2 , hence by Markov
inequality Pt,xλ,y(eC\{s} ≥ 1/λα) ≤ λα−(1−α2) for every t ∈ C. In particular, Pt,xλ,y(eC < 2/λα) ≥
q(1− λα−(1−α2)), so that

a/λ ≤ Et,xλ,y[eC ] ≤ 2
λαq(1− λα−(1−α2))

,

where M is determined by the leading non-zero coefficient of the expansion of dXy(C). It follows
that q ≤ 3aλ1−α1 , as desired.

B Reminder on zero-sum games

The purpose of this section is to provide a slight modification of a result due to Mertens and
Neyman (1981, hereafter MN), that we will use. We let λ 7−→ wλ be a RS-valued semi-algebraic
function, and w = limλ→0wλ.

Let ε > 0, Z ≥ 0 and two functions λ : (0,+∞) → (0, 1) and L : (0,+∞) → N be given. Set
δ = ε/48. Assume that the following conditions are satisfied for every z ≥ Z, every |η| ≤ 4 and
every s ∈ S:

C1 |wλ(s)− w(s)| ≤ 4δ;

C2 4L(z) ≤ δz;

C3 |λ(z + ηL(z))− λ(z)| ≤ δλ(z)

C4
∣∣wλ(z+ηL(z))(s)− wλ(z)(s)

∣∣ ≤ 4δL(z)λ(z)

C5
∫∞
Z λ(z)dz ≤ 4δ.

Mertens and Neyman (1981) note that C1-C5 hold for Z large enough, in each of the next two
cases:

Case 1 λ(z) = z−β and L(z) = dλ(z)−αe,6 where α ∈ (0, 1) and β > 1 satisfy αβ < 1;
6For every c ∈ R, dce is the minimal integer greater than or equal to c.
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Case 2 L(z) = 1 and λ(z) = 1/z(ln z)2.

Let (r̂k)k∈N be a [0, 1]-valued process defined on the set of plays. Define recursively processes
(zk), (Lk) and (Bk) by the formulas

z0 = Z,B0 = 1,
λk = λ(zk), Lk = L(zk), Bk+1 = Bk + Lk,

zk+1 = max

Z, zk + λk

Lkr̂k − ∑
Bk≤n<Bk+1

wλk
(sn)

+
ε

2

 .

Let (Ik) be an integer-valued process, where Ik is H1
Bk−1

-measurable that satisfies

Es,σ,τ [
∑
j≤k

Ij ] ≤M +M ×Es,σ,τ

∑
j≤k

λjLj , ∀s ∈ S, σ, τ, (50)

for some constant M . This process does not appear in Mertens and Neyman’s (1981) formulation.

Theorem 33 Let (σ, τ) be a strategy pair. Assume that for every k ≥ 0,

Es,σ,τ

[
λkLkr̂k + βIk + (1− λkLk)wλk

(sBk+1
)|H1

Bk

]
≥ wλk

(sBk
)− ε

12
λkLk, (51)

where β ∈ (0, δ/4M). Then there exists N0 ∈ N, independent of (σ, τ), such that the following
holds for every n ≥ N0:

Es,σ,τ

 1
n

n∑
p=1

R̂n

 ≥ w(s)− 2ε, (52)

where R̂n = r̂k whenever Bk ≤ n < Bk+1. Moreover,

Es,σ,τ

[ ∞∑
k=1

λkLk

]
< +∞. (53)

The result also holds when replacing in (51) and (52) ≥ by ≤, and the ‘+’ sign on the right-hand
side by a ‘-’ sign.

Proof. This statement differs from the statement in MN through the additional process Ik.
To handle the term βIk on the left-hand side of (51), it is enough to introduce the following

changes in MN. First, add βIk in Lemmas 3.4 and 3.5 in MN. Second, define Yk as Yk = lk −
tk + β

∑
j≤k Ij . The proof of Proposition 3.6 in MN goes as follows. By definition Yk − Y0 =

lk − tk − l0 + t0 + β
∑

j≤k Ij . As payoffs are between 0 and 1, and by (50),

E[Yk − Y0] ≤ 2 + βE[
∑
j≤k

Ij ] ≤ 3 + βME[
∑
j≤k

λjLj ].
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On the other hand, by Lemma 3.5 in MN,

E[Yk − Y0] ≥ δE[
∑
j≤k

λjLj ].

Since δ − βM ≥ 3δ/4, we get E[
∑

j≤k λjLj ] ≤ 4/δ. Letting k go to infinity,

E[
∑
j≤∞

λjLj ] ≤ 4/δ.

This proves (c) in Proposition 3.6 of MN. Moreover, it implies that (E[Yk])k≥0 is uniformly bounded.
By the martingale convergence Theorem (see, e.g., Billingsley (1995, Theorem 35.5)) the submartin-
gale (Yk) converges a.s. to Y∞, and E[Y∞] ≤ 4/δ. The rest of the proof is as in MN.
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