
Ely, Jeffery C.; Sandholm, William H.

Working Paper

Evolution with Diverse Preferences

Discussion Paper, No. 1317

Provided in Cooperation with:
Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Ely, Jeffery C.; Sandholm, William H. (2001) : Evolution with Diverse Preferences,
Discussion Paper, No. 1317, Northwestern University, Kellogg School of Management, Center for
Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221671

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221671
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Evolution with Diverse Preferences*

Jeffrey C. Ely
Department of Economics
Northwestern University

2003 Sheridan Road
Evanston, IL  60208

ely@nwu.edu

William H. Sandholm
Department of Economics

University of Wisconsin
1180 Observatory Drive

Madison, WI  53706
whs@ssc.wisc.edu

www.ssc.wisc.edu/~whs

First Version: March 16, 2000

This Version: April 10, 2001

                                                
* We thank Drew Fudenberg, Josef Hofbauer, Larry Samuelson, and Jörgen Weibull, as well as
seminar audiences at the Stockholm School of Economics and at Wisconsin for their comments.
Financial support from NSF Grants SBR-9810787 (Ely) and SES-0092145 (Sandholm) is gratefully
acknowledged.



Abstract

We introduce best response dynamics for settings where
players' preferences are diverse.  Under these dynamics,
which are defined on the space of Bayesian strategies, rest
points and Bayesian Nash equilibria are identical.  We prove
the existence and uniqueness of solution trajectories to these
dynamics, and provide methods of analyzing the dynamics
which are based on aggregation.  Finally, we apply these
techniques to prove a dynamic version of Harsanyi's (1973)
purification theorem.
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1.  Introduction

 We study best response dynamics for populations with diverse preferences.  In
this setting, a population's behavior is described by a Bayesian strategy:  a map from
preferences to distributions over actions.   Our dynamics are defined on the space of
Bayesian strategies; the rest points of the dynamics are precisely the Bayesian
equilibria of the diverse preferences game.  We prove the existence and uniqueness
of solutions trajectories of these dynamics.  We then characterize the dynamic
stability of Bayesian equilibria using aggregate dynamics defined on the simplex,
making it possible to determine the stability of Bayesian equilibria using standard
dynamical systems techniques.
 We offer three motivations for this study.  First, we feel that in interactions
involving large populations, one should not expect each individual to evaluate
payoffs in precisely the same way.  Therefore, in constructing evolutionary models,
it seems more realistic to explicitly allow for diversity in preferences.  We shall see
that doing so eliminates pathological solution trajectories which can arise under
best response dynamics when preferences are common.
 A second motivation for our study is to provide foundations for models of
preference evolution.  Briefly, these models address the natural selection of
preferences in populations where preferences are diverse.1  Selection of preferences
is mediated through behavior, as the preferences which survive are those which
induce the fittest behavior.  By providing tools for analyzing behavior under diverse
preferences, this paper provides the groundwork for studying competition between
the preferences themselves.2

 Our third and most important motivation is to provide methods for the
evolutionary analysis of Bayesian games.  Nearly all work in evolutionary game
theory has considered games with complete information.  At the same time, the
proliferation of game theory in applied economic analysis is in large part due to its
deft handling of informational asymmetries; in this development, games of
incomplete information have played a leading role.  In offering evolutionary
techniques for studying Bayesian games, we are hopeful that the insights of
evolutionary game theory can be brought to bear more broadly in applied work.

                                                
1  Examples include Güth and Yaari (1992), Ely and Yilankaya (1997), and Sandholm (1998).
2  For  further discussion of preference evolution, see Section 8.
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 We consider a population of individuals who are repeatedly randomly matched
in pairwise interactions.  Unlike in the standard evolutionary model, different
individuals in our model evaluate payoffs using different payoff matrices.  W e
assume that the subpopulation of players with any given payoff matrix is of
negligible size relative to the population as a whole.
 A complete description of behavior is given by a Bayesian strategy:  a map which
specifies the distribution of actions played in each subpopulation.  The appropriate
notion of equilibrium behavior is provided by Bayesian equilibrium, which requires
that each subpopulation play a best response to the aggregate behavior of the
population as a whole.  
 Our goal is to model the evolution of behavior in a diverse population in a
plausible and tractable way.  To do so, we build on the work of Gilboa and Matsui
(1991), who introduced the best response dynamics for the common preference
setting.  Under their dynamics, the distribution of actions in a population always
adjusts towards some best response to current behavior.  To define our Bayesian best

response dynamics, we require instead that the distribution of actions within each
subpopulation adjust towards that subpopulation's current best response.

To complete the definition of the Bayesian dynamics, we must specify a notion of
distance between Bayesian strategies.3  We find it convenient to use the     L

1 norm,
which measures the distance between two Bayesian strategies as the average change
in the subpopulations' behaviors.  We establish that the law of motion of the
Bayesian dynamics is Lipschitz continuous under this norm.  This enables us to
prove that solutions to these dynamics exist and are unique.
 This uniqueness result is of particular interest because it fails to hold when
preferences are common.  Under common preferences, multiple solution
trajectories to the best response dynamics can originate from a single initial
condition.  This property can be the source of surprising solution trajectories:
Hofbauer (1995) offers a game (presented below) in which solutions to the best
response dynamics cycle in and out of a Nash equilibrium in perpetuity.  Our
uniqueness result implies that even slight diversity in preferences renders such
solution trajectories impossible.
 Since our dynamics are defined on the (    L

1) space of Bayesian strategies, they are
difficult to analyze directly.  To contend with this, we define aggregate best response

dynamics directly on the simplex.  We show that there is a many-to-one mapping
                                                
3 By doing so, we provide an interpretation of the differential equation which defines the dynamics
– see Section 2.2.
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from solutions to the Bayesian dynamics to solutions to the aggregate dynamics.
The map which accomplishes this is that which converts Bayesian strategies to the
aggregate behavior which they induce.  Thus, if we run the Bayesian dynamics from
two strategies which yield the same aggregate behavior, the two solution trajectories
will always yield the same aggregate behavior.
 Were we only interested aggregate behavior, we could focus our attention
entirely on these aggregate dynamics.  But in most applications of Bayesian games,
the full Bayesian strategy is itself of central importance.  For example, in a private
value auction, the distribution of bids is on its own an inadequate description of
play; to determine efficiency, one must also know which bidders are placing which
bids.  Knowing the entire Bayesian strategy is also critical in studying preference
evolution:  there we must know which preferences lead players to choose the fittest
actions, as these are the preferences which will thrive under natural selection.
 Since the full Bayesian strategy is of central interest, it is important to be able to
determine which Bayesian equilibria are dynamically stable.  To accomplish this, we
establish a one-to-one correspondence between the equilibria which are stable under
the Bayesian dynamics and the distributions which are stable under the aggregate
dynamics.  Using this result, one can determine which Bayesian equilibria are stable
under the original     L

1 dynamics by considering much simpler dynamics defined on
the simplex.4

 Of course, these simpler aggregate dynamics are still a non-linear differential
equation.  To show that the characterization result above is of practical value, it
must be demonstrated that this equation yields to analysis.  Fortunately, Hofbauer
and Sandholm (2001) are able to provide a detailed study of the aggregate dynamics
derived from four classes of Bayesian games.5  We are hopeful that the aggregate
dynamics will prove susceptible to analysis in other classes of games as well.
 Our model of diverse preferences can be viewed as a large population version of
Harsanyi's (1973) purification model.  Harsanyi shows that each mixed equilibrium
of nearly any normal form game can be approximated by a pure equilibrium of a
Bayesian game; the Bayesian game is a version of the normal form game with slight
perturbations in payoffs.  Surprisingly, we are able to show that these perturbations

                                                
4 Were the mapping between solution trajectories one-to-one as well, the stability results would
follow as an immediate consequence.  However, since this mapping is actually many-to-one, these
results are not obvious – see Section 6.
5  In particular, the Bayesian games are created from zero-sum games, games with an interior ESS,
potential games, and supermodular games by adding idiosyncratic biases in the manner described in
Section 2.2.
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can always be chosen so that the pure equilibrium is stable under the Bayesian best
response dynamics.  Thus, not only can all mixed equilibria be purified; all can be
purified in a dynamically robust fashion.  Still, our purification result is weaker
than Harsanyi's in one important sense:  while Harsanyi proves the existence of a
purified equilibrium under any payoff perturbation, we establish that under some  of
these perturbations, the purified equilibrium will be dynamically stable.6

Ellison and Fudenberg (2000) study population fictitious play under diverse
preferences.  In fictitious play, all players choose a best response to the time average
of past play.  Since this time average is the relevant state variable, fictitious play
defines dynamics directly on the simplex even when preferences are diverse.  In fact,
it is easy to show that the dynamics studied by Ellison and Fudenberg (2000) are
equivalent (after a time reparameterization) to our aggregate best response
dynamics.  Hence, our analysis shows that the connections between the best
response dynamics and fictitious play, which are well known in the common
preference setting,7 persist when preferences are diverse.
 There are also close connections among our model, stochastic fictitious play
(Fudenberg and Kreps (1993), Kaniovski and Young (1995), Benaïm and Hirsch
(1999)), and certain models of stochastic evolution (Blume (1993, 1997), Young
(1998)).  In these stochastic models, players' payoffs are perturbed by random shocks
which are i.i.d. over time.  It can be shown that the aggregate dynamics in the
present model describe the expected motion of the state variable in these stochastic
models.  For a complete treatment of these connections, we refer the reader to
Hofbauer and Sandholm (2001).

Section 2 reviews the best response dynamics under common preferences and
introduces the Bayesian best response dynamics.  Section 3 establishes basic
properties of the Bayesian dynamics.  Sections 4, 5, and 6 provide aggregation results.
Section 7 offers our dynamic version of Harsanyi's (1973) purification theorem.
Finally, Section 8 relates our model to Ellison and Fudenberg's (2000) model of
smoothed fictitious play and discusses directions for future research.  All proofs
omitted from the text can be found in the Appendix.

                                                
6 In related work, Binmore and Samuelson (2001) use static evolutionary stability concepts to study
the tension between the instability of mixed equilibria when players may condition behavior on roles
and the stabilizing effects of payoff perturbations.
7 See, e.g., Hofbauer (1995).



–5–

2.  The Best Response Dynamics

A unit mass of players is repeatedly randomly matched to play a two player,
symmetric, normal form game.  Each matched player chooses one of n  actions,
which we identify with basis vectors in     R

n :  S = {e1, e2, … , en}.  We let ∆ = {x ∈      R+
n :

  xii∑  = 1} denote the set of distributions over actions.

2.1  Common Preferences

In the standard environment, each player has the same preferences over action
pairs.  We represent these preferences by a matrix π ∈  Π =     R

n n× , where πij is the
payoff a player receives when he chooses action i and his opponent chooses action j.
Players have expected utility preferences over mixtures.

We let   BRπ : ∆ ⇒  ∆ denote the best response correspondence for preference π:

  BRπ (x) = 
    
arg max

y
y x

∈
⋅

∆
π

Action distribution x* ∈  ∆ is a Nash equilibrium under π if x* ∈   BRπ (x*):  that is, if
each player chooses an action which is optimal given the behavior of the others.

The best response dynamics on ∆ are defined by

(BR)     ̇x  ∈    BRπ (x) – x.

The usual interpretation of these dynamics is that players occasionally consider
switching actions, and that whenever a player does so he switches to a best response.
The –x term arises because at each moment in time, all players are equally likely to
consider switching actions.8

For most payoff matrices π, there are action distributions x which admit multiple
best responses, and hence many possible directions of motion under (BR).  While it
is still possible to prove that solutions to (BR) exist, uniqueness is not guaranteed.
  It is clear that any rest point of (BR) must be a Nash equilibrium.  Moreover, if
the population begins at a Nash equilibrium x*, players who switch to best responses
can do so in proportions x*, resulting in a stationary solution trajectory at x*.

                                                
8 For an analysis of the foundations of evolutionary dynamics, see Sandholm (1999).
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However, if the players who switch to a best response do so in proportions other
than x*, they may move away from the equilibrium.

As an illustration, we consider an example due to Hofbauer (1995).  Suppose that
all players' preferences are given by the game in Figure 1, whose symmetric Nash
equilibria are e1 = (1, 0, 0), x = (  

1
3 ,  

1
3 ,  

1
3 ), and y = (  

4
5 , 0,   

1
5 ).  The phase diagram for the

best response dynamics (BR) is presented in Figure 2.  In the left region of the
simplex, action 1 is the best response, so solution trajectories head directly towards
the point e1.  Similarly, the flow in the right region heads towards e2, and the flow i n
the triangle xyz heads towards e3.  The intersections of these regions contain
distributions which admit multiple best responses, and are therefore the possible
sources of multiple solutions to (BR).

Figure 1

Figure 2
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 From the Nash equilibrium x, there are three possible courses of evolution:  the
population may stay put, move towards e1, or move towards y.9  From points in the
interior of the segment xy, solutions may head towards e1, y, or e3.  Hence, there are
solution trajectories starting from the Nash equilibrium x which cycle indefinitely:
they initially head towards y, but at some point break towards the segment xz; after
reaching xz, they return to x, possibly pausing there before beginning another circuit.
 We show that the existence of trajectories which leave Nash equilibria is a
consequence of the assumption that all players' preferences are identical.  The
source of the nonuniqueness of solutions to (BR) is the fact that for most payoff
matrices, there is a set of action distributions which admit multiple best responses.
Indeed, Hofbauer's (1995) example is generic, in that all payoff matrices close to the
one in Figure 1 yield qualitatively similar dynamics.
  Our analysis shows that there is another sense in which Hofbauer's (1995)
example is not generic.  Our analysis relies on the following observation:  if we fix a
distribution over actions, the set of payoff matrices which generate indifference at
that distribution is negligible.  Therefore, in a population with diverse preferences,
best responses are essentially unique, and hence the function which defines the best
response dynamics in this context is single valued.  To establish the uniqueness of
solutions, and thus the equivalence of rest points and Bayesian Nash equilibria, we
must establish that this function is not only single valued, but also Lipschitz
continuous.  We show below that this is true if distances between Bayesian strategies
are measured in an appropriate way.

2.2  Diverse Preferences

To incorporate diverse preferences, we suppose that the distribution of payoff
matrices in the population is described by a probability measure µ on Π.  In the
language of Bayesian games, µ represents the distribution of types, which in the
current context are simply the players' preferences.  The common preferences model
corresponds to the case in which µ places all mass on a single point in Π.  However,

                                                
9  Matsui (1992) shows that there is a unique solution trajectory to (BR) from a Nash equilibrium
precisely when the equilibrium is robust against equilibrium entrants (Swinkels (1992)).  An interior
equilibrium satisfies this property if and only if it is the unique (symmetric) Nash equilibrium of the
game.  However, robustness against equilibrium entrants does not imply local stability under (BR):  see
Section 6 of Matsui (1992) or Example 3.3 of Hofbauer (1995).
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we will rule out such cases below, focusing instead on cases in which there is
genuine heterogeneity in preferences.10

 We suppose that there are a continuum of individuals with each preference π ∈
Π in the support of µ.  The behavior of the subpopulation with preference π is
described by a distribution in ∆.  A Bayesian strategy is a map σ: Π  → ∆, where σ(π) is
the distribution of actions chosen in aggregate by the individuals of type π.  Hence,
each Bayesian strategy σ can be viewed as a random vector on the probability space
(Π, µ) which takes values in ∆.  The set Σ = {σ: Π → ∆} contains all (Borel
measurable) Bayesian strategies.  We consider a pair of Bayesian strategies σ, ρ ∈  Σ
equivalent if σ(π) = ρ(π) for µ-almost every π.  In other words, we do not distinguish
between Bayesian strategies which indicate the same distribution for almost every
type.
 Let E denote expectation taken with respect to the probability measure µ.  The
proportion of players who play action i under the Bayesian strategy σ is then given
by Eσi = 

    
σ π µi d( )

Π∫ , and the aggregate behavior induced by σ ∈  Σ is Eσ ≡ (Eσ1, … , Eσn)

∈  ∆.  That is, the operator E takes both random variables and random vectors as
arguments, handling each in the appropriate way.  We will sometimes call Eσ the
distribution induced by σ.
 Our notion of distance between distributions is the summation norm on     R

n :  for
x ∈      R

n , let

    x  = 
    

xi
i

n

=
∑

1

.

Players are repeatedly paired with opponents who are randomly drawn from the
population as a whole.  Therefore, each player's best responses are defined with
respect to current aggregate behavior x = Eσ ∈  ∆ .  We let B: ∆ ⇒ Σ denote the best
response correspondence, which we define by

B(x)(π) ≡   BRπ (x) = 
    
arg max

y
y x

∈
⋅

∆
π .

                                                
10 We have assumed that there is just one population of players and that the players play a random
matching game (so that payoffs are linear).  These assumptions are made for simplicity; in fact, our
results do not depend on either of these assumptions in a critical way.
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The best response B(x) ∈  Σ is a Bayesian strategy; for each π ∈  Π, B(x)(π) is the set of
distributions in ∆ which are best responses against aggregate behavior x for players
with preference π.

We state our assumptions about the preference distribution µ in terms of the best
response correspondence; we will describe classes of preference distributions which
satisfy these assumptions below.  Assumption (A1) requires that for all aggregate
behaviors x ∈ ∆, the set of players with multiple best responses has measure zero.

(A1) B is single valued.

As we shall see, Assumption (A1) holds as long as the preference distribution µ is
sufficiently smooth; the assumption also allows for mass points on preferences
which induce a strictly dominant action.  Under Assumption (A1), all selections
from B(x) are equivalent, allowing us to regard B: ∆ → Σ as a function rather than a
correspondence.

Each Bayesian strategy σ ∈  Σ induces some distribution Eσ ∈  ∆; the best response
to this distribution is B(E(σ)).  We say that the Bayesian strategy σ* is a Bayesian

equilibrium if it is a best response to itself:  that is, if σ* = B(E(σ*)).  We let Σ* ⊂  Σ
denote the set of Bayesian equilibria.  Observe that under Assumption (A1), all
aggregate behaviors induce a unique, pure best response:  for all x, µ{π: B(x)(π) ∈  {e1,
… , en}} = 1.  Hence, all Bayesian equilibria must also be pure.11

The Bayesian best response dynamics are defined by the law of motion

(B)   ̇σ  = B(E(σ)) – σ

on Σ, the space of Bayesian strategies.  The right hand side of this equation is a map
from Σ to   ̂Σ  = {σ: Π →     R

n }, which contains all possible directions of motion through
Σ.  Since Σ and   ̂Σ  are function spaces, this law of motion must be interpreted with
care.
  Equation (B) specifies a direction of motion     ̇σ t  for the full Bayesian strategy σt,

and hence a direction of motion for the distribution σt(π) played by each preference π
∈  Π.  The direction specified for preference π depends on E(σt), the distribution
played by the population as a whole.  We therefore cannot consider the behavior of
each preference π in isolation, but instead must regard changes in the entire

                                                
11 Of course, this observation is originally due to Harsanyi (1973).
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Bayesian strategy all at once.  In other words, we must interpret equation (B) as a
functional law of motion.
 To do so, we must specify the norm which we use to measure distances between
points in   ̂Σ .  To interpret equation (B) preference by preference, the natural norm to
choose is the L∞ norm, defined by

  σ L∞  = 
  
esssup ( )

π
σ π

∈Π

Unfortunately, under this norm equation (B) does not define a continuous law of
motion.  Even if two aggregate behaviors x, y ∈  ∆ are very close together, if there is a
non-null set of preferences whose best responses to x and y differ, then the best
response to x and y are far apart in the L∞ norm:     B x B y

L
( ) ( )− ∞ = 2.  Therefore, the

law of motion (B) is discontinuous, and the standard methods of establishing the
existence and uniqueness of solution trajectories fail.

To create a tractable model, we need to use a norm on   ̂Σ  which makes it easier
for two points to be close to one another, so that under this norm equation (B)
defines a continuous law of motion.  In particular, we would like any Bayesian
strategies which differ only in the behavior of a small set of preferences to be
regarded as close together.  An appropriate choice of norm is the L1 norm, which we
denote ⋅ :

σ  ≡ 
    

E i
i

n

σ
=
∑

1

 = 
    
E i

i

n

σ
=
∑



1

 =   Eσ .

Observe that if the best responses to x and y differ only on a set of measure ε, then

    B x B y( ) ( )−  = 2ε.

In order to establish existence and uniqueness of solution trajectories to the
Bayesian best response dynamics, we need to know that the dynamics are Lipschitz
continuous.  The following observation is a first step in this direction.

Lemma 2.1: E: Σ →  ∆ is Lipschitz continuous (with Lipschitz constant 1).

Proof:  Since E is linear, it is enough to show that   Eσ  ≤ σ .  And indeed,

  Eσ  = 
    

E i
i

n

σ
=
∑

1

 ≤ 
    

E i
i

n

σ
=
∑

1

 = σ .  ■
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Given Lemma 2.1, Lipschitz continuity of the dynamics is a consequence of the
following assumption.

(A2) B is Lipschitz continuous (with respect to the L1 norm).

Assumption (A2) asks that small changes in aggregate behavior x lead to
correspondingly small changes in the best response B(x), where the distance between
best responses is measured using the L1 norm.

Our two assumptions concerning the function B will hold as long as the
preference distribution µ is both sufficiently diverse and sufficiently smooth.  For
example, a natural model is one of general preferences, in which all payoff matrices
π ∈  Π =     R

n n×  are possible.  As long as the measure µ on     R
n n×  is smooth and bounded,

the general preferences model satisfies our assumptions.

Proposition 2.2:  In the general preferences model , if µ admits a bounded density

function with compact support, then B satisfies Assumptions (A1) and (A2).

  A desirable feature of the general preferences model is that it makes no a priori

restrictions on the set of preferences.  On the other hand, our assumptions can also
hold in situations in which preferences are less diverse.  Consider the following
model of biases.  There is an "objective" payoff matrix A  ∈      R

n n×  which is a
component of all players' payoffs.  However, each player has personal biases towards
each action.  These biases are represented by a vector b ∈      R

n , where bi is the extra
payoff a player receives for playing action i.  The preference matrix of a player with
biases b is therefore π = A + b    1

T .  If the measure ν on     R
n  captures the distribution of

biases, the measure µ on     R
n n×  is defined by µ(C) = ν(b: A  + b    1

T  ∈  C).  As long as the
bias distribution is sufficiently smooth, Assumptions (A1) and (A2) hold.

Proposition 2.3:  In the biases model, if ν admits a bounded density function f:     R
n  →

R with either compact support or independent components  (i.e., f(b) =     f bi ii
( )∏  f or

some density functions fi: R → R), then B satisfies Assumptions (A1) and (A2).
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3.  Basic Properties of Solution Trajectories

 We begin by establishing some basic properties of solutions to the Bayesian best
response dynamics (B).  Since we will interpret equation (B) in the     L

1 sense, we begin
by reviewing the notions of continuity and differentiability for trajectories through
the     L

1 space (  ̂Σ , ⋅ ).  For further details, see Lang (1983).

  Let {σt} = {σt}t≥0 be a trajectory through   ̂Σ .  We say that σ  ∈   ̂Σ  is the L1 limit of σs

as s approaches t, denoted σ  = 
    
L

s t s
1 lim

→
σ , if

 
    
lim
s t→   σ σs −  = 

    
lim
s t→   E sσ σ−  = 0.

The trajectory {σt} is L1 continuous  if σt = 
    
L

s t s
1 lim

→
σ  for all t.  If there exists a     ̇σ t  ∈    ̂Σ

such that

    ̇σ t  = 
    
L t t1

0
lim

ε
εσ σ
ε→

+ −



 ,

we call     ̇σ t  the L1 derivative of {σt} at time t.  As usual, the derivative describes the

trajectory's direction of motion.  However, for any individual preference π, the
slope   

1
ε (σt+ε(π) – σt(π)) ∈      R

n  of the line passing through (t, σt(π)) and (t + ε, σt+ε(π)) may
not converge as ε approaches zero, and so the standard derivative   

d
dt (σt(π)) of the

distribution trajectory {σt(π)} ⊂      R
n  need not exist.  For the L1 derivative to exist, the

measure of the set of preferences π for which the slope is not close to     ̇σ t (π) ∈      R
n

must become arbitrarily small as ε vanishes.
 A Lipschitz continuous function f:   ̂Σ  →   ̂Σ  defines a law of motion

(D)   ̇σ  = f(σ)

on   ̂Σ .  A trajectory σ:   R+  →   ̂Σ  is an L1 solution  to equation (D) if     ̇σ t  = f(σt) µ-almost
surely for all t, where     ̇σ t  is interpreted as an L1 derivative.

 Theorem 3.1 sets out basic properties of solutions of the Bayesian dynamics.

Theorem 3.1:  (Basic properties of solutions to (B))
 (i) There exists an     L

1 solution to (B) starting from each σ0 ∈  Σ.  This solution is
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unique in the     L
1 sense:  if {σt} and {ρt} are     L

1 solutions to (B) such that ρ0 = σ0 µ-a.s.,
then ρt = σt µ-a.s. for all t.

(ii)  Solution trajectories remain in Σ at all times t ∈  [0, ∞).
 (iii)  If {σt} and {ρt} are     L

1 solutions to (B), then

  σ ρt t−  ≤     σ ρ0 0− eKt ,

where K is the Lipschitz constant of f(σ) = B(E(σ)) – σ.
 (iv)  From each σ0 ∈  Σ there is an     L

1 solution to (B) with the property that

µ(π: σt(π) is continuous in t) = 1.

(v) σ* is a rest point of (B) if and only if it is a Bayesian equilibrium.

 Part (i) guarantees the existence and uniqueness (up to sets of measure zero) of
solutions to (B).  Were Σ an open set, this would follow from standard results (e.g.,
Hirsch and Smale (1974, Sections 8.3 and 8.4)).  However, the fact that Σ is closed
introduces difficulties which are explained in detail and then resolved in the
Appendix.  Part (ii), establishing forward invariance of the space Σ under (B), is also
proved there.  Given these results, part (iii), continuity of solutions in their initial
conditions, is standard.

If {σt} is an     L
1 solution to (B), then so is any trajectory {    ̂σ t } which differs from {σt}

on some measure zero set Πt ⊂ Π at each instant t.  Thus, while part (i) of the
theorem guarantees the existence of a unique     L

1 solution to (B), this result imposes
no restrictions on the distribution trajectory {σt(π)} of an individual preference π:  as
time passes, it is possible for the behavior of the subpopulation with preference π to
jump haphazardly about the simplex.  Fortunately, part (iv) of the theorem shows
that we can always find an     L

1 solution with the property that the behavior associated
with almost every preference changes continuously over time.  The proof of this
result, which relies on the Kolmogorov continuity theorem, is provided in the
Appendix as well.

Clearly, only Bayesian equilibria can be rest points under (B).  It is also evident
that starting from every Bayesian equilibrium is a stationary solution trajectory.
Since solutions are unique, these are the only trajectories starting from equilibria.
Hence, part (v) of the theorem concludes that the Bayesian equilibria and the rest
points of (B) are identical.  This attractive property is a natural consequence of
diversity in preferences.
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4.  Aggregation and Equilibrium

We have established that solution trajectories of the best response dynamics (B)
exist and are unique.  However, since these dynamics operate on an     L

1 space,
working with them directly is rather difficult.  In the coming sections, we show that
many important properties of the dynamics can be understood by analyzing
aggregate dynamics.  The aggregate dynamics operate directly on the simplex, and so
can be studied using standard dynamical systems techniques – see Hofbauer and
Sandholm (2001).

Before introducing the aggregate dynamics, we reconsider the Bayesian equilibria
σ* ∈  Σ*, which are the rest points of (B).  Since the Bayesian strategy σ induces the
distribution Eσ ∈  ∆, Bayesian equilibria satisfy σ* = B(E(σ*)).

If the current distribution is x ∈ ∆, the Bayesian strategy which is a best response
to this distribution is B(x), which in turn induces the distribution E(B(x)). W e
therefore call x* ∈  ∆ an equilibrium distribution if x* = E(B(x*)), and let ∆* ⊂  ∆
denote the set of equilibrium distributions.  
 The connection between Bayesian equilibria and equilibrium distributions is
established in the following result.

Theorem 4.1:  (Characterization of equilibria)
 The map E : Σ* →  ∆* is a homeomorphism whose inverse is B : ∆* →  Σ* .

 Proof:  First, we show that E maps Σ* into ∆*.  Let σ ∈  Σ* be a Bayesian
equilibrium:  σ = B(E(σ)).  Then E(σ) = E(B(E(σ))), so E(σ) ∈  ∆*.
 Second, we show that E is onto.  Fix a distribution x ∈  ∆*, so that x = E(B(x)); we
need to show that there is a Bayesian strategy σ ∈  Σ* such that E(σ) = x.  Let σ = B(x).
Then since x = ∆*, E(σ) = E(B(x)) = x.  Furthermore, this equality implies that B(E(σ))
= B(x) = σ, so σ ∈  Σ*.  Thus, E is onto, and B(x) ∈ E–1(x).

Third, we show that E is one-to-one, which implies that B(x) = E–1(x).  Fix two
Bayesian equilibria σ, ′σ  ∈  Σ*, and suppose that E(σ) = E( ′σ ).  Then σ = B(E(σ)) =
B(E( ′σ )) = ′σ .
  Finally, the continuity of E and B follows from Lemma 2.1 and Assumption
(A2). ■

 The space Σ of Bayesian strategies is considerably more complicated than the
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space of distributions ∆.  Nevertheless, Theorem 4.1 shows that if we are only
concerned with Bayesian equilibria σ* ∈ Σ*, it is sufficient to consider the
equilibrium distributions x* ∈  ∆*.  We can move between the two representations
of equilibria using the maps E and B, whose restrictions to the equilibrium sets are
inverses of one another.
 If we are concerned with disequilibrium behavior, then the one-to-one link
between Bayesian strategies and distributions no longer exists:  E maps many
Bayesian strategies to the same distribution over actions, and if the Bayesian strategy
σ is not an equilibrium, B does not invert E:  that is, B(E(σ)) ≠ σ.

Fortunately, we are able to prove analogues of Theorem 4.1 for solutions to the
Bayesian best response dynamics (B).  To do so, we introduce the aggregate best
response dynamics (AB), which are defined on the simplex.  In the next section, we
show that the expectation operator E is a many-to-one map from solutions to (B) to
solutions to (AB).  In Section 6, we establish a one-to-one correspondence between
stable rest points of (B) and stable rest points of (AB).  Therefore, while the Bayesian
dynamics operate on the complicated space Σ, the answers to many important
questions about these dynamics can be obtained by applying standard tools to
dynamics on the simplex.

5.  Aggregation of Solution Trajectories

Under the dynamics (B), the Bayesian strategy σt always moves towards its best
response B(E(σt)).  Hence, the target point only depends on σt through its distribution
E(σt).  This "bottleneck" provides the basis for our aggregation results.

We define the aggregate best response dynamics by

(AB)     ̇xt  = E(B(xt)) – xt.

Under this law of motion, the distribution xt moves towards the distribution
induced by the best response to xt.  Some basic properties of these dynamics are noted
in Theorem 5.1.

Theorem 5.1  (Basic properties of solutions to (AB)):  
  (i) Solutions to (AB) from every initial condition x0 ∈  ∆  exist and are unique.

(ii) Solution trajectories remain in ∆ at all times t ∈  [0, ∞).
  (iii) The set of rest points of (AB) is ∆*, the set of equilibrium distributions.
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The proof of parts (i) and (ii) can be found in the Appendix; part (iii) follows
immediately from part (i) and the definition of an equilibrium distribution.

Let f: Σ →   ̂Σ  and g: ∆ →     R
n  be Lipschitz continuous functions, and consider the

following laws of motion on Σ and ∆.

(D)   ̇σ  = f(σ);
(AD)     ̇x  = g(x).

We say that the dynamics (D) aggregate to the dynamics (AD) if whenever {σt} is an
L1 solution to (D), {Eσt} is a solution to (AD).

Theorem 5.2: (Aggregation of solution trajectories)
  The Bayesian best response dynamics (B) aggregate to the aggregate best response

dynamics (AB).

Theorem 5.2 tells us that the dynamics (AB) completely describe the evolution of
aggregate behavior under the dynamics (B).  If {σt} is a solution to (B), then the
distribution it induces at time t, Eσt, is equal to xt, where {xt} is the solution to (AB)
starting from x0 = Eσ0.  In other words, a sufficient statistic for aggregate behavior at
time t under (B) is aggregate behavior at time 0.  Bayesian strategies which induce
the same aggregate behavior also induce the same aggregate behavior trajectories.
  It is important to note that this mapping between solution trajectories is many-
to-one.  For example, consider a solution {σt} to (B) whose initial Bayesian strategy
aggregates to an equilibrium distribution: Eσ0 = x* ∈  ∆*.  Theorems 5.1 and 5.2 imply
that the distribution trajectory {Eσt} induced by {σt} is degenerate: Eσt = x* for all t.
However, {σt} is itself degenerate only if σ0 is a Bayesian equilibrium; there are many
Bayesian strategies σ ∈      E x−1( *) which aggregate to x* but are not Bayesian equilibria,
and hence are not rest points of the dynamics (B).  As we shall see in Section 6, the
fact that the mapping between solutions is many-to-one rather than one-to-one
makes relating stability under (B) and (AB) more difficult than it may first appear to
be.

Theorem 5.2 is an immediate consequence of Theorem 5.4, which characterizes
the dynamics on Σ which can be aggregated.  The proof of Theorem 5.4 requires the
following lemma.
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Lemma 5.3:  If {σt} ⊂    ̂Σ  is an L1 differentiable trajectory, then     E tσ̇( ) ≡   
d
dt tEσ .

 Proof:  Since E is continuous by Lemma 2.1,

    E tσ̇( ) = 
    
E L t t1

0
lim

ε
εσ σ
ε→

+ −



  = 

    
lim
ε

εσ σ
ε→

+ −



0

E t t  = 
    
lim
ε

εσ σ
ε→

+ −
0

E Et t  =   
d
dt tEσ .  ■

Theorem 5.4:  The dynamics (D) aggregate to the dynamics (AD) if and only i f
(    E fo )(σ) = (    g Eo )(σ) for all σ ∈  Σ.

 Proof:  Let {σt} be an L1 solution to (D).  Applying Lemma 5.3, and taking
expectations of both sides of equation (D), we find that

  
d
dt tEσ  = E    ̇σ t  = Ef(σt).

Thus, if     E fo  ≡     g Eo , it follows that g(Eσt) = Ef(σt) =   
d
dt tEσ ; hence, {Eσt} solves (AD),

and so f aggregates to g.  Conversely, if f aggregates to g, then {Eσt} solves (AD), so
g(Eσt) =   

d
dt tEσ  = Ef(σt).  As σ0 was chosen arbitrarily, it follows that     E fo  ≡     g Eo .  ■

 Theorem 5.4 implies that given any Lipschitz continuous function F: ∆ → Σ, the
dynamics

  ̇σ  = F(E(σ)) – σ

aggregate to (AD) with g(x) = E(F(x)) – x.  Thus, dynamics on Σ can be aggregated
whenever the current "target point" σ +   ̇σ  ∈  Σ is only a function of aggregate
behavior.  Indeed, the stability results in the next section extend immediately to all
dynamics in this class.

6.  Aggregation and Stability Analysis

We have established that the expectation operator E is both a one-to-one
mapping between Bayesian equilibria and equilibrium distributions and many-to-
one mapping from Bayesian trajectories which solve (B) to distribution trajectories
which solve (AB).  In this section, we prove that under three standard notions of
stability, stability of Bayesian strategies under (B) is equivalent to stability of
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distributions under (AB).  Therefore, to characterize the stability of Bayesian
strategies under the functional dynamics (B), it is enough to determine the stability
of the corresponding distributions in ∆ ⊂      R

n , which can be accomplished using
standard techniques.

We begin by reviewing the three notions of dynamic stability we will consider.
Let Z be a subset of a Banach space (    ̂Z , ⋅ ), and let the function h : Z →     ̂Z  define

dynamics on Z via the equation of motion

(M)     ̇z = h(z).

We suppose that Z is forward invariant under the dynamics (M), and let z* ∈  Z be a
rest point of the dynamics:  h(z*) = 0.  We say that z* is Lyapunov stable under (M) if
for each set A ⊂  Z containing z* which is open (relative to Z) there is an open set A '
⊂  A which contains z* such that any trajectory which begins in A' always stays in A :
if {zt} is a solution to (M) with z0 ∈  A', then {zt} ⊂  A.  We call z* asymptotically stable

under (M) if it is Lyapunov stable and if there is an open set A  containing z* such
that any trajectory starting in A converges to z*:  if {zt} is a solution to (M) with z0 ∈
A, then 

    
lim
t→∞

zt = z*.  If we can choose A = Z, we call z* globally stable.12

The following lemma underlies many of our stability results.

Lemma 6.1  Let σ ∈  Σ, let x = Eσ ∈  ∆, and let y ∈  ∆.  Then there exists a ρ ∈  Σ
satisfying Eρ = y and ρ σ−  =   y x− .

Lemma 6.1 says that if the Bayesian strategy σ has a distribution x which is ε away
from the distribution y, there is another Bayesian strategy ρ which is ε away from
the σ and which aggregates to the distribution y.  A constructive proof of this lemma
can be found in the Appendix.  The result is not obvious because in constructing ρ,
we must be certain that the distribution ρ(π) played by each preference π lies in the
simplex.

We first characterize Lyapunov stability under the Bayesian dynamics.

                                                
12 While all of our results are stated for single rest points, they can easily be extended to allow for
closed, connected sets of rest points.
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Theorem 6.2:  (Lyapunov stability)
  The distribution x* ∈  ∆* is Lyapunov stable under  (AB) if and only if t h e

Bayesian strategy σ* = B(x*) ∈  Σ* is Lyapunov stable under (B).

To establish this connection, we need ways of moving between neighborhoods of
Bayesian equilibria σ* and equilibrium distributions x*.  Since the operators E: Σ →
∆ and B: ∆ → Σ are continuous and map equilibria to equilibria, they along with
Lemma 6.1 are the tools we need.

That the Lyapunov stability of σ* implies the Lyapunov stability of x* follows
easily from these facts.  The proof of the converse requires an additional lemma.

Lemma 6.3.  Let A ⊂    ̂Σ  be an open convex set, and let {σ t} ⊂    ̂Σ  be an     L
1 differentiable

trajectory with σ0 ∈  A  and such that σt +    ̇σ t  ∈  A for all t.  Then {σt} ⊂  A.

The point σt +     ̇σ t  is the location of the head of the "vector"     ̇σ t  if its tail is placed at σt.
Thus, σt +     ̇σ t  represents the point towards which the trajectory is moving at time t.

The lemma, which is proved in the Appendix, says that if the trajectory starts in the
open, convex set A and always moves towards points in A, it never leaves A.

Now, suppose that x* is Lyapunov stable.  If V  is a convex neighborhood of σ*,
then     B V−1( ) is a neighborhood of x*.  Since x* is Lyapunov stable, trajectories which
start in some open set W  ⊂      B V−1( ) stay in     B V−1( ).  Therefore, if the Bayesian
trajectory {σt} starts at σ0 ∈     E W V− ∩1( ) , then the distribution trajectory {Eσt} stays i n

    B V−1( ), and hence the Bayesian trajectory {B(E(σt))} stays in V.  Since the trajectory
{σt} always heads towards the point B(E(σt)) ∈ V, Lemma 6.3 implies that it never
leaves V.

Proof of Theorem 6.2:  First, suppose that σ* = B(x*) is Lyapunov stable under (B).
To show that x* is Lyapunov stable under (AB), we need to show that for each open
set O containing x* there is an open set O' ⊂  O containing x* such that solutions to
(AB) that start in O' never leave O.  Since E: Σ → ∆ is continuous,     E O−1( ) is open;
since Eσ* = x* by Theorem 4.1, σ* ∈     E O−1( ).  Because σ* is Lyapunov stable, there
exists an open ball C ⊂      E O−1( ) about σ* of radius ε such that solutions to (B) that start
in C stay in     E O−1( ).
  Let O' be an open ball about x* of radius less than ε which is contained in the
open set     B C−1( ) ∩  O.  Let {xt} be a solution to (AB) with x0 ∈  O'.  By our choice of O',

    x x0 − *  < ε.  Thus, by Lemma 6.1, there exists a Bayesian strategy σ0 such that Eσ0 =
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x0 and   σ σ0 − *  =     x x0 − *  < ε; the inequality implies that σ0 ∈  C.  Hence, if {σt} is the

solution to (B) starting from σ0, then {σt} ⊂      E O−1( ).  Therefore, Theorem 5.2 implies
that {xt} = {Eσt} ⊂  O.

Now suppose that x* is Lyapunov stable under (AB).  To show that σ* = B(x*) is
Lyapunov stable under (B), it is enough to show that for each set U ⊂  Σ containing
σ* which is open relative to Σ, there is an set U ' ⊂  U containing σ* which is open
relative to Σ such that solutions to (B) that start in U' never leave U.
 Let V  be an open ball in   ̂Σ  about σ* such that V  ∩  Σ ⊂  U.  Since can view the
continuous function B: ∆ → Σ as having range   ̂Σ  ⊃ Σ,     B V−1( ) ⊂  ∆ is open relative to
∆ and contains x*.  Because x* is Lyapunov stable, we can find an set W  ⊂      B V−1( )
which contains x* and which is open relative to ∆ such that solutions to (AB) which
start in W  never leave     B V−1( ).

The set     E W−1( ) is open relative to Σ and contains σ*; therefore, U ' =     E W V− ∩1( )
possesses both of these properties as well.  Let {σt} be a solution to (B) with σ0 ∈  U '.
Then Eσ0 ∈  W.  Therefore, since {Eσt} solves (AB) by Theorem 5.2, Eσt ∈      B V−1( ) for all
t, and so B(E(σt)) ∈  V for all t.  But since     ̇σ t  = B(E(σt)) – σt, σt +     ̇σ t  ∈  V  for all t.  Thus,

Lemma 6.3 implies that {σt} ⊂  V.  Moreover, Theorem 3.1 (ii) implies that {σt} ⊂  Σ;
we therefore conclude that {σt} ⊂  V ∩  Σ ⊂  U.  ■

We continue by characterizing asymptotic stability.

Theorem 6.4:  (Asymptotic stability)
The distribution x* ∈  ∆* is asymptotically stable under  (AB) if and only if t h e

Bayesian strategy σ* = B(x*) ∈  Σ* is asymptotically stable under (B).

That the asymptotic stability of the Bayesian strategy σ* implies the asymptotic
stability of its distribution x* follows easily from Lemma 6.1 and Theorem 5.2.  The
proof of the converse also requires the following lemma.

Lemma 6.5:  Let {σt} be the solution to (B) from some σ0 ∈  Σ with Eσ0 = x* ∈  ∆*, and
let σ* = B(x*) ∈  Σ*.  Then 

  
lim
t

t→∞
σ  = σ*.  Indeed,

σt ≡   e
t− σ0 + (1 –   e

t− )σ*.

If {σt} is a Bayesian trajectory whose initial distribution is an equilibrium, then while
σt may change over time, its distribution does not:  Eσt = x* for all t.  Consequently,
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under the best response dynamics (B), σt always heads directly towards the point
B(E(σt)) = σ*.  The proof of Lemma 6.5 can be found in the Appendix.
 Now, suppose that x* is asymptotically stable under (AB).  Then if σ0 is close
enough to σ*, Eσ0 will be close to x*, so if {σt} solves (B), Theorem 5.2 tells us that
{Eσt} converges to x*.  Lemma 6.1 then implies that if t is large, we can find a
Bayesian strategy   ̂σ  which is close to σt and which aggregates to x*; by Lemma 6.5,
the solution to (B) from   ̂σ  converges to σ*.  That {σt} must converge to σ* then
follows from the continuity of solutions to (B) in their initial conditions.

Proof of Theorem 6.4:  Since Lyapunov stability is covered by Theorem 6.2, we
need only consider convergence of nearby trajectories to σ* and x*.  For all ε > 0 and
any σ ∈  Σ and x ∈  ∆, define Nε(σ) = {ρ ∈ Σ: ρ σ−  ≤ ε} and Nε(x) = {y ∈  ∆:   y x−  ≤ ε} to

be the ε neighborhoods of σ and x, respectively.
Suppose that σ* = B(x*) is asymptotically stable.  Then there exists an ε > 0 such

that solutions to (B) with σ0 ∈  Nε(σ*) converge to σ*.  Now suppose that {xt} is a
solution to (AB) with x0 ∈  Nε(x*).  By Lemma 6.1, there exists a   ̂σ 0  ∈ Nε(σ*) satisfying
Eσ0 = x0; therefore, the solution {  ̂σ t } converges to σ*.  Since xt =     E tσ̂  by Theorem 5.2,

and since E is continuous by Lemma 2.1,

    
lim
t tx
→∞

 = 
    
lim ˆ
t tE
→∞

σ  = 
    
E L

t t
1 lim ˆ

→∞( )σ  = Eσ* = x*.

Hence, all solutions to (AB) starting in Nε(x*) converge to x*.
Now suppose that x* is asymptotically stable and let σ* = B(x*).  We can choose

an ε > 0 such that all solutions to (AB) starting in Nε(x*) converge to x*.  Now
suppose that σ0 ∈  Nε(σ*); we will show that {σt}, the solution to (B) starting from σ0,
must converge to σ*.  First, observe that

     E xσ 0 − *  =     E E B xσ 0 − ( ( *))  =     E( *)σ σ0 −  ≤     Eσ σ0 − *  =   σ σ0 − *  ≤ ε,

so Eσ0 ∈  Nε(x*).  Theorem 5.2 implies that {Eσt} is the solution to (AB) starting from
Eσ0; hence, 

    
lim
t tE
→∞

σ  = x*.

 Fix η > 0.  It is enough to show that there exists a T such that     σ σt − *  < η for all t

≥ T.  Let K be the Lipschitz coefficient of f(σ) = B(E(σ)) – σ, and let δ =     n
K K− +( )η

2

1
.  Since

    
lim
t tE
→∞

σ  = x*, there is a τ1 such that     E xtσ − *  < δ whenever t ≥ τ1.  Let τ2 = l n    
2n
η , and

choose T = τ1 + τ2.
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Fix t > T.  Then since t – τ2 > T – τ2 = τ1, Lemma 6.1 implies that there is a   ̂σ 0  such
that E  ̂σ 0  = x* and

     σ στt− −
2 0

ˆ  =     E xtσ τ− −
2

*  < δ.

Let {    ̂σ t } be the solution to (B) with initial condition   ̂σ 0 .  Since no two points in Σ are

further than distance n apart, Lemma 6.5 implies that

   
ˆ *σ στ 2

−  =     e
− −τ σ σ2

0
ˆ *  ≤     ne−τ 2

Moreover, it follows from Theorem 3.1 (iii) that

     σ στt − ˆ
2

 ≤     σ στt− −
2 0

ˆ     e
Kτ 2 .

Therefore,

     σ σt − *  ≤     σ στt − ˆ
2

 +   
ˆ *σ στ 2

−

 ≤     σ στt− −
2 0

ˆ     e
Kτ 2  +     ne−τ 2

< δ    e
Kτ 2  +     ne−τ 2

=   
η
2  +   

η
2  = η.  ■

We conclude this section by characterizing global stability.  The proof of this
result is analogous to that of Theorem 6.4.

Theorem 6.6:  (Global stability)
The distribution x* ∈  ∆* is globally stable under  (AB) if and only if the Bayesian

strategy σ* = B(x*) ∈  Σ* is globally stable under (B).

7.  Purification

In any mixed equilibrium of a normal form game, each player is indifferent
between his equilibrium strategy and all other strategies with the same support.
This raises the question of why we should expect players to randomize in precisely
the fashion which their equilibrium strategies dictate.  

To address this issue, Harsanyi (1973) shows that almost every mixed
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equilibrium of almost every normal form game can be viewed as a pure equilibrium
of a Bayesian game created by slightly perturbing the payoffs of the normal form
game.  In fact, Harsanyi (1973) shows that these purified equilibria exist regardless of
the distribution of payoff noises so long as the noises become small.

The Bayesian games which Harsanyi studies are formally equivalent to the
games with diverse preferences studied here.  The main difference is one of
interpretation:  while Harsanyi considers games played by a small group of players,
each of whom has many possible payoff realizations, we consider a population of
players in which the entire type distribution is realized at once.  Just as in Harsanyi's
model, every Bayesian equilibrium in our model has almost every preference
playing a pure strategy.  Thus, if all preferences in the population are close to a
particular payoff matrix π , we can think of the Bayesian equilibria of the diverse
preferences game as purified equilibria of π .
 In a large population setting, it becomes natural to consider questions of stability:
if behavior fluctuates slightly from a purified equilibrium, will the population
return to the equilibrium?  To see why this might or might not occur, consider
single populations which play the games in Figures 3 and 4.  The unique symmetric
equilibrium of the Hawk-Dove game in Figure 3 is (  

1
2 ,   

1
2 ).  Out of equilibrium, the

less common strategy always has higher payoffs.  Therefore, if the equilibrium is
disturbed, we would expect the less common strategy to become more prevalent,
and the population to return to the equilibrium state.  In contrast, the coordination
game in Figure 4 has both the (  

1
2 ,   

1
2 ) equilibrium and two symmetric pure equilibria.

In this game, the more common strategy always has higher payoffs, so we would
expect a population which starts near but not at (  

1
2 ,   

1
2 ) to move towards a pure

equilibrium.  If diverse preferences are introduced, it seems natural to expect that i n
the Hawk-Dove game, purified versions of the (  

1
2 ,   

1
2 ) equilibrium will be stable,

while in the coordination game, purified versions of the (  
1
2 ,   

1
2 ) equilibrium will be

unstable.

Figure 3 Figure 4

0, 0 1, 1

1, 1 0, 0

1, 1 0, 0

0, 0 1, 1
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In fact, one can approximate any equilibrium of a normal form game with a
stable purified equilibrium.

Theorem 7.1:  (Stable purification)
Let x* be a symmetric equilibrium of the game  π .  For all ε > 0, there exists a

measure µ  on      R
n n×  such that

(i)
    
µ π π π ε: max

,i j
ij ij− ≤









 = 1

(ii) There is a Bayesian equilibrium σ* satisfying Eσ* = x* which is locally

  stable under (B).

The intuition behind this result is simple.  Since x* is an equilibrium of π , we can
find slight perturbations µ of the Dirac measure δπ  with the property that each

strategy i is a strict best response for fraction xi* of the population when the strategy
distribution is near x*.  This measure µ clearly admits a Bayesian equilibrium σ*
with distribution Eσ* = x*.  Moreover, if the Bayesian strategy σ* is slightly
disturbed, the resulting strategy distribution will be very close to x*; hence, no
player's best response changes, and the profile returns to x*.

The proof of the theorem relies on our aggregation results from Section 6.

 Proof:  Our construction of µ is based on the model of biases from Section 2.2.
For each strategy i, define the set Fi ⊂     R

n  as follows:

Fi = {b ∈      R
n :  bi ∈  [  

ε
2 , ε] and bj ∈  [–ε, –  

ε
2 ] for all j ≠ i}.

Each vector b ∈  Fi represents biases which favor strategy i by at least ε (but no more
than 2ε).  Let ν be a measure on     R

n  which admits a bounded density function and
which satisfies ν(Fi) = xi* for all strategies i.  The measure µ on     R

n n×  is then defined
by µ(C) = ν(b: π  +     b

T1  ∈  C).  Proposition 2.3 implies that the best response

correspondence B: ∆ → Σ induced by µ satisfies Assumptions (A1) and (A2).
 Since x* is a Nash equilibrium of π , it follows that for all strategies i and j ≠ i,

ei · π x* ≥ ej · π x*.

Consequently,

ei · π x* + bi ≥ ej · π x* + bj + ε   for all b ∈  Fi.
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Thus, letting δ ≡     2
1

max ,k l klπ( )−
, we see that

 ei · π x + bi > ej · π x + bj   for all b ∈  Fi and all x satisfying     x x− *  < δ. (1)

Let     F̂i  = {π:  π = π  +     b
T1  for some b ∈  Fi}.  Then if π ∈      F̂i  and x is within δ of x*,

equation (1) implies that ei · πx > ej · πx for all j ≠ i, and hence that B(x)(π) = ei.
Therefore, taking expectations, and observing that µ(    F̂i ) = ν(Fi) = xi*, we see that

E(B(x)) = x* for all x satisfying     x x− *  < δ. (2)

Now consider the Bayesian strategy σ* = B(x*).  Evaluating equation (2) at x*, we
find that E(σ*) = x*.  Applying B to both sides of this equality yields B(E(σ*)) = σ*.
Thus, σ* is a Bayesian equilibrium under µ.
 To show that σ* is locally stable under (B), it is enough (by Theorem 6.4) to check
the local stability of x* under (AB).  To do so, we observe that the derivative of
E(B(x)) – x evaluated at x* is given by D[E(B(x)) – x]    x x= *  = D[E(B(x))]    x x= *  – I ∈      R

n n× .

However, equation (2) shows that E(B(x)) is constant in a neighborhood of x*, and so
D[E(B(x))]    x x= *  is the null matrix.  Since all eigenvalues of –I equal –1, we conclude

that x* is stable under (AB), and thus that σ* is stable under (B).  ■

 To illustrate Theorem 7.1 and its proof, we describe how the mixed equilibrium
of the coordination game in Figure 4 can be purified in a stable fashion.  Since this
game has only two actions, aggregate behavior is described by the scalar x1, which
represents the proportion of players choosing strategy 1.
 Figure 5 sketches the best response correspondence for the coordination game, as
well as a phase diagram for the best response dynamics.  When BR(x1) > x1, the best
response dynamics increase the proportion of players choosing x1, leading to the
pure Nash equilibrium x1 = 1; when BR(x1) < x1, the proportion choosing x1 declines,
moving towards the equilibrium x1 = 0.  Clearly, the mixed equilibrium x1 =   

1
2  is

unstable.
 To purify this equilibrium, we suppose that half of the population is slightly
biased in favor of strategy 2, and that the other half is slightly biased in favor of
strategy 1.  In particular, we let the distribution of the bias difference b1 – b2 be
uniformly distributed on the set [–2ε, –ε] ∪  [ε, 2ε].  The resulting aggregate best
response function in pictured in Figure 6, along with the corresponding phase
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diagram for (AB).  It is clear from the figure that x1 =   
1
2  is an equilibrium distribution

which is stable under (AB).  Thus, Theorem 6.4 implies that the Bayesian
equilibrium B(x1) is stable under (B).  At this equilibrium, no player is within ε of
indifference, and for this reason the equilibrium is robust to any small change i n
behavior.

   Figure 5      Figure 6

 If we lower the magnitude ε of the largest payoff perturbation, the aggregate best
response function E(B(·)) approaches the original best response function B(·).
Consequently, the size of the payoff perturbations which are introduced determines
the size of the basin of attraction of the purified equilibrium.  This observation
qualifies our stability result:  if the payoff perturbations used to construct µ are very
small, then correspondingly small behavior disturbances will upset the purified
equilibrium.
 Harsanyi establishes the existence of purified equilibria under any distribution of
disturbances.  In contrast, our stable purification result only holds for certain choices
of this distribution.  However, the construction we have used so far, which ensures
that no player is too close to indifference at the purified equilibrium, is more
cautious than necessary.  Examining Figure 6, we see that two properties are enough
to ensure the stable purification of a mixed equilibrium.  First, the mass of players
biased towards each strategy must be close to the number playing that strategy in the
mixed equilibrium.  This creates a purified equilibrium near the original mixed
equilibrium.  Second, to guarantee stability, the density of preferences near this

x1

B(x1) E(B(x1))

x1
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purified equilibrium must not be too large.  This ensures that there are not too
many players who are too close to indifference.  It follows that the aggregate best
response function E(B(·)) is relatively flat at the equilibrium, and so that the
derivative matrix D[E(B(x)) – x]    x x= *  is stable.

Theorem 7.1 might create the impression that introducing payoff perturbations
enables one to reverse the stability of any mixed equilibrium.  In fact, while we can
always create stable equilibria from unstable ones, we cannot always do the opposite.
We illustrate this in Figures 7 and 8, which sketch the best response correspondence
and an aggregate best response function for the Hawk-Dove game from Figure 3.
The best response correspondence intersects the 45˚ line only at x1 =   

1
2 , which is the

unique Nash equilibrium and the global attractor of the best response dynamics.  If
we consider any distribution µ consisting of preferences close to the payoff matrix of
the Hawk-Dove game, the resulting aggregate best response function is a decreasing
function close the original best response function.  The purified equilibrium under
µ must therefore be unique and globally stable.

   Figure 7      Figure 8

 In fact, Hofbauer and Sandholm (2001) are able to extend this reasoning to n  x n
games.  By combining an analysis of the aggregate best response dynamics with our
Theorem 6.6, they establish the following result.

x1

B(x1) E(B(x1))

x1
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Theorem 7.2  (Hofbauer and Sandholm (2001)):
 Suppose that the game π  admits an interior ESS, and let µ be defined by µ(C) =
ν(b: π  +     b

T1  ∈  C), where the bias distribution ν is sufficiently smooth and has full

support on     R
n .  Then the Bayesian game defined by µ has a unique Bayesian

equilibrium, which is globally stable under (B).

Theorem 7.2 shows that any perturbed version of a game with an interior ESS must
have a unique and globally stable Bayesian equilibrium.  Perturbations are required
to take the form of biases towards each strategy, but no restriction on the size of
these perturbations is required.  Of course, the purified equilibrium need only
closely approximate the original ESS if the perturbations are "small".
   To summarize: while every mixed equilibrium admits a stable purification, there
are many mixed equilibria which do not admit an unstable purification.

8.  Concluding Remarks

8.1  The Best Response Dynamics and Fictitious Play

Under common preferences, the close connections between the best response
dynamics and fictitious play are well known.  In fictitious play, players always
choose a best response to their beliefs, which are given by the time average of past
play.  In the continuous time formulation, if we let ct denote current behavior, then

at = 
    
1

0t s

t
c ds∫  represents beliefs.  The requirement that current behavior is a best

response to beliefs is stated as ct ∈    BRπ (at).  By differentiating the definition of at and
substituting, we obtain the law of motion for beliefs under fictitious play:

(FP)     ̇at  =     
1
t tc  – 

    
1

0
2t s

t
c ds∫

 =     
1
t t tBR a a( ( ) )π −

Since players always choose a best response to the time average of past play, this
time average always moves in the direction of the best response, moving more
slowly as time passes.
  Notice that the expression     

1
t  only affects the speed of the dynamics, not the

direction of motion.  Therefore, after a reparameterization of time, the evolution of
beliefs under (FP) is identical to the evolution of behavior under the best response
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dyanmics (BR).

(BR)     ̇x  =     BR x xπ ( ) − .

Ellison and Fudenberg (2000) study fictitious play under diverse preferences.  As

in the standard case, players choose a best response to the time average at = 
    
1

0t s

t
c ds∫  of

past behavior.  Since players are matched with opponents drawn from the
population as a whole, the object which is averaged to determine beliefs is ct =
E(B(at)), the distribution of behavior at time t.  This yields the law of motion

(F)     ̇at  =     
1
t t tE B a a( ( ( )) )− ,

which is a reparameterization of our aggregate best response dynamics (AB):

(AB)     ̇x  =     E B x x( ( )) − .

 In fictitious play with diverse preferences, the state variable is the average
distribution of past behavior, at ∈  ∆.  If one keeps track of this, one can always
determine the best responses B(at) ∈  Σ and the best response distribution E(B(at)) ∈  ∆.
The latter object determines the direction in which the time average evolves.  Since
one can determine the direction of motion without ever explicitly considering a
Bayesian strategy, the dynamics can be defined directly on the simplex ∆.

In contrast, under the Bayesian best response dynamics

(B)   ̇σ  = B(E(σ)) – σ,

the relevant state variable is current Bayesian strategy σt.  Thus, these dynamics are
defined on the     L

1 space Σ, and so specify directly how behavior in every
subpopulation evolves.  Our results establish that equilibrium and stability analyses
can be performed directly in terms of the aggregate dynamics (AB).  Thus, these
results show that close connections between fictitious play and the best response
dynamics persist when preferences are diverse.13

                                                
13 While the dynamics (F) and (AB) are essentially the same, the evolution of Bayesian strategies
under population fictitious play and under the Bayesian best response dynamics are quite different.
Suppose that (F) and (AB) are currently at the state at = xt.  Under population fictitious play, the
current Bayesian strategy must be B(at), the best response to beliefs at; in particular, it is always pure.
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8.2  Preference Evolution

The techniques developed in this paper provide foundations for models of
preference evolution.  Diversity in preferences typically results in diversity i n
behavior, even after equilibrium is reached.  If we take a long term view, this
variation in behavior can be a source of differences in reproductive success among
the preferences themselves.  Preferences which induce "evolutionarily fit" behavior
prosper, to the detriment of the others.
  A full account of the process of preference evolution requires dynamics which
run at two speeds at once:  as players quickly adjust their behavior to accord with
their preferences, the preference distribution gradually evolves in response to
differences in fitness.  Sandholm (1998) studies such two-speed dynamics, but the
analysis there is restricted to two strategy games, with diversity in preferences
limited to biases in favor one of the two strategies.  To understand preference
evolution in more general settings, one first needs a general model of behavior
adjustment under fixed preferences.  The present paper provides this model.
Incorporating the techniques developed here into a general theory of preference
evolution is a topic for future research.

Appendix

A.1  Basic Properties of Dynamical Systems on ∆ and Σ

The aggregate best response dynamics (AB) are defined on the closed set of
strategy distributions ∆.  However, the basic results concerning the existence and
uniqueness of solutions to differential equations concern equations defined on open
sets.  In this appendix, we show how these standard results can be used to study the
aggregate best response dynamics, in particular establishing the existence,
uniqueness, and forward invariance of solutions in the set ∆.  We then go on to
prove analogous results for     L

1 dynamics on the set Σ, thereby establishing the basic
properties of the Bayesian best response dynamics (B).
 Let g: ∆ →     R

n  be a vector field on the simplex which satisfies

                                                                                                                                                            
Under the best response dynamics, we only know that the Bayesian strategy σt is an element of E–1(at).
These two strategies only coincide if at is an equilibrium distribution and σt = B(at) is the corresponding
Bayesian equilibrium.
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(LC) g is Lipschitz continuous on ∆.
(FI 1)     g xii

( )∑  = 0 for all x ∈  ∆.

(FI 2) For all x ∈ ∆, gi(x) ≥ 0 whenever xi = 0.

Condition (LC) is the usual Lipschitz continuity condition used to prove the
existence of unique solution trajectories to the differential equation     ̇x  = g(x).
Condition (FI 1) says that     ẋii∑  = 0, implying that the affine space   ̃∆  = {x ∈      R

n :    xii∑
= 1} is invariant under the differential equation.  Condition (FI 2) says that
whenever the component xi equals zero, its rate of change is non-negative.
 Theorem A.1 explains the precise sense in which these conditions imply the
forward invariance of the simplex under     ̇x  = g(x).  This result implies parts (i) and
(ii) of Theorem 5.1.

Theorem A.1:  Let g: ∆ →     R
n  satisfy (LC), (FI 1), and (FI 2).  Then under any Lipschitz

continuous extension     ̃g  of g from ∆  to   ̃∆ , the solution to     ̇x  =     ̃g (x) from each  x0 ∈  ∆
exists, is unique, and remains in ∆ at all times t ∈  [0, ∞).

The proof relies on the following lemma. Let   x E
 = 

    
xii

2∑ denote the Euclidean

norm on     R
n .

Lemma A.2:  Let C be a compact, convex subset of     R
n , and define the closest point

function c:     R
n  →  C by

c(x) = 
    
arg min

z C
Ex z

∈
−

Then  for some k > 0,     c x c y
E

( ) ( )−  ≤   x y
E

−  and     c x c y( ) ( )−  ≤   k x y−  for all x, y ∈      R
n .

 Proof:  Fix x, y ∈      R
n .  If c(x) = c(y) there is nothing to prove, so we assume that c(x)

≠ c(y).  If we let p = c(y) – c(x), it follows immediately that p · c(y) > p · c(x).  Let I = {z ∈

    R
n : p · c(y) > p · z > p · c(x)}.  We first show that x ∉  I.  First, observe that since C is

convex, c(x) + λp = λc(y) + (1 – λ)c(x) ∈  C for all λ ∈  [0, 1].  Therefore, if w  ∈  I, it
follows that w = c(x) + λp + v for some λ ∈  (0, 1) and some v  ∈      R

n  orthogonal to p.
By the Pythagorean theorem,

    w c x
E

− ( )  =   λp v
E

+  >   v E
 =     w c x p

E
− +( ( ) )λ
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Therefore, w  is closer to c(x) + λp ∈  C than to c(x), which implies that x ≠ w .
Similarly, y ∉ I; analogous arguments establish that p · x ≤ p · c(x) and that p · y ≥ p ·
c(y).  We can therefore find a γ ≥ 1 and a v ∈      R

n  orthogonal to p such that y = x + γp

+ v.  Thus, the Pythagorean theorem implies that

  x y
E

−  =   γ p v
E

+  ≥   p E
 =     c x c y

E
( ) ( )− .

The inequality for the summation norm follows from the equivalence of norms on

    R
n .  ■

Proof of Theorem A.1:  Define     ̂g :   ̃∆  →     R
n  by     ̂g (x) = g(c(x)).  If K is the Lipschitz

constant for g, then Lemma A.2 implies that for all x and y in   ̃∆ ,

    ˆ( ) ˆ( )g x g y−  =     g c x g c y( ( )) ( ( ))−
≤     K c x c y( ) ( )−
≤   K k x y− .

Hence,     ̂g  is Lipschitz.  Moreover, one can check that if x ∈    ̃∆  and xi ≤ 0, then ci(x) = 0.
Thus, condition (FI 2) implies that     ̂g i(x) ≥ 0 whenever xi ≤ 0.

 Standard results (e.g., Hirsch and Smale (1974, Sections 8.3 and 8.4)) imply that
there is a unique solution to     ̇x  =     ̂g (x) from each initial condition in   ̃∆ .  Suppose

that {xt} is the solution to this equation starting from x0 ∈  ∆, and suppose that [xu]i <
0.  Then since {[xt]i} is continuous in t, we can find a time s ∈  [0, u) such that [xs]i = 0
and [xt]i < 0 for all t ∈  (s, u).  Consequently,

[xu]i = [xs]i + 
    

[ ˙ ]x dtt is

u

∫  = 
    

ˆ ( )g x dti ts

u

∫  ≥ 0,

which is a contradiction.  Therefore, ∆ is forward invariant under     ̂g .
Now consider any Lipschitz continuous extension     ̃g  of g to   ̃∆ , and fix an initial

condition x0 ∈  ∆.  Since the solution {xt}t≥0 to     ̇x  =     ̂g (x) starting from x0 does not leave
∆, and since     ̃g  and     ̂g  are identical on ∆, this solution is also a solution to     ̇x  =     ̃g (x).
But since     ̃g  is Lipschitz, this must be the only solution to     ̇x  =     ̃g (x) from x0.  W e
therefore conclude that ∆ is forward invariant under     ̃g .  Since ∆ is closed, forward

invariance implies that the solution is well defined at all times t ∈  [0, ∞) (see, e.g.,
Hale (1969, p. 17-18).  ■
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We now prove an analogue of Theorem A.1 for dynamics on Σ.  Let f: Σ →   ̂Σ
satisfy

(LC') f is     L
1 Lipschitz continuous on Σ.

(FI 1')     fii
( )( )σ π∑  = 0 for all σ ∈  Σ and π ∈  Π.

(FI 2') For all σ ∈  Σ and π ∈  Π, fi(σ)(π) ≥ 0 whenever σi(π) = 0.
(UB) For all σ ∈  Σ and π ∈  Π,     f( )( )σ π  ≤ M

The first three conditions are analogues of the conditions considered previously.
Condition (FI 1') ensures that solutions stay in the affine space   ̃Σ  = {σ ∈    ̂Σ : σ(π) ∈    ̃∆
for all π ∈  Π}; condition (FI 2') ensures that whenever no one in subpopulation
π uses strategy i, the growth rate of strategy i in this subpopulation is non-negative.
Finally, condition (UB) places a uniform bound on f(σ)(π), which is needed because
f(σ) is infinite dimensional.

Existence, uniqueness, and the forward invariance of Σ for     L
1 solutions to   ̇σ  =

f(σ) are established in Theorem A.3.  This result implies parts (i) and (ii) of Theorem
3.1.

Theorem A.3:  Let f: Σ →     R
n  satisfy (LC'), (FI 1'), (FI 2'), and (UB).  Then under any

Lipschitz continuous extension     f̃  of f from  Σ to   ̃Σ , the solution to   ̇σ  =     f̃ (σ) f r o m

each σ0 ∈  Σ exists, is unique, and remains in Σ at all times t ∈  [0, ∞).

In addition to these properties, we would also like to establish that some     L
1

solution {σt} has continuous sample paths:  i.e., that {σt(π)} is continuous for each
preference π ∈ Π.  Put differently, we would like to know that the behavior of the
subpopulation with preference π changes continuously over time.  While not every

    L
1 solution will have this property, we can prove that there is always one which

does.  Call {    ̃σ t } a modification of {σt} if µ(π: st(π) =     ̃st (π)) = 1 for all t.

Theorem A.4:  Let {σt} be an     L
1 solution to   ̇σ  =     f̃ (σ), where      f̃ :   ̃Σ  →   ̂Σ  is Lipschitz

continuous and pointwise bounded .  Then there exists a modification  {    ̃σ t } of {σt}
with continuous sample paths: i.e., such that µ(π:     ̃σ t (π) is continuous in t) = 1.

While of interest in its own right (in particular, because it implies Theorem 4.1 (iv)),
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Theorem A.4 is also useful for proving Theorem A.3.
The difficulty in extending the proof of Theorem A.1 to the current setting is that

if a trajectory {σt} starts in Σ but eventually leaves, the behavior trajectories {σt(π)} for
different preferences π may leave ∆ at different times.  In fact, if we only know that
{σt} is an     L

1 solution, we do not know enough about the sample paths {σt(π)} to
specify the time at which the path leaves ∆, or even to say whether the path "leaves"
∆ at all.  The first difficulty is handled by introducing a random time, and the second
by appealing to Theorem A.4.
 The proof of Theorem A.3 requires us to introduce the notion of     L

1 integrals of
trajectories through   ̂Σ ; for a complete treatment, see Lang (1983).  If {σt} is an L1

continuous trajectory through   ̂Σ , L1 integrals over this trajectory, denoted 
  

σ ta

b
dt∫ ,

are the L1 limits of Riemann sums of step functions {  σ t
n} which approximate the

trajectory {σt} arbitrarily well in the L1 norm.  If {σt} is an     L
1 solution to   ̇σ  =     f̃ (σ), we

have by definition that σu = σ0 + 
    

˜( )f dtt

u
σ

0∫ .  Moreover, if τ : Π → [0, u] is a random

time and f is pointwise bounded, then a Riemann sum approximation can be used

to show that σu = στ + 
    

˜( ) { }f dtt t

u
σ τ1

0 ≥∫ .

Proof of Theorem A.3:
Define     f̂ :   ̃Σ  →   ̂Σ  by     f̂ (σ) = f(c(σ)), where c(σ)(π) ≡ c(σ(π)).  Then for all σ, ρ ∈   ̃Σ ,

    
ˆ( ) ˆ( )f fσ ρ−  =     f c f c( ( )) ( ( ))σ ρ−

≤     K c c( ) ( )σ ρ−
=     K E c c⋅ −( ( )) ( ( ))σ π ρ π
≤     K Ek⋅ −σ π ρ π( ) ( )
=   K k σ ρ− ,

where K and k  are the Lipschitz constants for f and c, respectively.  Hence,     f̂  is     L
1

Lipschitz on   ̃Σ .  Therefore, standard results imply that there exist unique solutions
to   ̇σ  =     f̂ (σ) from each initial condition σ0 ∈   ̃Σ .

Let σ0 ∈  Σ, let {σt} be the     L
1 solution to   ̇σ  =     f̂ (σ) from σ0, and suppose that σu ∉  Σ

for some u.  Then for some strategy i the set Ai = {π ∈ Π:  [σu(π)]i < 0} has positive
measure under µ.  By Theorem A.4, we can suppose that {σt} has continuous sample
paths.  Hence, the random time τ(π) = max{t ≤ u:  [σu(π)]i ≥ 0} is well defined and is
strictly less than u when π ∈  Ai.
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  Observe that if σ ∈   ̃Σ  has σi(π) ≤ 0, then ci(σ)(π) = 0, and hence     f̂i (σ)(π) = fi(c(σ))(π)

≥ 0 by condition (FI 2').  We therefore have the following     L
1 integral inequality:

[σu]i = [στ]i + 
    

ˆ ( ) { }f dti t t

u
σ τ1

0 ≥∫  ≥ [στ]i

Observe that [στ(π)]i = 0 when π ∈  Ai.  Hence, for almost every π ∈ Ai, [σu(π)]i ≥ 0,
contradicting the definition of Ai.  Therefore, the trajectory {σt} cannot leave Σ,
which is thus forward invariant under   ̇σ  =     f̂ (σ).

Forward invariance of Σ under any Lipschitz continuous extension of f to   ̃Σ  is
proved in the same fashion as the analogous part of Theorem A.1.  ■

We now turn to the proof of Theorem A.4.  To do so, we need to introduce the     L
2

norm on   ̂Σ :  

     σ L2  = 
    

E i
i

n

σ 2

1=
∑ .

If {σt} is L2 continuous, then the L2 integral, denoted 
  

b

ta
dtσ∫ , is defined by taking

approximating Riemann sums.  The following standard inequality holds for the L2

integral:

    
b

ta L
dtσ∫ 2

 ≤ 
    

σ t La

b
dt2∫ .

 If {ρt} is pointwise bounded (i.e., if     ( ( ))ρ πt i  ≤ M for all i, t, and π), then since µ is a

probability measure, 
    
L

s t t
1 lim

→
ρ  = 

    
L

s t t
2 lim

→
ρ  if either limit exists.  If {σt} is an L1

continuous trajectory which is pointwise bounded, then the Riemann sums which
approximate these trajectories over any compact interval [a, b] are pointwise
bounded; therefore, the L1 and L2 integrals of the trajectory over this interval are

equal:  
  

σ ta

b
dt∫  = 

  
b

ta
dtσ∫ .  Finally, a trajectory {σt} ⊂   ̂Σ  is L2 Lipschitz continuous if

there exists a constant K such that

    σ σt s L
− 2  ≤ K  t s−

 The proof of Theorem A.4 relies on the Kolmogorov continuity theorem
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(Karatzas and Shreve (1991, Theorem 2.2.8 and Corollary 2.2.11)).  Lemma A.5 is an
implication of this result.

Lemma A.5:  Suppose that {σt} is L2 Lipschitz continuous .  Then there exists a
modification {    ̃σ t } of {σt} such that µ(π:     ̃σ t (π) is continuous in t) = 1.

Proof of Theorem A.4:
 The trajectory {σt} satisfies the L1 integral equation

σt = σ0 + 
    

˜( )f dss

t
σ

0∫ ,

Since the function     f̃  is L1 continuous and pointwise bounded by some constant M,

the trajectory {    f̃ (σt)} is as well.  Hence,

    σ σt s L
− 2  = 

    
˜( )f duus

t

L
σ∫ 2

 = 
    

t

us L
f du˜( )σ∫ 2

 ≤ 
    

˜( )f duu
Ls

t
σ

2∫  ≤   M t s− .

That is, {σt} is L2 Lipschitz.   The result therefore follows from Lemma A.5.  ■

A.2  Other Proofs

Proof of Proposition 2.2:
 Condition (A1), which requires that B is single valued, obviously holds, so we
focus on the Lipschitz continuity condition (A2).  In this proof, we use the Euclidean

norm   x E
 = 

    
xii

2∑  for points in     R
n .  Since this norm is equivalent to the

summation norm, our proof implies the result for the latter norm as well.  It is
enough to show that the Lipschitz inequality     B x B y( ) ( )−  ≤ C   x y

E
−  holds when

  x y
E

−  is sufficiently small.

Fix x, y ∈ ∆ and i ≠ j.  The set of preferences which choose i over j at x and j over i

at y is

Πij = {π: (πx)i > (πx)j and (πy)i < (πy)j}
= {π:  (πi – πj) · x > 0 > (πi – πj) · y}.

We can associate with each preference π a difference vector dij = πi – πj ∈      R
n .  Let
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f:     R
n n×  → R denote the density function of the measure µ, and let gij:     R

n  → R be the
density of the measure on the difference dij which is induced by µ.  If [–c, c]n×n

contains the support of f, and M is an upper bound on f, then by integrating out
irrelevant components and changing variables, one can show that

gij(d) ≤     ( )2
2

c Mn n− for all d ∈      R
n .

Moreover, the support of gij is contained in the cube [–2c, 2c]n, and hence in the ball S
⊂      R

n  centered at the origin with radius r =     2c n .
Let

Dij = {d ∈  S:  d · x > 0 > d · y},

and let λ represent Lebesgue measure on     R
n .  Suppose we can show that

λ(Dij) ≤ K   x y
E

− (3)

for some K independent of x, y, i, and j.  Then since a change in best response
requires a reversal of preferences for at least one strategy pair, it follows that

    B x B y( ) ( )−  = 2µ(π:  B(x)(π) ≠ B(y)(π)) (4)
≤ 2

    
µ( )

,

Π ij
i j i≠
∑

≤ 2
    

( ) ( )
,

2
2

c M Dn n
ij

i j i

−

≠
∑ λ

≤ 2(n2 – n)    ( )2
2

c Mn n− K   x y
E

− .

To bound λ(Dij), we first change coordinates in     R
n  via an orthogonal

transformation T ∈      R
n n×  so that   ′x  = Tx and   ′y  = Ty satisfy   ′x  = (    ′x1 , 0, 0, … , 0) and   ′y

= (    ′y1 ,     ′y2 , 0, … , 0), with     ′x1 ,     ′y1 ,     ′y2  ≥ 0.  The orthogonal operator T is the composition

of a sequence of rotations and reflections, and so preserves Euclidean distance, inner
products, and Lebesgue measure (see Friedberg, Insel, and Spence (1989, Sections 6.5
and 6.10)).  Hence, Dij = {d ∈  S:  Td · Tx > 0 > Td · Ty}, and so

  ′Dij = {  ′d  ∈  S:   ′d  ·   ′x > 0 >   ′d  ·   ′y }

= {  ′d  ∈  S:   ′d  · Tx > 0 >   ′d  · Ty}
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= {  ′d  ∈  S:   ′d  = Td for some d ∈  Dij}

Therefore, λ(Dij) = λ(  ′Dij ).
Whether a vector is an element of   ′Dij  only depends on its first two coordinates.

For   ′d  ∈  S, let α(  ′d ) ∈  [0, 2π) be the amount by which the vector (1, 0) ∈      R
2  must be

rotated counterclockwise before it points in the same direction as (    ′d1 ,    ′d2).  Since all   ′d

∈   ′Dij  form acute angles with   ′x  and obtuse angles with   ′y , we see that

  ′Dij = {  ′d  ∈  S:  α(  ′d ) ∈  [0,   
π
2 ) ∪  (  

3
2
π , 2π) and α(  ′d ) ∈  (α(  ′y ) +   

π
2 , α(  ′y ) +   

3
2
π )}

= {  ′d  ∈  S:  α(  ′d ) ∈ (  
3
2
π , α(  ′y ) +   

3
2
π )}.

Hence, since λ(S) <     ( )2r n ,

λ(  ′Dij ) = 
    

α( )′y
2π

 λ(S) < α(  ′y )     ( )2r n . (5)

Therefore, to prove inequality (3) it is enough to show that

α(  ′y ) ≤ k  x y
E

−  = k  ′ − ′x y
E
. (6)

(To see why the equality in expression (5) holds, let (X1, X2, … , Xn) represent a
random vector drawn from a uniform distribution on the ball S.  Then the random
angle Θ formed by the first two components (defined by (cosΘ, sinΘ) = (X1/    X X1

2
2
2+ ,

X2/    X X1
2

2
2+ )) is independent of the remaining components.)

To establish inequality (6), we fix c > ε ≥ 0 and let Zε = {z ∈      R
2 :     ( , ) – ( , )c z z

E
0 1 2  = ε,

z2 ≥ 0} be the set of vectors in     R
2  with a positive second component which are ε

away from the vector (c, 0).  The largest possible angle between the vector (1, 0) and a
vector in Zε is

θ(ε) ≡ 
    
max ( )
z Z

z
∈ ε

α  = 
    
cos min cos( ( ))−

∈







1

z Z
z

ε

α  = 
    
cos min

( , ) ( , )
( , ) ( , )

−

∈

⋅





1 1 2

1 2

1 0
1 0z Z

E E

z z
z zε

.

If we let δ = c – z1, then the minimization problem becomes



–39–

    

min
( , ) ( , )

( , )[ , ]δ ε

δ ε δ
δ ε δ∈

⋅ − −

− −0

2 2

2 2

1 0 c

c
E

 = 
    
min

[ , ]δ ε

δ
δ ε∈

−
− +0 2 22

c

c c
.

Taking the derivative of this expression with respect to δ and setting it equal to zero
yields δ =     

ε 2

c ; hence,

θ(ε) = 
    
cos− −









1
2 2c
c

ε
.

It follows that θ(0) = 0 and that   ′θ ε( ) = 1/    c2 2− ε  whenever ε < c.  Therefore, if c ≥
1/  n  and ε ≤ 1/    2n , then   ′θ ε( ) ≤     2n , and so

θ(ε) ≤     2n  ε.

Now suppose that   x y
E

−  ≤ 1/    2n .  Then since     ′x1  =   ′x
E
 =   x E

 ≥ 1/  n , setting c

=     ′x1  and ε =   x y
E

−  =   ′ − ′x y
E
 yields

α(  ′y ) ≤ θ(  x y
E

− ) ≤     2n   x y
E

− ,

establishing inequality (6) for all cases in which   x y
E

−  is sufficiently small.  Thus,

inequality (5) implies that

λ(Dij) = λ(  ′Dij ) ≤     ( )2r n ·    2n   x y
E

− ,

and so inequalities (3) and (4) let us conclude that

    B x B y( ) ( )−  ≤ 2(n2 – n)    ( )2
2

c Mn n−  ·     ( )2r n ·    2n   x y
E

− .  ■

 Proof of Proposition 2.3:
 Again, condition (A1) clearly holds, so we need only consider the Lipschitz
continuity condition (A2).  Fix x, y ∈  ∆ and i ≠ j.  Let Πij ⊂  Π represent the set of
preferences which prefer strategy i to strategy j at distribution x but prefer j to i at y:

Πij = {π: (πx)i > (πx)j and (πy)i < (πy)j}
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Then by definition, µ(Π ij) = ν(Dij), where Dij ⊂      R
n  is given by

Dij = {b:  (Ax + b)i > (Ax + b)j and (Ay + b)i < (Ay + b)j}
= {b:  (Ai – Aj) · x > bj – bi > (Ai – Aj) · y}.

Here, Ai and Aj are rows of A.  Now suppose we can show that ν(Dij) ≤ K  x y−  for

some K which is independent of x, y, i, and j.  Then

    B x B y( ) ( )−  = 2 µ(π:  B(x)(π) ≠ B(y)(π))
≤ 2 

    
µ( )

,

Π ij
i j i≠
∑

= 2 
    

ν( )
,

Dij
i j i≠
∑

≤     2
2( )n n K x y− − .

Each bias b ∈      R
n  is associated with a single value of bj – bi ∈  R. Let f:     R

n  → R

denote the density of the measure ν, and let gji: R → R denote the density of the
measure for the difference bj – bi which is induced by ν.  If [–c, c]n contains the
support of f, and M is an upper bound on f, then by integrating out irrelevant
components and changing variables, one can show that

gji(d) ≤     ( )2 2c Mn− for all d ∈  R.

On the other hand, if f(b) =     f bi ii
( )∏ , then since f is bounded, there is also a constant

    M̂  which bounds all of the functions fi.  Therefore, a convolution yields

gji(d) ≤ 
    

f d z f z dzj i( ) ( )− −
−∞

∞

∫  = E fj(d + bi) ≤     M̂ for all d ∈  R.

In either case, gji ≤ J for some constant J.
The interval of values of bj – bi which lie in the set Dij has length

(Ai – Aj)·x – (Ai – Aj)·y = (Ai – Aj)·(x – y) ≤ 
    

2A x yk k
k

−∑  = 2  A   x y− ,

where   A  = maxi,j   Aij .  Therefore,

ν(Dij) ≤     J A x y⋅ −2 ,

and we conclude that
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    B x B y( ) ( )−  ≤     2 22( )n n J A x y− ⋅ ⋅ − .  ■

The proof of Lemma 6.1 relies on the following observation.

Lemma A.6:  Let a, b ∈      R
n .  If a and b lie in the same orthant (i.e., if ai ≥ 0 ⇔  bi ≥ 0),

then    a b+  =   a  +   b .

Proof of Lemma 6.1:
Let x = Eσ, let d = y – x, and let C = {k: dk < 0}.  For all k ∈  C, define   δ k  ∈      R

n  by

    

δ j
k

k

d

d k

d j k

j C k

d j Cj

ii C

=

=
∈ −

− ∑




 ∉









 ∉

if 
if 

if 

,
{ },

.

0

Notice that 
  

δ j
k

j∑  = 0 for each k and that   δ k

k C∈∑ = d.  Moreover, since each   δ k  lies i n

the same orthant of     R
n , Lemma A.6 implies that 

  
δ k

k C∈∑  =   δ k

k C∈∑ .

For each k ∈  C, let   η
k  = x +   δ k .  We want to show that   η

k  ∈ ∆.  To begin, observe
that 

  
ηj

k

j∑  = 
  

xjj∑  + 
  

δ j
k

j∑  = 1.  To check that   ηj
k  ≥ 0 for all j, first note that if j = k ,

then   ηk
k  = xk + dk = yk ≥ 0.  If j ∈  C – {k}, then   ηj

k  = xj ≥ 0.  Finally, if j ∈  C, then since dk

is negative,   ηj
k  = xj – 

  

d

d k
j

ii C

d
∈∑





  ≥ xj ≥ 0.

For each k ∈  C, define rk: Π → R+ by

rk(π) = max {r:  σ(π) + r  δ k ∈  ∆},

and define   z
k : Π → ∆ by

  z
k (π) = σ(π) + rk(π)  δ k .

Fix π ∈  Π; we want to show that   zk
k (π) = 0.  Suppose to the contrary that   zk

k (π) > 0.
Then since   z

k (π) ∈ ∆, 
  

zj
k

j k
( )π

≠∑  < 1, and so   z
k (π) ∈ int(∆); hence,   z

k (π) + ε  δ k  = σ(π) +

(rk(π) + ε)  δ k  ∈  ∆ for all small enough ε > 0, contradicting the definition of rk(π).
Next, we show that Erk ≥ 1.  To see this, suppose to the contrary that Erk < 1.  Then

  ηk
k  = xk + dk < xk + Erk  δ k

k  =   Ezk
k  = 0, contradicting that   η

k  ∈ ∆.  Therefore, if we let tk =

1/Erk, then tk ∈  (0, 1].
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Now define ρ: Σ → ∆ by

ρ(π) = σ(π) + 
    

t rk k
k

k C

( )π δ
∈
∑ .

To see that ρ(π) ∈  ∆ for all π ∈  Π , observe that

    
ρ πj

j

( )∑  = 
    

σ πj
j

( )∑  + 
    

t rk k j
k

k Cj

( )π δ
∈
∑∑  = 1 + 

    
t rk k j

k

jk C

( )π δ∑∑





∈

 = 1

and that ρj(π) ≤ σj(π) only if j ∈  C, in which case

ρj(π) = σj(π) + tj rj(π)   δ j
j  ≥ σj(π) + rj(π)   δ j

j  =     zj
j( )π  = 0

since   δ j
j  < 0.  Moreover,

Eρ = Eσ + 
  
E t rk k

k

k C

δ
∈
∑





 = x + 
  

t Erk
k

k
k C

δ
∈
∑  = x + 

  
δ k

k C∈
∑  = x + d = y.

Finally, applying Lemma A.6 twice, we find that

ρ σ−  = 
  

t rk k
k

k C

δ
∈
∑  = 

  
E t rk k

k

k C

δ
∈
∑  = 

  
E t rk k

k

k C

δ
∈
∑





 = 
    

δ k
k k

k C

E t r( )
∈
∑  = 

  
δ k

k C∈
∑  = 

  
δ k

k C∈
∑  =   d  =   y x− .  ■

Proof of Lemma 6.3:
Let σ0 ∈  A, and suppose that {σt} leaves A  in finite time.  Since {σt} ⊂    ̂Σ  is

continuous and since A  is open, τ = min{t:  σt ∉  A} exists, and ρ ≡ στ lies on the
boundary of A.  To reach a contradiction, it is enough to show that {σt} cannot reach
ρ in finite time.
 The separation theorem for convex sets (Zeidler (1985, Proposition 39.4)) implies
that there is a continuous linear functional F:   ̂Σ  → R such that F(σ) < F(ρ) ≡ r for all
σ ∈  A.  Therefore, to prove the lemma it is enough to show that if σ0 ∈  A  and F(σt +

    ̇σ t ) ≤ r for all t, then F(σt) < r for all t.  Since F is continuous and linear,     
d
dt tF( )σ  =

F(    ̇σ t ) ≤ r – F(σt) (for details, see the proof of Lemma 5.3).  Thus, F(σt) will increase



–43–

most quickly if we maximize     
d
dt tF( )σ  by letting     

d
dt tF( )σ  = r – F(σt) at all times t (which

we can accomplish by setting     ̇σ t  ≡ ρ – σt).  In this case, F(σt) =   e
t− F(σ0) + (1 –   e

t− )r,

which is less than r for all finite t.  ■

Proof of Lemma 6.5

 Let {σt} be the solution to (B) from some σ0 ∈  Σ with Eσ0 = x* ∈  ∆*, and let σ* =
B(x*).  Since Theorem 5.2 implies that {Eσt} solves (AB), it follows from Proposition
5.1 that Eσt = x* for all t.  Hence, B(E(σt)) = B(x*) = σ* for all t.

Since the solution to (B) from σ0 is unique, it is enough to verify that σt ≡   e
t− σ0 +

(1 –   e
t− )σ* satisfies equation (B).  And indeed,

    ̇σ t  = 
    
L t t1

0
lim

ε
εσ σ
ε→

+ −





 = 
    
L e et t1

0

1
0lim ( )( *)( )

ε ε
ε σ σ

→

− + −− −( )
= (σ0 – σ*) 

    
lim

( )

ε

ε

ε→

− + −−



0

e et t

= (σ0 – σ*)   
d
dt

te−

 = (σ* – σ0)   e
t−

 = σ* – σt

= B(E(σt)) – σt.  ■
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