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Abstract

Successful individuals were frequently found to be overly optimistic. These
…nding are puzzling, as one could expect that realists would perform best in the
long run. We show, however, that in a large class of strategic interactions of either
cooperation or competition, the equilibrium payo¤s of optimists may be higher
than those of realists. This is because the very fact of being optimistic changes
the game, and drives the adversary to change her equilibrium behavior, possibly
to the bene…t of the optimist. Suppose, then, that a population consists initially
of individuals with various perceptional tendencies – pessimists and optimists to
various extents, as well as of realists. Individuals meet in pairs to interact, and
more successful tendencies proliferate faster. We show that as time goes by, some
moderate degree of optimism will take over, and outnumber all other tendencies.
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1 Introduction

There is by now a considerable body of evidence, that in many kinds of circumstances,
successful individuals are overly optimistic regarding the return to their own invest-
ment or e¤ort. Taylor and Brown (1988) found that most mentally healthy people
have somewhat unrealistically positive self-views, while the less mentally healthy per-
ceive themselves more accurately. In peer reviews, for example, non-depressed individ-
uals’ self-ratings were considerably more favorable than those given to them by others
(Lewinsohn, Mischel, Chaplin and Barton 1980). Non-depressed individuals exhibited
an illusion of control in a dice-throwing experiment (Fleming and Darley 1986). Most
individuals believe that their driving ability is above average (Svenson 1981), and most
young Americans know that half of U.S. marriages end in divorce, but they are con…dent
that theirs will not (Lehman and Nisbett, 1985).1 In the Economic arena, excess entry
of new businesses that fail within several years is common in the US, and recent experi-
mental work (Camerer and Lovallo, 1999) suggests that this phenomenon may be due to
entrepreneurs being overcon…dent regarding their own ability in comparison with other
entrepreneurs. Babcock and Loewenstein (1997) review experimental work that suggests
that parties to legal disputes are reluctant to settle out of court because they hold overly
optimistic beliefs about the merits of their case.

These observations are puzzling because it might be thought that optimistic individ-
uals, who consistently overestimate their eventual payo¤s, will not do as well as realistic
individuals who assess the situation more accurately, and hence will not survive evolu-
tionary pressures. If success pays o¤ in wealth, which translates to more supportable
descendants and more imitators, one might have guessed that individuals whose esti-
mations are not biased would perform best on average, and thus would outnumber the
biased types in the long run.

In this paper we show that this intuition need not be right and in fact, there is a wide
range of circumstances where optimistic individuals not only survive, but also prosper
and take over the entire population. Our model is based on the consequences of biased
perceptions in strategic interactions between individuals in a large population, who are
continuously matched at random to interact. The individuals di¤er from one another in
the way they perceive their payo¤s from interacting with their rivals: optimists overes-

1In a similar vein, most cigarette smokers smoke high-tar brands, but only 17 percent believe their
brand to have a more hazardous tar level than most others (Segerstrom et al, 1993), and sexually active
undergraduate women, especially those who do not consistently use e¤ective contraception, perceive
their vulnerability to unwanted pregnancy as smaller than the other women at their university perceive
this risk (Burger and Burns, 1988). In a study of optimism and behavior, Seligman and Schulman (1986)
compared the sales made by new life insurance agents and found that those who put an optimistic spin
on setbacks by seeing them as ‡ukes or as suggesting a new approach rather than viewing them as signs
of incompetence sold more policies during their …rst year and were half as likely to quit.
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timate the positive impact of their own actions, pessimists underestimate it, and only
realists assess it correctly. Biased individuals do not react optimally to their environment
as shaped by the objective circumstances and the actions of others. However, it turns
out that in many strategic settings, being recognized as optimistic may give individu-
als a strategic advantage, by inducing opponents to alter their behavior in a favorable
way. When individuals misperceive the impact of their own actions on their payo¤s,
the resulting equilibrium behavior and true payo¤s are di¤erent than those that would
appear if the interacting parties were both realistic. Given a speci…c way the other party
perceives her utility, it may very well “pay” to misperceive one’s own utility, so that the
resulting equilibrium would be better according to the true payo¤s. For moderate levels
of optimism, this bene…cial e¤ect outweighs the losses due to the biases in judgement, in
a large class of interactions.

Interestingly, cautious optimism may pay o¤ both in games in which the actions are
strategic substitutes in the sense of Bulow, Geanakoplos and Klemperer (1985) as well
as games in which the actions are strategic complements. The reason for this is that an
optimist who overestimates the return to his actions, behaves more “aggressively” than
a realist and chooses a higher level of action.2 When actions are strategic substitutes
and the actions of one individual impose a negative externality on the payo¤s of rivals,
this aggressive behavior triggers a favorable soft behavior from the rival. Examples
for such interactions include the tragedy of the commons (the joint use of congested
common resources) and some tournaments.3 When the actions are strategic complements
and the actions of one individual impose a positive externality on the payo¤ of rivals,
the aggressive behavior of the optimist triggers a favorable aggressive behavior from
rivals. Examples for this kind of interaction include the Bertrand duopoly model with
di¤erentiated products and the Cournot duopoly model with complementary products.
Hence, in both cases, cautiously optimistic types fare better on average than realists.
The reason why overly optimistic types do not do as well is that the strategic advantage
from being “too” optimistic is outweighed by the associated loss from having a biased
perception and hence from taking suboptimal actions.4

The idea that a biased objective function that does not coincide with the true payo¤

2In this paper, we use the term aggressiveness to mean a higher level of action, not a tendency to
hurt the other player.

3For instance, consider the Tournament model of Lazear and Rosen (1981), where two individuals 1
and 2, compete for a prize, w. Each of the individuals expands e¤ort, ¹i (i = 1; 2), to produce an output
qi = ¹i + ²i, where ²i is a random luck component. The individual with the higher output wins the
prize. If the random luck components are independently drawn from the same exponential distribution,
F (²i) = 1 ¡ e¡¸²i ; then the expected payo¤ of individual i is ¼i = we¡¸(¹j ¡¹i)

2 ¡ C(¹i); where C(¹i) is
the disutility of e¤ort which is increasing and convex. It can be veri…ed that this model, the e¤orts are
strategic substitutes and the e¤ort of one individual lowers the expected payo¤ of the other individual.

4For an alternative exploration of optimism and self-con…dence see Benabou and Tirole (1999a,b)
and Brocas and Carrillo (1999).
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may confer a strategic advantage is well established and goes back at least to Schelling
(1960). It was used extensively in many areas in economics including, Macroeconomics
(Rogo¤, 1985), International Trade (e.g. Brander and Spencer 1985, Eaton and Gross-
man 1986), Industrial Organization, (e.g., Brander and Lewis 1986, Fershtman and Judd
1987), and delegation (e.g. Green 1992, Fershtman, Judd and Kalai 1991, Fershtman and
Kalai 1997, Katz 1991). In a similar vein, the literature on the evolution of preferences
has shown that a population of “irrational” types who care about fairness (Güth and
Yaari 1992, Huck and Oechssler 1998), are socially minded (Fershtman and Weiss 1997,
1998), altruistic (Bester and Güth 1998), spiteful (Possajennikov 2000, Bolle 2000), con-
cerned with relative success (Koçkesen, Ok and Sethi 1998), or overcon…dent in …nancial
investments (Kyle and Wang 1997, Benos 1998), may be evolutionary stable, i.e. immune
to the appearance of few sel…sh or rational “mutants”.5

In the current work, we take these ideas one step further. We show under what
conditions optimism would evolve in a full-‡edged, dynamic evolutionary context. That
is, instead of just showing that optimism is evolutionary stable, we show under what
conditions the distribution of individual types will converge over time to a unit mass on
some level of optimism. Speci…cally, we consider a large population of individuals who
are continuously matched in pairs at random and interact with one another. Individuals
di¤er in the way they perceive the impact of their own actions on their payo¤s, with
optimists overestimating the impact and pessimists underestimating it. Over time, more
successful types of individuals proliferate. This is either because they are more …t in
the biological sense and therefore have higher reproduction rates, or because they are
imitated by others. For a large class of interactions, we show that some degree of cautious
optimism would reign the population in the long run and wipe out all other types.6

To prove our result, we posit an arti…cial, preliminary game, in which two players
commit simultaneously to their degree of optimism or pessimism, knowing that conse-
quently they will be playing the equilibrium of the game de…ned by the types to which
they committed, but get the true payo¤s that result from their behavior. When this
arti…cial game is dominance solvable, a regular payo¤-monotonic dynamics will wipe out
all serially dominated types, and the population will converge in distribution to a unit
mass at some level of biased perception. This result is known for a distribution of …nitely
many strategies or types (Samuelson and Zhang 1992), and is proved in the appendix

5Related ideas appear already in the works of Frank (1987, 1988). The indirect evolutionary approach,
where the preferences rather than the strategies are the subject of evolutionary pressures, is employed
also by Dekel and Scotchmer (1999), Dufwenberg and Güth (1999), Rogers (1994), Robson (1996a,b),
Waldman (1994) Vega-Redondo (1997) and Bergman and Bergman (2000). See also further references
in the sequel.

6In a similar dynamic setting, Huck, Kirchsteiger and Oechssler (1997) examine the emergence of
an endowment e¤ect – an excess valuation of one’s own endowment in bargaining. They show that the
proportion of realists with no such e¤ect will shrink to zero with time, as will types with a very high
endowment e¤ect. However, unlike in our case, the dynamics is not shown to converge in the long run.
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for general distributions when the payo¤ function is continuous and the set of types is a
compact interval.

The paper is organized as follows. Section 2 brings a simple example that exhibits
most of the properties of the model. Section 3 discusses several interpretational issues.
Section 4 explores general conditions on the payo¤ functions which are su¢cient for
our results to hold, and elaborates on the dynamic selection process and its properties.
Section 5 concludes.

2 A Simple Example

Consider a large population of individuals who are continuously and randomly matched
in pairs to interact with one another. In this interaction, the matched individuals i = 1; 2
choose actions xi 2 R. These actions are to be interpreted as the degree of e¤ort or the
level of investment the individuals put into the interaction.7 Given a pair of actions
x1; x2; the payo¤s of the individuals are

¦i(xi; xj) = (® ¡ bxj ¡ xi)xi for i = 1; 2 and j 6= i; (2.1)

where ® > 0 and ¡1 < b < 1: When b is positive, the individuals are competing with
each other: The larger the action of the other party, the lower is the return to every
unit of one’s own action. Moreover, since ¦i

ij = b > 0 (subscripts are used to denote
partial derivatives), the best-response functions are decreasing in the (x1; x2) space, so
the actions are strategic substitutes in the sense of Bulow, Geanakoplos and Klemperer
(1985). With a negative b, the individuals cooperate with one another since now there
is a positive, linear correlation between the return to one’s action and the action of the
other individual. And, since ¦i

ij = b < 0, the best-response functions are increasing in
the (x1; x2) space, so the actions are strategic complements.

Although the payo¤s of all individuals are symmetric, individuals di¤er from one
another in the way they perceive the interaction between them: Pessimistic types under-
estimate the value of ®; optimistic types overestimate it, and only realistic types assess
it correctly. Speci…cally, player i conceives the value of ® to be

®i = ® + ¿ i; (2.2)

where ¿ i is positive (zero, negative) when the individual is optimistic (realistic, pes-
simistic) regarding the return to her action for any given action of the other individual.
Thus, the individuals conceive their utility functions to be

7For some interpretations, it may be suitable to consider only non-negative actions. Our arguments
continue to hold with such a restriction, though the analysis gets more involved.
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U i(xi; xj) = (®i ¡ bxj ¡ xi)xi for i = 1; 2 and j 6= i (2.3)

Let us assume that the players play the unique Nash equilibrium of the game with these
utility functions:

bxi =
(2 ¡ b) ® + 2¿ i ¡ b¿ j

4 ¡ b2
for i = 1; 2 and j 6= i: (2.4)

An important assumption here is that in every pairwise meeting, the players know each
other’s type. This is either because the types ¿ 1; ¿2 are “written on the players’ foreheads”
and are thus immediately recognized, or alternatively because each interaction consists of
several rounds, in which the players’ actions converge relatively quickly to the equilibrium
behavior (e.g. because in those rounds both players play their best response to the other’s
previous action or some average of the other’s previous actions).8

Substituting bx1 and bx2 into (2.1), the true equilibrium payo¤s of the players are given
by

f i(¿ i; ¿ j) ´ ¦i(bxi; bxj) =
((2 ¡ b) ® + 2¿ i ¡ b¿ j) ((2 ¡ b) ® ¡ (2 ¡ b2)¿ i ¡ b¿ j)

(4 ¡ b2)2 : (2.5)

Now imagine that these true payo¤s translate into …tness terms, so that the instanta-
neous growth rates of the types are monotonic in their average true payo¤s when inter-
acting with randomly matched individuals from the current population of types. That
is, the proportion of types with high current average payo¤s tends to increase, at the
expense of types with low current average payo¤s. The evolution of types therefore fol-
lows a regular, payo¤ monotonic dynamics, as shall be formally de…ned in section 5. The
mechanism by which the frequency of types evolves over time can be seen as either purely
biological (types with higher payo¤s have a higher ability to reproduce), as a process by
which parents transmit their attitudes to life (i.e. their degree of “optimism”) to their
children via education or parental in‡uence, or as a process by which more successful
attitudes to life are imitated more often and increase in popularity.

Given this evolution of attitudes, which levels of optimism will perform best and
survive in the long run? To provide an answer, we consider a preliminary, arti…cial two-
player “types game”. In this game, each of the players i = 1; 2 chooses a type ¿ i ¸ ¡®;

8If types were not mutually observed, individuals would not be able to gain a strategic advantage
from being recognized as optimistic or aggressive. Individuals would then choose their actions to max-
imize their expected payo¤s in a random match with an individual from the population, and realistic
types would fare best. Consequently, as shown by Dekel, Ely and Yilankaya (1998) and Ok and Vega-
Redondo (1999) (see also an example in Possajenikov 1999), in an evolutionary stable distribution of the
population, all the individuals play a (true) Nash equilibrium strategy.
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or, equivalently, an assessment ®i = ® + ¿ i which is non-negative. The payo¤s f i(¿ i; ¿ j)
as a function of these types are given by (2.5) above.

The best-response functions in this game are

BRi(¿ j) =
b2 ((2 ¡ b)® ¡ b¿ j)

4(2 ¡ b2)
for i = 1; 2 and j 6= i: (2.6)

These functions are downward sloping in the (¿1; ¿ 2) space when b > 0; and upward
sloping when b < 0: In other words, the types are strategic substitutes (complements) in
this arti…cial game whenever the actions are strategic substitutes (complements) in the
original game itself. Moreover, since jbj < 1; the slope of the best-response functions BRi

is less than 1
4

in absolute value (each as a function of its variable). Therefore, they have
a unique intersection in the (¿ 1; ¿2) space at (b¿ 1; b¿2); where

b¿ ´ b¿ 1 = b¿ 2 =
b2

4 + 2b ¡ b2
®: (2.7)

are the unique Nash equilibrium assessments. The following graph depicts b¿
®

= b2

4+2b¡b2 :

As can be seen, the players will stick with an optimistic assessment ( b¿
®

> 0) for any b 6= 0:
When b = 1 (the case of competition and strategic substitutes), the degree of optimism
will be 20%. When b = ¡1 (the case of cooperation and strategic complements), the
degree of optimism will reach 100%. Only when b = 0; where the individuals do not face
a genuine strategic interaction but rather a one-person decision problem, no optimism
will appear.

0

0.2

0.4

0.6

0.8

1

-1 1b

Fig.1: The optimism factor b¿
®

at equilibrium as a function of b

Since the slopes of the best-response functions BRi are smaller than 1 in absolute
value, this arti…cial “types game” can be also solved by a process of iterative elimination
of strictly dominated strategies, in which every type but b¿ will eventually be eliminated.9

By theorem 1 below (which is a generalization of a result of Samuelson and Zhang (1992)),

9For instance, suppose that b = 1; so that the payo¤ functions (2.5) in the “types game” are

7



the serially dominated types (those that do not survive iterative elimination of strictly
dominated strategies) are wiped out in a regular, payo¤ monotonic dynamics. Precisely,
for any initial distribution of types whose support is an interval that contains b¿ ; the
distribution of types will converge in distribution to the unit mass at b¿ ; so that the
density of all other types will converge to zero. Figure 1 above depicts, therefore, the
relative optimism of the surviving type as a function of b.

The intuition underlying the evolution of optimism is as follows. Individuals with
optimistic types play more aggressively than realists and choose larger actions. When b
is positive, the actions are strategic substitutes, so the aggressive behavior of optimists
invites a softer behavior from opponents. Since the interactions are competitive when
b is positive, this soft behavior from opponents is bene…cial, so optimists end up with
a higher payo¤ than realists or pessimists, and hence end up with a higher payo¤. Of
course, the return to aggression has its limits, as overly aggressive strategies harm not
only the opponent but also the aggressor. Hence, wildly optimistic types do not do
as well as more moderately optimistic types. When b is negative, actions are strategic
complements, so typically there is a free-rider problem: The players fail to take into
account the bene…t of their actions for their opponents, and therefore the equilibrium
actions tend to be “too low”. Since optimism induces players to be more aggressive than
they would be otherwise, it invites a similar reaction from the opponents. And since
when b is negative the interactions between individuals are cooperative, this eventually
bene…ts both players. Once again, wildly optimistic types end up doing “too much”,
while realistic or pessimistic types do “too little”. Hence, cautious optimists fare better
on average and gradually take over the population.

3 Discussion

Before we continue with more general results, we sidestep to discuss several interpreta-
tional issues of the model.

f i(¿ i; ¿j) =
(®+2¿i¡¿j)(®¡¿ i¡¿j)

9 ; and the best-response functions (2.6) are BRi(¿ j) = ®¡¿j

4 : Since
player 1’s assessment of ® is non-negative, i.e. ¿1 ¸ ¡®; it is better for player 2 to be of type ¿2 = ®

2
and assess ®2 = 3

2® than to have any higher assessment. Understanding this, having type ¿1 = ®
8 and

assessing ®1 = 9
8® is better for player 1 than having any lower assessment. But with this in mind, player

2 is better o¤ having the type ¿2 = 7
32® and the assessment ®2 = 39

32® than any higher value, and so
forth. The only type that survives this elimination process is ®

5 ; the Nash equilibrium type b¿ .
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3.1 Learning about ® over time

The above example immediately raises the following question: How come that optimists
do not come to realize that they overestimate ® once they observe their true payo¤s
(2.5)? A persistent overestimation of ® may be compatible with what is called in the
psychology literature the belief perseverance phenomenon, which is the tendency to cling
to one’s beliefs in the face of contrary evidence.10

Another possible interpretation is that individuals face uncertainty regarding the
true current value of ®; which is drawn at random from some distribution. To illustrate,
suppose that each period, ® could either assume a high value, ®h; with probability p; or
a low value, ®`; with probability 1 ¡ p; independently across periods. Individuals do not
know the value of p, but can observe past realizations of ® and use them to update their
beliefs about p: Using p0 to denote the posterior estimate of p; and noting that the payo¤
functions (2.1) are linear in ®; substituting ®0 = p0®h + (1 ¡ p0)®` in place of ® in (2.1)
gives the expected payo¤ functions.

Initially, individuals have in mind a prior distribution over values of p; that contains
the true value p in its support. Realists update their beliefs about p using Bayes rule, so by
the strong law of large numbers, their posterior distribution will converge in distribution
to a point mass on p almost surely. As a result, their ®0 will converge almost surely to
the true mean p®h + (1 ¡ p)®`, and they will get closer and closer to maximizing their
true expected payo¤.

In contrast, optimists (pessimists) do not use all the relevant information they have
to update their beliefs about p: Rather, they discard some low (high) realizations of
®; attributing them the exceptional, non-systematic bad (good) circumstances, which
render them irrelevant for updating. In other words, the behavior of optimists and
pessimists exhibits what is called in the psychology literature a con…rmation bias – the
tendency to seek information that con…rms one’s own views and overlook evidence that
may discon…rm these views. For instance, re‡ecting on many experiments, Wason (1981)
reports that once people have a wrong idea they “...evade facts, become inconsistent, or
systematically defend themselves against the threat of new information relevant to the

10For instance, Lord, Ross and Lepper (1979) found that people who held opposing views on capital
punishments and were shown supposedly new research …ndings, one supporting and the other refuting
the claim that death penalty deters crime, were more impressed by the study that supported their beliefs,
and readily disputed the other study. Anderson, Lepper and Ross (1980) found that people who were
told about a risk-taker who was an excellent …re …ghter and a cautious person who was a poor …re
…ghter, surmised that risk-takers tend to be better …re …ghters, while other people who were told the
opposite concluded that cautious people are better …re …ghters. These beliefs did not change by much
even after the researchers revealed that the cases were made up for the experiment, arguably because the
participants held on to their explanations for why the their beliefs made sense, even though the evidence
was gone.
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issue.” For experiments that demonstrate the con…rmation bias phenomenon, see e.g.
Klayman and Ha (1987) and Skov and Sherman (1986).

Assuming that optimistic (pessimistic) discard each some constant proportion of low
(high) realizations of ®; their posterior estimation of p will converge almost surely to
some point mass above (below) p: As a result, ®0 in the perceived expected payo¤s of
optimistic types will converge almost surely to a value above (below) the true average of
®. The higher the percentage of discarded realizations, the further ®0 will get from the
true average.

Our results show that the con…rmation bias of optimistic types can not only survive
evolutionary pressures but also take over the entire population. Using a learning inter-
pretation of selection dynamics, this suggests in turn that there is no reason to believe
that over time, individuals will learn to update their beliefs in a Bayesian fashion.

3.2 Larger families of perceived utility functions

We have thus far considered a one-dimensional family of distortions in the perception
of one’s utility function - those that result from di¤erent evaluations of the impact of
one’s own actions on payo¤s. What would happen if we were to consider every possible
distortion of the utility function?

Dekel, Ely and Yilankaya (1998) show that if the distribution of types (i.e. the
perceived payo¤s in our case) ever reaches a stable state in which all the individuals
take the same action, then this action must be e¢cient. In the example of the previous
section, this action is the joint payo¤ maximizing action ®

2(1+b)
: A population of types

who all take a di¤erent action is not immune to an invasion of mutants who perceive their
payo¤s di¤erently. To see why, assume for simplicity that all the individuals perceive the
payo¤s in the same way, and suppose, by way of contradiction, that when they meet
each other they play some ine¢cient x 6= ®

2(1+b)
: Consider mutants that di¤er from the

rest of the population only in that they are extremely satis…ed (over and beyond the
true payo¤) if both players in the interaction play ®

2(1+b)
: Thus, when a mutant meets an

incumbent, she will mimic the incumbent and play x, so that both the incumbent and
the mutant will get the same true payo¤. But when a mutant meets another mutant
they will recognize each other, play ®

2(1+b)
and fare better. Hence, such mutants would

not tend to disappear.

This result, however, is static in nature. In particular, it does not predict if and when
a payo¤ monotonic dynamics would ever converge. Moreover, it does not preclude stable
states with a polymorphic distribution of types. But in any case, it does imply that our
result need not hold with an extended family of utility distortions, and it leads to ask
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what biases are relevant for consideration and in which contexts. Thus, it will certainly
be of interest to model more families of biases, and confront the theoretical predictions
with empirical …ndings. The results of Dekel et al. (1998) show that the triumph of
biased types is not a trivial result in such an exercise, and thus open the door for a
challenging process of modeling relevant biases.

4 A General Analysis

In section 2 we analyzed an example of a symmetric two-player game, in which individual
i of type ¿ i misperceived her true payo¤ function ¦i(xi; xj) to be

U i(xi; xj) = ¦i(xi; xj) + ¿ ixi; i = 1; 2; (4.1)

where xi; xj are the actions of individual i and her opponent j; respectively. Optimistic
types had a positive ¿ i; and thus overestimated the return to each unit of their action,
while the converse was the case for pessimistic types. In this section we shall present a
much broader class of payo¤ functions ¦i; for which some degree of optimism emerges
in a dynamic selection process that favors successful biases. The properties of the payo¤
functions ¦i in this class and the induced properties of the “types game” will be detailed
in sections 4.1 and 4.2, respectively. In Section 4.3 we bring the precise de…nition of the
selection dynamics and analyse conditions for its convergence to a unique selected type.

4.1 The pairwise interactions

We begin by specifying properties of the true payo¤ functions ¦i ´ ¦(xi; xj) of indi-
vidual i; which we assume to be thrice continuously di¤erentiable. For convenience,
we shall often denote its partial derivatives by ¦i

i ´ @¦(xi;xj)
@xi ; ¦i

j ´ @¦(xi;xj)
@xj ; ¦i

ii ´
@2¦i(xi;xj)

(@xi)2 ; and ¦i
ij ´ @2¦i(xi;xj)

@xi@xj :

Property 1: The true payo¤ function of individual i is strictly concave in xi, i.e.,
¦i

ii < 0.

The concavity of ¦i in xi ensures that the best-response of individual i against indi-
vidual j’s action; BRi(xj), is implicitly de…ned by the …rst order condition

U i
i (x

i; xj) = ¦i
i + ¿ i = 0: (4.2)

Property 2: The true payo¤ function of individual i is such that
¯̄̄

¦i
ij

¦i
ii

¯̄̄
< 1 ¡ "; for

some " > 0.
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Property 2 ensures that the slope dBRi(xj)
dxj of each individual’s best-response function

is uniformly smaller than 1 in absolute value. This implies in turn that every pair of
best-response functions intersect exactly once in the actions space, so that every pairwise
interaction has a unique Nash equilibrium.11

Let (bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)) be the Nash equilibrium in the interaction between individ-
uals i and j given their types. The equilibrium strategies are implicitly de…ned by the
following system of equations:

¦i(bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)) + ¿ i = 0; (4.3)

¦j(bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)) + ¿ j = 0:

4.2 The arti…cial types game

To study the evolution of optimism we once again consider an arti…cial two-player “types
game” in which each player i selects a type ¿ i. We assume that the set of possible types
for each individual is a (compact) interval T = [¿ ; ¿ ]; where ¿ < 0 < ¿ , so that both
pessimists and optimists are represented in the population. The payo¤ of player i in the
“types game” is given by

f i(¿ i; ¿ j) ´ ¦(bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)); (4.4)

which is the true equilibrium payo¤ in the interaction between i and j: The uniqueness of
the Nash equilibrium in every pairwise interaction implies that the (reduced-form) payo¤
function of each individual in the types game, f i(¿ i; ¿ j); is well-de…ned. Moreover,
since all individuals have the same true payo¤ function, the payo¤s in the types game
are symmetric in the sense that f i(¿ i; ¿ j) = f j(¿ j ; ¿ i). The needed properties of these
payo¤ functions are:

Property 3: The payo¤ function f i of each player i in the arti…cial “types game” is
twice di¤erentiable and strictly concave in ¿ i

Property 4: The payo¤ functions of individuals i and j in the arti…cial “types game”
are such that jf i

iij <
¯̄
f i

ij

¯̄
:

Property 3 ensures that the types game is well-behaved. Property 4 ensures that
the types game has a unique Nash equilibrium because it implies that the slope of each

11The uniformity requirement is needed to guarantee that the best-respone functions of the individuals
are not mutually asymptotic without intersecting each other. Actually, property 2 ensures that a myopic
best-reply process in a repetition of the game (in which each individual plays a best reply to the previous
action of the opponent) converges to the unique Nash equilibrium. This may justify the assumption that
the individuals essentially play this equilibrium even if initially they do not recognize each other’s type,
but each encounter between them consists of several rounds.
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player’s best-response function in the types game is less than 1 in absolute value. Both
properties are satis…ed in the example studied in Section 2. Since the payo¤ functions in
the types game are symmetric, the Nash equilibrium in the types game is also symmetric.
We denote the equilibrium types by b¿ , so that the Nash equilibrium is (b¿ ; b¿) :

To study the properties of the “types game” further, we return for a moment to the
underlying pairwise interactions and di¤erentiate (4.3) to obtain the following compara-
tive statics conditions:

J £
µ bxi

ibxj
i

¶
=

µ ¡1
0

¶
; J £

µ bxi
jbxj
j

¶
=

µ
0

¡1

¶
; (4.5)

where

J =

µ
¦i

ii ¦i
ij

¦j
ji ¦j

jj

¶
: (4.6)

Using Cramer’s rule, this yield

bxi
i = ¡ ¦j

jj

det J
; bxi

j =
¦i

ji

det J
: (4.7)

Property 2 implies det J > 0: Hence, From (4.7) and property 1 it is easy to see that as
¿ i increases (individual i becomes more optimistic), the equilibrium action of individual
i; bxi; increases (individual i becomes more aggressive), while the equilibrium action of
her rival, bxj ; increases if ¦j

ij > 0 (actions are strategic complements) and decreases if
¦j

ij < 0 (actions are strategic substitutes).

Given Property 3 and using (4.7), an interior Nash equilibrium in the “types game”
is de…ned implicitly by the following system of equations:

f i
i (¿

i; ¿ j) =
1

det J

¡¡¦i
i¦

j
jj + ¦i

j¦
j
ji

¢
= 0; (4.8)

f j
j (¿ i; ¿ j) =

1

det J

¡¡¦j
j¦

i
ii + ¦j

i ¦
i
ij

¢
= 0;

where the partial derivative of the actions game are evaluated at the Nash equilibrium
actions (bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)): To interpret the equilibrium conditions in the types game,
note that (4.8) implies that at an interior Nash equilibrium of the ”types” game we have

¡¦i
i

¦i
j

= ¡¦j
ji

¦j
jj

: (4.9)

The left side of (4.9) represents the slope of an iso-payo¤ curve of individual i in the
underlying actions game in the (xi; xj) space, and the right side of (4.9) represents the
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slope of the best response function of individual j in the (xi; xj) space. Thus, equation
(4.9) says that individual i chooses ¿ i optimally in the types game by selecting to be on
the ”highest” true iso-payo¤ curve, taking as given the best response function of the rival
in the action game. The …rst order condition for this constrained maximization problem
requires that, holding ¿ j constant, the iso-payo¤ curve of individual i will be tangent to
the best response function of individual j:12

In order to express Properties 3 and 4 directly in terms of the true payo¤ function ¦;
one has to di¤erentiate further (4.8), using (4.7). The resulting complicated expressions
are strict inequalities which involve third-order derivatives of ¦; and they do not have a
direct economic interpretation.

Next, we show when it is the case that at the symmetric Nash equilibrium of the
types game, b¿ > 0: That is, in the equilibrium of the types game, individuals “choose”
to become optimistic.

Lemma 1 The Nash equilibrium in the arti…cial “types game” is such that b¿ > 0 if and
only if ¦i

j and ¦i
ij have the same sign, i.e. ¦i

j¦
i
ij > 0:

Proof. Substituting from (4.9) into (4.3) and rearranging terms yields

b¿ = ¡¦i
j¦

j
ji

¦j
jj

; (4.10)

where the right hand side is evaluated at the symmetric Nash equilibrium (bx(b¿ ; b¿); bx(b¿ ; b¿))
in the interaction between two individuals who both have the type b¿ : By the symmetry
of the actions game, it is also the case that

b¿ = ¡¦i
j¦

i
ij

¦j
jj

; (4.11)

at (bx(b¿ ; b¿); bx(b¿ ; b¿ )): The denominator of (4.16) is negative by Property 1. Therefore,b¿ > 0 if and only if ¦i
j¦

i
ij > 0:

To interpret Lemma 1, note that ¦i
j captures the externality that individual j’s action

imposes on individual i’s payo¤ in a pairwise interaction between them (the externality
is positive if ¦i

j > 0; and negative if ¦i
j < 0), and the sign of ¦i

ij determines whether the
actions are strategic substitutes (¦i

ij < 0) or strategic of complements (¦i
ij > 0). Hence

12This is exactly like the behavior of a leader in a Stackelberg duopoly model who chooses the level
of output at which its iso-pro…t curve is tangent to the best response function of the follower.
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Lemma 1 shows that in a Nash equilibrium of the types game, players will choose to
become optimistic either if they impose negative externalities on one another and their
actions are strategic substitutes or if they impose positive externalities on one another
and their actions are strategic complements. The feature that ¦i

j and ¦i
ij have the same

sign is common in many types of games, including the Cournot duopoly with homogenous
or di¤erentiated products, the tragedy of the commons, and tournaments (see footnote 3),
where ¦i

j and ¦i
ij are both negative, and the Bertrand duopoly model with di¤erentiated

products or the Cournot duopoly model with complementary products, where ¦i
j and

¦i
ij are both positive.13 As we explained above, in either case, the aggressive behavior

associated with being an optimist gives individuals a strategic advantage; not surprisingly
then, in a Nash equilibrium of the “types game”, both players will choose to become
optimistic:

Remark: In what follows, we will show that properties 1-4 and the property ¦i
j¦

i
ij > 0

in Lemma 1 guarantee the dynamic evolutionary emergence of optimism, in a sense that
we shall make precise. The payo¤ functions ¦ which satisfy these properties constitute
an open set in the space C3(R2

+) of thrice continuously di¤erentiable functions14, because
they are de…ned using …nitely many strict inequalities which involve continuous functions
of up to third-order derivatives of ¦:15 Thus, the family of quadratic payo¤ functions
explored in section 2, which clearly obey all these properties, is not exceptional: Other
payo¤ functions whose derivatives up to the third-order are not too far from one of those
quadratic functions admit the same kind of evolution of preferences towards some level
of optimism.

The following lemma will be useful for the sequel:

Lemma 2 The arti…cial “types game” is strictly dominance solvable. The unique out-
come that survives the process of iterated elimination of strictly dominated strategies is
the symmetric Nash equilibrium (b¿ ; b¿ ), where b¿ is de…ned implicitly by the …rst order
condition, f i

i (b¿ ; b¿) ´ 0.

13Fershtman and Weiss (1998) show that the same condition implies that social mindedness (enjoying
doing what is socialy highly considered) is evolutionary stable. It should be noted however that there are
important classes of games in which ¦i

j and ¦i
ij do not have the same sign. For instance, in arms races,

where ¦i = V (xi ¡ xj) ¡ C(xi);with V 0(:) > 0 > V "(:), C 0(:) > 0, and C"(:) ¸ 0; we have ¦i
j < 0 <

¦i
ij : Likewise, in voluntary contribution to public goods games, where ¦i = V (xi + xj) ¡ C(xi); with

V 0(:) > 0 > V "(:), and C0(:) > 0 and C"(:) ¸ 0; we have ¦i
j > 0 > ¦i

ij :
14C3(R2

+) is the space of thrice continuously di¤erentiable functions ¦ : R2
+ ! R; with the minimal

topology in which ¦n converges to ¦ i¤ (¦n ¡ ¦) and each of its …rst, second and third derivatives
converge to zero uniformly on compact sets on R2

+.
15More precisely, for every …xed " > 0 in property 2 there are …nitely many strict inequalities involved

in the de…nition of this set of payo¤ functions – denote it V" – which is therefore open. The actual set
of payo¤ functions ¦ which obey all the properties is the union of these open V" over all the positive ",
which is open as the union of open sets.
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Proof. To prove the lemma we invoke Theorem 4 in Moulin (1984) that provides
su¢cient conditions for normal form games to be dominance solvable. In the present
context, these conditions are:

(i) The strategy set of each player is a one-dimensional compact interval

(ii) The payo¤ function of each player is continuous over the space of outcomes, twice
di¤erentiable, and strictly concave with respect to the player’s strategy

(iii) The slope of each players’ best-response functions is less than 1 in absolute value

Condition (i) is satis…ed in the types game because of the assumption that the set
of possible types for each player is a (compact) interval T = [¿ ; ¿ ]. Properties 3 and 4
ensure that conditions (ii) and (iii) are satis…ed. Hence, the types game is dominance
solvable.

4.3 The selection dynamics

In this subsection we turn to the way the population of types evolves over time. To
this end, let Gt be the distribution of types in the population at time t ¸ 0 on the
support T = [¿ ; ¿ ]: We assume that Gt evolves according to a payo¤ monotonic selection
dynamics, where types with higher average payo¤s have higher growth rates. Speci…cally,
we shall de…ne the growth rate of types as follows:

De…nition. A continuous growth-rate function g : T £ ¢(T ) ! R is payo¤ monotonic
and regular if for every G 2 ¢(T ); the following holds:

(i) Higher payo¤s are associated with higher growth rates:

g(¿ i; G) > g(e¿ i; G) () f(¿ i; G) > f(e¿ i; G): (4.12)

(ii) The total size of the population is preserved:Z
T

g(¢; G)dG(¢) = 0: (4.13)

16



(iii) g can be extended to the domain T £ X; where X is the set of signed measures G
with variational norm smaller than 2, and on this extended domain, g is bounded
and Lipschitz continuous:

sup
¿ i2T;Gt2X

¯̄
g(¿ i; G)

¯̄
< 1; (4.14)

sup
¿ i2T

¯̄̄
g(¿ i; G) ¡ g(¿ i; eG)

¯̄̄
< K

°°°Gt ¡ eG°°° ; G; eG 2 X;

for some constant K; where kGk = sup
jhj·1

¯̄R
T

hdG
¯̄

is the variational norm on signed

measures.

Oechssler and Riedel (1999, Lemma 3) proved that property (iii) guarantees that the
mapping G ! R

T
g(¢; G)dG is bounded and Lipschitz continuous in the variational norm,

which implies that the di¤erential equation in the space of distributions ¢(T ) de…ned by

¢
Gt(S) =

Z
S

g(¢; Gt)dGt(¢); S µ T; (4.15)

has a unique solution for any initial distribution G0: A special case of the growth rate
that we consider is the familiar replicator dynamics that was introduced by Taylor and
Jonker (1978) for distributions with a …nite support, and by Oechssler and Riedel (1999)
for general distributions. In the case of the replicator dynamics, the distribution of types
at time t, Gt; evolves according to the di¤erential equation

¢
Gt(S) =

Z
S

£
f(¿ i; Gt) ¡ f(Gt; Gt)

¤
dGt(¿

i); S µ T; (4.16)

where

f(¿ i; Gt) ´
Z

T

f i(¿ i; ¿ j)dGt(¿
j) (4.17)

is the expected true equilibrium payo¤ of an individual of type ¿ i at time t from an
interaction with individual j drawn at random from the population, and

f(Gt; Gt) ´
Z

T

Z
T

f i(¿ i; ¿ j)dGt(¿
j)dGt(¿

i) (4.18)

is the expected true equilibrium payo¤s when both individuals are drawn at random
from the population at time t. That is, if the average performance of a subset of types
S µ T is better than the average performance in the population, the relative weight in
the population of the types in S increases, at the expense of other sets of types whose
performance is below the average. The more general selection dynamics that we consider
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may be appropriate when the reproduction process of types is not purely biological, but
rather relies on education or imitation (see e.g., Weibull 1995, Section 4.4).

Having de…ned the selection dynamics, we are now interested in the following question:
starting from some initial distribution, G0; how will the distribution of types, Gt; evolve
over time with a regular, payo¤ monotonic dynamics? To provide an answer, we now
establish the following theorem (the proof of the theorem appears in the Appendix). The
theorem, which is of independent interest, generalizes Theorem 1 in Samuelson and Zhang
(1992) to the case of games with in…nitely many strategies (Samuelson and Zhang (1992)
prove their result for the case of games with …nitely many strategies). For preserving
the coherence with our setting, we state the theorem for symmetric two-players games
with a compact one-dimensional strategy space; the method of proof works however just
as well for more general compact strategy spaces and for asymmetric games.

Theorem 1 Let T = [¿ ; ¿ ] µ R be a space of strategies, f : T £ T ! R a continu-
ous payo¤ function of a symmetric two-player game, and g : T £ T ! R a regular,
payo¤ monotonic growth-rate function. Let Gt be the population dynamics de…ned by
the di¤erential equation (4.15) with an initial distribution of strategies G0 with support
T: Suppose that D µ [¿ ; ¿ ] is the subset of serially dominated strategies (those that do
not survive the process of iterated elimination of strictly dominated strategies). Then
the strategies in D are asymptotically eliminated from the population: Every iteratively
dominated strategy d 2 D has an open neighborhood Wd for which lim

t!1
Gt(Wd) = 0: In

particular, if there is only one non-eliminated strategy u 2 T n D; then Gt converges in
distribution to the unit mass probability at u.

We are now ready to state our main result:

Theorem 2 Suppose that the payo¤s in the pairwise interactions have properties 1-4
and are such that ¦i

j and ¦i
ij have the same sign. Then given any initial distribution of

types with support T; the population of types will converge in distribution to a unit mass
on the optimistic type b¿ under any regular, payo¤-monotonic selection dynamics.

Proof. >From Lemma 2 we know that given properties 1-4, the arti…cial “types
game” is strictly dominance solvable, with the solution being (b¿ ; b¿). Using Theorem
1 it therefore follows that under a regular, payo¤ monotonic growth-rate function, the
population of types will converge in distribution to a unit mass on b¿ . Finally, Lemma 1
ensures that if ¦i

j and ¦i
ij have the same sign, then b¿ > 0:
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5 Conclusion

We have shown how the pressures of explicit, dynamic evolutionary processes select for
moderate optimism rather than for realism, when …tness is gained through interactions of
either a competitive nature and strategic substitutes or cooperative nature and strategic
complements. According to this insight, the well-documented phenomenon of overcon…-
dence and unrealistic high self-esteem of individuals may be due to a bias that “pays”
well in many kinds of strategic settings.

Clearly, the way humans evaluate their environment has evolved along the genera-
tions via con‡icts with both natural hazards and strategic social interactions with other
individuals or groups of individuals. The premises of our model are therefore far from
being all-encompassing. And in practice, society is composed of heterogeneous individ-
uals who may di¤er from one another in their degree of optimism/pessimism, unlike the
long-run equilibrium in our model where all individuals share the same attitude. Thus,
our modest aim was to point at one possible source for the optimism that is so frequently
observed in the process of decision making. Searching for competing and complement-
ing evolutionary insights for this and similar behavioral puzzles is a challenge for future
research.

6 Appendix

Proof of Theorem 1: Let Dn be the set of strategies that do not survive n or less rounds
of iterated elimination of strictly dominated strategies, so D = [1

n=0Dn: Denote also by
Un = T n Dn the set of strategies that do survive n rounds of iterated elimination of
strictly dominated strategies. We prove by induction on n that Un is compact, and every
eliminated strategy d 2 Dn has an open neighborhood Wd for which lim

t!1
Gt(Wd) = 0:

Since D0 = ; and U0 = T; the claim holds for n = 0: If D1 is empty as well, i.e.
no strategies are strictly dominated, then the claim holds vacuously. So from now on
assume that D1 6= ;: Suppose, by induction, that the claim holds for n < k:

We …rst prove that Uk is compact. Indeed, let d 2 Dk be round-k dominated by the
strategy x 2 T; that is for every y 2 Uk¡1

f(x; y) ¡ f(d; y) > 0: (A.1)

Since f is continuous, [f(x; y) ¡ f(d; y)] is continuous in y, and therefore attains its
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minimum on Uk¡1; as this set is compact by the induction hypothesis. Hence by (5.12)

½(x; d) ´ min
y2Uk¡1

[f(x; y) ¡ f(d; y)] > 0: (A.2)

Furthermore, the function ½(x; d) is continuous since [f(x; y) ¡ f(d; y)] is. Therefore,
for every " > 0; the set of strategies which are dominated by x by a payo¤ di¤erence of
at least "

fd : ½(x; d) > "g (A.3)

is open. Consequently, the set of strategies dominated up to round k

Dk = Dk¡1 [
[

x2Uk¡1

[
">0

fd : ½(x; d) > "g ; (A.4)

is open as a union of open sets, and Uk = T n Dk is compact, as required.

We now turn to complete the inductive step, and prove that every eliminated strategy
d 2 Dk has an open neighborhood Wd for which lim

t!1
Gt(Wd) = 0: Indeed, let d be

dominated by x in one of the rounds up to k: Then if k > 1; not only does x perform
better than d against strategies in Uk¡1; but it also does so against some strategies in an
open subset of Dk¡1: Since f is continuous, the set

B = fy 2 T : f(x; y) ¡ f(d; y) · 0g (A.5)

is a compact subset of the open set Dk¡1: Hence B is a proper subset of Dk¡1; as Dk¡1

is open by the induction hypothesis (except when k = 1; in which case Dk¡1 = ;; and
B = ;).

This implies that for some positive number s; we have

lim
t!1

Gt(C) = 0; (A.6)

where

C = fy 2 Dk¡1 : f(x; y) ¡ f(d; y) · sg : (A.7)

Indeed, for k = 1; Dk¡1 = D0 = ;; so for whatever positive s chosen we have Gt(C) = 0;
and (5.16) holds. For k > 1; let

s =
1

2
sup

y2Dk¡1

[f(x; y) ¡ f(d; y)] ; (A.8)

which is positive, by the fact that B ( Dk¡1; as explained above. With this s; the set C is
a closed subset of Dk¡1 (because f(x; y)¡f(d; y) is continuous in y); and hence compact.
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By the induction hypothesis, every y 2 Dk¡1 has an open neighborhood Wy 3 y such that
lim
t!1

Gt(Wy) = 0. Since C µ S
y2C Wy , the compactness of C implies that there exist

y1; : : : ym 2 C such that C µ Sm
i=1 Wyi

: Therefore, Gt(C) · Pm
i=1 Gt(Wyi

) and hence
lim
t!1

Gt(C) = 0; as claimed.

Observe now the following considerations. The continuity of f and ½ imply that there
are open neighborhoods Vx 3 x and Wd 3 d such that for every x0 2 V x, d0 2 W d

inf
y2Dk¡1nC

[f(x0; y) ¡ f(d0; y)] ¸ s

2
> 0; (A.9)

and

min
y2Uk¡1

[f(x0; y) ¡ f(d0; y)] = ½(x0; d0) ¸ ½(x; d)

2
> 0: (A.10)

Thus, against any strategy y =2 C; every strategy x0 2 V x outperforms every d0 2 W d by
at least

" = min

½
s

2
;
½(x; d)

2
;
1

2

¾
> 0; (A.11)

i.e.,

inf
y2T nC

[f(x0; y) ¡ f(d0; y)] ¸ ": (A.12)

At the same time, since f is continuous on the compact domain T , there exists a
bound M such that jf j · M ; and by (A.6), there exists a time t such that for t ¸ t we
have Gt(C) < "

8M
and Gt(T nC) > 1¡": Altogether this implies that for x0 2 V x; d0 2 W d

and t ¸ t

f(x0; Gt) ¡ f(d0; Gt) =

Z
T

[f(x0; ¢) ¡ f(d0; ¢)] dGt =Z
C

[f(x0; ¢) ¡ f(d0; ¢)] dGt +

Z
T nC

[f(x0; ¢) ¡ f(d0; ¢)] dGt > (A.13)

(¡2M)
"

8M
+ "(1 ¡ ") ¸ ¡"

4
+ "(1 ¡ 1

2
) =

"

4
:

By the continuity of f; (A.13) holds also when Gt is replaced by any probability measure
¹ 2 A ´ fGtgt¸t; the closure of fGtgt¸t in the topology of weak convergence of probability
measures.

Now, by the payo¤ monotonicity of the growth-rate function g; for every ¹ 2 A;
x0 2 V x and d0 2 W d

g(x0; ¹) ¡ g(d0; ¹) > 0: (A.14)
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The continuous function [g(x0; ¹) ¡ g(d0; ¹)] attains its minimum on the compact set
V x £ W d£ A: Therefore, there is in fact a positive ± for which

g(x0; Gt) ¡ g(d0; Gt) ¸ ± (A.15)

for x0 2 V x; d0 2 W d and t ¸ t. A fortiori, this inequality holds also if we replace g(x0; Gt)
and g(d0; Gt) by their averages in V x and W d; respectively. Thus for t ¸ tR

V x
g(¢; Gt)dGt

Gt(V x)
¡

R
W d

g(¢; Gt)dGt

Gt(W d)
¸ ±: (A.16)

Hence, by (4.15), for t ¸ t

¢
Gt(V x)

Gt(V x)
¡

¢
Gt(W d)

Gt(W d)
=

d

dt

·
log

Gt(V x)

Gt(W d)

¸
¸ ±; (A.17)

so that

Gt(V x)

Gt(W d)
¸ Gt(V x)

Gt(W d)
exp[±(t ¡ t)] !t!1 1: (A.18)

Therefore, lim
t!1

Gt(Wd) = 0; as required. ¥
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