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Abstract

We analyze how communication and voting interact when there is uncertainty about

players' preferences. We consider two players who vote on forming a partnership with

uncertain rewards. It may or may not be worthwhile to team up. Both players want to

make the right decision but di�er in their attitudes toward making an error. Players'

preferences are private information and each player is partially informed about the

state of the world. Before voting, players can talk to each other.

We completely characterize the equilibria and show that communication is bene�-

cial. The main role of communication is to provide a double check: When there is a

conict between a player's preferences and her private information about the state, she

votes in accordance with her private information only if it is con�rmed by the message

she receives from her opponent. In a scenario where only one of the players is allowed

to talk, the bene�ts of communication are independent of the identity of the sender.

JEL classi�cation numbers: C78, D72, D82
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1 Introduction

Two people have to decide whether to form a partnership with uncertain rewards. It is

not worthwhile to team up in all states of the world. The players can make two mistakes:

They can either form the partnership when it is not worthwhile to do so, or they may not

to team up despite there being gains from the partnership. Both players want to make the

right decision but they have di�erent concerns about the two errors. A player's preferences

are known to herself but not to her opponent. Each player is partially informed about the

gains of the partnership because she receives a signal from nature that is correlated with the

unknown state of the world. The players decide about forming the partnership by voting

and the partnership is formed if both vote in its favor. Before voting, the two players can

talk to each other. This gives them an opportunity to exchange their private information

and make a more informed decision.

The essence of this scenario is the interaction of communication and voting in an environ-

ment in which players are uncertain about their opponents' preferences. This is characteristic

of situations in which players do not have a long history of interactions and hence do not have

full knowledge of each others attitudes. One might think, for example, of two executives who

have just met and are trying to decide whether or not to form an alliance. They must both

agree in order for the alliance to be established. Given that the bene�ts from the alliance

are uncertain and both executives know something about the state of the world, they have

a natural incentive to talk to each other and pool the available information. Our goal is to

analyze the functions and bene�ts of communication in situations like this.

Communication is especially important whenever a small group of people makes a joint

decision. In general, voting by itself fully aggregates information in large elections (Feddersen

and Pesendorfer 1997, Feddersen and Pesendorfer 1998, Duggan and Martinelli 1999, Gerardi

2000). This is not the case for small electorates. However, in this environment communi-

cation may help the group make a better decision. Suppose for example that all players

have the same preferences. If players cannot talk to each other, the available information

is not fully aggregated (Austen-Smith and Banks 1996, Feddersen and Pesendorfer 1998).

But if players are allowed to communicate, then each player has an incentive to truthfully

reveal her private information in order to help the group make a more informed decision.

In this case the group will adopt the decision that would have been preferred by everyone

were all information publicly available. In other words, information is fully aggregated once

communication is added to voting. This argument extends to the case of heterogeneous

preferences provided that preferences are suÆciently close and common knowledge (Austen-
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Smith 1990, Coughlan 2000).

It is an open question what happens when preferences di�er or are private information.

When players di�er in their attitudes toward the two errors, each has an incentive to manipu-

late the decision in the direction of her bias. On the other hand, players have an incentive to

reveal their private information in order to reach a more informed decision. These opposing

incentives lead to more complex equilibrium behavior than in the case when preferences are

similar and only the latter incentive matters.

This paper is the �rst to analyze the interaction of communication and voting when there

is uncertainty about players' preferences. In contrast to the case of similar preferences, our

model allows us to gain a better understanding of the importance of communication in a

voting game.

We consider two related games, one in which only one player is allowed to talk and another

one in which both players are allowed to do so. We provide a complete characterization of

the equilibria in both games and show that, while not all private information is revealed,

some information transmission takes place.

In the scenario in which only one player talks, we start by considering the case where the

sender and the receiver have information of the same quality, i.e. the degree of correlation

between the state of the world and their signal is the same. We show that the purpose of

communication is to serve as a double check. When there is a conict between the receiver's

concern with the two errors and her private information about the state of the world, she

votes in accordance with her private information only if it is con�rmed by the message she

receives from the sender. On the other hand, a sender in the same situation resolves this

conict by delegating the �nal decision to the receiver. She votes in favor of the alternative

option and thus allows the �nal decision to depend solely on the receiver's vote. Next we

allow the two players to have private information of di�erent quality. In this case it is

natural to investigate which player should assume the role of the sender. Surprisingly, the

identity of the sender is irrelevant in the sense that it does not a�ect the quality of the �nal

decision. In our model, information can be aggregated either in the communication stage

or in the voting stage. Our irrelevance result suggests that communication and voting are

\perfect substitutes": All the information that is not transmitted by the sender's message

is aggregated by the players' votes.

Allowing both players to talk complicates the analysis because players are now simulta-

neously senders and receivers of communication. In order to make the analysis tractable,

we assume that their information is of the same quality. Our analysis highlights the same
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functions of communication as in the one-sender game. In particular, communication pro-

vides players with a double-check when their private information conicts with their relative

concerns. To evaluate the bene�ts of communication, we compare players' utilities in the

one- and two-sender games with their utilities in a pure voting game (Gerardi 2000). We

�nd that welfare is increasing in the number of speakers, but also that there are decreasing

returns to scale in a certain sense.

This paper contributes to a growing literature that studies the e�ects of communication

in various environments such as auctions (Campbell 1998), bargaining (Farrell and Gibbons

1989, Matthews 1989), agenda setting (Ordeshook and Palfrey 1988), the provision of public

goods (Palfrey and Rosenthal 1991), and entry in natural-monopoly industries (Farrell 1987).

These papers show that communication dramatically a�ects the set of outcomes and that

its welfare e�ects depend on the underlying game. Given the attention that voting has

received in the recent literature, it is surprising that communication has not been analyzed

in this context, especially since communication always takes place when a small committee

has to reach a joint decision. Our analysis allows us to describe the important role that

communication plays in collective decision-making processes.

The remainder of the paper is organized as follows. Section 2 presents the one-sender

game. In Section 3 we analyze the two-sender game. Section 4 concludes and suggests a

number of possible extensions. All proofs are relegated to the appendices.

2 One-Sender Game

2.1 Model Setup and Equilibrium Concept

Two players jointly decide whether to maintain the status quo or to change it by adopting

some alternative option. Let the joint decision to maintain the status quo be denoted by

d = 1 and the decision to change it by d = 0. The rewards from the decision depend on

the unknown state of the world !, which takes on the values 0 or 1 with equal probability.1

A decision that matches the state of the world (d = !) is optimal for both players, and we

call such a decision correct in what follows. There are two types of errors: adopting the

alternative option (d = 0) when the state is ! = 1 and maintaining the status quo (d = 1)

when the state is ! = 0.

Players di�er in their relative concerns with the two errors. A player's preferences are

1Our results hold also when Pr(! = 0) 6= Pr(! = 1).
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formally captured by assigning her a type q 2 (0; 1). Types are private information, but it

is common knowledge that each type is an i.i.d. draw from a distribution F with domain

(0; 1), where F is continuous, strictly increasing, and admits a density f such that f(0+) > 0

and f(1�) > 0. A player's utility u(d; !; q) depends on the joint decision d, the state of the

world !, and her type q. We normalize the utility from making a correct decision to zero

and set u(0; 0; q) = u(1; 1; q) = 0, u(0; 1; q) = �q, and u(1; 0; q) = q � 1. Hence, higher

types are more concerned with adopting the alternative option when the correct decision is

to maintain the status quo than lower types.

Player i is partially informed about the state of the world because she receives a signal

si 2 f0; 1g from nature which is correlated with the state of the world: Pr(si = !j!) = pi 2

(1=2; 1). If the degree of correlation between the state of the world and their signal is the

same, we say that the players have private information of the same quality. Otherwise, the

quality of their private information di�ers. Conditional on the state of the world, the signals

are independent across players.

The game proceeds in two stages. In the �rst stage, one of the players, the sender,

expresses her opinion in the form of a straw vote. This means that the sender sends a message

m 2 f0; 1g to her opponent, the receiver. In what follows we index variables pertaining to

the sender and the receiver by s and r, respectively. In the second stage, player i casts

her vote vi 2 f0; 1g. The vote vi = 1 is in favor of the status quo and the vote vi = 0 is

in favor of the alternative option. Voting is simultaneous and the decision rule prescribes

that the alternative is adopted whenever both players vote for it; otherwise the status quo is

maintained. For clarity of exposition, we drop indices in the treatment when no ambiguity

arises.

The sender's strategy consists of two choices. The message choice is described by a

function assigning to each pair (q; s) the probability that a sender of type q sends message

m = 1 after observing signal s. Her voting choice is described by a function assigning to each

triplet (q; s;m) the probability that a sender of type q votes v = 1 after she has observed

signal s and sent message m. The receiver's strategy is a function assigning to each triplet

(q; s;m) the probability that a receiver of type q votes v = 1 when she observed signal s and

received message m.

In order to characterize the equilibria of this game, we introduce so-called cuto� strategies.

We say that the sender's message strategy has a cuto� structure if for any s 2 f0; 1g, there

exists a number qs in the unit interval such that, after observing signal s, she reports message

m = 0 (m = 1) if her type q is smaller (larger) than qs. The sender's voting strategy has
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a cuto� structure if for any s 2 f0; 1g and m 2 f0; 1g, there exists a number qsm in the

unit interval such that, after observing signal s and sending message m, she casts the vote

v = 0 (v = 1) if her type q is smaller (larger) than qsm. Likewise, the receiver's cuto� rsm

prescribes that, after observing signal s and receiving message m, the receiver votes v = 0

if q < rsm and v = 1 if q > rsm. In other words, ceteribus paribus high types send message

m = 1 and vote v = 1 whereas low types send message m = 0 and vote v = 0.

Our solution concept is Perfect Bayesian Equilibrium (PBE) with the additional require-

ment that players do not use weakly dominated strategies. In Appendix A.1, we show that

every PBE is outcome-equivalent to a PBE in which players use cuto� strategies.2 We

henceforth restrict attention to PBE in cuto� strategies.

Not all cuto�s are necessarily identi�ed by sequential rationality or weak dominance.

Suppose that the sender's cuto� strategy is such that q01 < q0 and q11 < q1. This means

that after sending message m = 1 the sender vetos change. Hence, if the receiver observes

message m = 1, she knows that the sender will vote v = 1 and that the outcome will be

d = 1 irrespective of her vote. It follows that the receiver's optimal strategy is not uniquely

determined. Similarly, a sender of type q > maxfqs0; qs1g knows that she will vote v = 1

after observing signal s regardless of the message she sends. Even though her message may

a�ect the receiver's vote, the �nal decision is d = 1. Since the sender is indi�erent between

messages, her optimal strategy is undetermined.

These examples suggest that an indeterminacy arises where an action does not have an

impact on the �nal decision. In the case an action a�ects the outcome, the cuto�s are

uniquely identi�ed and related across signals by the family of functions

kp(q) =
q(1� p)2

q(1� p)2 + (1� q)p2
; (1)

de�ned on (0; 1) and indexed with the quality of the signal p. Speci�cally, q1 = kps(q0) and

for m 2 f0; 1g, q1m = kps(q0m) and r1m = kpr(r0m) (see proof of Proposition 1). For future

reference note that kp(q) < q for every q and p and that kp is strictly increasing in q.

Hence, in order to resolve the indeterminacy mentioned above, we restrict attention to

PBE in which all cuto�s are linked across signals through the functions kps and kpr . This

requirement may be justi�ed by noting that these PBE are the only ones that survive a

stability check: Consider a player and slightly perturb her opponent's strategy, so as to yield

2Two strategy pro�les are outcome-equivalent if they induce the same probability distribution over �nal
decisions. Note that unlike the case of voting without communication, ruling out weakly dominated strategies
does not guarantee that all equilibria admit a cuto� structure.
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a unique best reply. We require that such a sequence of unique best replies converges to the

original strategy as the perturbation vanishes. We call a PBE that satis�es this requirement

robust. In Appendix A.2 we show that in a robust cuto� PBE all cuto�s are linked across

signals through the functions kps and kpr .

In order to conduct our analysis, we pose a technical assumption on the distribution of

types. For any q 2 [0; 1], the ratio

F (x)� F (q)

F (kp(x))� F (kp(q))
(2)

is strictly decreasing in x, x 2 [0; 1], x 6= q. This assumption is satis�ed by all Beta

distributions and should thus not be considered too restrictive.

2.2 Equilibrium Characterization

This game admits di�erent equilibria. In so-called babbling and non-responsive equilibria

communication plays no role: In a babbling equilibrium the sender's choice of message is

independent of the signal she observes, in a non-responsive equilibrium the receiver's vote

is independent of the message she receives. Non-responsive and babbling equilibria are

outcome-equivalent (see Appendix A.1) and are also outcome-equivalent to the equilibria of

the pure voting game analyzed by Gerardi (2000). When no communication takes place, the

symmetric equilibrium is characterized by two cuto�s, ~q1 and ~q0. Accordingly, the voting

behavior can be classi�ed into three categories. Types with q < ~q1 always vote v = 0 in

favor of the alternative option and types with q > ~q0 always vote v = 1 in favor of the status

quo. Finally, types with ~q1 < q < ~q0 vote v = s according to their signal. In summary,

extreme types who are overly concerned with a particular error, vote according to their

relative concerns whereas moderate types vote according to their signal.

Our goal is to analyze the interaction of communication and voting, so it is appropriate

to consider responsive equilibria. In a responsive equilibrium, the receiver conditions her

vote on her type, her signal, and the sender's message. The sender conditions her voting

strategy not only on her type and her signal, but also on the message she sends. This is

because she chooses a best reply to her opponent's equilibrium play which in turn changes

according to the message she sends.

Next we characterize responsive equilibria in terms of con�gurations. By a con�guration

we mean the order of the cuto�s for a given signal. Although there is a large number of

con�gurations, Proposition 1 shows that exactly one of them is consistent with a responsive

8



PBE. This allows us to compute the responsive robust cuto� equilibria of the one-sender

game by solving a system of equations (see the proof of Proposition 1).

Proposition 1 Responsive robust cuto� equilibria exist and display the con�guration

0 < qs < qs0 < qs1 < 1 for s 2 f0; 1g;

0 < rs1 < rs0 < 1 for s 2 f0; 1g:

There does not exist a responsive robust cuto� equilibrium in any other con�guration.

Fix a signal s. Proposition 1 shows that receivers with type q 2 (0; rs1) vote for the

alternative option independent of the message they receive and receivers in (rs0; 1) always

veto change. In contrast, receivers in (rs1; rs0) vote according to the message they receive

(v = m). It follows that the receiver is (ex-ante) more likely to vote for the alternative option

after receiving a message in favor of it than after observing a message against it. The main

reason is that the sender's signal is partially revealed in equilibrium. In fact, in a robust

PBE we have q1 = kps(q0) < q0. This implies that a sender with type q 2 (q1; q0) truthfully

reports her signal at the message stage (m = s). Because some senders are truthful, receiving

a particular message m strengthens the receiver's belief that the state of the world is indeed

! = m. This in turn increases the probability that the receiver votes according to the

message (v = m) because she would like the �nal decision to match the state of the world.

Consequently, the sender can use her message to manipulate the receiver's vote.

The sender, in turn, has to choose among three behaviors. First, she can veto change

(v = 1). Second, she can send a message in favor of the status quo but then vote for the

alternative option (m = 1 and v = 0). Third, the sender can both express herself and vote

in favor of change (m = 0 and v = 0). The �rst course of action guarantees that the status

quo persists (d = 1) independent of the sender's message and the receiver's strategy. In both

the second and the third course of action, the sender in e�ect concedes the �nal decision to

the receiver. On the other hand, given the sender's ability to manipulate the receiver's vote,

the second strategy makes the outcome d = 1 more likely than the third one.

Proposition 1 shows that the sender's behavior is very intuitive. High types with q > qs1,

who are very concerned with incorrectly adopting the alternative option, veto it.3 Low types

with q < qs are very concerned with mistakenly maintaining the status quo. They therefore

3While these types are indi�erent between the two messages, a responsive PBE exists only if they report
send a message in favor of the status quo.
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maximize the probability that the �nal decision is to change the status quo by targeting

their actions at achieving change (m = 0 and v = 0). Lastly, types with q 2 (qs; qs1) are not

overly concerned with a particular mistake and adopt an intermediate behavior by sending

a message in favor of the status quo but then voting against it (m = 1 and v = 0).

A sender with type q 2 (qs0; qs1) exhibits a rather counterintuitive feature: She reports

a message in favor of the status quo (m = 1) in order to increase the probability that the

alternative option is adopted (d = 0). Since q � qs0, if she had sent message m = 0, she

would then vote v = 1 and the status quo would be maintained. On the other hand, since

q � qs1, sending message m = 1 implies that she then votes v = 0 which, in turn, ensures

that the alternative is adopted with positive probability.

Proposition 1 identi�es the order of the cuto�s for a given signal. To gain additional

insights into the role of communication, we now relate players' cuto�s across signals. The

exact values of the cuto�s q00 and q10 are irrelevant. Recall that the threshold qs0 governs

the voting behavior of senders who report message m = 0. However, provided that qs0 > qs,

the voting behavior of types who send message m = 0 does not depend on the speci�c value

of qs0. In fact, all types who send a message in favor of change subsequently vote for it.

We have already shown in Proposition 1 that qs < qs1 and rs1 < rs0 and that cuto�s are

related across signals by the functions kps and kpr in a robust responsive cuto� equilibrium.

Since kp(q) < q, we conclude that q1 (q01) is the smallest (largest) cuto� for the sender.

Similarly, r11 (r00) is the smallest (largest) cuto� for the receiver. Therefore, it remains to

determine the relationship between q11 and q0 as well as r10 and r01. Corollary 1 gives the

order of these thresholds when the quality of the signal is the same for both players. In

Section 2.3, we explore the case of di�erent qualities.

Corollary 1 If ps = pr, then q11 < 1=2 < q0 and r10 < 1=2 < r01.
4

Proposition 1 and Corollary 1 together imply the following orders of the relevant cuto�s

when the two players have information of the same quality:

0 < q1 < q11 < q0 < q01 < 1;

0 < r11 < r10 < r01 < r00 < 1:

Figure 1 illustrates this result. The upper part of Figure 1 summarizes the equilibrium

behavior for di�erent types of senders. For each interval of types, the left (right) column

4In general these cuto�s are separated by
�
1 + Pr(!=1)

Pr(!=0)

��1

.
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reports the equilibrium strategy of the sender when she observes signal s = 0 (s = 1).

The top row indicates the sender's message, the bottom row her vote. In the lower part

of Figure 1, we describe the receiver's equilibrium behavior. For each interval of types, the

left (right) column refers to signal s = 0 (s = 1). The top (bottom) row reports her vote

after receiving message m = 0 (m = 1). To facilitate the discussion, we give names to the

senders and receivers in the �ve intervals. From left to right, we label them as left extremist,

left sophisticated, central, right sophisticated, and right extremist types. We label some types

sophisticated because their behavior is fairly complex, but that does not imply that the

extremist and central types are boundedly rational. The label extremist reects the fact

that these types adopt a rather inexible behavior.

0                q1   q10            q11                        q0             q00              q01                         1

0   0             0   1        0   1  1   1             1   1
0   0             0   0        0   1  0   1             1   1

0                r11                    r 10                               r 01                               r 00                       1

0    0            0    0        0    1 0    1            1    1
0    0            0    1        0    1                   1    1            1    1

  Left Extremist              Left Sophisticated                        Central                     Right Sophisticated            Right Extremist

  Left Extremist              Left Sophisticated                        Central                     Right Sophisticated            Right Extremist

Figure 1: Path of play in the one-sender game. Same quality of information.

Consider the receiver �rst. Left extremist receivers are so concerned with the possibility

of foregoing a valuable alternative that they vote against the status quo (v = 0) regardless of

their signal and the sender's message. Right extremist receivers, conversely, always enforce

the status quo (v = 1). Similar to extremists, central receivers never listen to the sender's

message. However, unlike extremists, they vote according to their signal (v = s). Central

types are not overly concerned with either type of error, so they have an incentive to use the

available information. However, they know that the sender may misreport her signal, and

thus prefer to vote according to their own signal.

Sophisticated receivers are the only types who may listen to the sender's message. Left
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sophisticated receivers, for example, are more concerned with mistakenly foregoing a good

opportunity for change than with the opposite mistake (but less so than left extremists).

These receivers therefore require more evidence in order to vote for the status quo than

against it. Observing signal s = 0 is suÆcient evidence for them that the �nal decision

should be to adopt the alternative option. Therefore, left sophisticated receivers disregard

the sender's message and vote in favor of change in this situation. Observing signal s = 1 is

not conclusive, so in this case left sophisticated receivers require that their signal is con�rmed

by their sender's message in order to vote for the status quo. Hence, left sophisticated senders

vote v = 1 if and only if their private information is in favor of change (s = 1) and that

indication is con�rmed by a message that is favorable to change (m = 1). Conversely, right

sophisticated receivers vote in favor of change (v = 0) if and only if their private information

and the sender's message support this decision (s = 0 and m = 0). In short, a sophisticated

receiver uses the sender's message as a double check. Whenever her private information

about the state of the world conicts with her preferences, a sophisticated receiver will use

the sender's message to check the validity of her own signal and will vote according to it

only if it matches the sender's message. As far as a player's type may be interpreted as

capturing her attitudes with respect to the �nal decision, we could say that when players

have similar quality of information the main role of communication is to resolve a conict

between a player's knowledge and her ex-ante view of the world.

Consider the sender next. A left extremist is especially concerned with maintaining the

status quo (d = 1) when the correct decision is to adopt the alternative option (! = 0).

She thus votes for the alternative option (v = 0) and also sends message m = 0 in order

to manipulate the receiver to do the same. Right extremists are overly concerned with

adopting the alternative option (d = 0) when the status quo should be maintained (! = 1)

and therefore veto change. Central senders condition their voting and message behavior

on their signal (m = v = s). Similar to central receivers, central senders are not overly

concerned with a particular mistake and thus use their private information.

A signal in favor of change (s = 0) persuades left sophisticated senders that the status

quo should be abandoned. In this case, they express themselves in favor of the alternative

option both at the message and at the voting stage (m = 0 and v = 0). However, after

observing signal s = 1, left sophisticated senders adopt an intermediate behavior. If they

were to veto change, that would determine the �nal outcome, so they vote v = 0 just as left

extremists do. However, they are not as concerned as the left extremists about mistakenly

maintaining the status quo, so they report message m = 1 and delegate the �nal decision
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to the receiver. Right sophisticated senders display analogous behavior. They adopt the

intermediate strategy of sending message m = 1 and delegating the �nal decision (v = 0)

after observing signal s = 0. After observing signal s = 1, they are persuaded that the status

quo should be maintained and determine the �nal outcome by vetoing change (v = 1).

Our result that a sophisticated sender delegates the �nal decision to the receiver parallels

the literature on delegation. Li and Suen (2001) consider a simpler model with an uninformed

principal and an informed agent. They show that extremist principals dictate the �nal

decision whereas more moderate principals delegate it to the agent.

2.3 Quality of Information

The previous section focused on the case where the quality of information is the same for

both players. If the signal qualities are di�erent (ps 6= pr), then it is no longer true that all

cuto�s pertaining to s = 1 are smaller than the cuto�s for s = 0. This may give rise to a

variety of behaviors.

From Proposition 1 we know that, independent of the signal qualities, the smallest

(largest) cuto� of the sender is q1 (q01) and that the cuto�s q10 and q00 do not a�ect the

equilibrium behavior on path. Analogously, r11 (r00) is the smallest (largest) cuto� of the

receiver. It follows that the quality of information can a�ect only the relationship between

q11 and q0 as well as r10 and r01. Hence, only the behavior of central senders and central

receivers can depend on the quality of information.5 Speci�cally, if q11 > q0, central senders

send m = 1 and vote v = 0 independent of their signal. If r10 > r01, central receivers

disregard their signal and vote v = m according to the sender's message. Figure 2 illustrates

the di�erent combinations of equilibrium behavior for a uniform distribution of types. These

combinations are indicated by circles, pluses, and squares.

If the quality of information is almost the same for both players, ps � pr, the order of

the cuto�s is q11 < q0 and r10 < r01 (pluses in Figure 2). The resulting behavior is the same

as discussed in Section 2.2. In particular, central senders and receivers behave according

to their own signal. Consider for example a central sender. She has an incentive to use

all available information which consists of her own signal and the information contained in

the receiver's vote. While observing signal s = 1 increases the conditional probability of

state ! = 1, the information contained in the receiver's vote either increases it (vr = 1) or

decreases it (vr = 0). In order to evaluate the information content of the receiver's vote, the

sender has to take into account that not all types of receivers vote truthfully. Therefore, the

5We continue to label types from left to right.
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Figure 2: Equilibrium behavior as a function of the quality of information.

sender \discounts" the information content of the receiver's vote accordingly. If the quality

of the signal is similar for both players, then the sender's updated probability that the state

is ! = 1 is greater than 1=2 after she has observed signal s = 1 even if her own signal

conicts with her opponent's vote.

If the quality of the sender's information is much lower than the quality of the receiver's

information, ps � pr, then q11 > q0 and r10 < r01 (circles in Figure 2). In this case, a

poorly-informed central sender disregards her own signal and delegates the decision to the

well-informed receiver. To continue the above example, the sender knows that the discounted

information content of her opponent's is higher than the information content of her own

signal. This is enough evidence to convince her that the �nal decision should coincide with

her opponent's vote.

If the quality of the sender's information is much higher than the quality of the receiver's

information, ps � pr, on the other hand, we obtain q11 < q0 and r10 > r01 (squares). When

the sender is much better informed than the receiver, central receivers disregard their own

signal and listen to the sender's message instead.

We next consider extreme signal qualities. One might think that if the sender has a
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perfect signal, then she should reveal her signal truthfully and all types of receivers should

vote according to the sender's message. While this in fact constitutes a responsive PBE in

the limiting case of ps = 1, there are other equilibria. Our numerical analysis highlights one

of them. As the probability that the sender receives the correct signal approaches unity, all

senders are central and choose m = v = s whereas the receivers in the interval (0; 1=2) are

left extremists and the ones in (1=2; 1) are central (and thus vote v = m for every s). Hence,

the correct decision is reached in two di�erent ways. A left extremist receiver always votes

v = 0 and thereby delegates the �nal decision to the sender. On the other hand, a central

receiver listens to the sender's message and votes v = m.

If the receiver has a very good signal, pr � 1, all receivers are central and choose v = s

whereas the senders in the interval (0; 1=2) are left extremists and the ones in (1=2; 1) are

central (and thus send message m = 1 and vote v = 0 for every signal s). The sender intends

to use the information available to the receiver and delegates the decision to the receiver

by voting v = 0. As the receiver disregards her message, the sender is basically indi�erent

between the two messages. However, a responsive PBE requires that left extremists choose

m = 0 and central types m = 1.

2.4 Welfare Analysis

So far the distinction between the sender and the receiver has been exogenous. However, as

the two players may have private information of di�erent quality, a natural question arises

concerning the identity of the sender. Who should send the message at the �rst stage? To

answer this question we consider the ex-ante utilities of the players and the probabilities of

the two possible wrong decisions (adopting d = 1 when ! = 0 and choosing d = 0 when

! = 1). In Proposition 2 we show that the identity of the sender is irrelevant. In particular,

each player has the same ex-ante utility independent of whether she is the sender or the

receiver. Similarly, the probabilities of the two errors when the better informed player sends

a message coincide with the probabilities of the two errors when the sender is the player with

the lower quality signal.6

Let � (p; p0) denote the game in which the sender gets the correct signal with probability

p and the receiver observes the right signal with probability p0. We need to compare sets of

equilibrium utilities because we have not established uniqueness of the equilibrium. Denote

6Our irrelevance result can be contrasted to Dekel and Piccione (2000) who consider a sequential voting
game without communication. When players have identical preferences, they show that it is optimal to have
the better-informed players vote earlier.
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by Us (p; p
0) the set of the sender's ex-ante responsive cuto� equilibrium utilities in the game

� (p; p0). Similarly, let Ur (p; p
0) denote the set of the receiver's ex-ante utilities.

Proposition 2 For any pair (p; p0) 2
�
1
2
; 1
�2
, Us (p; p

0) = Ur (p
0; p).

Proposition 2 shows that, from an ex-ante point of view, the two players are indi�erent

between being the sender or the receiver. This result could be also obtained by demonstrating

that the set of equilibria of the game � (p; p0) is outcome-equivalent to the set of equilibria

of the game � (p0; p). Proposition 2 would then follow as a straightforward corollary.

Underlying Proposition 2 is the fact that every responsive PBE (q; r) of the game � (p; p0)

is related to a responsive PBE (q0; r0) of the game � (p0; p) by

q0s = rs1; q0s1 = rs0; r0s1 = qs; r0s0 = qs1 for s = 0; 1:

The �rst equality, for example, follows from the fact that the receiver in the game �(p; p0),

after observing signal s and receiving message m = 1, conditions her voting decision on an

event that has the same probability as the event on which the sender in the game �(p0; p)

conditions her message decision after observing signal s. Using this symmetry result to

compute Us (p; p
0) and Ur (p

0; p) yields the relationship presented in Proposition 2.

Information can be aggregated either in the communication or in the voting stage. Propo-

sition 2 suggests that communication and voting are \perfect substitutes" in the sense that

all the information that is not transmitted by the sender's message is aggregated by the

players' votes. This leads to the question of whether or not communication is bene�cial at

all. We defer an answer to this question to Section 3.4, where we compare a voting game

without communication to the one- and two-sender games.

3 Two-Sender Game

3.1 Model Setup and Equilibrium Concept

We now consider the case where both players participate in the straw vote. To keep the

analysis tractable, we assume that the quality of information is the same for both players,

i.e. p1 = p2 = p. Player i sends a message mi 2 f0; 1g. The outcome of the straw vote

is common knowledge before the actual vote takes place. Hence, player i's voting strategy

is a function assigning to each quadruplet (q; s;m;M) the probability that player i of type

q votes v = 1 after she has observed signal s, sent message m, and received message M .
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Our solution concept is symmetric PBE. As in Section 2, we rule out weakly dominated

strategies.

It is easy to show that for every PBE there exists an outcome-equivalent PBE in which

the voting strategy admits a cuto� representation. Even though we are not able to establish

a similar result for the message strategy, we follow the spirit of the one-sender case and

focus on symmetric cuto� PBE. Such pro�les are identi�ed by the cuto�s qs and qsmM with

s 2 f0; 1g, m 2 f0; 1g, and M 2 f0; 1g. This means that a player of type q sends message

m = 1 (m = 0) after observing signal s if q > qs (q < qs), and that a player of type q

votes v = 1 (v = 0) after observing signal s, sending message m, and receiving message M

if q > qsmM (q < qsmM ).

As in the one-sender model, some cuto�s are not uniquely identi�ed by sequential ra-

tionality or weak dominance. We therefore restrict attention to robust equilibria in which

all cuto�s are related across signals through the function kp de�ned in equation (1) (see

Appendix A.2 for details).

3.2 Equilibrium Characterization

The two-sender game admits babbling and non-responsive equilibria. It is easy to show that

symmetric non-responsive and symmetric babbling equilibria are outcome-equivalent.7 With

a slight abuse of terminology, we henceforth call any equilibrium that is outcome-equivalent

to a babbling equilibrium non-responsive. This includes some responsive equilibria that

are also outcome-equivalent to babbling equilibria (see the proof of Proposition 3). This is

because the �nal decision is the same although the voting strategy may be di�erent.

We consider responsive equilibria in order to shed light on the interaction of communica-

tion and voting. In a responsive equilibrium, there are types of players who condition their

vote on their opponent's message. In Proposition 3 we present a complete characterization

of the responsive equilibria of the two-sender game.

Proposition 3 There exist three classes of responsive robust cuto� equilibria:

Class 0: qs < qs01 < qs11 < qs00 = qs10 for s 2 f0; 1g;

Class 1: qs01 < qs < qs00 < qs10 and qs11 � qs for s 2 f0; 1g;

Class 2: qs11 � qs01 = qs < qs00 = qs10 for s 2 f0; 1g.

7The proof is available upon request.

17



There does not exist a responsive robust cuto� equilibrium in any other con�guration.

For any class, the smallest cuto� in s = 0 is larger than the largest cuto� in s = 1

and the two sets of cuto�s are separated by 1=2. Moreover, the equilibria of class 0 are

outcome-equivalent to the equilibria of class 1.

Proposition 3 shows that there are three classes of equilibria and that two of them are

outcome-equivalent. We defer a detailed discussion of the equilibrium behavior of classes 0

and 1 and next show that equilibria in class 2 are in turn outcome-equivalent to the equilibria

of the one-sender model. Since we do not establish uniqueness, we need to compare sets of

equilibria. To facilitate this comparison, we restrict attention to equilibria of the one-sender

game in which rs0 = qs1 and rs1 = qs. Denote by E(p) the set of outcomes induced by such

robust responsive cuto� equilibria of the one-sender game. Similarly, let E2 (p) denote the

set of outcomes induced by equilibria of class 2.

Proposition 4 For any p 2
�
1
2
; 1
�
, E(p) = E2 (p).

In other words, for every equilibrium of class 2, the one-sender game admits an outcome-

equivalent equilibrium. Conversely, each equilibrium of the one-sender game has an outcome-

equivalent counterpart in class 2. This is unexpected because the equilibria of class 2 are

symmetric and thus conceptually di�erent from the equilibria of the one-sender game. In fact,

while in the latter only one player communicates any information about the state of the world,

in the equilibria of class 2, both players reveal some information. Note that it is not the case

that in the equilibria of class 2 one sender babbles. Obviously, an asymmetric equilibrium

of the two-sender game can be constructed as follows. Given a responsive equilibrium of

the one-sender game, one player babbles at the message stage and chooses the same voting

strategy as the receiver. The other player behaves as if she were the sender.

The on-path behavior in the equilibrium of class 2 is similar to the behavior in a robust

responsive cuto� equilibrium of the one-sender game. In particular, all types in (0; q1) behave

as left extremist senders, all types q 2 (q100; q0) mimic central senders, and all types in the

interval (q000; 1) act as right extremist senders. Types in the interval (q1; q100) send message

m = 0 and vote v = 0 upon observing s = 0: When the realized signal is s = 1, they send

message m = 1 and then condition their vote on the opponent's message, voting v = 0 if

and only if they receive message M = 0: Their voting behavior coincides with the voting

behavior of the left sophisticated receivers in the one-sender game. At the same time, their

message strategy is the same as the message strategy of the left sophisticated senders. One
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could say that these types combine the role of both sender and receiver. Analogously, the

types in the interval (q0; q000) play the role of right sophisticated senders and receivers.

We now turn to the equilibria of class 0 and class 1. Figure 3 illustrates the equilibrium

behavior. The top part of Figure 3 summarizes the di�erent paths of play in equilibria of

class 0, the bottom part refers to equilibria of class 1. For each interval, the �rst column

reports the path of play of the type when she has received the signal s = 0 from nature,

and the second column, the path after the signal s = 1: The �rst row identi�es the message

sent. The second row refers to the vote. When a type conditions her vote on her opponent's

message, we �rst present the vote after receiving message M = 0 and second the vote after

M = 1.

                                             q110                                                                           q010

0             q1       q101     q111                    q100                q0          q001       q011                  q000              1

0   0         0   1            0       1 0    1               1    1                 1      1           1    1
0   0         0   0            0     0   1           0    1      0    1          0   1    1           1    1

0       q111    q101             q1         q100      q110       q011       q001              q0          q000      q010             1

     0   0              0     0           0     1                   0    1              0      1            1      1            1   1
     0   0         0   0 1        0   0   1                0    1            0   1   1         0   1   1            1   1

Class 0 equilibrium

Class 1 equilibrium

Left Extremist            L. NR. S.               L. T. S.                     Central                 R. T. S.               R. NR. S.        Right Extremist

Figure 3: Path of play of class 0 and class 1 equilibria in the two-sender game.

Since class 0 and class 1 are outcome-equivalent, we start by discussing the behavior

implied by equilibria of class 1 and then comment on the di�erences between class 1 and

class 0. To facilitate the discussion, we label the types from left to right as left extremist, left

non-revealing sophisticated, left truthful sophisticated, central, right truthful sophisticated,

right non-revealing sophisticated, and right extremist types. We now distinguish between

sophisticated types who truthfully report their signal and those who do not condition their

message on their signal.

As in the one-sender game, players partially reveal their private information. Speci�cally,

left truthful sophisticated, central, and right truthful sophisticated types report the signal
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that they observe whereas the remaining types send a message that is independent of their

signal. Turning to the voting behavior, a player is more likely to veto change after receiving

a message in favor of the status quo. Formally, qsm0 > qsm1 for all s 2 f0; 1g and m 2 f0; 1g.

This allows a player to manipulate her opponent.

To gain insight into a player's behavior in a PBE, let us �x her opponent's strategy and

her signal. The player can decide the �nal outcome by voting v = 1. Alternatively, she

can �rst send a message m 2 f0; 1g and then vote for change irrespective of her opponent's

message (v = 0) or vote in line with her opponent's message (v =M).8

Suppose �rst that the player observes signal s = 1. Left extremists are very concerned

with mistakenly maintaining the status quo. Therefore they send message m = 0 in order

to increase the probability that their opponent votes in favor of the alternative option and

vote v = 0 themselves. Left non-revealing sophisticated types continue to manipulate their

opponent into voting for change by falsely sending message m = 0 but then listen to their

opponent's message and vote v = M . Left non-revealing sophisticated types take into

account that their opponent may vote for change because they have sent a message in favor

of it. Since they are less concerned with mistakenly maintaining the status quo than left

extremists, they follow their opponent's message at the voting stage in order to avoid that

the status quo is maintained simply because of their own message. After receiving signal

s = 1, left truthful sophisticated types are not overly concerned with a particular error and

hence have no incentive to manipulate their opponent. In fact, these types report their

signal truthfully and listen to their opponents message (v = M). Finally, central, right

truthful sophisticated, right non-revealing sophisticated, and right extremist types are very

concerned with erroneously adopting the alternative option and therefore veto change (and

send message m = 1). To summarize, low types target their actions towards the alternative

option whereas high types tend to favor the status quo.

Suppose next that the player observes signal s = 0. In a responsive PBE of class 1,

we observe four di�erent behavioral patterns. Speci�cally, left extremist, left non-revealing

sophisticated, left truthful sophisticated, and central types disregard their opponent's mes-

sage and express themselves in favor of change at the message and the voting stage (m = 0

and v = 0). Right truthful sophisticated types send message m = 0 and right non-revealing

sophisticated types m = 1. However, both their votes reect their opponent's message

(v = M). Finally, right extremist types ensure that the status quo is maintained (and send

message m = 1).

8Since there is a positive probability that her opponent reveals her signal truthfully, it is never optimal
for the player to vote against her opponent's message.
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Figure 3 shows that in a responsive PBE of class 1, only truthful and non-revealing

sophisticated types (left and right) make use of their opponent's message. In particular,

these types use their opponent's message as a double check when their private signal conicts

with their concerns, similar to sophisticated receivers in the one-sender game. They vote

according to their own signal only if it is con�rmed by their opponent's message.

The behavior in equilibria of class 0 is the same as in equilibria of class 1 with two

exceptions. In an equilibrium of class 0, left non-revealing sophisticated types reveal their

signal and vote for change independent of their signal on their opponent's message. In

addition, right truthful sophisticated types always send message m = 1 and then vote v = s

according to their own signal.

3.3 Quality of Information

We conduct a numerical analysis with a uniform distribution of types over a grid of values for

the quality of information p. In each class, the numerical analysis led to a unique equilibrium.

For brevity we restrict the discussion to equilibria of class 1. In Figure 4 we present the

shares of behavioral patterns for each level of quality of information. The size of left and

right extremist types decreases in p (it is close to 1 when p approaches 1=2 and it is about 0

for p near 1). The truthful sophisticated types grow steadily to pervade the entire interval

(0; 1) for p close to 1: The central types disappear for p close to 1=2 and p close to 1. The

mass of left and right non-revealing sophisticated is relatively small.

When the quality of information is very poor, almost all players condition their behavior

only on their relative concern with respect to the two possible mistakes and disregard both

their own signal and their opponent's message. This is an intuitive results, because when

private signals are not informative, the whole purpose of communication and voting to

aggregate private information is de�ed.

If the quality of information is very good, almost all players send their message sincerely.

Because of that, a player's message contains valuable information. On the other hand, since

the player's own signal is very informative, a conict between preferences and signal may

arise even for extreme types. Therefore, almost all types are willing to condition their voting

behavior on their opponent's opinion. In other words, they prefer to take advantage of the

opponent's private information as a double check.

Finally, when the quality of the information is intermediate, there is partial revelation

of information. Due to the presence of extremist types, a player has to \discount" the

information content of her opponent's message. This explains the presence of central types
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Figure 4: Shares of behavioral patterns in the class 1 equilibrium as a function of the quality
of information.

who are not overly concerned with a particular mistake and thus disregard their opponent's

message and vote according to their own signal.

3.4 Welfare Analysis

Intuitively, giving players the opportunity to talk cannot increase players' welfare when the

signal is either completely uninformative or perfectly informative. However, communication

reveals some additional information in the case when the quality of the signal is intermediate.

This suggests that communication can increase players' welfare in this case.

We compare players' ex-ante equilibrium utility in the pure voting game, the one-sender

game, and the two-sender game when the distribution of types is uniform. The result is

illustrated in Figure 5, where the notation un refers to the ex-ante utility associated with

the Pareto-dominant equilibrium of the n-sender game. The class 1 (and thus the class 0)

equilibrium Pareto-dominates the equilibrium of class 2 which in turn is outcome-equivalent

to the responsive PBE of the one-sender game. Moreover, all three classes of equilibria

Pareto-dominate the equilibrium of the pure voting game. Our result that the ex-ante

utility of all players is increasing in the number of speakers is in contrast to the literature

on cheap talk originated by Crawford and Sobel (1982) where the principal's utility, but not
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Figure 5: Utility comparison between the pure-voting game and the one- and two-sender
games.

necessarily an agent's utility, is increasing in the number of agents (Battaglini 2000, Krishna

and Morgan 2001).

The di�erence in utility between the Pareto-dominant equilibrium in the two-sender game

(class 1 and 0) and the equilibrium in the one-sender game is smaller than the di�erence

between the equilibrium in the one-sender game and the equilibrium in the pure voting game.

Since the increment of utility contributed by the �rst speaker is larger than the increment

of utility contributed by the second speaker, we could say that there is a case of decreasing

returns to scale.

4 Conclusion

This paper analyzes the interaction of communication and voting in the context of a small

committee (two players). When players share similar preferences, communication takes

a very simple form since all players have an incentive to reveal their private information

(Austen-Smith 1990, Coughlan 2000). However, in many situations players do not have a

long history of interactions and hence do not have full knowledge of each others attitudes.

Therefore, we consider the case where preferences are di�erent and uncertain.
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We provide a complete characterization of the equilibria both for the case where only

one player is allowed to talk and for the case where both are allowed to do so. We show

that, while not all private information is revealed, some information transmission takes place.

Our main contribution is that we demonstrate how this information transmission bene�ts

the players and helps them reach a better decision.

We show that when the two players have private information of the same quality about

the state of the world, the purpose of communication is to serve as a double check. A player

uses her opponent's message to resolve a conict between her preferences and her private

information. In the one-sender game the sender resolves this conict by delegating the �nal

decision to the receiver.

When the two players have private information of di�erent quality and only of them is

allowed to talk, we show that the identity of the sender does not a�ect the quality of the

�nal decision. This suggests that communication and voting are \perfect substitutes" in the

sense that all the information that is not transmitted by the sender's message is aggregated

by the players' votes.

To evaluate the impact of communication on players' welfare, we compare the voting game

without communication to the one- and two-sender games. We show that communication is

bene�cial and subject to decreasing returns to scale.

Our results imply one round of communication is not suÆcient for all the available infor-

mation to be transmitted. In general, allowing for more than one round of communication

expands the set of possible outcomes (see for example Forges (1990) and Aumann and Hart

(1999)). It would be interesting to explore the question whether allowing more complex

forms of communication helps players to reach a more informed decision.

Adding communication to a voting game considerably complicates the analysis. We have

therefore restricted attention to a setup with two players, two states of the world, and two

signals. Future research should consider more general environments. For example, having

more than two players would allow us to analyze and compare di�erent voting rules. In sum,

this paper is a �rst step toward understanding the role of communication in a collective

decision-making process.
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Appendix A: Cuto� Equivalence and Robustness

A.1 Cuto� Equivalence

In order to show that any PBE in undominated strategies is outcome-equivalent to some
cuto� PBE, we �rst need to formally de�ne players' strategies. The sender's behavioral
strategy consists of two choices. The message choice is described by a measurable function
� : (0; 1)�f0; 1g ! [0; 1] where � (q; s) denotes the probability that the sender sends message
m = 1 when her type is q and she observes signal s. The voting choice is de�ned by a
measurable function � : (0; 1)�f0; 1g2 ! [0; 1] where � (q; s;m) denotes the probability that
the sender votes v = 1 when her type is q, she has observed signal s; and she has sent message
m. The receiver's strategy is described by a measurable function � : (0; 1)� f0; 1g2 ! [0; 1]
where � (q; s;m) denotes the probability that the receiver votes v = 1 when her type is q,
she has observed signal s; and she has received message m.

Associated with each strategy pro�le is a distribution function which assigns to each
quadruplet (qs; qr; ss; sr) the probability that the decision d = 1 is made by a sender of type
qs and a receiver of type qr, when they observe signals ss and sr, respectively. Two strategy
pro�les are outcome-equivalent if their associated distribution functions are equal almost
everywhere.

Proposition 5 Every PBE in undominated strategies is outcome-equivalent to a PBE in
which the sender's message and voting strategies admit a cuto� structure described by (qs; qsm);
and the receiver's strategy admits a cuto� structure described by rsm:

Proof. In the proof we distinguish between responsive and non-responsive PBE. An
equilibrium is non-responsive if � (q; s; 0) = � (q; s; 1) for s 2 f0; 1g and for any q: A babbling
equilibrium satis�es � (q; 0) = � (q; 1) for any q. Babbling equilibria are non-responsive, but
not necessarily vice versa.9 Moreover, any babbling PBE is outcome-equivalent to a cuto�
PBE where q0 = q1 = 0: So we need to show that non-responsive and babbling equilibria are
outcome-equivalent.

Lemma 1 Non-responsive and babbling equilibria are outcome-equivalent.

This result follows from the fact that if the receiver's voting behavior is independent of the
message, then also the sender's voting choice (and thus the �nal decision) is independent of
the message. The formal derivation is available upon request.

Turning to responsive PBE, we proceed in three steps. First we spell out the equations
that characterize the equilibrium, then we show that the set of types who play a given
strategy constitutes an interval. Finally, we show that the equilibrium strategies admit a
cuto� representation.

Step 1: The equations characterizing responsive undominated PBE pro�les ((�; �); �).

9Note that in this game there are non-responsive equilibria which are not babbling. For instance, � (q; 0) =
� (q; 1) 2 (0; 1) for almost every q, � (q; s; 0) = � (q; s; 1) and � (q; s; 0) = � (q; s; 1) (where � (q; s;m) and
� (q; s;m) are the equilibrium strategies of the game without communication) constitutes a PBE.

25



The sender's voting strategy. Given s andm; sequential rationality requires that � (q; s;m)
admits the following cuto� structure:

� (q; s;m) =

�
1 if q > Pr(! = 0js;m; vr = 0)
0 if q < Pr(! = 0js;m; vr = 0)

(3)

Since we are restricting attention to equilibria in undominated strategies, Pr(s;m; vr = 0) >
0. Thus Pr(! = 0js;m; vr = 0) is well de�ned. We de�ne qsm = Pr(! = 0js;m; vr = 0),
where

qsm =
Pr(sj! = 0)Pr(vr = 0j! = 0; m)

Pr(sj! = 0)Pr(vr = 0j! = 0; m) + Pr(sj! = 1)Pr(vr = 0j! = 1; m)
(4)

The receiver's voting strategy. Given s andm; sequential rationality requires that � (q; s;m) =
1, if

q[Pr(sj! = 0)Pr(vs = 0; mj! = 0) + Pr(sj! = 1)Pr(vs = 0; mj! = 1)] > (5)

Pr(sj! = 0)Pr(vs = 0; mj! = 0)

and that � (q; s;m) = 0; if the inequality is reversed.
Whenever Pr(sj! = 0)Pr(vs = 0; mj! = 0) + Pr(sj! = 1)Pr(vs = 0; mj! = 1) > 0; the

strategy � (q; s;m) admits the following cuto� structure:

� (q; s;m) =

�
1 if q > Pr(! = 0js;m; vs = 0)
0 if q < Pr(! = 0js;m; vs = 0)

(6)

We de�ne rsm = Pr(! = 0js;m; vs = 0).
Whenever Pr(vs = 0; mj! = 0) = 0 (and thus Pr(vs = 0; mj! = 1) = 0), it follows

that d = 1 regardless of � (q; s;m). Since the receiver is indi�erent between voting v = 0
and v = 1, we can construct a cuto� strategy for the receiver's voting choice that leaves
the sender's incentives unchanged. Formally, we derive Pr(! = 0js;m; vr = 0; �) from
the strategy � (q; s;m). By the intermediate value theorem, there exists a rsm 2 (0; 1)
such that the cuto� strategy �0 (q; s;m) de�ned by rsm yields Pr(! = 0js;m; vr = 0; �) =
Pr(! = 0js;m; vr = 0; �0): This guarantees that the sender's voting and message strategies
are unchanged.

The sender's message strategy. Consider a sender of type q at the message stage after
she observes signal s. Let Eu(mjs; q) denote her expected utility when sending message m:
In equilibrium, the sender chooses m = 1 (m = 0) when the following function '(s; q) is
positive (negative):

' (s; q) := Eu (1js; q)� Eu (0js; q) (7)

= �q Pr (d = 0; ! = 1js; q;m = 1)� (1� q) Pr (d = 1; ! = 0js; q;m = 1)

+q Pr (d = 0; ! = 1js; q;m = 0) + (1� q) Pr (d = 1; ! = 0js; q;m = 0)

= �q Pr (! = 1js) [Pr (d = 0j! = 1; s; q;m = 1)� Pr (d = 0j! = 1; s; q;m = 0)]
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� (1� q) Pr (! = 0js) [Pr (d = 1j! = 0; s; q;m = 1)� Pr (d = 1j! = 0; s; q;m = 0)]

= �q Pr (! = 1js) [� (q < qs1) Pr (vr = 0j! = 1; m = 1)

�� (q < qs0) Pr (vr = 0j! = 1; m = 0)]

� (1� q) Pr (! = 0js) [� (q < qs0) Pr (vr = 0j! = 0; m = 0)

�� (q < qs1) Pr (vr = 0j! = 0; m = 1)]

where � (:) denotes the indicator function.

Step 2: Without loss of generality, we can restrict attention to equilibria in which, for a
given signal s, the set of types who use the same strategy is an interval.

For notational ease, we denote the strategies (�; �) by � and drop s. Consider a PBE
(�; �); where there is a triple q0 < q < q00; such that �(q0) = �(q00); but �(q0) 6= �(q):
Perfection and equation (3) imply that it is impossible that �(q) 6= �(q0) Hence, it must
be that �(q) 6= �(q0). Without loss of generality, we may assume that �(q) and �(q0) are
two di�erent pure strategies. (If �(q) or �(q0) is mixed, then there exists a PBE (�0; �) in
which the types q0 and q use di�erent pure message strategies, types q0 and q00 use the same
strategy, and the other types of sender maintain �.)

Since � is an equilibrium strategy, it follows that type q0 prefers to play �(q0) rather than
�(q): This implies that:

�q0 Pr(d = 0; ! = 1j�(q0))� (1� q0) Pr(d = 1; ! = 0j�(q0)) �

�q0 Pr(d = 0; ! = 1j�(q)) + (1� q0) Pr(d = 1; ! = 0j�(q))

and

�q00 Pr(d = 0; ! = 1j�(q0))� (1� q00) Pr(d = 1; ! = 0j�(q0)) �

�q00 Pr(d = 0; ! = 1j�(q)) + (1� q00) Pr(d = 1; ! = 0j�(q)):

By linearity of the above expression, the strategy �(q) is optimal for type q if and only if

Pr(d = 0; ! = 1j�(q0)) = Pr(d = 0; ! = 1j�(q))

Pr(d = 1; ! = 0j�(q0)) = Pr(d = 1; ! = 0j�(q)) (8)

which implies that the senders q; q0 and q00 must be indi�erent between �(q) and �(q0). Since
by equation (3) �(q) 2 f0; 1g a.e, it suÆces to consider four di�erent cases.

Case 1: Suppose that �(q0) 6= �(q) and that on-path �(q) = 0 and �(q0) = 1. Then
Pr(d = 0; ! = 1j�(q0)) = 0 but Pr(d = 0; ! = 1j�(q)) > 0 since after any message the receiver
may vote v = 0 with positive probability. This is a contradiction.

Case 2: Suppose that �(q0) 6= �(q) and that on-path �(q) = 1 and �(q0) = 0. Then
Pr(d = 0; ! = 1j�(q0)) > 0 but Pr(d = 0; ! = 1j�(q)) = 0, which is again a contradiction.

Case 3: Suppose now that on-path �(q) = 0 and �(q0) = 0. Using equation (8), we have

Pr (d = 1; ! = 0j� (q0)) = Pr (! = 0js) Pr (vr = 1j! = 0; � (q0)) (9)
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= Pr (! = 0js) [pr Pr (vr = 1j� (q0) ; sr = 0) + (1� pr) Pr (vr = 1j� (q0) ; sr = 1)]

= Pr (! = 0js) [pr Pr (vr = 1j� (q) ; sr = 0) + (1� pr) Pr (vr = 1j� (q) ; sr = 1)]

= Pr (d = 1; ! = 0j� (q))

Note that if the set of sender's types who send message �(q0) and vote v = 0 on path has
measure zero, then we can �nd a PBE (�0; �) in which types q̂ < q who were using strategy
�(q0) switch to strategy �0(q̂) = �(q) and all other types of sender maintain strategy �.
Similarly, if the set of sender's types who send message �(q) and vote v = 0 on path has
measure zero, then there exists a PBE in which all types q̂ 2 (q0; q00) who were using strategy
�(q) adopt strategy �(q0): Finally, consider the case in which both sets de�ned above have
positive measure. Then equation (5) implies that r0�(q) > r0�(q0) if and only if r1�(q) > r1�(q0):
It follows that equation (9) can hold only if the equilibrium is not responsive.

Case 4: Suppose that on-path �(q) = 1 and �(q0) = 1. Then there exists a PBE in
which types q̂ 2 (q0; q00) who were using strategy �(q) adopt strategy �(q0); similarly to case
3.

This concludes the proof of the second step. We have shown that for any equilibrium,
we can �nd an outcome-equivalent equilibrium where the set of types who take the same
strategy is an interval. Moreover, the argument may be extended to show that if such an
interval is of positive measure, the associated message strategy must be a pure strategy. If
not, for any pair of type (q; q0) in the interval, both q and q0 must be indi�erent between
sending message m = 0 or m = 1: Also, given the same message, type q votes as type q0:
Together with condition (7), this implies that the equilibrium must be non-responsive.

Step 3: For any PBE in undominated strategies, there is an outcome-equivalent equilib-
rium in which the sender's message strategy can be characterized by a cuto�.

Let Qmv denote the interval of sender's types who send message m and vote v (on-path).
Suppose there exists a PBE with Q00 = (a; b) and Q01 = (c; d), where 0 6 a 6 b < c 6 d 6 1.
Depending on the relationship of Q10 and Q11, we consider three di�erent cases.

Case 1: Q10 = (b; e) and Q11 = (e; c) for some e 2 [b; c):
Types q 2 Q01 are indi�erent between sending message m = 0 and m = 1 because

on-path they will vote v = 1 and achieve d = 1 in both cases. Therefore, there is an
outcome-equivalent equilibrium where all types in Q01 adopt the same strategy as the types
in Q11 and the receiver's strategy is unchanged.

Case 2: Q10 = (b; c) and Q11 = (d; 1):
There is an outcome-equivalent equilibriumwhere all types inQ11 adopt the same strategy

as the types in Q01, so this case is outcome-equivalent to Q10 = (b; c) and Q01 = (c; 1): It
remains to show that there is an outcome-equivalent equilibrium where all the types in Q01

play m = 1 and v = 1. That is guaranteed when qs1 � c: Proceeding by contradiction,
suppose c < qs1. Note that '(s; q) de�ned in equation (7) must be equal to zero at q = c.
Solving '(s; c) = 0 yields an expression for c that coincides with the RHS of equation (4)
with m = 1. This implies that c = qs1, and a contradiction is obtained.

Case 3: Q10 = (0; a) and Q11 = (b; c):
There is an outcome-equivalent equilibriumwhere all types inQ01 adopt the same strategy

28



as the types in Q11, so this case is outcome-equivalent to Q10 = (0; a) and Q11 = (b; 1): To
complete the argument, note that the reduced con�guration derived in Case 3 is the meaning
reversion of the reduced con�guration derived in Case 2.

A.2 Robustness

Here we formalize the robustness requirement mentioned in the main body. For in�nite
games, Trembling Hand Perfection has been studied by Simon and Stinchcombe (1995), who
distinguish between a strong and a weak extension of the standard concept introduced by
Selten (1975) for �nite games. Our requirement has the avor of such extensions (applied
to the agent normal form of our game) and imposes a further restriction. We require a
robust cuto� equilibrium to be the limit of a sequence of cuto� strategy pro�les, where all
cuto�s are uniquely identi�ed by sequential rationality, along some vanishing sequence of
perturbations. The motivation for our re�nement is that by inspecting the equations that
characterize the equilibrium, we note that there are some cuto�s that may be undetermined.
We then perturb the equilibrium strategies slightly and look for a perturbation where all the
cuto�s are uniquely determined.

We characterize an agent in terms of her signal and, if applicable, also in terms of the
message sent or received. Formally, the sender has six agents z 2 Zs = f0; 1g [ f0; 1g2 and
the receiver has four agents z 2 Zr = f0; 1g2. For every agent, we introduce a distributional
strategy that assigns a random choice to every type q. For any zi 2 Zi, i 2 fs; rg, let the
measurable function  zi : (0; 1)! �(f0; 1g) describe the distributional equilibrium strategy

of agent zi. Let BR
zi
q ( ̂�zi) be the set of best-replies of type q of agent zi against opponents'

distributional strategy pro�le  ̂�zi . Let BRzi( ̂�zi) be the set of distributional strategies

induced by BRzi
q ( ̂�zi) with q 2 (0; 1):

De�nition 1 An equilibrium  is robust if there exist a sequence of positive numbers �n ! 0
and a sequence f("nzi)Zs[Zrgn�0 of measurable functions in _� (f0; 1g)(0;1) (where _� is the
interior of �) such that

1. for all zi 2 Zs[Zr, there exists a sequence f( n
zi
)Zs[Zrgn�0 where each  

n
zi
is a selection

from the set BRzi((1 � �n) n
�zi

+ �n"n�zi),  
n
zi

admits cuto� representation, and it
converges weakly to  zi;

2. for any n and zi 2 Zs [ Zr, the set BRzi((1 � �n) n
�zi

+ �n"n�zi) contains a unique
strategy (up to sets of measure zero).

We now show that in any robust cuto� PBE, all cuto�s are related across signals by the
functions kps and kpr as explained in Section 2.1.

Lemma 2 In any robust cuto� PBE, q1 = kps(q0) and for any m 2 f0; 1g, q1m = kps(q0m)
and r1m = kpr(r0m).
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Proof. Our robustness requirement implies that along the sequence
�
 n
zi

�
Zs[Zr

all cuto�s
are uniquely determined by the equilibrium conditions. For example, the sender's voting
cuto� after observing signal s and sending message m can be represented as

qnsm =
1

1 + Pr(!=1js)
Pr(!=0js)

�
Bn
m

An
m

�

for some strictly positive An
m and Bn

m. Therefore, qn1m = kps(q
n
0m) for any n. Since the

function kp is continuous, limn!1 qn1m = kps(limn!1 qn0m). A similar argument can be used
to establish the relationship between the remaining cuto�s.

The concepts and results of this section extend mutatis mutandis to the two-sender game.

Appendix B: Proofs

In the proofs we shall often refer to the odds ratio (1� pi)=pi, which we denote by Ri. We
will make use of the family of functions

kR(q) =
R2q

R2q + 1� q

de�ned on q 2 (0; 1) and indexed with R 2 (0; 1): Note that for every q and R, kR(q) < q and
kR is strictly increasing in q. kR is straightforwardly derived from kp since R = (1� p)=p.

Proof of Proposition 1. We start by deriving the equations that characterize all
robust responsive cuto� equilibria. We then check which order of the cuto�s is consistent with
equilibrium. Speci�cally, we proceed in two steps. The �rst one rules out all con�gurations
that are inconsistent with equilibrium. The second step shows that a robust cuto� PBE
indeed exists for the con�guration presented in Proposition 1.

Sender's voting strategy. After restricting attention to robust cuto� equilibria, equations
(4), which characterize the sender's equilibrium voting strategy, simplify to:

8>>>>>><
>>>>>>:

q00 =
1

1+Rs
[RrF (r00)+F (r10)]

[F (r00)+RrF (r10)]

q10 =
1

1+ 1
Rs

[RrF (r00)+F (r10)]

[F (r00)+RrF (r10)]

q01 =
1

1+Rs
[RrF (r01)+F (r11)]

[F (r01)+RrF (r11)]

q11 =
1

1+ 1
Rs

[RrF (r01)+F (r11)]

[F (r01)+RrF (r11)]

(10)

Receiver's voting strategy. Given m, rsm is uniquely de�ned by equation (6) whenever
Pr(vs = 0; m) > 0. In this case we obtain after simpli�cation:

8<
:

r00 =
1

1+Rr
[RsminfF (q0);F (q00)g+minfF (q1);F (q10)g]

[minfF (q0);F (q00)g+RsminfF (q1);F (q10)g]

r10 =
1

1+ 1
Rr

[RsminfF (q0);F (q00)g+minfF (q1);F (q10)g]

[minfF (q0);F (q00)g+RsminfF (q1);F (q10)g]

(11)
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8<
:

r01 =
1

1+Rr
[Rs(F (q01)�F (q0))+(F (q11)�F (q1))]

[(F (q01)�F (q0))+Rs(F (q11)�F (q1))]

r11 =
1

1+ 1
Rr

[Rs(F (q01)�F (q0))+(F (q11)�F (q1))]

[(F (q01)�F (q0))+Rs(F (q11)�F (q1))]

(12)

In a robust cuto� PBE, Pr(vs = 0; m = 0) > 0. Hence, rs0 is uniquely de�ned. If Pr(vs =
0; m = 1) = 0, then the characterizing equations for rs1 are undetermined. However, Lemma
2 in Appendix A implies that r01 = kRr

(r11) in a robust cuto� PBE.

Step 1: The only con�guration consistent with equilibrium is qs < qs0 < qs1 for s 2 f0; 1g.
Since cuto�s are related across signals by the strictly increasing functions kRs

and kRr
,

it suÆces to consider the ordering of the cuto�s for a given signal.
In any responsive cuto� equilibrium, we have rs0 > rs1. (If rs0 = rs1, the equilibrium is

nonresponsive. Moreover, in any responsive equilibrium, we have qs > 0. But if rs0 < rs1,
then one can show by inspecting equation (7) that there are senders of type q, with q
suÆciently close to 0, who have an incentive to deviate from the equilibrium strategy and
send message m = 1.) By equation (10) and our technical assumption, rs0 > rs1 if and only
if qs0 < qs1. It remains to check con�gurations that involve qs0 < qs1.

Case 1: Suppose that qs0 < qs1 � qs. Then '(s; q) � 0 for q 2 (qs0; qs1) since these types
prefer to send message m = 0. However, ' is strictly decreasing in this interval and has a
zero at qs1 (see equation (10)). This implies a contradiction.

Case 2: Suppose we have an equilibrium where qs0 < qs < qs1: Under this con�guration,
the function '(s; q) in equation (7) is strictly decreasing for q 2 (qs0; qs1) and '(s; qs) = 0.
However, inspecting equation (10), we have '(s; qs1) = 0 which implies a contradiction.

Case 3: Suppose that qs = qs0 < qs1. We want to show that there are senders of type
q 2 (0; qs0) who have an incentive to deviate from their equilibrium strategy and send m = 1:
Consider the function ' from equation (7). This function is piecewise linear. We extend the
segment de�ned on (0; qs0) to the unit interval to obtain the following function:

'̂ (s; q) = �q Pr (! = 1js) [Pr (vr = 0j! = 1; m = 1)� Pr (vr = 0j! = 1; m = 0)]

� (1� q) Pr (! = 0js) [Pr (vr = 0j! = 0; m = 0)� Pr (vr = 0j! = 0; m = 1)]

Note that '̂ (s; q) is strictly increasing with '̂ (s; 0) < 0 and '̂ (s; 1) > 0. Hence, it attains a
unique zero in (0; 1). It thus suÆces to show that '̂(s; q) has its zero in (0; qs0).

Let q̂s be the zero of '̂(s; q), where

q̂s =
1

1 + Pr(!=1js)[Pr(vr=0j!=1;m=0)�Pr(vr=0j!=1;m=1)]
Pr(!=0js)[Pr(vr=0j!=0;m=0)�Pr(vr=0j!=0;m=1)]

From equation (4) we know that

qs0 =
1

1 + Pr(!=1js) Pr(vr=0j!=1;m=0)
Pr(!=0js) Pr(vr=0j!=0;m=0)
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A simple calculation shows that q̂s � qs0 implies

Pr(vr = 0j! = 1; m = 0)

Pr(vr = 0j! = 0; m = 0)
�

Pr(vr = 0j! = 1; m = 1)

Pr(vr = 0j! = 0; m = 1)

But qs1 > qs0 rules out the above inequality.
We conclude that a robust responsive cuto� PBE can exist only if qs < qs0 < qs1. The

next step is to show that there indeed exists an equilibrium with this con�guration.

Step 2: There exists a robust responsive cuto� PBE.
The following system characterizes the equilibrium with qs < qs0 < qs1:8>>>>>>>>>>><

>>>>>>>>>>>:

q0 =
1

1+Rs
[Rr(F (r00)�F (r01))+(F (kRr

(r00))�F (kRr
(r01)))]

[(F (r00)�F (r01))+Rr(F (kRr
(r00))�F (kRr

(r01)))]

q00 =
1

1+Rs
[RrF (r00)+F (kRr

(r00))]

[F (r00)+RrF (kRr
(r00))]

q01 =
1

1+Rs
[RrF (r01)+F (kRr

(r01))]

[F (r01)+RrF (kRr
(r01))]

r00 =
1

1+Rr
[RsF (q0)+F (kRs

(q0))]

[F (q0)+RsF (kRs (q0))]

r01 =
1

1+Rr
[Rs(F (q01)�F (q0))+(F (kRs

(q01))�F (kRs
(q0)))]

[(F (q01)�F (q0))+Rs(F (kRs
(q01))�F (kRs

(q0)))]

(13)

It is enough to spell out the equations for s = 0 because the cuto�s for s = 1 can be recovered
from the cuto�s for s = 0 using the functions kRr

and kRs
.

Since q00 does not appear in the equations for the other cuto�s, it suÆces to show that
the system above admits a solution with r00 > r01 and q01 > q0: To see this, note that if
r00 > r01, then '(s; q) is strictly increasing for q 2 (0; qs0) and it has a zero at qs. Moreover,
'(s; q) is strictly decreasing for q 2 (qs0; qs1) and has a zero at qs1. For q > qs1, '(s; q) = 0.
This implies that the cuto� message strategy described by qs is a best reply. Finally, applying
our technical assumption to the above system implies that if qs1 > qs, then qs0 2 (qs; qs1):

For the moment consider the case in which Rs = Rr = R. We express the working
hypothesis that there is a solution such that rs0 = qs1 and rs1 = qs. Therefore, we just need
to �nd a solution that satis�es q01 > q0 for the system:

8<
:

q01 = h1(q01;q0) :=
1

1+R
[RF (q0)+F (kR(q0))]

[F (q0)+RF (kR(q0))]

q0 = h2(q01; q0) :=
1

1+R
[R(F (q01)�F (q0))+(F (kR(q01))�F (kR(q0)))]

[(F (q01)�F (q0))+R(F (kR(q01))�F (kR(q0)))]

Consider the function h = (h1; h2) de�ned on X = f(x; y) 2 (0; 1)2 : x > yg: For any (x; y) 2
X, our technical assumption implies that h1(x; y) > h2(x; y). Moreover, h1(x; y) 2 (0; 1) and
h2(x; y) 2 (0; 1), so the function h maps X into X.

Denote by �X the closure of X:We now construct a continuous extension ~h : �X ! �X of h.
First note that ~h1(x; y) = h1(x; y) is a continuous function on �Xnf(x; 0) : x 2 [0; 1]g. Using
De L'Hopital rule, we de�ne ~h1(x; 0) = limy!0 h1(x; y) for any x. (Recall that h1(x; y) is
independent of x. Hence, limy!0 h1(x; y) is independent of x.) Secondly, ~h2(x; y) = h2(x; y)
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is a continuous function on �Xnf(y; y) : y 2 [0; 1]g. We again use De L'Hopital rule to de�ne

~h2(y; y) = lim
x!y

h2(x; y) =
1

1 +R [Rf(y)+f(k(y))k0(y)]
[f(y)+Rf(k(y))k0(y)]

for any y.
~h is continuous. Our technical assumption implies that ~h2(y; y) < ~h1(y; y) for any y.

Moreover, ~h1(x; 0) 2 (0; 1), ~h2(x; 0) 2 (0; 1), and ~h2(1; y) 2 (0; 1): This implies that ~h : �X !
X � �X. Hence, by Brouwer's Fixed-Point Theorem, there must exist a pair (x; y) 2 X such
that h(x; y) = ~h(x; y) = (x; y):

When Rs 6= Rr; it is no longer the case that rs0 = qs1 and rs1 = qs: Nevertheless,
the above argument can be generalized by considering a function h = (h1; h2; h3; h4) on
X = f(x; y; w; v) 2 (0; 1)4 : x > y; w > vg; where hj denotes the RHS of the jth equation in
system (13).

Since all the cuto�s are uniquely determined in equilibrium and all the characterizing
equations are continuous, the equilibrium must be robust.

Proof of Corollary 1. We show that Rs = Rr = R implies q11 < 1=2 < q0 and
r10 < 1=2 < r01. To show this it suÆces to demonstrate that the smallest cuto� for s = 0 is
larger than the largest cuto� for s = 1.

Each cuto� associated with signal s = 0 has a representation

1

1 +RPr(!=1)[RA+B]
Pr(!=0)[A+RB]

where A;B 2 (0; 1). Such an expression is strictly larger than 1

1+
Pr(!=1)
Pr(!=0)

, the lower bound

obtained by setting A = 0 and B = 1: Each cuto� associated with signal s = 1 has a
representation

1

1 + 1
R

Pr(!=1)[RA+B]
Pr(!=0)[A+RB]

Such an expression is strictly smaller than 1

1+Pr(!=1)
Pr(!=0)

, the upper bound obtained by setting

A = 1 and B = 0:

Proof of Proposition 2. Let qs, qsm, and rsm be an arbitrary pro�le of equilibrium
cuto�s of the game � (p; p0). By inspecting the equations in system (13) it is easy to check
that � (p0; p) admits a responsive equilibrium with cuto�s q0s, q

0
sm, and r

0
sm satisfying:

q0s = rs1; q0s1 = rs0; r0s1 = qs; r0s0 = qs1 for s = 0; 1: (14)

Denote by us (p; p
0) the sender's ex-ante utility associated with the pro�le (qs; qsm; rsm)

and by ur (p; p
0) the receiver's ex-ante utility. Similarly, denote by us (p

0; p) and ur (p
0; p) the

sender's and receiver's ex-ante utility associated with the pro�le (q0s; q
0
sm; r

0
sm). Straightfor-
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ward calculations yield:

us (p; p
0) =

1

2
f

Z q0

0

[p((1� p0)(1� F (r10)) + p0(1� F (r00)))(q � 1)

+(1� p)(p0F (r10) + (1� p0)F (r00))(�q)]f (q) dq

+

Z q01

q0

[p((1� p0)(1� F (r11)) + p0(1� F (r01)))(q � 1)

+(1� p)(p0F (r11) + (1� p0)F (r01))(�q)]f (q) dq +

Z 1

q01

p(q � 1)f (q) dq

+

Z q1

0

[(1� p)((1� p0)(1� F (r10)) + p0(1� F (r00)))(q � 1)

+p(p0F (r10) + (1� p0)F (r00))(�q)]f (q) dq

+

Z q11

q1

[(1� p)((1� p0)(1� F (r11)) + p0(1� F (r01)))(q � 1)

+p(p0F (r11) + (1� p0)F (r01))(�q)]f (q) dq +

Z 1

q11

(1� p)(q � 1)f (q) dqg

ur (p
0; p) =

1

2
f

Z r001

0

[p((1� p0)(1� F (q011)) + p0(1� F (q001)))(q � 1)

+(1� p)(p0F (q011) + (1� p0)F (q001))(�q)]f (q) dq

+

Z r000

r001

[p((1� p0)(1� F (q01)) + p0(1� F (q00)))(q � 1)

+(1� p)(p0F (q01) + (1� p0)F (q00))(�q)]f (q) dq +

Z 1

r000

p(q � 1)f (q) dq

+

Z r011

0

[(1� p)((1� p0)(1� F (q011)) + p0(1� F (q001)))(q � 1) + p(p0F (q011)

+(1� p0)F (q001))(�q)]f (q) dq

+

Z r010

r011

[(1� p)((1� p0)(1� F (q01)) + p0(1� F (q00)))(q � 1)

+p(p0F (q01) + (1� p0)F (q00))(�q)]f (q) dq +

Z 1

r010

(1� p)(q � 1)f (q) dqg

The equality us (p; p
0) = ur (p

0; p) follows by substituting equations (14) in the above expres-
sions. By the same token, the equality ur (p; p

0) = us (p
0; p) is established.

Proof of Proposition 3. As indicated in Appendix A, in any robust PBE the order
of the cuto�s is the same for s = 0 and s = 1 since cuto�s are related across signals by
the strictly increasing function kR. This allows us to focus on the cuto�s for one of the two
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signals. The proof proceeds in a number of steps. We �rst rule out all con�gurations which
are inconsistent with an equilibrium and then show that the remaining three con�gurations
admit an equilibrium.

In the remainder of the proof we shall make use of the following equations. Let V denote
the opponent's vote. Consider the message cuto� �rst. It is optimal for a player of type q
to send m = 1 if �(s; q) = Eu(1js; q)� Eu(0js; q) � 0, where

� (s; q) = �q Pr (! = 1js) [� (q < qs10) Pr (V = 0;M = 0j! = 1; m = 1) (15)

�� (q < qs00) Pr (V = 0;M = 0j! = 1; m = 0)

+� (q < qs11) Pr (V = 0;M = 1j! = 1; m = 1)

�� (q < qs01) Pr (V = 0;M = 1j! = 1; m = 0)]

� (1� q) Pr (! = 0js) [� (q < qs00) Pr (V = 0;M = 0j! = 0; m = 0)

�� (q < qs10) Pr (V = 0;M = 0j! = 0; m = 1)

+� (q < qs01) Pr (V = 0;M = 1j! = 0; m = 0)

�� (q < qs11) Pr (V = 0;M = 1j! = 0; m = 1)]

Consider the voting cuto�s next. In a cuto� PBE, there is a strictly positive probability
that a player is pivotal after receiving message M = 0. Therefore, the voting cuto�s for
s 2 f0; 1g and m 2 f0; 1g are uniquely identi�ed and equal to

qsm0 =
1

1 + Pr(!=1js)
Pr(!=0js)

[RminfF (q0);F (q00m)g+minfF (kR(q0));F (kR(q00m))g]
[minfF (q0);F (q00m)g+RminfF (kR(q0));F (kR(q00m))g]

:= g1(minfqs; qs0mg) (16)

On the other hand, a player may not be pivotal after observing message M = 1. However, if
there is a positive probability that the player is pivotal, then the voting cuto�s for s 2 f0; 1g
and m 2 f0; 1g are uniquely identi�ed and equal to

qsm1 =
1

1 + Pr(!=1js)
Pr(!=0js)

[R(F (q01m)�F (q0))+(F (kR(q01m))�F (kR(q0)))]
[(F (q01m)�F (q0))+R(F (kR(q01m))�F (kR(q0)))]

:= g2(qs1m; qs) (17)

Our technical assumption guarantees that g1 is strictly decreasing in its argument and that
g2 is strictly decreasing in both its arguments. (Note that g2 is de�ned only for qs1m 6= qs.)

Step 1: In any responsive robust equilibrium, qs < qs10:
Inspecting equation (15), we note that a necessary condition for equilibrium is that for

at least one signal s 2 f0; 1g we have

minfF (qs); F (qs00)g+maxfF (qs10)� F (qs); 0g

� minfF (qs); F (qs01)g+maxfF (qs11)� F (qs); 0g (18)

Otherwise a player with type q suÆciently close to 0 would strictly prefer to send the message
m = 1:
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Suppose by contradiction that qs10 � qs: Equation (18) becomes

minfF (qs); F (qs00)g � minfF (qs); F (qs01)g+maxfF (qs11)� F (qs); 0g (19)

We distinguish two cases.
Case 1: qs01 � qs: Equation (19) implies that qs00 � qs and qs11 � qs. Equation (16)

then yields qs10 = qs = qs00: Wrapping up we obtain qs11 � qs10 = qs = qs00 � qs01: While
this con�guration allows for equilibria, these equilibria are outcome-equivalent to equilibria
of the game without communication. Speci�cally, whenever q > qs; the player will choose
m = 1 and v = 1 irrespective of her opponent's message and whenever q < qs; the player
will always choose m = 0 and vote v = 0:

Case 2: qs01 < qs: Equation (16) implies that qs00 < qs: Otherwise we would have
qs00 = g1(qs) and qs10 = g1(qs01). But since g1 is decreasing, qs00 < qs10 � qs and we would
then have a contradiction.

Equation (18) becomes F (qs00) � F (qs01) + maxfF (qs11) � F (qs); 0g. Thus qs00 � qs01:
Together with qs > qs00 this implies qs10 = g1(qs01) and qs00 = g1(qs00). Since g1 is strictly
decreasing, we obtain qs10 � qs00. We need to distinguish two subcases.

Subcase 1: qs00 = qs10. Thus qs01 = qs10 = qs00 < qs: Since qs01 = qs00, maxfF (qs11) �
F (qs); 0g = 0, i.e., qs11 � qs: While equilibria exist in this con�guration, they are outcome-
equivalent to the equilibria of the pure voting game. Whenever q < qs00, the player will
choose m = 0 and v = 0 independently of her opponent's message and whenever q > qs00,
the player will always vote v = 1.

Subcase 2: qs00 < qs10. Since qs10 = g1(qs01) and qs00 = g1(qs00), this implies qs01 < qs00.
Suppose �rst that qs11 > qs: For q > qs10 the function �(s; q) is strictly decreasing and has
a zero at qs11: Therefore the con�guration qs01 < qs00 < qs10 < qs < qs11 does not constitute
an equilibrium since types q 2 (qs10; qs) prefer to deviate from their equilibrium message
strategy and send m = 1: Suppose next that qs11 � qs: For q 2 (qs00; qs10) the function �(s; q)
is strictly decreasing and has a zero at qs10: Thus the con�guration qs01 < qs00 < qs10 < qs
and qs11 � qs is not an equilibrium since types q 2 (qs00; qs10) have an incentive to deviate
and send message m = 1:

Step 2: In any responsive robust equilibrium, qs00 � qs10:
Suppose by contradiction that qs00 > qs10. Then qs00 > qs10 > qs by Step 1. Hence,

qs00 = g1(qs) and qs10 = g1(minfqs; qs01g) which implies qs00 � qs10 since g1 is decreasing.

Step 3: In any responsive robust equilibrium, qs � qs00:
By contradiction, suppose that qs00 < qs. Then qs00 < qs < qs10 by Step 1. Since

qs00 = g1(qs00) and qs10 = g1(minfqs; qs01g), the previous inequality implies qs01 < qs00. So
we obtain that qs01 < qs00 < qs < qs10. This leaves us with qs11. We now show that there
does not exist a robust PBE irrespective of qs11.

Suppose �rst that qs11 < qs. In the interval (maxfqs00; qs01; qs11g; qs10) the function �(s; q)
is strictly decreasing and it has a zero at qs10: Therefore types in the interval (maxfqs00; qs01; qs11g; qs)
have an incentive to deviate from the candidate equilibrium strategy and send message
m = 1: Next assume that qs = qs11: In the interval (qs00; qs10) the function �(s; q) is strictly
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decreasing and it has a zero at qs10: Therefore types q 2 (qs00; qs) deviate by sending message
m = 1: Finally suppose that qs11 > qs. In the interval (qs00;minfqs11; qs10g) the function
�(s; q) is strictly decreasing. Hence, it cannot be negative on (qs00; qs) and positive on
(qs;minfqs11; qs10g) and there cannot be an equilibrium.

To summarize, so far we have concluded that

qs � qs00 � qs10 and qs < qs10:

This allows for three possibilities: qs01 may be strictly smaller, equal, or strictly larger than
qs: In the remainder of the proof we show that the only equilibrium con�guration in which
qs01 > qs is class 0, the only equilibrium con�guration with qs01 < qs is class 1, and the only
one with qs01 = qs is class 2:

Step 4: The only robust responsive equilibrium con�guration with qs01 > qs is class 0.
Since qs01 > qs, we have qs00 = g1(qs) = qs10: The relationship between qs00 and qs01

determines three cases.
Case 1: qs10 = qs00 < qs01: Equation (18) implies that qs10 � qs11: Therefore, the function

'(s; q) is strictly increasing in the interval (qs10; qs01) and it has a zero at qs01. Consequently,
types q 2 (qs00; qs01) deviate from the candidate equilibrium strategy and send message
m = 0:

Case 2: qs10 = qs00 = qs01 > qs: This implies qs00 = g1(qs) = g2(0; qs) and qs01 =
g2(qs10; qs). Since g2 is strictly decreasing in the �rst argument and qs10 > qs, it follows that
qs00 > qs01, a contradiction.

Case 3: qs10 = qs00 > qs01 > qs: There are four possibilities determined by the position
of qs11. Suppose �rst that qs11 � qs: In the interval (qs; qs01) the function �(s; q) is strictly
increasing and it has a zero at qs01. Types in this interval thus want to deviate from the
candidate equilibrium strategy and send message m = 0. Assume next that qs11 2 (qs; qs01]:
Since qs01 = g2(qs10; qs) and qs11 = g2(qs11; qs) and g2 is strictly decreasing in its �rst argu-
ment, this would imply qs01 < qs11, a contradiction. Finally, suppose that qs11 � qs10. Since
qs11 = g2(qs11; qs) � g2(qs10; qs) = qs01 < qs10, we obtain a contradiction.

We are left with the con�guration

qs < qs01 < qs11 < qs00 = qs10

All these cuto�s are uniquely identi�ed by equations (15) and (16).10 This candidate is
in fact an equilibrium con�guration and we denote it as class 0. By inspecting the �(s; q)
function, we observe that it is strictly increasing and it has a zero on (0; qs01). This in turn
identi�es qs: �(s; q) is strictly decreasing on (qs01; qs11), it has a zero at qs11, and it is constant
and equal to zero for q � qs11: In order to show the existence of an equilibrium of class 0, it
suÆces to show that the system of equations (15) and (16) admits a solution that satis�es
the above con�guration. The existence proof is a straightforward extension of the existence
proof for one-sender game and is thus omitted.

10This implies that all cuto�s associated with signal s = 0 (s = 1) are above (below) 1=2.
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To show that the equilibrium is robust, note that all voting cuto� are uniquely determined
in equilibrium, but the function �(s; q) is at and equal to zero for q � qs11: Assign the
tremble such that with a small probability the players must vote v = 0 after sending message
m = 1 irrespective of the received message. That amounts to mixing the original �(s; q) with
the extension to R of the segment of �(s; q) that belongs on (0; qs01): Since the latter is strictly
increasing and larger than zero, the mix is larger than zero, the indeterminacy is solved to
get qs = qs01: The mix does not modify the incentives on any other segment of the original
�(s; q). Symmetry allows us to conclude that the equilibrium is robust.

Step 5: The only responsive robust equilibrium condition in which qs01 < qs is class 1.
Note that qs01 < qs implies qs00 < qs10. Moreover, we have qs11 < qs10. Otherwise,

since qs11 = g2(qs11; qs) � g2(qs10; qs) = qs01 < qs10, we would obtain a contradiction. The
relationship between qs and qs00 yields two cases.

Case 1: qs00 = qs: Depending on the position of qs11 there are two possibilities. First
assume that qs11 � qs. In the interval (qs01; qs00) the function �(s; q) is strictly increas-
ing and it has a zero at q̂ = g2(qs; qs01) < g2(qs; 0) = g1(qs) = qs00: Therefore, types in
(maxfq̂; qs01g; qs00) prefer to deviate at the message stage and send m = 1. Assume next
that qs11 2 (qs; qs10): We have qs11 = g2(qs11; qs) < g2(0; qs) = g1(qs) = qs00 = qs, a contradic-
tion.

Case 2: qs00 > qs. There are three possibilities depending on the position of qs11: First
suppose that qs11 2 [qs00; qs10): We have qs11 = g2(qs11; qs) < g2(0; qs) = g1(qs) = qs00, a
contradiction. Suppose next that qs11 2 (qs; qs00): For q 2 (qs11; qs00) the function �(s; q) is
strictly increasing and it has a zero at q̂ = g2(qs; qs01) > g2(qs; qs11) = qs11. Therefore, types
in (qs11;minfq̂; qs00g) prefer to deviate at the message stage and send m = 0.

We are left with the con�guration

qs01 < qs < qs00 < qs10 and qs11 � qs

This is the equilibrium con�guration which we denote as class 1: The function �(s; q) is
strictly increasing and always negative on (0; qs01) and strictly increasing on (qs01; qs00) with
a zero in the interior of that interval. Moreover, �(s; q) is strictly decreasing and always
positive on (qs00; qs10) and it is zero for any q � qs10: To show that the system of equations
(15) and (16) has a solution that respects the above con�guration is again straightforward
extension of the proof for the one-sender game.

To show that the equilibrium is robust, notice that the voting cuto� qs11 is undetermined.
However, weak dominance restricts the domain of de�nition to q011 2 [1=2; q0] and q111 2
[0; q1]. A di�erent perturbation should thus be derived for any couple (q011; q111): However,
since qs11 is outcome-irrelevant, if we �nd one such couple, then we know that any other
robust equilibrium is outcome-equivalent. Consider the perturbation in the voting stage
where each player votes v = 0 with small probability after sending m = 1 and receiving
M = 1: Along the perturbation, we have

qs11 =
1

1 + Pr(sj!=1)
Pr(sj!=0)

Pr(m=1j!=1)
Pr(m=1j!=0)

= g2(1; qs);
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and qs = g2(qs; qs01) > g2(1; qs) = qs11 because qs < 1 and qs01 < qs: It remains to consider
the message cuto�s. The function �(s; q) is at and equal to zero only when q � qs10: We
can take a perturbation that makes the player vote v = 0 with small probability if and
only if she received the message M = 0 (regardless of the message sent). That amounts to
mixing the original �(s; q) with the extension to R of the segment of �(s; q) that belongs on
(qs01; qs00); which is strictly increasing and above zero on (qs10; 1); thus assuring the mixture
to be always positive. The mix does not modify the incentives on any other segment of the
original �(s; q): The argument is completed by introducing a perturbation that consists of
a mixture of the two di�erent perturbations with weight on the �rst perturbation which is
in�nitesimal with respect to the weight placed on the second one.

Step 6: The only responsive robust equilibrium condition in which qs01 = qs is class 2.
The equality qs01 = qs immediately implies qs00 = g1(qs) = g1(qs01) = qs10: Moreover, we

have already shown that qs10 > qs. Depending on the position of qs11 there are three cases
to consider.

Case 1: qs11 � qs10: Then qs11 = g2(qs11; qs) � g2(qs10; qs) = qs01 < qs10, a contradiction.
Case 2: qs11 2 (qs; qs10): In the interval (0; qs) the function �(s; q) is strictly increasing

function and it has a zero at q̂ = g2(qs10; qs11) < g2(qs; qs11) = qs: Hence, types in (q̂; qs)
deviate from the equilibrium by sending m = 1.

Case 3: We are left with the con�guration

qs11 � qs = qs01 < qs00 = qs10

This is the equilibrium con�guration we de�ne as class 2. The function �(s; q) is strictly
increasing and always negative on (0; qs01) and is identically equal to zero for q � qs01:
The existence proof is identical to the existence proof for the one-sender game after setting
Rs = Rr = R, imposing r1s0 = q1s1 and r

1
s1 = q1s , and relabeling qs01 = q1s and qs10 = q1s1, where

the superscript 1 denotes the one-sender game cuto�s.
To show robustness, for the voting stage proceed as for the class 1 equilibrium and notice

that qs = qs01 = g2(qs10; qs) > g2(1; qs) = qs11 because qs10 < 1: With respect to the message
cuto�s, the function �(s; q) is at and equal to zero only when q � qs01: We can take a
perturbation that makes the player always vote v = 0 with small probability. That amounts
to mixing the original �(s; q) with the extension to R of the segment of �(s; q) that belongs
on (0; qs01); which is strictly increasing and above zero on (qs01; 1); thus assuring the mixture
to be always positive. As for the class 1 equilibrium, the argument is then completed by
taking a suitable mixture of perturbations.

Finally, we show that equilibria of class 0 are outcome-equivalent to equilibria of class 1.
Given a class 0 equilibrium (q0s ; q

0
smM), it is easy to show by inspecting the equations that

characterize the equilibria that there exists an class 1 equilibrium (q1s ; q
1
smM) such that

q0s = q1s01; q0s11 = q1s ; q0s10 = q1s10

The above equalities and the fact the the cuto�s q1s11, q
1
s00, and q0s01 are irrelevant for the

outcome imply that the two equilibria are outcome-equivalent. In the same way, given a
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class 1 equilibrium, it is possible to construct an outcome-equivalent class 0 equilibrium.
The details of the proof are available upon request.

Proof of Proposition 4. Available upon request.
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