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On-the-Job Signalling and Self-Con¯dence.¤

Francesco Squintani
Northwestern Universityy

August 1999

Abstract

The labour economics literature on signalling assumes workers know their own

abilities. Well-settled experimental evidence contradicts that assumption: in the ab-

sence of hard facts, subjects are on average overcon¯dent. First we show that in any

equilibrium of any signalling model, overcon¯dence cannot make players better o®.

In order to obtain more detailed predictions, we then introduce a speci¯c on-the-job

signalling model. We show that at fully-separating equilibrium, overcon¯dent workers

choose tasks that are too onerous, fail them, and, dejected by such a failure, settle

down for a position inferior to their potential. Such a pattern leads to permanent

underemployment of workers, and ine±ciency of the economy. For the case of unbi-

ased workers uncertain about their own value, we determine a necessary and su±cient

condition for the existence of fully-separating equilibrium
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\...and that's the news from Lake Wobegon, Minnesota, where all the women are strong,

and all the man are good-looking, and all the children are above average !"
Garrison Keillor

\A Prairie Home Companion"

1 Introduction

In the signalling literature of labour economics, workers may disclose their ability, which

is private-information, by producing adequate signals. It is customary to assume each

worker precisely assess her own ability. This paper relaxes that assumption, by explicitly

looking at the issue of self-con¯dence. As well as considering the case of workers who are

just uncertain about their abilities, we shall devote attention to the case of overcon¯dent

workers. Well-settled experimental evidence suggests that, in the absence of hard facts to

base their judgements upon, subjects are on average overcon¯dent.1

Common wisdom holds con¯dence advantageous, so we may believe that overcon¯dent

workers would be successful. On the contrary, at any equilibrium of any signalling game,

workers cannot be made ex-ante better-o® by being overcon¯dent. In fact, each overcon-

¯dent worker signals as if she were a higher type. If, at that equilibrium, her true type

is pooled with her perceived type, the payo® is the same. If the two types are separated,

the incentive compatibility condition implies that the worker will not be better-o® when

signalling any type di®erent from the true one, regardless of whether she does so in good

faith, or with fraudulent intentions.2

Beyond this observation, one-shot analysis is insu±cient to settle the issue. While we

1The typical experiment protocol (cf. Lichtenstein, Fischo®, and Phillips (1997), or Einhorn and Hog-
arth (1978)) asks each subject in a sample in which percentile she belongs to, with respect to intelligence,
ability etc. The derived aggregate cumulative distribution stochastically dominates (it lies below) the
identity distribution. This is possible only if the subjects are overcon¯dent. See also Thaler (1991), and
Camerer (1997) for a general overview of related topics.

2This observation is not valid when comparing ex-ante utilities of di®erent games, or across di®erent
equilibria of the same game. Also, it is valid as long as overcon¯dence consists of incorrect private in-
formation in a signalling game, and the comparizon is in terms of ex-ante utility. In the search theoretic
literature, Flam and Risa (1998) show that overcon¯dent players may achieve a better ¯nal position than
unbiased ones, and Dubra (1999) shows that an optimistic prior on the distribution of o®ers may avoid the
searcher forego valuable sampling.
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postulate that workers are initially uncertain about their abilities, we need to ask ourselves

whether overcon¯dence will be relevant in the long-run, and so we explicitly introduce a

learning dimension into the problem. By analyzing a speci¯c model of on-the-job promotion

we are able to establish whether overcon¯dence is relevant in the long-run, how it a®ects

workers' learning behavior, and also what is its welfare impact on the population. At the

same time, we study the robustness of separating equilibrium, and determine a necessary

and su±cient condition for its existence in scenarios where workers are uncertain about

their own abilities, but not necessarily overcon¯dent.

In our model, an employed worker freely chooses to participate in costless screening

programs, that upgrade her quali¯cation if successfully completed. For simplicity, we rep-

resent them as pass-fail error-free tests.3 On the basis of the test outcome, the ¯rm decides

whether to promote the worker or not. If the worker is not promoted, she may resort to

an outside option, whose value is a function of the quali¯cation achieved, and in particular

coincides with the value of the highest test passed by the worker. Self-con¯dence is easily

incorporated in the model by focusing on the worker's prior belief about her own ability.

This model belongs to the class of repeated bargaining games with incomplete informa-

tion, whose solution is usually rather involved.4 However, the assumption that the value

of the outside option is function of the quali¯cation achieved allows us for a (conceptually)

simple solution technique. Whenever the ¯rm chooses to hire the worker, it will o®er her

the value of the outside option. Thus we may solve ¯rst the worker's optimal stopping

problem in absence of the ¯rm, where the worker decides whether to continue testing, or

to accept the outside option, and if choosing to test, she must select the optimal test. The

solution to this problem gives us the value of the outside option in all possible histories,

and allows us to calculate the ¯rm's equilibrium belief, and thus its optimal policy.

In the benchmark case in which workers know their own abilities, we show that each

3Our results are robust in the testing technology: they would hold also with tests allowing small mistakes.
4See for example Gul, Sonnenschein, and Wilson (1986), Ausubel and Deneckere (1989), and Aumann

and Maschler (1995).
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of them will choose the highest-quali¯cation program she can successfully complete. The

only solution for the model is the Riley outcome: a second-best e±cient, fair separating

equilibrium in which each worker's ability is revealed to both ¯rm and worker, and coincides

with her quali¯cation and wage.

In order to analyze uncertainty, we ¯rst consider the case in which workers are not

overcon¯dent, but they are uncertain about their own abilities, so that each worker's private

information consists of a distribution over possible abilities (we call that distribution, her

con¯dence). The analysis is trivial if the solution is a pooling equilibrium: as all workers

obtain the same treatment, self-con¯dence and worker's ability are irrelevant with respect to

fairness. In order to be meaningful, the model should allow for the existence of a separating

Perfect Bayesian Equilibrium.

It turns out, however, that a fully-separating equilibrium exists if and only if the model

satis¯es the following requirement. When a worker has lower mean con¯dence than another

worker, we must allow the ¯rst one to have smaller variance, or else she will pool with

the second one. Say for instance, that two workers with con¯dence distributed uniformly

respectively on [µ ¡ sµ; µ + sµ] and [µ0 ¡ sµ0; µ0 + sµ0 ] will separate if and only if sµ � sµ0=2

and µ ¸ µ0 ¡ sµ0=2: In such an equilibrium workers are hired after one period of screening,

and they may fail their ¯rst test. We show that the outcome is ex-ante and interim fair,

even though it does not fully distinguish between workers of di®erent ability, and so is not

ex-post fair.5

In order to analyze the learning processes of overcon¯dent workers, we need to restrict

attention to models where workers are uncertain. If an overcon¯dent worker with degenerate

priors fails a test that she believed she was able to pass, then the Bayes rule is not well-

de¯ned, and it is unclear how the worker will revise her beliefs. We de¯ne a worker as

overcon¯dent if she holds a con¯dence higher than her actual distribution of ability, and

study a model with uncertain workers, some overcon¯dent, and some unbiased. The ¯rm's

5The formal distinction between ex-ante, interim, and ex-post results was ¯rst introduced by Holmstrom
and Myerson (1983).
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behavior depends on its beliefs over the worker's con¯dence. We think that the ¯rm should

be aware that, on average, workers are overcon¯dent.6

At least when training programs are of small cost, we may believe that workers will

eventually learn their own abilities, and their overcon¯dent priors will be irrelevant. On

the contrary, we will show that fully-separating equilibrium implies a pattern of failure,

dejection, and under-employment. In equilibrium, the ¯rm does not have any initial infor-

mation with respect to the worker. For fear of hiring the worker at a wage above her ability,

it does not make any o®er until the worker has taken a test. Since workers with di®erent

con¯dences take di®erent tests, the ¯rm ¯nds out the worker's con¯dence upon observing

the ¯rst test choice, and thus it may calculate the permanent wage that the worker would

require in order to stop testing.

In the class of models selected above, if an overcon¯dent worker has failed the ¯rst test,

she revises her con¯dence so as to become dejected, and undercon¯dent. Now, she may

accept underpayment: in order to increase her quali¯cation, in fact, she needs to pass an

appropriate test, but, as she believes such a test too di±cult, she will not even try to take

it. While the ¯rm does not know the worker's ability, it believes that it is most likely above

the worker's current con¯dence. It is not in the ¯rm's best interest to have the worker

take one more test, as she will most likely pass it, achieve a higher quali¯cation, and thus

require a higher permanent wage. Therefore, while unbiased workers will be hired for the

interim-fair wage, dejected workers will be underpaid.

If a worker has passed her ¯rst test, her current con¯dence is above her ability, and

she will not accept the ¯rm's o®er, trying instead more di±cult tests. Eventually she

will fail and revise her con¯dence, so as to become unbiased. Interestingly, the presence

of overcon¯dent workers in the population makes it impossible for uncertain workers to

be hired after one successful test. The ¯rm will not be able to distinguish them from

overcon¯dent workers, and so will refuse to hire any worker before they fail at least one

6In order to show our result, we do not need to assume that the ¯rm knows the distribution of con¯dence
across workers. Nevertheless, we shall impose that assumption in the model, as it allows to construct an
equilibrium in the spirit of the Harsanyi doctrine.
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test. Nevertheless, all the workers who pass the ¯rst test will eventually be hired for a fair

wage.

The last question we consider is e±ciency. With costless screening programs that do

not a®ect productivity, the worker's choice does not matter for welfare. In order to assess

the e±ciency issue, it is necessary to introduce training programs that bear a non-negligible

cost, and that increase worker productivity if successfully completed. Repeating the anal-

ysis summarised above, we show the equilibrium to be ine±cient. In fact, overcon¯dent

workers will not accept the ¯rm's o®er, they will take di±cult training programs they

will not be able to complete, and thus produce a social cost. At the same time, dejected

workers will not take training programs they could accomplish, and will not increase their

productivity up to the limit imposed by their personal ability, reducing social e±ciency.

A critical assumption of our model is that ¯rms enjoy some monopsony power in the

promotion decision of the workers they employ.7 Wemight conjecture that each ¯rm screens

each single worker, and engages in a bidding war for her, even if she is currently working

for a di®erent employer. In such a case, self-con¯dence may be irrelevant. In fact, the

competing ¯rms would settle to o®er the wages that coincide with their assessment of the

worker's ability. Since ¯rms are aware of workers' overcon¯dence, they may be able to fully

adjust for the workers' biases, and ¯nd out their actual abilities.8

The paper is presented as follows. The second section shows that in any signalling model,

overcon¯dence is not bene¯cial. The third section introduces our on-the-job signalling

model and studies the case in which each worker knows her ability. The fourth section

extends the model to consider uncertain, unbiased workers. The ¯fth section introduces

overcon¯dent workers in the model of the fourth section. The sixth section covers e±ciency.

The last section discusses our model and relates it with the literature. Appendix A presents

7In the class of labour models of repeated bargaining with incomplete information, some models require
perfect competition, others, like Hosios and Peters (1993) stipulate monopsony.

8We should also stress that if ¯rms do not know that workers are overcon¯dent, underpayment will
occur even with perfectly competitive ¯rms. That is contrary to the intuition that underpayment obtains
mainly because the ¯rm has an informational advantage on the worker.
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the worker's optimal stopping problem. The reader will ¯nd all the proofs in Appendix B.

2 Overcon¯dence and Signalling

In this section we present a minimal (and thus unrestrictive) signalling model, and show that

overcon¯dence cannot be ex-ante bene¯cial at equilibrium. Let a player with individual

characteristic µ 2 £ choose a strategy s 2 S: After observing s; her opponent takes a

strategy f; that in°uences the player's payo® uµ(s; f(s)); the opponent does not know µ:

Note that µ need not be a number, it may indicate a distribution of personal abilities, or any

individual characteristic one may consider appropriate, and s need not be a single action,

but may be a complicated strategy, or an in¯nite horizon policy. Say that the player's

actual characteristic is µ; but she believes it to be µ0: If one assigns an appropriate order

on the set £; she can de¯ne that player overcon¯dent, and contrast her with an individual

who knows that her characteristic is µ:

Consider any equilibrium (s¤; f¤). While the overcon¯dent player's choice s¤ depends

on her belief µ0; her actual utility depends on her actual characteristic µ:

If µ and µ0 pool, s¤(µ) = s¤(µ0); then clearly

uµ(s
¤(µ0); f¤(s¤(µ0))) = uµ(s

¤(µ); f¤(s¤(µ)))

so that the overcon¯dent player achieves the same ex-ante utility as the unbiased one.

If µ and µ0 separate, s¤(µ) 6= s¤(µ0); then Incentive Compatibility requires

uµ(s
¤(µ0); f¤(s¤(µ0))) � uµ(s

¤(µ); f¤(s¤(µ)));

thus the overcon¯dent player cannot achieve higher ex-ante utility than the unbiased one.

3 On-the-Job Signalling

3.1 Basic Model

An employed worker holds private information with respect to her own ability q; we de¯ne

this information as con¯dence, and denote it by µ 2 [µ; ¹µ); with µ > 0; ¹µ < 1: While in
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the fourth section, the worker is uncertain, and in the ¯fth section she is overcon¯dent,

here she knows her ability, and we may simply assume q = µ: Con¯dence (and thus ability)

is distributed in the population of workers with a continuously di®erentiable and strictly

increasing cumulative distribution ©: The worker's productivity is de¯ned as the net prod-

uct contributed to the ¯rm (for simplicity, we assume it independent of other workers'

contribution, and of di®erent factors of production) for the moment we set it equal to the

worker's ability q: In the sixth section, we will extend the model to allow productivity to

depend also on training.

At each period t; the worker is o®ered a wage wt by the ¯rm. The worker may accept

the o®er (we denote that choice by Dt

µ
= A); choose an outside option (Dt

µ
= R); or take

an error-free pass-fail test indexed by x; x ¸ 0: The workers may freely choose the test's

index x; we denote such a choice by Dt

µ
= x: The ¯rm is not legally allowed to walk away

from a contract with a worker, that is 8t if Dt

µ
= A; then wt+1 ¸ wt:

For any q; we denote the outcome of the test x by f(x; q) and assume that:

f(x; q) =

(
0 if x < q
1 if x ¸ q

For any time t; we de¯ne the set Xt

µ
as the set of tests taken by the µ worker before t:

Formally, Xt

µ
= fxj9¿ < t;D¿

µ
= xg: Because of the error-free assumption, the set of

successfully taken tests for a worker of ability q at time t is Y t

µ
(q) := Xt

µ
\ [µ; q]: Note

that when q is unknown, Y t

µ
(q) is the realization of a random set we denote by Y t

µ
: In this

section, in the eyes of the worker, Y t

µ
coincide with Y t

µ
(q):

Also, de¯ne at
µ
= maxY t

µ
(with max; = µ) and bt

µ
= min[Xt

µ
n Y t

µ
] (with min; = ¹µ).

Each test allows workers and the ¯rm to update their beliefs according to the Bayes rule

whenever possible, that is, whenever the test yields an outcome prior believed to occur

with non-null probability.9

The institutional setting is such that at each time t; if a worker with ability q chooses the

9
Experimental ¯ndings show that economic agents do not follow the Bayes rule. In particular, all exper-

iments prove that the prior is understated when the updating is conducted... Our results are strengthened

with any updating rule that understates the prior.
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outside option Dt
µ = R; she may report the outcome of her tests and obtain the permanent

wage r(Y t
µ ) = atµ:

At time T; the ¯rm observes the worker's decision, the tests taken and their results. So

its information is (HT ; ZT ) where HT := f(Dt
µ; wt)gt<T is the action path and

ZT = (XT
µ ; Y

T
µ ) is the test path. Let w(ZT ; HT ) be its behavioural strategy. Given the

prior ©; the ¯rm will use (HT ; ZT ) to update belief its belief over the worker's ability q:

At time T; the worker's information consists of (HT ; wT ; ZT ); and Dµ(HT ; wT ; ZT ) is the

worker's strategy. The solution concept is (pure-strategy) Perfect Bayesian Equilibrium.

Proceeding according to sequential rationality, each player will its maximise its expected

payo® from T onwards.

For any event E; let Â(E) denote the indicator function, assuming value of 1 if E occurs

and value of 0 otherwise. Each worker of type µ continuation payo® at time T; after history

(HT ; wT ; ZT ) is:

UT

µ = (1¡ ±)
1X

t=T

±t¡T [wtÂ(Dt

µ
=A) + r(Y t

µ )Â(Dt

µ
=R)]

In the eyes of the ¯rm, for any time T; Y T+1
µ is a random set depending on the random

variable q: Thus the ¯rm's beliefs on q determine also its beliefs on the continuation game

it will enter at time T +1: The ¯rm's continuation payo® at time T after history (HT ; ZT )

is thus:

UT

F = (1¡ ±)EF

"
1X
t=T

±t¡T [q ¡ wt]Â(Dt

µ
=A)

¯̄̄
¯̄HT ; ZT

#

We de¯ne an equilibrium as ex-post fair if the ¯rm does not make any rents, and any

worker is paid what she is worth. Formally, for any T; UT
F = 0; and UT

µ = q when µ = q: In

sections three and four we will need to weaken this de¯nition of fairness and introduce the

concepts of ex-ante and interim fair.

3.2 Correct Judgement

For ± close to 1; in a Perfect Bayesian Equilibrium, almost all workers are separated already

at time 0. Even though workers may take any number of almost costless tests, they will

9



pick the correct test at time 0, and be employed with a fair wage at time 1. Speci¯cally,

the equilibrium path is such that, at time 0, each worker µ takes test µ; pass it, and gets

hired by the ¯rm for a permanent wage of wt = µ = q: Since the ¯rm is not making any

pro¯t in this equilibrium, there also exists separating PBE in which the ¯rm does not hire

workers. We rule these equilibria out as they are meaningless for the analysis. In this and

in the following propositions, for brevity, we present only the equilibrium path, rather than

the entire equilibrium strategy, which is always presented in the proofs.

Proposition 1 For ± ¼ 1; at the unique Perfect Bayes Equilibrium, almost any worker µ

play D0

µ
= µ; to obtain wt = µ for any t > 0; so that the equilibrium is almost ex-post fair.

Speci¯cally, the ¯rm sets w0 ! µ; each worker with con¯dence µ ¸ w0=± plays D
0

µ
= µ;

to obtain wt = µ for any t > 0; and each worker of con¯dence µ < w0=± accepts wage w0

forever. The intuition is as follows. Each type of workers knows her type and can reveal it

by taking and passing the appropriate test. If one chooses too di±cult a test, she fails it,

and she is punished by a zero wage o®er; if one takes too easy a test, her wage is lowered.

The ¯rm, ¯nally, knows that if it o®ers a wage higher than the reservation wage, it will

get the worker to stop testing only if her ability is lower than the o®ered wage. For fear of

hiring the worker for a wage above her ability, the ¯rm will wait until she takes a test, and

then make her an o®er. Its initial o®er will attract only those workers whose ability is too

low to bother pursuing quali¯cation through testing.

4 Uncertain Judgement

In this section, we modify the model of the third section to allow workers to be uncer-

tain about their own ability. It is common knowledge that the ability q of each worker

with con¯dence µ 2 £ is distributed according to the uniform probability measure10 on

10Such a speci¯cation allows for simple calculations and also for a more intuitive presentation of the

results. The model Uniform-Delta is just an extreme case of the Beta-Binomial model. It would be

interesting to generalize our result to the Beta-Binomial Bayesian model.
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[µ ¡ sµ; µ + sµ] ; for some given sµ that satis¯es µ¡sµ > 0: Now, also the worker will update

her belief over her ability q: Denote by Eµ(¢jHT ; wT ; ZT ) the expected value given informa-

tion (HT ; wT ; ZT ):
11 While the expected utility of the ¯rm is unchanged, worker µ's utility

is now expressed as follows.

UT

µ = (1¡ ±)Eµ

"
1X
t=T

±t¡T [wtÂ(Dt

µ
=A) + r(Y t

µ )Â(Dt

µ
=R)]

¯̄̄
¯̄HT ; wT ; ZT

#

We ¯nally extend our de¯nition of fairness. An equilibrium is ex-ante fair if U0

F
= 0; and

each worker µ obtains a utility U0

µ
= µ: An equilibrium is interim fair if for any T; UT

F
= 0

and UT

µ
= Eµ[qjZT ] for any µ:

In order to approach the problem, the ¯rst question to consider is the optimal decision

rule for the µ worker, at time T; given test information ZT ; when the ¯rm does not exist, so

that 8t ¸ T;DT

µ
6= A: Let Â be solution of that problem, and Uµ(ÂjZT ) the associated con-

tinuation value, such value corresponds to the interim value of the outside option, for any µ

and ZT : For ± close to 1; Lemma 1 in Appendix A shows that the continuation value coin-

cides with the value of testing for a long time, approximately resolving the uncertainty about

her own ability, and then settle down for the permanent wage granted by the quali¯cation

achieved. Speci¯cally, for any T; ZT and for high discount values, as r(Y t

µ
) = at

µ
; 8t ¸ T;

the discounted value of being tested Uµ(ÂjZT ) approximates from below the random value

q's expectation [aT
µ
+ bT

µ
]=2; and Uµ(ÂjZT ) is a sub-martingale. Moreover, the time T op-

timal test xT
µ
approximates [aT

µ
+ bT

µ
]=2 from above. We ¯nally show that, ¯xing T and ±,

8t ¸ T; xt
µ
> [at

µ
+ bt

µ
]=2 and xt

µ
¡ [at

µ
+ bt

µ
]=2 is a strict sub-martingale. Instead of using

recursive techniques, we proved our results by formulating the working hypothesis that

the worker always chooses tests equal to [at
µ
+ bt

µ
]=2; so as to calculate optimal stopping

times. Then we can characterize the e®ective optimal test policy proceeding backwards

from the stopping times, and conclude that for ± ! 1; the optimal test converges to the

working hypothesis in the metric that discounts future discrepancies. The derivation of the

11Since Yµ(q) subsumes all the information relative to q in the worker's history (HT ; wT ; ZT ); we do not
need to extend the de¯nition of a worker's strategy to account for uncertain q:
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equilibrium is then concluded by considering the ¯rm's problem. Since it makes a take-it-

or-leave-it o®er, it may stop the worker from testing by o®ering her the interim value of

the outside option. It will stop the worker whenever that maximises its future pro¯ts.

The analysis focuses on fully-separating equilibria. Proposition 2 below characterises

all such PBE; unexpectedly it restricts attention to only one equilibrium. Let xµ be the

¯rst test in the optimal policy Â when Z = ;:

Proposition 2 For ± su±ciently close to 1; there is a unique separating PBE. Almost all

workers µ play D0

µ
= xµ ¼ µ: For any t ¸ 1; D0

µ
= A: if f(µ) = 0; wt ¼ µ¡sµ=2; if f(µ) = 1;

wt ¼ µ + sµ=2: Such an equilibrium is almost ex-ante fair and almost interim fair.

The main intuition is as follows: after the ¯rst test, the ¯rm recognizes the worker's

type. As it discounts future payo®s, it prefers to hire the worker now, rather than to wait

for further testing. To hire her, it o®ers the wage that makes the worker indi®erent between

further testing and accepting the job. As that value is maximised for D0

µ
= xµ ¼ µ; the

worker will never choose any other x; x 6= xµ at time 0. The separating PBE is thus unique.

In the benchmark-case of the second section, we let workers privately know their own

ability, and thus we obtain an ex-post fair outcome, as the ¯rm may recognize the ability

of each worker by the test chosen in equilibrium. Now the private information consists

of a distribution over possible ability values. So the ¯rm cannot perfectly separate the

di®erent workers' ability, but only the distributions, and ex-post fairness is unattainable.

The unique fully-separating PBE, however, is shown to be ex-ante and interim fair.

In Theorem 1 below, we ¯nd necessary and su±cient conditions for the existence of that

separating PBE, and we show that under such conditions, it is the unique PBE. Somewhat

unexpectedly, the existence of a fully-separating equilibrium requires the low worker to be

much more stubborn that the high type.

Theorem 1 For ± su±ciently close to 1; the separating PBE exists if sµ < sµ0=2;

µ > µ0 ¡ sµ0=2; and only if sµ � sµ0=2; µ ¸ µ0 ¡ sµ0=2; whenever µ < µ0: Under such

conditions, the separating PBE is the unique PBE.
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The intuition is as follows. When a con¯dent worker fails a test, the choice of the test

nevertheless reveals her private information. If the resulting wage is high, less con¯dent

workers will copy her decision. To allow for a separating PBE is thus necessary to have a

low enough wage after failure of a high test. This is possible only if the ability distribution

associated with con¯dent workers has a \tail" to the left of the distribution associated to

less con¯dent ones. That results in the two requirements in the Theorem. In contrast with

the model of the second section, the two requirements imply that the space £ be discrete.

Again we assume that £ has a minimum, that we denote by µ: The requirement of µ ¡ sµ

not to be negative implies that £ is ¯nite.

Remark 1 When allowing for partially-separating equilibria, the analysis yields di®erent

results. It is in fact possible to construct an equilibrium of that sort when the space £

consists of two disjoint intervals (the low type and the high type). The equilibrium is

constructed as follows. Let the high type take the test path derived in Lemma 1 that solves

her problem in absence of the ¯rm. Require the low type to mix between taking the test

path that solves her problem and copy the high type. At the same time, require the ¯rm

to mix when she observes the worker fail the tests on the high type solution, and hire the

worker immediately otherwise. The most interesting feature of this equilibrium is that the

probability that the ¯rm hires the worker who fails the high type test path is increasing over

time, and yet the probability that low type keeps on mimicking the high type is decreasing

over time.

5 Overcon¯dence

In this section, we introduce overcon¯dent workers into the model developed in the fourth

section. We distinguish between the actual distribution over a worker's ability and her

belief. While the ability of a worker with parameter (®; µ) 2 £2 is distributed uniformly on

[®¡ s®; ®+s®]; she believes it to be distributed uniformly on [µ ¡ sµ; µ + sµ] ; where µ ¸ ®:

The worker is overcon¯dent if µ > ®:

13



While, overcon¯dent workers are by de¯nition unaware of being mistaken, the ¯rm in-

stead is aware that workers are, on average, overcon¯dent. In order to de¯ne an equilibrium

for the scenario, let us imagine a continuum of workers. As in the previous sections, their

parameter µ is drawn from a commonly known distribution. Since the two requirements of

Theorem 1 imply that the space £ be discrete, we cannot refer to the distribution of the

second section, and we introduce the distribution of con¯dence Á: Conditional on µ; their

parameter ® is distributed according to °jµ: While each worker believes that her ability

is distributed according to µ; it also knows that the other workers may be overcon¯dent,

and it knows the distributions Á and °: One worker out of the population is extracted

randomly and assigned to play against the ¯rm, which also knows the distributions Á and

°: Equilibrium beliefs are never refuted on the path because the population is continuous,

so that each worker's self-con¯dence bears no impact on the expectations she places on the

¯rm's behavior. Even though we assume that each player is almost correct with respect to

the distribution of types in the population, our results follow even if requiring only that

each player is aware that (other) workers are on average overcon¯dent.

As in the previous section, we restrict attention to fully-separating equilibria. In Propo-

sition 3 we show that for ± su±ciently close to 1; there is a unique fully-separating PBE,

and we describe its path.

Proposition 3 For any ± close enough to 1; there exists a unique separating PBE. Almost

all workers (®; µ) play D0

µ
= xµ ¼ µ: If f(xµ) = 0; 8t ¸ 1; wt = w1 ¼ µ¡ sµ=2; and D

t

µ
= A:

If f(xµ) = 1; then a.s. there exists a ¯nite time ¿(±) > 2 such that wt = 0; Dt

µ
= xt

µ
; 8t < ¿;

and wt = Uµ(ÂjZt); D
t

µ
= A;8t ¸ ¿:

At time 0, each worker with con¯dence µ would choose the test xµ ¼ µ; regardless of her

actual distribution of ability. At the beginning of the game, each worker's private informa-

tion is completely summarized by the parameter µ: Thus the addition of the parameter ®

is irrelevant with respect to the worker's decision whether to reveal her private information

through the optimal testing choice.
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At time 1, the ¯rm knows the worker's con¯dence µ; and thus it assigns the probability

°jµ to her parameter ®: The ¯rm will o®er the wage w1 ¼ µ ¡ sµ=2 to the worker that

fails the test. It knows in fact that ® � µ: When ® = µ; the worker will be correct in her

judgement, and will choose to work only for the fair wage (approximately ®¡s®=2). When

® < µ; the worker will be undercon¯dent and accept to work for approximately µ ¡ sµ=2.

Since µ¡sµ=2 < ®¡s®=2; the ¯rm makes a positive pro¯t. Moreover, if the worker chooses

to test more, she picks x1
µ
¼ µ¡ sµ=2; she most likely passes the test, and becomes correct

in her judgement. Since the tests are error-free, once a worker has passed one test and

failed another one, her initial con¯dence is irrelevant.

When the worker passes her ¯rst test, the ¯rm will not hire the worker until she has

failed one test. With positive probability, she may be overcon¯dent, and so the ¯rm would

incur an expected loss by hiring her. The worker will eventually fail some tests. When the

¯rm believes that she is not likely to be overcon¯dent, it will hire her with an approximately

interim-fair wage.

The second result shows that Theorem 1 is valid also when injecting overcon¯dent

workers in the population, according to the distribution system °: The intuition is that,

regardless of their actual distribution of ability, workers believe it to coincide with their

con¯dence, so they follow the same incentives as in the framework of the previous section,

and thus Theorem 1 extends.

Corollary 2 For any ± su±ciently close to 1, the separating PBE of Proposition 3 exists

and is the unique PBE, under the conditions of Theorem 1.

The main result of this section is Theorem 3 below. It demonstrates that in a fully-

separating equilibrium, while non-overcon¯dent workers achieve an ex-ante, interim fair

wage, overcon¯dent workers will be dejected and under-paid. Such results hold ex-ante for

all overcon¯dent workers, and hold interim for most of them. Most of the overcon¯dent

workers will fail and accept a wage lower than their actual expected ability conditional on

failing the test. Those who pass the test, instead, will eventually accept an approximately
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interim fair wage. The time-0 ex-ante utility of each worker with ® < µ turns out to be

bounded below ® even for ± close to 1:

Theorem 3 For any ®; lim±!1U
0

®µ
is decreasing in µ; and lim±!1U

0

®®
= ®: When ±

is su±ciently close to 1, for any µ > ®; Pr(f(xµ) = 0j®; µ) > 1=2; and there exist

strictly positive bounds M; uniform in ±; such that U0

®µ
< ® ¡M1; and U®µ[f(xµ) = 0] <

E® [qjf(xµ) = 0]¡M2:

While workers who pass the ¯rst test will be hired for an approximately interim-fair

wage, all overcon¯dent workers who fail the ¯rst test will be under-paid. Speci¯cally, for

± ¼ 1; for almost all (®; µ); the interim-utility after failing the ¯rst test is U®µ[f(xµ) =

0] ¼ µ ¡ sµ=2: The interim-fair wage, instead is E®[qjf(xµ) = 0] = [µ + ® ¡ s®]=2. So that

U®µ[f(xµ) = 0] = E®[qjf(xµ) = 0] only if µ = ®; and U®µ[f(xµ) = 0] < E®[qjf(xµ) = 0] when

the worker is overcon¯dent. The probability to fail the ¯rst test is Pr(f(xµ) = 0j®; µ) ¼

[µ ¡ ® + s®]=4s®; larger than 1=2 when µ > ®: Combining the outcome after passing the

¯rst test and after failing it, the worker's ex-ante utility results

U0

®µ
¼

(®+ s®)
2 ¡ µ2 + (2µ ¡ sµ)[µ ¡ ®+ s®]

4s®
:

So that overcon¯dent workers will be ex-ante less successful than non-overcon¯dent ones.

6 E±ciency

The analyses of the previous sections concerned the e±cacy of costless screening programs,

chosen by the workers, to achieve a fair outcome. Now we investigate whether the players

will achieve e±cient production using costly training programs. To that purpose, we will

compare the equilibrium e±ciency when workers know their ability, with the case in which

workers are uncertain but unbiased, and with the instance in which some workers are

overcon¯dent.

In this section, we let each worker's on-the-job productivity be a function of her training

x and of her ability q: Formally we denote the productivity as ¼(x; q) = ¼x + (1 ¡ ¼)q:
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For simplicity, we assume that it does not matter how many training programs the worker

takes, but only the most di±cult she passes:12 so that ¼(x; q) := ¼(a; q): The institutional

setting is such that at each time t; the worker µ is granted an outside option with permanent

wage of r(Y t

µ
) = ¼(at

µ
; at

µ
) = at

µ
: In fact, a worker quali¯cation at

µ
is easily observable by

third parties, but on-the-job productivity ¼(at
µ
; q) is not.

Now, the ¯rm's continuation payo® at time T is

UT

F
= (1¡ ±)EF

"
1X
t=T

±t¡T [(1¡ ¼)q + ¼at
µ
¡ wt]Â(Dt

µ
=A)

¯̄̄
¯̄HT ; ZT

#

The worker's continuation payo® is unchanged.

In the previous sections, we assumed screening programs to take a short period of

time and to be costless, so that we could conduct the analysis for ± approaching 1: Such

assumption is not realistic anymore when introducing training programs that have non-

negligible bene¯ts in terms of productivity. The analysis of this section will be conducted

for any ± smaller than a bound below 1. In fact, the discount factor fully summarises the

cost of the training programs, in terms of foregone wages and pro¯ts.

Remark 2 As ± approaches 1; and ¼ is ¯xed and strictly positive, Proposition 2 does not

hold. There would exist a separating PBE where the ¯rm, after recovering the worker's

private information, keeps on training her for a time that approaches in¯nity, hires them

only at the end of time, to gain extra productivity at no cost. That modi¯es the Incentive

Compatibility condition, and allows for a larger set of spaces £ than the one characterized

in Theorem 1. In particular, ± ! 1 and ¼ > 0 imply that training programs yield large

bene¯ts at no-cost, so that the ¯rm would choose to keep on training workers forever, even

though it knows their ability, and to get them to work only at the end of time. ¦

In the previous section, an equilibrium was de¯ned as fair if for any worker µ; U0
µ = µ:

With ± bounded below 1; that outcome may not be achieved as the worker must pay the

12Such assumption could be relaxed allowing the productivity to be raised also in case of failed programs,

albeit less than for accomplished ones.
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cost of training at least once, in order to signal her ability. Thus we shall modify our

de¯nition, and call an equilibrium ex-ante fair if U1
µ
= µ; and U0

F
= 0: The de¯nitions of

interim and ex-post fairness are similarly modi¯ed.

Since we are interested in productive e±ciency, we de¯ne the welfare function W (H) as

the average discounted net product when each worker µ plays strategy Dµ :

W (H) = (1¡ ±)E

"
1X
t=0

±t[(1¡ ¼)q + ¼at
µ
]Â(Dt

µ
=A)

#
(1)

As a0µ = 0; 8µ and f(x; q) = 0 if and only if x > q; integrating Equation 1 one readily

realizes that ¯rst best e±ciency requires: D0
q = q Dt

q = A; 8t > 0 if ± ¸ 1 ¡ ¼; and

Dt
q = A; 8t otherwise. The welfare is equal to W ¤(H) = maxf±; 1 ¡ ¼g; consistently with

the interpretation of 1¡ ± as the cost of the training programs, and ¼ as its bene¯t.

Whenever ± < 1¡¼; fairness is incompatible with ¯rst best. The latter requires players

not to be trained, and participation in a training program is the only way to reveal the

workers ability, and thus allow the ¯rm to o®er a fair wage scheme. When ± > 1 ¡ ¼; the

relative bene¯ts of the training programs are high enough to make it optimal to get trained,

so that fairness is reconciled with ¯rst best: in the remainder of the section we focus on

that latter case.

When workers know their own ability, the PBE is separating (and thus fair), and

achieves the ¯rst best outcome.13 In fact, repeating the argument in the proof of Proposi-

tion 1, we obtain that any worker µ will accept the time 0 wage w if and only if µ � ±=w0;

and that at time t; the ¯rm makes a strictly positive pro¯t only when hiring workers with

Xt = ;: Thus the time-0 ¯rm problem is:

max
w02[µ;¹µ]

¡w0 +
Z
[µ;w0=±]

(1¡ ¼)µd©(µ) (2)

If ± ¸ 1¡¼; then ¡w0+
R
[µ;w0=±]

(1¡¼)µd©(µ) < ¡w0(1¡¼)w0=± � 0 so that w0 = µ solves

the problem (2).

13
If ± < 1¡¼; the PBE achieves First Best only if it is pooling, that requires ± < 1¡¼

Á(1) and ± < (1¡¼)EÁ(µ):

A semi-pooling equilibrium may occur when ± < 1 ¡ ¼; and there is a local interior maximum, that is,

there exists a w0 2 (µ; ¹µ) s.t. Á(w0=±)w0(1¡ ¼)=±2 = 0 and @Á(w0=±)=Á(w0=±)
@(w0=±)=(w0=±)

< ¡1:
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We now consider uncertain priors and overcon¯dent ones. Given the ¯nite con¯dence

space £; with spreads fsµg(µ2£) denote by W
s the equilibrium welfare function for the case

of uncertain but unbiased priors. On the same state space £; given the overcon¯dence

distribution system °; denote by W ° the equilibrium welfare function. We will show that

uncertainty reduces welfare with respect to the ¯rst-best, and that overcon¯dence reduces

economic e±ciency even further.14

Theorem 4 For ± 2 (1 ¡ ¼; b); the equilibrium welfare functions are ranked as follows:

W ° < W s < W ¤; for any £; and °:

The main intuition is as follows. The ¯rm wants to keep the reservation value down,

to o®er a wage lower than productivity and make a pro¯t. Thus the ¯rm needs to avoid

workers to achieve their highest possible quali¯cation. It will stop them when they are

underestimating their true ability. That will prevent them from passing the next test,

become unbiased, and increase their productivity. When workers are overcon¯dent, the

¯rm cannot hire them or it will incur a negative pro¯t. As it will hire them only after they

have failed some tests and become unbiased, their net product will not contribute to the

economy, and no bene¯t will be generated in terms of increased productivity. These two

e®ects will both result in less than e±cient training.

7 Discussion and Related Literature

As is well known, the ¯rst seminal contribution in the signalling literature is by Spence

(1973). Later on, the literature divided itself with respect to the identi¯cation of the

signal that allows separation at equilibrium. While Salop and Salop (1976), and Guasch

and Weiss (1980) focused on the worker's preferred contractual arrangements, and Burdett

and Mortensen (1981) considered tests prior to market participation, we consider training

14Unlike the analysis of the ¯fth section, however, Theorem 4 compares e±ciency across di®erent games.
In principle, there could exist di®erent models of signalling with overcon¯dence in which an analogous
result would not hold.
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programs entered while on the job. The original static results have then been motivated in

a repeated game setting by Noldeke and Van Damme (1990).

Unlike the above contributions, but following Hosios and Peters (1993), we restrict

attention to a monopsonistic ¯rm that makes a take-it-or-leave-it o®er. Clearly such an

assumption is not to be taken literally: it is just a simpli¯cation to represent some amount

of monopsony power enjoyed by the ¯rm when dealing with the promotions of specialised

workers. As pointed out for example by Waldman (1990), the current employer holds

a relevant competitive advantage with respect to other potential employers. It is then

possible that, because of complexity costs, market frictions, or strategic commitment by

the ¯rms, employed workers receive a negligible number of o®ers from competitors. Burdett

and Mortensen (1998) show that, in such a case, Diamond's (1971) result is approximated,

and ¯rms can almost make a take-it-or-leave-it o®er to each employed worker.15

In seeking promotions, as in Killingsworth (1982) or Brown (1989), we assume that

workers freely choose to stop working and participate in training programs. If they success-

fully complete the programs, their quali¯cation are upgraded. We suppose that a higher

quali¯cation translates into a higher reservation wage. That directly represents scenar-

ios where legislative devices, or trade-unionised national contracts, guarantee appropriate

wages. In such a case our model may be interpreted as a \regulated monopsony". In the

US, for example this is the case of civil servants.16 But even absent a regulated monopsony,

it is plausible to suppose that workers will not accept any wage inappropriate for their

quali¯cation, as she knows that she can actively search outside the ¯rm and easily obtain

an appropriately remunerated position.

While the ¯rm may not pay a wage inappropriate for the worker's quali¯cation, the

actual worker's productivity on the job depends also on her ability, which is unobservable

15Pissarides (1990) and Mortensen (1998), however, point out that the \Diamond" equilibrium is upset
by free entry. Our understanding is that the very reasons which make negligible the °ow of on-the-job o®er
may also preclude entry.

16I thank Dale Mortensen for this observation. To our knowledge a formal model of public o±cers'
promotion has never been written.
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to third parties. In our simple bargaining model, the ¯rm makes a pro¯t only if it hires

workers with on-the-job productivity above their quali¯cations.17 Again that assumption

is not to be taken literally, as surely there are instances in which the ¯rm may increase

its pro¯t by increasing their workers' quali¯cation. One may complicate our model to

di®erentiate workers in terms of relative advantages (as in Burdett and Mortensen 1981)

instead of absolute ones, and obtain essentially the same results.

The heart of our formal analysis consists of the worker's problem in absence of the ¯rm,

where the worker must decide whether to continue testing, or to accept the outside option;

and if choosing to continue testing, she must select the optimal test. The problem belongs

to the class of optimal stopping models with a continuous set of alternatives. We found

that workers choose relatively more di±cult tests, the closer they are to the stopping time.

Such result is related to the analysis of Moscarini and Smith (1998). They consider testing

decisions with convex costs in a discrete state-space, and show that the amount of testing

increases when the uncertainty is soon to be resolved. We show that workers become more

daring when the uncertainty becomes small.

While we analyze self-con¯dence in a signalling framework, that phenomenon has been

studied by Flam and Risa (1998), and by Dubra (1999) in search theoretic frameworks.

Dubra (1999) studies a searcher sampling o®ers from an unknown distribution, and de¯nes

her beliefs as a distribution over possible distributions of o®ers. He de¯nes the searcher

`overcon¯dent' if the resulting mixture dominates the actual distribution, and shows that if

searchers are not patient, a slightly overcon¯dent one may fare better than unbiased ones.

When a searcher becomes pessimistic about her distribution, she may accept too low an

extraction, a slightly optimistic prior may counteract such a bias, and make the searcher

better o®. While our paper is concerned with ex-ante utility comparison, Flam and Risa

(1998) are interested in the eventual position achieved by the players. In their model, an

individual chooses to take tests whose outcome depends on her own ability, and she is

17Take for example a secretary who is assigned some management functions. She holds the quali¯cation
and wage of a secretary, yet is able to ful¯ll management functions. By utilising the secretary, the company

saves the di®erential wage it would pay a management-trained person.
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allowed to override failed tests. Thus overcon¯dent players will eventually hold a higher

status that unbiased ones.

Our model of on-the-job promotion may be of particular interest for the European

Union, because of the institutional characteristics of its labour markets. First, many in-

dustries are still monopsonistic18 at the national level, so all the workers who acquire an

industry-related expertise will be able to sell their labour to one company only. Secondly,

professional training is administered in state-sponsored programs.19 In most European

countries, the choice of whether to be trained more is a voluntary small-cost decision by

the worker. Finally, there generally exist legislative devices20 making the outcome of the

quali¯cation tests legally binding. Those workers who successfully pass the test will get

promoted and paid more, even in a labour-monopsonistic industry. Despite the existence

of national labour monopsonists, at prima-facie, the labour system seems fair and e±cient.

Our paper suggests that not to be the case, by pointing out the unfair and ine±cient out-

come resulting from overcon¯dence and dejection. That naturally yields the consideration

that a regulated monopsony will not be as fair as a perfectly competitive industry.
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A The Worker's Optimal Stopping Problem

Consider the problem of a worker of type µ; given test information ZT ; and discount factor

±: De¯ne by Uµ(ÂjZT ; ±) the continuation value of her optimal choice restricted in such a

way that 8t ¸ T;DT
µ
6= A: Let Âµ(ZT ; ±) be the optimal sequence of tests, and xµ(Zt; ±)

the test taken give information Zt and any t ¸ T: Let DT
µ = fDt

µgt¸T denote any arbitrary

sequence of decisions. We shall isolate the analysis of that problem in the following Lemma.

For any pair (y; z); y function of ±; z independent of ±; let the notation y " z mean that

8±; y(±) < z and y(±) ! z for ± ! 1: Analogously interpret y # z: For simplicity, we

drop the subscript µ, and use interchangeably the information Zt; and the interval [at; bt)

it induces.

Lemma 1 Suppose q is distributed uniformly on the interval [aT ; bT ) induced by ZT : Denote

as Â the solution of Problem

max
DT

U(DT jZT ; ±) := (1¡ ±)E

"
1X
t=T

E
h
±t¡TatÂ(Dt=R)jZt¡1

i¯̄̄¯̄ZT

#
(3)

1. For ± ! 1; U(ÂjZT ; ±) " [aT + bT ]=2; and DT = xT # [aT + bT ]=2:

2. For any ± < 1; and any t > T; E[U(ÂjZt; ±)jZT ] > U(ÂjZT ; ±); and E[xt ¡ [at +

bt]=2jZT ] > xT ¡ [aT + bT ]=2 (strict sub-martingale property).

3. For any DT ; E[E[qjZt]jZT ] = E[qjZt]; 8t > T (martingale property).

Proof. The third claim is obvious.

To prove the ¯rst part of the ¯rst claim, we ¯rst show that the Problem (3) is an optimal

stopping problem: let's rewrite it in recursive representation.

U(a; [a; b)) = maxf
a

1¡ ±
; ±[max

x
U(x; [x; b))

b¡ x

b¡ a
+ U(a; [a; x))

x¡ a

b¡ a
]g (4)

Because of stationarity, if Dt(a; b) = R then also Dt+1(a; b) = R; therefore, any optimal

DT is such that for any test path Z = fZtgt¸0; Dt(a; b) = R if and only if t > ¿; for some

¿(Z) <1:

Now we reformulate Problem (3) with limit payo® average representation. Consider the

problem

max
DT

U(DT ; ZT ) := E

"
lim
¿!1

¿X
t=T

E
�atÂ(Dt=R)

¿ ¡ T

¯̄̄̄
Zt¡1

¸¯̄̄̄
¯ZT

#
(5)
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In this form, continuity at in¯nity breaks down, and the problem does not admit a stopping

solution. Nevertheless, for any "; the Problem (5) admits an "-solution with stopping

representation. In fact, consider the sequence DT s.t. for some ¿ Dt =xt; xt = [at + bt]=2;

8t < ¿ and Dt = R; 8t ¸ ¿ : Then

U(DT ; ZT ) = [aT + bT ]=2¡ 1=2¿¡T :

Yet, for any DT ;

U(DT ; ZT ) < E

"
lim
¿!1

¿X
t=T

E
�atÂ(Dt=R)

¿ ¡ T

¯̄̄̄
Zt¡1

¸¯̄̄̄
¯ZT

#
= E

"
lim
¿!1

¿X
t=T

atÂ(Dt=R)

¿ ¡ T

¯̄̄̄
¯ZT

#

< E

"
lim
¿!1

¿X
t=T

q

¿ ¡ T

¯̄̄̄
¯ZT

#
= E[qjZT ] =

aT + bT
2

:

So set ¿ : 1=2¿¡T < " and the "-solution is found. It is well known that U(DT jZT ; ±) !

U(DT ; ZT ) for ± ! 1:Moreover, 8± < 1; U(ÂjZT ; ±) < U(DT ; ZT ) because with discounting

the weight of stage-utility is decreasing over time, and Â is a stopping strategy. We have

proved that U(ÂjZT ; ±) " [aT + bT ]=2 for ± ! 1:

To show that for any ±; and any t > T; E[U(ÂjZt; ±)jZT ] > U(ÂjZT ; ±); recall that for

any test path Z of an optimal DT ; there exist ¿(Z) > T; such that Dt(Z) = R if and only

if t ¸ ¿ : (1¡ ±)U(DT jZ¿ ; ±) = a¿ : Thus the utility at time t; if the path Z is taken is:

(1¡ ±)U t(Z) = ±t¡¿(Z)a¿(Z); 8t < ¿(Z):

As, for any Z; U t(Z) is increasing from 0 to ¿(Z) and constant thereafter, integrating over

each path Z; and noting that sup
Z
f¿(Z)g ! 1 for ± ! 1; we have shown the claim.

Now we prove that, for ± close enough to 1; DT = xT where xT # [aT + bT ]=2: Consider

Problem (4), we already know that its solution is a stopping strategy. Let us formulate the

working hypothesis that 8at; bt; 8t;

[at + bt]=2 = argmax
x

U(x; [x; bt))
bt ¡ x

bt ¡ at
+ U(at; [at; x))

x¡ at
bt ¡ at

:

Under that working hypothesis, 8t; the test choices Xt and outcomes Y t imply that 8at; bt;

bt = at + [bT ¡ aT ]=2
t¡T :
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Thus the pair (a; t) is isomorphic to (at; bt): Let (a; ¢) denote the class of choices for Problem

(4) summarised by (a; t) for ¯xed a and free t:Given any at; bt; it is optimal to stop whenever

at > ±(at + bt)=2 i.e. i®

at >
±[bT ¡ aT ]

(1¡ ±)2t¡T+2

Denote by t(a; ±) the optimal stopping time for the class (a; ¢): That is, using the above

passage,

t(a; ±) := minft : t+ 2¡ T > log2 ±=(1¡ ±) + log2[bT ¡ aT ]=ag

Consider the subsequence of ± ! 1 de¯ned as follows: ±n = 2n=(1 + 2n): Along that

subsequence, log2 ±n=(1¡ ±n) = n: Thus,

t(a; ±n) := minft : t+ 2¡ T > n+ log2[bT ¡ aT ]=ag

Consider the map » : a 7! t(a; ±n); a 2 [aT ; bT ]: Note that ¯xed ±n; » is non-increasing in a:

For any n; denote by R(»; ±n) its range: note that R(»; ±n) = R(»; ±0) + n: The cardinality

of the range is invariant, but the value of the stopping times increasing to in¯nity.

Fix ±: For any t; consider the set of reservation values possible under the working

hypothesis: At = fat = k[bT ¡ aT ]=2
t + aT ; k = 0; ¢ ¢ ¢ ; 2t ¡ 1g: For any a 2 [aT ; bT ];

the pair (a; t) is a stopping choice i® a 2 At and t = t(a; ±): The collection of intervals

(a¿ ; a¿ + 1=2¿) s.t. (a; ¿) is a stopping choice, partitions [aT ; bT ]: For a 2 [0; 1); the range

R(»; ±n) is unbounded, so take an " > 0 and restrict » on ["; 0): Now maxR(»; ±n) exists

¯nite.

Proceeding from maxR(»; ±n) backwards, for any t; let G (good set) denote the set of all

choices (at; t) s.t. at 2 At; (at; t+1) is a stopping choice and (at+1=2t+1; t+1) is a stopping

choice. Similarly let B (bad set), the set of all choices (at; t) s.t. at 2 At; (at+1=2t+1; t+1)

is a stopping choice, but (at; t + 1) is not a stopping choice. Finally, call G2 the set of all

choices (at; t) s.t. at 2 At; (at + 1=2t+1; t + 1) 2 G; and (at; t + 1) 2 G: Iteratively, de¯ne

the sets G2
k

for any k:

The result of the above paragraph implies that with ± ! 1; for each (at; t) 2 B there

exist a K s.t 8k < K; (at+ k=2t; t) 2 G; and K !1; with ± ! 1: At the same there exist

a K2 s.t 8k < K2; (at ¡ k=2t; t) 2 G2, and K2 !1:

On each choice (a; t) 2 G; with corresponding interval (a; b); the Problem 4 is as follows:

max
x

U(a; b) = x
b¡ x

b¡ a
+ a

x¡ a

b¡ a
:
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Let °0 = 1: It yields solution x = [a+ b]=2 and U(a; b) = [3a+ b]=4; let °1 = 3=4 Moreover,

notice that for any Problem

U(a; b) = max
x

U(x; b)
b¡ x

b¡ a
+ U(a; x)

x¡ a

b¡ a
;

if 9° 2 [0; 1] s.t. U(y; z) = °y + (1 ¡ °)z; then x = [a + b]=2: That shows that for any

problem in G2
k

; x = [a+ b]=2; and U(a; b) = °
k+1a+(1¡°

k+1)b; where °k+1 = (2°
k
+1)=4:

Note that °K # 1=2 with K ! 1 which is implied by ± ! 1: On each (a; t) 2 B with

interval (a; b); the Problem 4 is as follows:

max
x

U(a; b) = x
b¡ x

b¡ a
+

3a+ x

4

x¡ a

b¡ a
:

It yields solution x = [a+2b]=3 and U(a; b) = [2a+b]=3: At time t¡1; either (a; t¡1) 2 At¡1

or (a1=2
t¡1; t¡ 1) 2 At¡1: Let B ¤ G denote the (bad-good) set that includes (a; t¡ 1); and

G2 ¤ B the set that includes (a1=2
t¡1; t ¡ 1): For any (a; t) 2 B ¤ G; with interval (a; b);

x¤ = [2a + 3b]=5 and U(a; b) = [3a + 2b]=5: For any (a; ; t) 2 G2 ¤ B; with interval (a; b);

x = [3a+ 4b]=7 and U(a; b) = [3b+ 4a]=7:

Now we can iterate the procedure by introducing the sets (B ¤ G) ¤ G2 and G4 ¤ (B ¤ G)

sets and G4 ¤ (G2 ¤B) and (G2 ¤B)¤G and so on for higher iterations: let the union of these

sets be denoted by R: Since

max
x

b¡ x

b¡ a
[°x+ (1¡ °)b] +

x¡ a

b¡ a
[³a+ (1¡ ³)x];

yields

x = [(2° ¡ 1)a+ (2³ ¡ 1)b]=2[³ + ° ¡ 1]

It follows that for any (a; t) 2 R; with corresponding interval (a; b); °
K
# 1=2 with K !1

(which is implied by ± ! 1): To conclude the step, take "! 0:

For any pair of sequences of decisions (DT ; D
0

T
); denote by

d(DT ; D
0

T
) = lim

±!1
(1¡ ±)E

"
1X
t=T

±t¡T jx(Dt)¡ x(D0

t
)j

¯̄̄
¯̄ZT

#

where x(Dt) is the test choice corresponding to DT (let x(Dt) = 0 if Dt = R): Note that

d is a metric up to equivalence classes. We have demonstrated that under the working

hypothesis DT we obtain a solution D0
T that for ± ! 1; converges to DT in the metric d:

As the stopping times t(a;DT ) construction is continuous in d; the approximation D0
T is

correct.
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B Proofs

Proof of Proposition 1. In the proposed equilibrium, the ¯rm sets w0 # µ; wt =

r(Y t
µ ); 8t > 0; and each worker µ plays Dt

µ = µ if ±µ > maxfwt; r(Y
t
µ )g; Dt

µ = A if wt ¸

maxfr(Y t
µ ); ±µg and Dt

µ = A; otherwise.

First we prove that the above is a Perfect Bayes Equilibrium for ± close to 1. As q = µ;

f(x; q) = 1 if x � µ and f(x; q) = 0 otherwise. Given the above ¯rm's strategy, sequential

rationality implies that when o®ered w; and holding reservation r; worker µ problem is

Uµ(w) = maxf
w

1¡ ±
; 0 + ±[Uµ(x)Â(µ¸x) + Uµ(r)Â(µ<x)]g:

She chooses Dµ = A whenever w ¸ maxfr; ±µg; and Dµ = µ if ±µ ¸ maxfr;wg; and Dµ = R

otherwise. Given those strategies by the workers, if Y t
µ 6= ;; the ¯rm is indi®erent between

setting wt < r(Y t
µ ); for any Y

t
µ or wt = r(Y t

µ ); 8Y
t
µ :

The former is a trivial strategy as it implies that the ¯rm will not hire the worker: if

wt < r(Y t
µ ); the worker holding Y

t
µ will choose Dµ = R: We rule out such an outcome as it

is meaningless.

At time 0, Y 0
µ = ;; given the continuation strategies, the ¯rm will o®er some wage w0

and get all workers to choose Dµ = µ; for any ±µ ¸ w0 and Dµ = A otherwise. Yet, for any

w0 > µ + "; there exists a ± large enough such that

Z
[µ;w0=±]

µd©(µ) < w0:

So that lim±!1w0 = µ:

To prove uniqueness, ¯rst we show that for any information set (ZT ; HT ) of the ¯rm,

its continuation payo® vanishes for ± ! 1:

By de¯nition of Y t
µ ; it follows that a

t � µ; 8t; thus the ¯rm continuation payo® follows:

UT
F � (1¡ ±)EF

"
1X
t=T

±t¡T [µ ¡ wt]Â(Dt

µ
=A)

¯̄̄
¯̄HT ; ZT

#

Now, take any continuation strategy wT = fwt(ZT ; HT )gt¸T : Any worker of type µ at time

T knows that if she takes test DT
µ = µ she will pass it and thus r(Y T

µ ) = µ; guaranteeing

herself a continuation utility of at least µ:
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Thus she will prefer DT
µ = A over DT

µ = µ only if Uµ(AjwT ); the continuation payo® for

DT
µ = A; satis¯es:

Uµ(AjwT ) = (1¡ ±)

0
@wTÂ(DT

µ
=A) + ±

2
4 1X
t=T+1

±t[wtÂ(Dt

µ
=A) + r(Y T

µ )Â(Dt

µ
=R)]

3
5
1
A ¸ ±µ:

Therefore:

UT

F
� (1¡ ±)EF

"
1X
t=T

±t¡T [µ ¡ wt]Â(Dt

µ
=A)

¯̄̄
¯̄ (HT ; ZT ); ±µ � Uµ(AjwT )

#
: (6)

Now consider all information sets (Ht; wt; Zt); reached with positive probability given ©;

and (HT ; ZT ), such that Dµ(Ht; wt; Zt) 6= A:

In case Dµ(Ht; wt; Zt) = x for some test x; the worker receives stage-payo®s utµ = 0; and

the ¯rm receives utF = 0: In case Dµ(Ht; wt; Zt) = R;utµ � µ; and utF = 0: It follows that

±µ � Uµ(AjwT ) implies ±µ � Uµ(fDt

µ
= Agt¸T jwT ) =

P1
t=T ±

t¡TwtÂ(Dt

µ
=A); the continuation

payo® given by the periods in which the worker is hired by the ¯rm.

Equation (6) implies that:

UT

F � (1¡ ±)EF

"
1X
t=T

±t¡T [µ ¡ wt]Â(Dt

µ
=A)

¯̄̄
¯̄ (HT ; ZT ); ±µ �

1X
t=T

±t¡TwtÂ(Dt

µ
=A)

#
:

Thus, for ± ! 1; UT

F
� 0:

At the same time, it must be that UT
F ¸ 0; as the ¯rm can always o®er wt = 0;8t;

guaranteeing herself UT

F
= 0: Therefore, UT

F
# 0:

Now we prove that wt = r(Y t

µ
); 8(HT ; ZT );8©:

First of all, by assumption, we rule out the case in which wt < r(Y t

µ
):

The ¯rm o®ers a continuation wage strategy (wT ; wT+1) such that, by construction,

(wt; wT+1) 2 argmax
w

EF [UF (wT )jHT ; ZT ]

=
Z ¹µ

µ

[µ ¡ w]Â(Dµ=A)
d©(µ) +EF [UF (wT+1)jHT+1; ZT+1]

We know that Dµ = A only if w + ±wT+1 ¸ maxf±µ; r(Y T
µ )g=(1 ¡ ±): Thus, if w > r(Y T

µ );

it follows that Dµ = A only if w + ±wT+1 > ±µ=(1¡ ±):

Say that ±wT+1 � ±2µ=(1¡ ±); then, if w > r(Y T

µ
) + "; for ± close enough to 1,

Z ¹µ

µ

µÂ(Dµ=A)
d©(µ) < µ;
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which contradicts Z ¹µ

µ

[µ ¡ w]Â(Dµ=A)
d©(µ) # 0;

which is required by

max
w

EF [UF (w)jHT ; ZT ] # 0; EF [UF (wT+1)jHT+1; ZT+1] # 0:

If, instead ±wT+1 > ±2µ=(1 ¡ ±); then, for ± ! 1; we contradict the requirement that the

expected value of UF (wT+1) vanishes on information sets following DT

µ
= A:

So, it must be that wT " r(Y T
µ ):

Proof of Proposition 2. First consider the PBE s.t. D0
µ = xµ 8µ s.t. U

0
µ (Âj;) ¸ w0;

w0 # µ and U0
µ
(Âj;) " µ; xµ # µ in ± ! 1; where xµ is the ¯rst optimal test in the policy Â

of Lemma 1.

As in the Proof of Proposition 1, since each worker µ plays D0
µ = xµ; the ¯rm, upon

observing D0
µ recovers the worker con¯dence µ: Given D0

µ = xµ; it thus believe q to be

distributed uniformly on [µ ¡ sµ; µ + sµ]: the worker has revealed her private information.

Both players observe the outcome f(xµ): By the Bayes rule, if f(xµ) = 0; they believe q to

be distributed uniformly on [µ ¡ sµ; xµ); and if f(xµ) = 1; they believe q to be distributed

uniformly on [xµ; µ+sµ): By Lemma 1, at time 1; the worker's value for entering a sequence

of testing and then settle for the reservation wage is

Uµ[Âjf(xµ) = 0] ¼
µ ¡ sµ + xµ

2
¼ µ ¡

sµ
2

Uµ[Âjf(xµ) = 1] ¼
µ + sµ + xµ

2
¼ µ +

sµ
2

for ± ¼ 1:

At any time T; given test history ZT ; the ¯rmmust o®er a continuation utility Uµ(AjwT ) ¸

Uµ(ÂjZT ) to have the worker accept the o®er.

Suppose the ¯rm wants to hire the worker: since it is not allowed to walk away from

a contract, its o®er wT must be equal to the constant wage Uµ(ÂjZT ); as can be shown

repeating part of the Proof of Proposition 1. Thus the ¯rm maximal pro¯t for hiring at

time T is

UT

F
[wT = Uµ(ÂjZT )] = (1¡ ±)E

"
1X
t=T

±t¡T [q ¡ Uµ(ÂjZT )]

¯̄̄
¯̄ZT

#
> 0:
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Whereas its pro¯t for waiting is

UT

F [wT < Uµ(ÂjZT )] = (1¡ ±)max
t>T

E

"
E

"
1X
¿=t

±¿¡T [q ¡ Uµ(ÂjZt)]

¯̄̄
¯̄Zt

#¯̄̄
¯̄ZT

#
:

For any t > T; by Lemma 1, since ± < 1;

E [Uµ(ÂjZt)jZT ] < Uµ(ÂjZT ); E[E[qjZt]jZT ] = E[qjZT ]:

that implies that

fE[qjZt]¡ Uµ(ÂjZt)gt¸T

is a strict supermartingale. Therefore,

UT

F [wT = Uµ(ÂjZT )] > UT

F [wT < Uµ(ÂjZT )];

the ¯rm prefers to hire the worker at time t = 1; instead of waiting and get her to test

more.

We then conclude that

for ± ! 1; w1 !

(
µ ¡ sµ=2 if f(xµ = 0)
µ + sµ=2 if f(xµ = 1)

U0

µ ! [µ ¡
sµ
2
]
[µ ¡ (µ ¡ sµ)]

2sµ
+ [µ +

sµ
2
]
[(µ + sµ)¡ µ]

2sµ
= µ

So that ex-ante fairness holds.

To show that any separating equilibrium must be such that D0

µ = xµ 8µ s.t. U0

µ (Âj;) ¸

w0; w0 # µ for ± ! 1; ¯rst note that separation requires di®erent testing choices by di®erent

workers.

Secondly, given that separation occurs, because of discounting, high-ability workers

prefer it to occur at time 0. Then as in the Proof Proposition 1, the choice to signal by

high-ability workers' forces all workers to reveal themselves at the same time.

Therefore at any separating PBE, 8µ;D0

µ = x and x is di®erent across µ:

Now contradict the thesis by assuming the existence of a separating PBE di®erent from

the one claimed above. Again, the ¯rm, upon observing D0

µ = x recovers worker's prior

con¯dence µ: Again, it will hire the worker at time 1 both after f(x) = 0 and f(x) = 1; by

o®ering the worker respectively Uµ[Âjf(x) = 0]; and Uµ[Âjf(x) = 1]: So that

w1 =

(
Uµ(Âjf(x) = 0) if f(x) = 0
Uµ(Âjf(x) = 1) if f(x) = 1
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For any x de¯ne

E0[U1

µ (Âjx)] := Uµ[Âjf(x) = 0] Pr[f(x) = 0jµ] + Uµ[Âjf(x) = 1] Pr[f(x) = 1jµ]

By Lemma 1,

E0[U1

µ (Âjx)] < U0

µ (Âj;) = E0[U1

µ (Âjxµ)]

with xµ # µ for ± ! 1:

Given the ¯rm's best reply, the worker prefers to pick D0

µ = x0; and then keeping on

testing for a long time to eventually accept the outside option, instead of picking D0

µ = x;

and being recognized and hired by the ¯rm. Therefore there cannot exist any PBE s.t

D0

µ = x and x 6= xµ for some µ:

Proof of Theorem 1. Consider any pair of types µ < µ0: Incentive Compatibility for

µ requires

Uµ(D
0

µ = xµ) ¸ Uµ(D
0

µ = xµ0);

and analogously for µ0: For ± ! 1; by Lemma 1

Uµ(D
0
µ
= xµ)! Pr[f(xµ) = 0jµ]

[µ + xµ ¡ sµ]

2
+ Pr[f(xµ) = 1jµ]

[µ + xµ + sµ]

2
! µ

whereas

Uµ

³
D0

µ
= xµ0

´
¼ Pr[f(xµ0) = 0jµ]

µ0 + xµ0 ¡ sµ0

2
+ Pr[f(xµ0) = 1jµ]

µ0 + xµ0 + sµ0

2

¼
[µ0 ¡ (µ ¡ sµ)]

2sµ
[µ0 ¡

sµ0

2
] +

[µ + sµ ¡ µ0]

2sµ
[µ0 +

sµ0

2
]

Thus Incentive Compatibility translates as:

µ ¸
[µ0 ¡ (µ ¡ sµ)]

2sµ
[µ0 ¡

sµ0

2
] +

[µ + sµ ¡ µ0]

2sµ
[µ0 +

sµ0

2
] (7)

µ0 ¸
[µ ¡ (µ0 ¡ sµ0)]

2sµ0

[µ ¡
sµ
2
] +

[µ0 + sµ0 ¡ µ]

2sµ0

[µ +
sµ
2
]:

Solving out both conditions, one obtains two subcases: for µ0 ¡ µ � sµ it must sµ � sµ0=2;

and for µ0 ¡ µ ¸ sµ it must µ ¸ µ0 ¡ sµ0=2: The conditions of the two subcases are satis¯ed

if and only if

sµ �
sµ0

2
; µ ¸ µ0 ¡

sµ0

2
:

The ¯rst requirement directly implies that £ must be at most discrete and ordered.
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Since we are dealing with limit argument, the if part of the Proof requires strict in-

equalities in Equations (7).

To show uniqueness, by Proposition 2 we only need to rule out semi-separating equilib-

ria. By contradiction, assume that 9µ < µ0 s.t. D0
µ
= D0

µ
0 = x (if D0

µ
= D0

µ
0 = A or R the

Proof is analogous as the case in which D0
µ
= D0

µ
0 = µ ¡ sµ): Then

Eµ[qjZ
1] � EF [qjZ

1] � Eµ
0[qjZ1]

w1 � EF [qjZ
1];

or else the ¯rm would make negative pro¯ts. But, by Lemma 1,

Uµ
0(ÂjZ1) " Eµ

0 [qjZ1]; for ± ! 1:

So D1
µ
0(w1) 6= A: Proceeding as in the Proof of Proposition 1, it is concluded that the

optimal choice by the ¯rm is to set w1 = Uµ(ÂjZ1): Then by choosing D0 = x (for any x)

worker µ obtains

Uµ(D
0 = x) = Uµ[Âjf(x) = 0] Pr[f(x) = 0jµ] + Uµ[Âjf(x) = 1] Pr[f(x) = 1jµ]

and type µ0 obtains

Uµ
0(D0 = x) = Uµ

0[Âjf(x) = 0] Pr[f(x) = 0jµ0] + Uµ
0[Âjf(x) = 1] Pr[f(x) = 1jµ0]:

Therefore, by Lemma 1 their optimal choice is really D0
µ
= xµ and D0

µ
= xµ0 : So the

considered non-separating strategy pro¯le cannot be a PBE.

Proof of Theorem 3. As in the proof of Propositions 1, and 2, the event that the ¯rm

hires the worker before she reveals her private information with the ¯rst test is of negligible

probability. Also, the ¯rm will hire a worker who has revealed private information by

o®ering her a constant wage wT = Uµ(ÂjZT ); whenever it maintains it pro¯table. Because

of that, and since each (®; µ) worker believes her ability to be distributed according to the

parameter µ; the same argument presented in the proof of Proposition 2 implies that there

is a unique separating PBE, and that at such a PBE, each type (®; µ) s.t. Uµ(Âj;) ¸ w0;

chooses D®µ = xµ where w0 # µ and Uµ(Âj;) ¼ µ; for ± ¼ 1:

Unlike Proposition 2, however the worker may be incorrect in her beliefs, we shall

condition probability assessment on ®; or µ; to identify the parameter according to which

the beliefs are formed.
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When worker (®; µ) takes test xµ; the outcomes are as follows:

Pr[f(xµ) = 0j®] =
xµ ¡ ®+ s®

2s®

Pr[f(xµ) = 1j®] =
®+ s® ¡ xµ

2s®
:

Consider ¯rst the continuation of f(xµ) = 0: For notational ease, we drop the reference

to the worker type in the variables aT
®µ
; bT

®µ
; and xT

®µ
:

The worker (®; µ) believes q to be uniformly distributed on [µ ¡ sµ; µ); whereas it is in

fact distributed uniformly on [®¡ s®; µ):

Consider any T;and ZT following f(xµ) = 0. If aT ¸ ® ¡ s® then the distribution of q

conditional on ZT is independent of the parameters ® and µ: the worker correctly believes

q to be distributed uniformly on [aT ; bT ); where bT � xµ. If the ¯rm knew the value of ®;

as in the proof of Proposition 2, it would stop the worker from further testing by o®ering

her the constant wage

wT=Uµ(ÂjZT ) ¼
aT + bT

2
; for ± ¼ 1:

In case that aT < ®¡ s®; all players with µ > ® are undercon¯dent. If they test more,

they most likely become less undercon¯dent, and increase their reservation value from the

outside option. In fact, µ > ®; together with the conditions of Theorem 1 imply:

E[Uµ(ÂjZT+1)jZT ; ®] (8)

= Pr [f(xT ) = 0jZT ; ®]Uµ[ÂjZT ; f(xT ) = 0] + Pr [f(xT ) = 1jZT ; ®]Uµ[ÂjZT ; f(xT ) = 1]

=
xT ¡ aT
bT ¡ aT

Uµ[ÂjZT ; f(xT ) = 0] +
bT ¡ xT
bT ¡ aT

Uµ(ÂjZT ; f(xT ) = 1)

>
xT ¡ µ + sµ
bT ¡ µ + sµ

Uµ[ÂjZT ; f(xT ) = 0] +
bT ¡ xT

bT ¡ µ + sµ
Uµ[ÂjZT ; f(xT ) = 1]

= Pr [f(xT ) = 0jZT ; µ]Uµ[ÂjZT ; f(xT ) = 0] + Pr[f(xT ) = 1jZT ; µ]Uµ[ÂjZT ; f(xT ) = 1]

= E[Uµ(ÂjZT+1)jZT ; µ] > Uµ(ÂjZT );

where the latter inequality is valid because the process fUµ(ÂjZt)gt¸T is a strict submartin-

gale, by Lemma 1. Proceeding as in Equation (8), moreover, one shows that

E[qjZT ; ®] > E[qjZT ; µ] (9)

> Uµ(ÂjZT );
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where the latter inequality follows by Lemma 1.

Putting together Equations (8) and (9) with Lemma 1, we obtain that for any µ ¸ ®;

Uµ(ÂjZT ) < E[qjZT ; ®] = E[E[qjZT+1; ®]jZT ; ®]

Uµ(ÂjZT ) < E[Uµ(ÂjZT+1)jZT ; ®]

where the last equality in the ¯rst line is because fE[qjZt; ®]gt¸T is a martingale, for any

®:

The ¯rm does not know ®; it assesses its evaluation using °jµ; whose support is f® � µg:

Putting together the case in which aT < ® ¡ s®; and the case in which aT ¸ ® ¡ s® thus

we obtain:

Uµ(ÂjZT ) < E[E[qjZT ; ®]jµ] = EF [qjZT ] = EF [EF [qjZT+1]jZT ]

Uµ(ÂjZT ) < E[E[Uµ(ÂjZT+1)jZT ; ®]jµ] = EF [Uµ(ÂjZT+1)jZT ]:

We conclude that for any T;and ZT following f(xµ) = 0, the ¯rm will stop the worker from

further testing by o®ering her the constant wage wT=Uµ(ÂjZT ):

The above result allows us to ¯nd the equilibrium path after f(xµ) = 0. At time 1;

a1 = µ ¡ sµ < ® ¡ s®; under the conditions of Theorem 1, therefore the ¯rm stops the

worker by o®ering her w1=Uµ(ÂjZ1) ¼ µ ¡ sµ=2:

Now consider the continuation of f(xµ) = 1; again pick any time T; and test history

ZT :

If bT � ® + s®, the worker correctly believes q to be distributed uniformly on (aT ; bT )

where aT > xµ: If it knew ®; as in the proof of Proposition 2, the ¯rm would stop the

worker from testing by o®ering her the constant wage wT = Uµ(ÂjZT ) ¼ [aT + bT ]=2 for

± ¼ 1:

In case bT > ®+s®; the worker believes q to be uniformly distributed on [aT ; bT );whereas

it is in fact uniformly distributed on [aT ; ®+ s®): So, for ± ¼ 1; by Lemma 1,

Uµ(ÂjZT ) ¼
aT + bT

2
>
aT + ®+ s®

2
= E[qjZt; ®]:

A worker with µ > ® will accept to work only for a wage above her interim expected ability.

In order to show that the ¯rm will eventually hire the worker, we need to show inspect

the realized optimal testing path in absence of the ¯rm.
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We want to show that for any ®; there exist almost surely a T (®) such that bT (®) � ®+s®;

and bt > ® + s®; for any t < T (®): At time t = 1; b1 = µ + sµ: For ® = µ; we are done, so

consider the case in which ® < µ: Under the condition of Theorem 1, µ + sµ > ®+ s®:

By Lemma 1, for any t; (at; bt) the optimal test is xt ¼ (at; bt)=2: By construction

x1 ¼ µ + sµ=2 > ®+ s® so f(x1) = 0; and b2 = µ + sµ=2 > ®+ s®:

Consider any T > 2: If for any 0 < t < T; f(xT ) = 0; then, for ± ¼ 1;

xT ¼ µ +
sµ

2T¡1
! µ for T !1:

Moreover µ < ®+ s®;or else, since xµ > µ; f(xµ) = 0: Therefore, there exist a T1 such that

xT1 < ®+s®: By construction, for any 0 < t < T1; xt > ®+s®; so that 8t � T1; bt > ®+s®:

If f(xT1) = 0; then bT1+1 � ® + s®; and we are done. If f(xT1) = 1, then 8t � T1 + 1;

bt > ®+ s®: Such event occurs with probability

Pr[f(xT1) = 1] =
®+ s® ¡ xT1
®+ s® ¡ µ

In such a case, repeating the argument used for T1; there exist a T2 s.t. xT2 � ® + s®;

and 8t < T2; xt > ®+ s®; so that 8t � T2; bt > ®+ s®:

If f(xT2) = 0; then bT2+1 � ®+ s®: The complementary event occurs with probability

Pr[f(xT2) = 1] =
®+ s® ¡ xT2
®+ s® ¡ xT1

Iterating the argument we construct a sequence fTkgk¸1 where for each k;

xTk¡1 ¡ xTk ¼
1

2Tk
sµ; and xTk < ®+ s® < xTk¡1

so that : Pr[f(xTk) = 1; 8k < K] =
®+ s® ¡ xTK
®+ s® ¡ µ

! 0; for K !1:

Thus we proved that a.s. there exist a T (®) s.t. bt > ® ¡ s®; for any t < T (®); and

bT (®) < ®¡ s®:

Now we consider the ¯rm's decision. For any µ the set f® � µg is ¯nite. Thus there

exists a ¯nite time

¿ := sup
f®�µg

T (®)
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after which all workers (®; µ); with f® � µg would achieve correct judgement. As in the

proof of Proposition 2, and in the ¯rst part of the current proof, in such case the ¯rm

would stop from testing and hire them with a constant wage. The value ¿ is an upper

bound for the values T; such that there exist a ZT after which the ¯rm hires the worker

with wT = Uµ(ÂjZT ):

The actual expression for such critical (T; ZT );is

EF [qjZT ]¡ Uµ(ÂjZT ) ¸ 0; and

EF [qjZT ]¡ Uµ(ÂjZT ) ¸ EF [EF [qjZt]¡ Uµ(ÂjZt)jZT ]; 8t > T :

it is function of °jµ; and of the discount factor ±:

While ¿ escapes to in¯nity for ± ! 1; it is ¯nite for any ± < 1; regardless of how close

it is to 1:

Proof of Corollary 2. Since the worker (µ; ®) receives continuation payo® equal to

Uµ(ÂjZT ) for any test history, ZT ; the proof of Theorem 1 extends without any change.

Proof of Theorem 3. The proof of the Theorem consists in the calculation of

expected utility at the moment in which workers are hired, and in the composition across

di®erent test paths.

In case f(xµ) = 0; Proposition 3, shows that all workers (®; µ) will be immediately hired

with constant wage w1 = Uµ[Âjf(xµ) = 0] " µ ¡ sµ=2; for ± ! 1: Thus whenever µ > ®;

under the conditions of Theorem 1, they are interim underpaid:

Uµ(Âjf(xµ) = 0) " µ ¡
sµ
2
<
®¡ s® + µ

2
= E[qjf(xµ) = 0; ®];

Under the conditions of Theorem 1, µ ¡ sµ
2
is decreasing in ®: The interim bound is:

M1 =
(®¡ s®)¡ (µ ¡ sµ)

2
> 0

Clearly when µ = ®; Uµ(Âjf(xµ) = 0) " E[qjf(xµ) = 0; ®]; for ± ! 1:

The probability to fail the ¯rst test is

Pr[f(xµ) = 0j®] =
xµ ¡ ®+ s®

2s®
>

1

2
;

when µ > ®:

In case f(xµ) = 1; the ¯rm will hire the worker (®; µ); after (T; ZT ) de¯ned in equation

(??), and receive a permanent wage wT ! Uµ(ÂjZT ). By Lemma ??, for ± ! 1; Uµ(ÂjZT )¡
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E[qjZT ; µ] ! 0: Since supp(°jµ) = f® � µg; EF [qjZT ] < E[qjZT ; µ]; unless E[qjZT ; µ] =

E[qjZT ; ®] = EF [qjZT ]: Thus the ¯rm will wait to hire the worker until it is approximately

sure about her ®; so that wT ! E(qjZT ; ®); for ± ! 1: The worker will almost surely be

hired with an approximately interim-fair wage. Also, clearly E[E(qjZT ; ®)jf(xµ = 1; ®)] =

E[qjf(xµ = 1; ®)]; so that the worker approximately obtains the interim fair wage after

f(xµ) = 1:

Now we can ¯nd the ex-ante utility of worker (®; µ):

U0

®µ = Pr[f(xµ) = 0j®]U®µ[f(xµ) = 0] + Pr[f(xµ) = 1j®]U®µ[f(xµ) = 1]

!
[µ + ®+ s®][®+ s® ¡ µ]

4s®
+
[µ ¡ sµ=2][µ ¡ ®+ s®]

2s®
:

Finally, we need to ¯nd the bound for the ex-ante utility, set

M2 =
[(®¡ s®)¡ (µ ¡ sµ)][xµ ¡ ®+ s®]

4s®
:

Proof of Theorem 4. We have previously shown that ¯rst-best e±ciency requires

each worker with ability q to take the test q at time 0, and then accept to work in the ¯rm.

That is impossible when s > 0: In fact, each type µ may hold any ability q 2 [µ¡sµ; µ+sµ]:

Since the strategy D is a function of the type µ and not of the ability q; all the workers

with ability in [µ¡sµ; µ+sµ]; will take the same strategy at equilibrium, violating ¯rst-best

e±ciency.

In particular, if players with ability q > x take test x; they yield a loss of at least

±(1¡±)(1¡¼)q; because, if in that ¯rst period they worked, their continuation productivity

would be the same as after taking the test x: If they take test x : x < q; they incur a loss

of at least ±(1¡ ±)¼(q¡ x); because if they took test q; at next period they would produce

(1¡ ¼)q + ¼q; by taking test x; at next period they will produce less than (1¡ ¼)q + ¼x:

To show that W ° < W s we need to compare the equilibrium strategies (Ds;ws) in the

game ¡s; with uncertain non-overcon¯dent workers , and those (D;w°) in the game ¡° that

includes also overcon¯dent workers, on the same £ space.

If µ = ®, it can be shown in much the same way as in Theorem 2, that for any test

history (X;Y ); with X 6= ;; the ¯rm and the worker always share the same belief with

respect to q. When µ 6= ®; as in the proof of Proposition 3, if Yt 6= ; and Xt n Yt 6= ;; then

the ¯rm and the worker share the same belief with respect to q:
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Therefore, in order to compare W ° and W s; we can restrict attention to histories Zt

where either Yt = ; or Xt n Yt = ;: In the latter case, the worker has never failed any test,

and she will be overcon¯dent. In the former one, she has never passed any test, and if

µ > ®; she will be undercon¯dent.

In the game ¡s; the ¯rm will not hire the worker if and only if b¡a is too large, and such

uncertainty about the worker ability makes it optimal, given ¼ and ±; to try and increase

the worker productivity.

In the game ¡°; on the other hand, the ¯rm will never hire overcon¯dent workers, as

they require too high a wage, and yield negative pro¯ts, as in the proof of Proposition 3.

At equilibrium those workers will take di±cult tests, and will never be hired until they fail

one of them.

If the ¯rm hires a worker with test history (X;Y ) s.t. Y = ; in game ¡s; it will also

hire a worker with the same history in game ¡°: As in the Proof of Proposition 3, it will be

able to hire her with a lower wage. If not hired, that undercon¯dent worker immediately

takes an easy test and pass it with very high probability, increasing her productivity.

In sum, for any history (a; b) the probability that the worker will fail a test, or will not

pass a test, in the continuation game is strictly larger in game ¡°:

At time 0; the private information µ is not revealed to the ¯rm yet, and so the above

argument does not hold. Nevertheless, the choice of worker (®; µ) is D0
®µ = xµ increasing

in µ: So that the amount of workers who fail a test at time 0 in game ¡° is larger than in

¡s, as in the Proof of Theorem 3. The workers who pass the test do not matter, as they

will not be hired by the ¯rm anyway.

In conclusion, for any type µ; and any history, the probability to get an optimal quali¯-

cation in the continuation is strictly smaller in game ¡° than in game ¡s. That translates

in a strictly positive welfare loss W s ¡W g:
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