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In repeated games, simple strategies such as Grim Trigger, while strict equi-
libria when monitoring is perfect, can fail to be even approximate Nash equilibria
when monitoring is private, yet arbitrarily close to perfect. That is, they fail to
be robust to private monitoring. In this paper, it is shown that for a class of re-
peated Prisoners’ Dilemma games these strategies, when viewed as (degenerate)
correlated equilibria are robust. In particular, even when monitoring is private
and conditionally independent, as the signaling noise goes to zero, there is a se-
quence of correlated equilibria converging to the Grim Trigger strategies. The
correlation device uses an information structure akin to that of the e-mail game
of Rubinstein (1989).

Key Words: correlated equilibrium, repeated games, private monitor-
ing, email game.

1. INTRODUCTION

In repeated games with perfect monitoring, the history of play is as-
sumed to always be common knowledge among the players. This structure
allows a wide range of payoff vectors to be supported as equilibria using
strategies of a simple form: “cooperative behavior” enforced by the threat
of mutual punishment. A simple example of such a strategy is the “grim
trigger” strategy in the repeated prisoners’ dilemma. The threat of per-
petual defection gives players a strict incentive to cooperate.

When players monitor one another by imperfect and privately observed
signals, these simple strategies often fail to be equilibria. In fact, I show
below (Theorem 1) that the only strict equilibria that remain approximate
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referees provided numerous suggestions which greatly improved both the content and
exposition. Financial support from NSF grant #9985462 is gratefully acknowledged.



Nash equilibria under any small perturbation of the monitoring structure
are history-independent alternations among stage game Nash profiles.

Mixed strategies can be used to support efficient cooperation for near-
perfect monitoring structures. This has been shown in a number of papers,
including Sekiguchi (1997), Bhaskar and Obara (2002), Piccione (2002),
and Ely and Valimaki (2002). These equilibria, like all equilibria in mixed
strategies, can be criticized as each player is expected to condition his
play on information which is irrelevant for determining continuation pay-
offs. Bhaskar (1998) and Matsushima (1991) show that all strategies which
ignore such payoff irrelevant details must yield static Nash play in every
period.

These two sets of results leave a narrow space for equilibria that are
robust to small monitoring imperfections. We must either be willing to
accept mixed strategies, or accept strategies that are not even approximate
equilibria for arbitrarily small perturbations of the model. In this paper
I suggest an alternative justification for strict repeated game equilibria
such as the grim trigger strategies. As (degenerate) correlated equilibria,
they can be robust. That is, for small perturbations to the monitoring
structure there may be correlated equilibria that yield approximately the
same distribution over histories and hence the same payoffs.

In the next section I illustrate the idea in a simple 2-stage example.
This is a version of the example first presented by Bhaskar and van Damme
(2002) to shed light on the difficulties arising from private monitoring. The
best subgame perfect equilibrium, which has a trigger-strategy structure,
cannot be approximated by any Nash equilibrium that is robust to private
monitoring. By contrast, I show that for any small monitoring perturbation
there is a strict correlated equilibrium of the resulting game in which the
original trigger strategy profile is played with probability close to 1. Thus,
the trigger strategy equilibrium is a robust correlated equilibrium. In sec-
tion 3, I provide a general negative result for strict equilibria of repeated
games: they are never robust as Nash equilibria.

These results raise the following natural question: is every strict equi-
librium robust as a correlated equilibrium? In section 4.1 I provide an
example demonstrating that the answer is negative. A natural-looking
trigger-strategy equilibrium of a two-stage game cannot be approximated
by any equilibrium, correlated or not, when the monitoring technology is
slightly perturbed. I point out at the end of this section the reason for the
failure. The equilibrium in question implicitly requires one player to believe
after seeing a deviation that his opponent is using a strategy that is not
rationalizable. No such beliefs are possible when monitoring is imperfect.

Section 5, the heart of the paper, investigates the possibility that sim-
ple trigger strategies are robust correlated equilibria of repeated games.
Specifically, I study a class of repeated prisoners’ dilemma games and the
standard grim-trigger equilibrium. Section 5.1 presents a family of strict
correlated equilibria in which unilateral deviation occurs with positive prob-



ability in every period, but which nevertheless approximate arbitrarily well
the path of play of the grim trigger profile. In Section 5.2 I show that these
equilibria are robust to private monitoring. Finally, in section 5.3 I show
how to embed these into a larger correlated equilibrium in which the actual
grim-trigger profile is played with probability arbitrarily close to 1.

The prisoners’ dilemma games studied in section 5 satisfy a certain
restriction on the payoffs. This restriction is necessary for the type of
correlated equilibria I employ. In section 6 I discuss the role that the re-
striction plays. While it appears that without this restriction, there are no
correlated equilibria with a similar structure, it remains an open question
whether grim trigger is robust in these games.

2. TWO-STAGE EXAMPLE

Versions of the following two-stage example where M —1 > g have been
useful in illustrating the strategic features of repeated games with private
monitoring, see especially Bhaskar and van Damme (2002).

C D C D

c 1,1 =l,1+4g9g| C | M,M | 0,0

D | 1+g,-1 0,0 D 0,0 1,1
stage 1 stage 2

FIG. 1 Stage 1 is a prisoners’ dilemma: g,l > 0. Stage 2 is a coordination
game.

In the first stage, the players’ play a prisoners’ dilemma game. The
coordination game played in the second stage is intended to capture the
possibility of using multiple continuation equilibria in a repeated game to
enforce cooperation in the first stage.

In each stage, each player chooses an action from the set {C, D}. Payoffs
are the sum of the utilities in the two stages. After the first stage, each
player observes a noisy signal of the action chosen by the other. The chosen
action and the realized signal comprise the player’s private history at the
second stage. The set of signals is the same as the set of actions and
each player is assumed to observe a correct signal with probability (1 — )
and an incorrect signal with small probability € > 0. To avoid confusion,
signals will be denoted by lower-case letters, i.e. ¢ or d. To keep the
example simple, we will assume independent monitoring: the probability
of an incorrect signal is independent across players.

A pure strategy s; for player i is a choice of action in the first stage and
a choice of action in the second stage for each possible private history. For
any strategy profile s, let V;(s) be player i’s expected payoff. A correlated
strategy profile T = (Q1,Qa, 1) consists of a set of types ; for each player,



a joint probability distribution p over type profiles 2 and a pure strategy
s;(w;) for each type w; of each player i. A correlated profile is a correlated
equilibrium if for each player ¢ and each type w; such that u(w;) > 0,

Z plw;lwi) Vi(si(wi), s (w;)) > Z p(w;lwi)Vi(8i, s5(w;))

w; €Q; wj EQ

for each alternative pure strategy §; for player i. If the measure u assigns
probability one to some type profile, then the equilibrium is a pure-strategy
equilibrium. If p is a non-degenerate distribution, but the two players’
types are independent under p, then the equilibrium is a mized-strategy
Nash equilibrium.?

There is no pure strategy equilibrium in which (C, C) is the outcome in
the first stage. A player has an incentive to play C in stage one only if he
expects that a choice of D will be punished by a lower payoff in the second
stage. Such a punishment can be implemented only by a strategy that plays
C in the second stage if and only if the signal c¢ is observed. Therefore,
if (C,C) is to be part of a pure-strategy equilibrium, each player must
expect his opponent to be playing such a strategy. But with independent
monitoring, this cannot be an equilibrium: after playing C, player 1 knows
that player 2 has almost certainly seen a signal of ¢ and will therefore
almost certainly play C in the second stage. Against such beliefs, 1’s best
reply is to play C in the second stage. (It is optimal to play C in the
second stage against any beliefs assigning probability at least 1/M + 1 to
the opponent playing C.) And player 1 has these beliefs regardless of the
signal he observes: since monitoring is independent, 1’s signal gives no
further information about the signal observed by 2.

Let g be the strategy that plays C in stage one and in the second
stage plays C in response to the signal ¢ and D in response to the signal
d. The above argument implies that the strategy profile (g,g), which is
a strict subgame-perfect equilibrium when monitoring is perfect, fails to
be an equilibrium when monitoring is imperfect, private and independent.
In fact, there is no Nash equilibrium close to (g,g) and the set of Nash
equilibrium (pure or mixed) payoffs is bounded away from efficiency, even as
€, the probability of an incorrect signal, goes to zero. This has been proven
by Bhaskar and van Damme (2002). In this sense, the strict equilibrium
(g, 9) is not robust to private monitoring.

Consider the strategy b which plays D in each stage regardless of history.
I will describe a correlated strategy profile in which each player plays g with
high probability, but believes that the other is playing the strategy b with
positive probability. With these prior beliefs, a signal of d after stage one,

21 have not imposed any sequential rationality conditions. It is well known that in
games with full-support monitoring, Nash equilibrium is equivalent in all relevant re-
spects to sequential equilibrium, see Sekiguchi (1997) for example. A similar equivalence
applies to correlated equilibrium.



while uninformative about the signal observed by the other, nevertheless
conveys some relevant information: that the opponent most likely played
D in the first stage and therefore will continue with his strategy b and play
D in the second stage. In response to such beliefs, it will be optimal to
play D in the second stage. Thus, each player will condition his play on his
private signal in a way that provides the appropriate first-period incentives.

To make this an equilibrium, the players must be willing to play b when
called upon to do so. Correlation makes this possible without creating the
inefficiencies inherent in mixed-strategy Nash equilibrium. In fact, in the
correlated equilibrium I present below, it is strictly optimal to play C when
called upon to do so, and D is played with vanishing probability in the limit
as € goes to zero. This implies that the strategy profile converges to the
pure Nash profile (g,9) and that the equilibrium payoffs converge to the
efficient point. In this sense, the strict equilibrium (g, g) which fails to be
robust to private monitoring within the class of Nash equilibria, is robust
as a (degenerate) correlated equilibrium.

The information structure used in the correlated equilibrium is as fol-
lows. Each player has two types, g and b. The probability distribution over

type profiles is illustrated in the following matrix where z = (11‘{55 )

g b
g 1 z
b z | z'/2

FIG. 2 The correlation structure

The entries are relative probabilities. The probabilities are obtained by
dividing each value by the sum of all values. We will analyze the correlated
strategy profile in which each player plays the pure strategy corresponding
to his realized type. As mentioned above, as € approaches zero, the prob-
ability assigned to the profile (g, g) by this correlated profile approaches
1.

The crucial feature is that each player, regardless of his type, will re-
spond to a d signal by playing D in the second stage. For a player of type
b this is immediate: such a type plays D in stage 1 and therefore knows
that with high probability his opponent will observe a d signal. Since
both strategies respond to d with D, type b will be nearly certain that the
opponent will be playing D in the second stage. In fact, because of the
assumption of independent monitoring, this argument shows that a player
of type b will play D in the second stage independent of his first stage
signal.

For a player of type g, a d signal will be strong evidence that his op-
ponent was of type b and will therefore play D in the second stage. To
verify this, recall that D is a second stage best-reply to any belief that the

opponent will play D with probability at least HLM The probability that



the opponent will play D in stage 2 is at least the probability that the

opponent is of type b. By Bayes’ rule, after observing the signal d in the

first stage, the conditional probability that the opponent is of type b is
z(1—c¢) Me M

e+az(l—e) e(l+M) 1+ M

Thus a type g player will also respond to signal d by playing D in the
second stage.

Next, a player of type g who plays C in stage one and observes the
signal ¢, should play C in the second stage. For this to be optimal, the
conditional beliefs about the opponent’s second stage action must assign
at least probability ﬁ to C. In equilibrium the opponent plays C' when
the opponent is of type g and saw a signal ¢. The conditional probability
of this event for a type g who also sees c is

(1—e)?
(1—¢)+ae
which is arbitrarily close to 1 and hence greater than ﬁ for ¢ sufficiently
small.

We have shown that second stage behavior prescribed by the strategy is
optimal. Thus, each player can expect his opponent to play D in response to
a d signal, and C' in response to a g signal whenever his opponent is of type
g- To complete the argument that the profile is a correlated equilibrium,
we must show that first stage behavior is optimal. The straightforward
calculations are omitted, the intuition is simple: when ¢ is sufficiently small,
each player is nearly certain that his opponent is of the same type as he (the
ratio of the diagonal to the off-diagonal elements of figure 2 approaches 1
as ¢ approaches zero.) Also each player is nearly certain that his opponent
will observe a correct signal. Thus, for example, a player of type g believes
his opponent is also g and will play C in stage 1 and with high probability
punish a choice of D in stage 1. He is therefore also willing to play C.

To summarize the analysis in this section, punishments can be enforced
only if players interpret the signal d as evidence that their opponent will
play D in the second stage. This is impossible in a pure-strategy equilib-
rium. On the other hand, randomization allows players to believe that b
is actually played with positive probability and therefore respond to d by
punishing.

Inducing randomization in Nash equilibrium imposes incentive con-
straints that prevent even approximate efficiency: each player must be
indifferent between b and g. Suppose payoffs are close to the efficient level
M + 1. Then it must be that the strategy g is played with probability close
to one. But this means that b will almost surely be punished and will earn
at most g +2 < M + 1. Thus b does worse than g contradicting the re-
quirement of mixed-strategy Nash equilibrium. By contrast, for small error



probabilities there are correlated equilibria arbitrarily close to the efficient
pure-strategy equilibrium. This is because correlation obviates these indif-
ference constraints. Indeed, in the correlated equilibrium presented above,
each type’s strategy is strictly optimal.

Correlation in the strategy profile plays a different role than other forms
of correlation used to obtain efficiency in games of this sort. Both Bhaskar
and van Damme (2002) and Mailath and Morris (2002) consider correla-
tion in the monitoring technology. This allows players to coordinate their
second-stage play using their correlated histories. With sufficient corre-
lation, there is a nearly efficient pure-strategy equilibrium. By contrast,
correlation in the strategies can generate the necessary belief revision to
enforce punishments even when monitoring is independent.

Correlation in the form of sunspots was also considered by Bhaskar and
van Damme (2002). Sunspots allow players to agree to “forgive” any first-
stage deviation with an appropriately chosen probability. This lowers the
punishment to playing b, relaxing the incentive constraints which caused
mixed-strategy Nash equilibria to be inefficient. As evidence of the distinct
roles played by sunspots and the correlation device used above, note that
it is crucial for the Bhaskar and van Damme (2002) equilibrium that the
sunspots not be observed until stage 2 actually arrives. On the other hand,
for the correlated equilibrium constructed above, it is necessary that the
outcome of the correlation device be observed before play begins.

3. REPEATED GAMES AND STRICT EQUILIBRIA

The stage game is a finite strategic form game with action set A;, and
mixed actions AA; for each player i. After each period of play, each player
i observes a private signal from the set ;. Assume that the set of signals
for i coincides with the set of action profiles A_; among the players other
than 4. Conditional on each action profile a € []; A;, a signal profile o
is drawn from the set [], ¥; according to the distribution m(-|a). Perfect
monitoring can be represented by the family of signal distributions m(-|a),
such that for each a, m(c®|a) = 1, where o¢ = a_;.

A history for player i of length ¢ is an element of A! x X!. Let H!
denote the set of all ¢-length histories with HY = {@}. Finally H; is the set
of all histories for i. Strategies, denoted s; = {s!};>1 are sequences of maps
st H'™' — AA;. A history h; is on the (equilibrium) path under profile
s if h; arises with positive probability under s. A history h; is consistent
with strategy s; if there is some profile s_; such that h; is on the path for
(si7 S*i) .

Continuation strategies after histories h¢ are denoted s;(ht). For any
monitoring distribution, a strategy profile induces a well-defined discounted
payoff vector. Denote by V;(s) the discounted payoff to player i when
the strategy profile is s. If (h%,...,h%) is the profile of histories observed
through period t, then V;(s1(hY), ..., s,(h%)) is player i’s continuation pay-



off. Conditional on having observed history h¢ under profile s, player i may
not be able to infer the histories observed by the other players, and hence
their continuation strategies. However, when h¢ is on the path, ¢ has a
well-defined belief over these histories. For such a history hf, denote by
Vi(3ils, ht) the expectation of Vi(s1(hY),...,5,...,s,(ht)) with respect to
the belief over opponents’ histories derived from the profile s, conditional
on i’s observed history hf.

For the case of perfect monitoring, we will consider strict (Nash) equi-
libria.

DEFINITION 1. A strategy profile s is a strict equilibrium of the game
with perfect monitoring if for each 4 and each history h; € H; on the path,
Vi(si|s,hi) > Vi(3i|s, h;), for any continuation strategy §; whose initial
action differs from s;(h;).

A strict equilibrium is one in which each player has a strictly optimal
action after every history on the path of play. Note that the strategies
used by Fudenberg and Maskin (1986) to prove the folk theorem are strict
equilibria. Let us now consider perturbations of the perfect monitoring
structure. Say that a monitoring structure m is e-perfect if it has full
support, (if V 0,V a, m(c|a) > 0) and if for each a € A, m(c%|a) > 1 —e¢.
I will show that apart from repetitions of static Nash profiles, any strict
equilibrium under perfect monitoring fails to be an equilibrium even for
monitoring structures arbitrarily close in this sense to perfect monitoring.
In fact, they will fail to be even approximate equilibria in the following
sense.

DEFINITION 2. Strategy s; is a 0-best-reply to s_; at history h; € H;
if either h; is off the path of play under s = (si,s_;) or Vi(si|s,h}) >
Vi(3i|s, ht) — & for any continuation strategy §; whose initial action differs
from s;(ht).

The above is a notion of approximate best-response defined at a par-
ticular history. I will say that an equilibrium under perfect monitoring
is weakly robust to private monitoring perturbations if for every consis-
tent history, there is a small enough perturbation such that each player’s
original strategy remains an approximate best-response at that history.

DEFINITION 3. An equilibrium s of a repeated game with perfect mon-
itoring is weakly robust if for each i, 6 > 0 and h; consistent with s;,
there is € > 0 such that under any e-perfect monitoring technology, s; is a
d-best-reply to s_; at h;.

This is a weak form of robustness because, first, the strategies are re-
quired only to be approximate best-responses after the perturbation, and
second, the size of the perturbation can depend on the history in question.
In particular, weak robustness does not require the existence of a uniform



bound on the perturbation size which guarantees that the strategies remain
approximate best-responses at all histories simultaneously. Yet, strict equi-
libria fail even this weak form of robustness. The argument is related to
the one made by Matsushima (1991).

THEOREM 1. If s is a strict equilibrium under perfect monitoring and s
is weakly robust, then s consists of history-independent plays of static Nash
profiles.

Proof. We will show that the hypotheses of the theorem imply that for
each t, each strategy in the profile s plays the same action after every ¢
length history consistent with the strategy. Note that this implies s consists
of history-independent plays of stage-game Nash profiles.

Suppose, on the contrary that there is some player ¢ and some stage ¢
such that there are two consistent ¢ length histories for which s; prescribes
different actions. Assume wlog that ¢ is the first stage in which this is true
for any player i.

Since s is a strict equilibrium, each player has a unique optimal action
after every history on the path of play. This implies in particular that when
monitoring is perfect, there is a deterministic path of play. Let a; be the
sequence of actions taken by player j in the first ¢ periods in this determin-
istic path, and a_; the sequence of action profiles among the players other
than j.

When monitoring is e-perfect, the probability is at least (1 — ¢)? after
any given stage that the realized signal profile matches the chosen action
profile. Therefore, the unconditional probability is at least (1 — g)! that
the profile of histories observed by i’s opponents is ht ; = ((a;,a_;)) -
Since ¢ plays a; in the first ¢ periods with probability 1, this probability
is unchanged when 4 conditions on his own history of actions. Choose a
monitoring technology that is independent, i.e. that for each action profile,
a and signal profile o, m(o|a) is the product of the marginal distributions
m?(ojla). Then conditional on the action profile sequence @, player i’s
history of signals is uninformative of the signals observed by the other
players. Since a occurs with probability 1, we can conclude that conditional
on every t length history on the path of play, player ¢ assigns probability
at least (1 —¢)¢ to the history h' ; for his opponents.

Since ¢ is conditioning his action choice on his history in stage ¢ + 1,
there must be at least one history h! consistent with s; such that st (h}) #
SEH (a;,a—;). Assume the monitoring technology assigns positive probabil-
ity to h¢ conditional on @. (Since h! is consistent, it is sufficient that the
monitoring distributions have full support). Since s is strict, there exists a
d > 0 such that

Vi(si(@i,a—q), s i(h";)) = Vi(si(hf), s _i(h* ;) > d
Choose § to satisfy 0 < § < d. By the argument above about conditional



beliefs in g-perfect monitoring structures, as € goes to zero,
Vi (8ils, B) — Vi(8i, 5-i(hL,))

for any t-length history ﬁﬁ, and continuation strategy 3;, where V is the
conditional expected payoff function for some e-perfect monitoring struc-
ture. Therefore, we can take ¢ small enough so that

Vi (si(@i, a—i)|s, hi) — Vi(si(hf)|s, h) > 6

implying that s; is not an §-approximate best-response at hf.
We conclude that no player conditions his action choice on any consis-
tent history and this concludes the proof. QED

This result is complementary to the positive results of Mailath and
Morris (2002). They prove a folk theorem using strict equilibria that are
robust to sufficiently “public” private monitoring imperfections. Theorem
1 shows that strict equilibria cannot be robust to all private monitoring
perturbations. In Ely and Véalimaki (2002), it is shown that there are effi-
cient mixed strategy equilibria of infinitely repeated games that are robust
to all monitoring imperfections. These strategies, like all mixed strategies,
can be criticized because they require players to condition their behavior
on payoff-irrelevant details.? In section 5, I show that in some games, the
robustness of the simple and strict grim trigger equilibria can be recovered
if we view them as degenerate correlated equilibria.

4. CORRELATED EQUILIBRIA

In the previous subsection, it was shown that the only weakly robust
strict equilibria of repeated games are the trivial ones. On the other hand,
the example of section 2 shows that there are non-trivial strict Nash equilib-
ria which can be approximated arbitrarily well by strict robust correlated
equilibria. An infinitely repeated example will be presented in section 5
below. It is natural to ask whether strict Nash equilibria can always be so
approximated. In the next subsection I provide an example demonstrating
that the answer is negative. This example adds to those of Bagwell (1995)
and Bhaskar and van Damme (2002). Bagwell (1995) first illustrated a
strict pure-strategy Nash equilibrium which was not robust to monitoring
imperfections. This equilibrium however can be approximated by robust
mixed-strategy Nash equilibria. The example of Bhaskar and van Damme
(2002) improves upon this because the strict pure-strategy Nash equilib-
rium they focus on cannot be approximated by any robust mixed-strategy
Nash equilibrium. However, as was shown in section 2 this equilibrium can
be approximated by robust strict correlated equilibria.

3The proof of theorem 1 makes it clear that they must.
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4.1. A Strict Equilibrium That is Not Robust

The following is an example of a strict pure-strategy Nash equilibrium
which cannot be approximated by any robust strict correlated (and hence
Nash) equilibrium.*

The example adds a single action to the two stage game from section
2. We use uppercase for actions, and the corresponding lower case for the
associated monitoring signals.

c D c D
c 1,1 | —4,4
C [6,6]0,0
D | 4,-4| 0,0 D 0o l11
w 2,0 | =7,7 ’ 2
stage 1 stage 2

FIG. 3 Playing (C,C) in stage 1 is not robust.

The best Nash® equilibrium of this game plays (C,C) in stage 1 sup-
ported by the promise of (C, C) in stage 2 and the threat of (D, D) in stage
2 if any deviation occurs. This is in fact a strict equilibrium in the sense of
Definition 1. I claim that any strict correlated equilibrium in which (C, C)
is played with probability close to 1 in stage 1 is not weakly robust.

Consider a strict correlated equilibrium under perfect monitoring in
which the total probability of (C,C) in stage 1 is at least 1 — € for € > 0.
By the law of total probability, there must be a positive probability type
71 of player 1 conditional on which the probability is at least 1 — e that
(C,C) will be played in stage 1.

Type 7 is tempted to play W in stage 1. Therefore 74 must assign
positive probability to a type 7 of player 2 who plays a strategy with the
following features: “play C in stage 1 and respond to a signal of w by
playing D in stage 2.” To prove this, suppose the contrary: that every
T which has positive conditional probability for 71 and which plays C' in
stage 1, responds to w by playing C'. Then € is an upper bound on the total
conditional probability for 7; that action W will be punished by a response
of D. This would mean that for € small, a better reply for 7, would be to
play W in stage 1 and C in stage 2, a contradiction.

Type 7» cannot assign positive conditional probability to a type 71 of
player 1 which plays W in stage 1. We prove this in 2 steps. First, any
strategy for player 1 which plays W in stage 1 and responds to a signal
¢ with the action D in stage 2 is strictly dominated. Indeed if player 2

4Strictly speaking, weak robustness has been defined for Nash equilibria of repeated
games, whereas we will now investigate weak robustness of correlated equilibria of a
dynamic game. The definitions are readily translated and no confusion should result.
5In fact the best correlated equilibrium.
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were playing C' in stage 1, such a strategy could earn at most 3, whereas
any strategy which plays D in stage 1 earns at least 4. And if player 2
were playing D in stage 1, such a strategy could earn at most -1, while any
strategy which plays D in stage 1 earns at least 0. This means that, in our
correlated equilibrium, any type of player 1 which plays W in stage 1 must
respond to signal ¢ with action C in stage 2. Thus if, 7 assigned positive
conditional probability to such a type, 72 would expect action C in stage
2 after his own play of C and the signal w in stage 1. But this would be a
contradiction since 15 responds to w with D.

Recall that the correlated equilibrium in question is strict. Let 26 > 0
be the difference in expected payoffs for type m between actions D and C'
following the outcome (C, c) in stage 1. Let ¢¢ be the conditional beliefs
of type m over the action to be played by player 1 in stage 2 after the
outcomes (C,c¢). Note that this is well-defined since (C,¢) is on the path
of play for 7.

We will now construct the monitoring perturbation which exposes the
non-robustness of the given correlated equilibrium. For arbitrary ¢ € (0, 1),
and A € (0,1), consider an independent e-perfect monitoring technology
where

m*(w|(C, C))

m2w|(D,C) ~

Let ¢~SC and <;~5 p be the probability distribution over the action to be played
by player 1 in stage 2 conditional on 75 and the chosen actions in stage 1
being (C,C) and (D, C) respectively. Note that ¢c approaches ¢ as &
approaches zero.® Let t be the probability type 7 assigns to the event that
player 1 has actually played C in stage 1 conditional on 75 playing C' and
observing signal w. Note that ¢ approaches 1 as A approaches 1.

The conditional belief of type 72 over the action to be played by player
1 in stage 2 after playing C' and observing signal w is

tc + (1 —t)ép

Because the expected payoff difference between actions C' and D is a contin-
uous function of this belief, we choose € sufficiently small and X sufficiently
close to 1 to make this belief close enough to ¢¢ so that C earns in expecta-
tion at least 6 more than D. Thus, type 72, which plays D after this history
is not playing a d-best reply. This shows that the correlated equilibrium is
not weakly robust.

The argument above identifies the flaw in the cooperative equilibrium
of this game. Player 2 is required to punish a play of W by playing D in
stage 2. But player 2 can only rationally play D in stage 2 if he expects 1

SThe only reason ¢~Sc does not already equal ¢¢ is that player 1 is conditioning his
second stage action on his signal, and when £ > 0 this signal can have errors. But as
€ approaches zero, the signal is almost certainly equal to the action actually chosen by
player 2.
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to follow up his play of W with D. But the repeated game strategy which
plays W and then D is strictly dominated. The cooperative equilibrium
hinges on player 2 believing after stage 1 that player 1 was playing a non-
rationalizable strategy! When the monitoring has full-support, Bayes rule
determines player 2’s belief. In particular, it constrains 2’s belief to assign
positive probability only to those strategies that are actually being played
by player 1 in equilibrium. In particular, 2 must believe that 1 is playing
a rationalizable strategy.

5. REPEATED PRISONERS’ DILEMMA

In this section I construct an approximately efficient correlated equilib-
rium of the infinitely repeated prisoners’ dilemma with private monitoring.
Two complications arise in extending the correlated equilibrium construc-
tion exemplified in Section 2 to the infinitely repeated game. Recall that
when monitoring is private and independent, in order for players to have
a strict incentive to respond to bad signals, they must believe that their
opponent is actually defecting with positive probability. Since equilibrium
will require that players punish bad signals in any period such a signal is
observed, it follows that correlated equilibrium of the type used in section
2 must have each player unilaterally defecting with positive probability in
every period. I show that such a correlated equilibrium can be constructed
provided the gain to cooperation is large enough relative to the gain to uni-
lateral defection, and moreover that this equilibrium is strict when players
are sufficiently patient.

The second complication arises when showing robustness of this type of
equilibrium to private monitoring imperfections. Since unilateral deviation
occurs with positive probability in every period, beliefs following a devia-
tion from mutual cooperation are determined by Bayes’ rule and are thus
continuous in the monitoring noise. Thus beliefs at any information set can
be made as close as necessary to the perfect-monitoring beliefs by choosing
the noise sufficiently small. The difficulty is in showing that this can be
done uniformly across the infinite set of histories, i.e. that there exists a
sufficiently small monitoring perturbation so that beliefs after every infor-
mation set are close enough to the original beliefs so that best-responses are
unchanged. This is accomplished by using a particular type of “stationary”
correlation structure.

Stage game payoffs are as in stage one of figure 1, with g < 1. The
reason for this payoff restriction will be explained below. After each stage,
each player privately observes a signal of the action chosen by the oppo-
nent. For simplicity I assume there are two possible signals ¥ = {c¢,d}
corresponding to the two actions in the prisoners’ dilemma. To simplify
notation, I will focus on a particular independent private monitoring tech-
nology. With probability 1 — ¢, player ¢ observes the signal corresponding
to the action actually taken by player j; with probability e, ¢ observes
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an error. These probabilities are independent for the two players. The
players’ share a common discount factor § and seek to maximize expected
discounted payoffs. This parameterized family of repeated games will be
denoted G*(4,¢).

5.1. Strict Correlated Equilibria

I will start by constructing a correlated equilibrium of the repeated
game with perfect monitoring. This equilibrium will be strict and will have
the property that unilateral defection occurs with positive probability in
every period. This will imply that beliefs following a defection will be
well-defined via Bayes rule. In equilibrium, a unilateral deviation by the
opponent will signal that the opponent will continue defecting forever there-
after. Because these beliefs will be defined by Bayes’ rule, they will change
continuously with small changes in the monitoring technology. In fact, I
will show that this continuity in beliefs is uniform across histories. Thus,
since the original equilibrium is strict and beliefs uniformly continuous, the
equilibrium will be robust to small private monitoring imperfections.

The construction takes a slightly different form in the two cases [ > 1,
I < 1. T will illustrate the [ > 1 case in detail and briefly discuss the [ < 1
case at the end. Throughout, maintain the assumptions I > 1, g < 1.
Each player’s type w; in the correlation device will be drawn from the set
N = {1,2,...}. Choose an integer k so that k —1 <l and 2k >1+g+1.
Note that this is always possible since [ > 1 > g (For example, choose k
to be the smallest integer no smaller than [.) Fix § < 1 and define the
following function on N x N:

(I=p)rtezif wy € {wr — k,wi, w1 + k}
2(1 — B)wrtwz  otherwise

f(w17w2) = {

Let p be the probability measure on N x N defined by

plwi,ws2) = %f(wla‘*ﬂ)

where

M= 3" fw,w) < o0

w1,w2

For z = 0, each type 8; of player i considers possible only 3 types of the
opponent , 8;—k, 8;,0;+k. This information structure is partially illustrated
in figure 4 for the case k = 2.7 When z is positive but small, every type of
the opponent is possible, but the “non-diagonal” types are relatively less
likely.

"The figure depicts only the subset of the type space consisting of even numbered

types. When z = 0, this set is in fact a common-knowledge cell of the information
structure.
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FIG. 4 Correlation device

The strategy grim is the repeated game strategy which plays D after
every history in which either D or d appears at least once and plays C after
every other history. The strategy defect is the strategy which plays D after
every history. Let g; denote the repeated game strategy which plays grim
through period ¢t — 1 and switches to defect in period ¢t + 1 and thereafter.
Note that g1 is defect.

The correlated strategy profile will specify that type w; = t should play
g¢, define s;(t) = g for each ¢ and each t € N. Then (N x N,u,s) is a
correlated strategy profile which I will call 7(8, z).

I will use a shorthand notation to refer to private histories. The notation
(t, (C, ¢)®), for example is a history for 7 in which i was assigned type w; =t
by the correlation device, and the outcome in each of the first s stages was
(C,c¢), i.e. i played C and observed the signal ¢ from j.

Say that a correlated equilibrium is uniformly strict if for each player
1 there is a d > 0 such that for each type w;, for every private history con-
sistent with s;(w;), the payoff resulting from the equilibrium continuation
strategy exceeds by at least d the payoff to any alternative continuation
strategy which deviates in the first stage following the history in question.

LEMMA 1. For every & sufficiently large and € > 0, there exist 3 and
z sufficiently small such that for all 0 < f < B and 0 < z < Z, the
correlated strategy profile 7(8, z) is a uniformly strict correlated equilibrium
of G*(4,0) in which each player receives a payoff greater than 1 — €.

Proof. First note that for every § < 1, the payoff to 7(8, z) is a contin-
uous function of 8 and converges to 1 as § approaches zero. Thus, for any
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z, 0 and €, § can be chosen sufficiently small so that the payoff to 7(8, z)
exceeds 1 —e.

To show that 7(8,z2) is a uniformly strict correlated equilibrium for
B and z sufficiently small, we show that attention can be restricted to 5
histories, the others being redundant.

First, consider a history in which at least one D or d has appeared.
After any such history, each player assigns probability 1 to the opponent
playing the continuation strategy defect. The equilibrium prescribes also
continuing with defect and earning a continuation payoff of 0. Any strategy
which deviates and plays C can earn at most —I. Thus, the payoff difference
is at least [ after all histories in this class.

Now we consider histories in which (C, ¢) has occurred in each stage. If
(C, ¢) has occurred through s stages, then the opponent’s type cannot be
w; < s, otherwise he would have played D and since monitoring is perfect,
d would have been observed. The stationary structure of the correlation
device implies that the conditional beliefs over the opponent’s type after
the history (¢, (C,c)!~™) are independent of the type t. Since these beliefs
determine beliefs over the opponent’s continuation strategy and therefore
continuation payoffs; to show uniform strictness, it suffices to choose an
arbitrary ¢ and show strictness uniformly for all histories (¢, (C, ¢)!~") with
n > 0.

To show uniform strictness we must find those histories in this class
where the payoff difference between conforming to the equilibrium contin-
uation and deviating is minimized and show that this payoff difference is
strictly positive. We will show that when z is small enough, only four histo-
ries in this class are relevant, namely (¢, (C, c)!=%=2), (¢, (C, ¢)t™2), (¢, (C,c)t~F~1
and (¢, (C,c)t~1) all others having strictly larger payoff difference than at
least one of these.

For small z, the payoff difference for a history of the form (¢, (C, ¢)!=*—")
for n > 2 is strictly larger than for a history of the form (¢, (C,c)t=*—n+1),
In either case the continuation prescribed by the equilibrium is to play
grim until period ¢t. Let V be the equilibrium continuation payoff after
(t,(C,c)t"*#~m+1). For small z, after either of these histories, the payoff
to any strategy which deviates and plays D is approximately® 1+ g. The
equilibrium continuation payoff after (¢, (C,c)t~*~") is approximately 1 +
0V which is greater than V when § is close enough to 1.

It follows that among all histories of this form, it suffices to consider
(t,(C,c)t"*72). Note that the same argument implies that among all the
histories of the form (t,(C,c)*™™"), for n < k, it suffices to consider n = 2.

We now analyze these four histories in turn. First consider the histo-
ries (¢, (C,c)t=*=2) and (t,(C,c)*"%~1). After these histories, for small z,
the conditional probabilities of the opponent’s types are approximately as

8The conditional probability that the opponent will play continue cooperating is
arbitrarily close to 1 when 2z is small.
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follows

1
Prob(w; =wi —klh) = 7 + (1 =B)k+ (1 - pB)2k
~ ~ (1-p*
Prob(w; = w;lh) = 1+ (1 =8)F+(1-p)%*
(1 _ 6)219

Prob(w; = w; + k|h)

T+ =B + (- A

Note that each converges to 1/3 as 3 approaches 0.
Consider the history (¢, (C,c)!~*~1). Playing D in period t — k gives
maximum continuation payoff
: :
T+ (= BF + (1B
while instead conforming to the equilibrium recommendation yields (ap-
proximately for small z)

Ja+g

1
1+(1-8)F+(1-5)

k—1
7 {—l+<1 =B o+ (1B
n=0

k—1
F(1+g) + Z&”] }

n=0

(The three scenarios are: the player loses ! because the opponent’s type
is t — k, the player earns the cooperative payoff for k additional periods,
then zero forever because the opponent’s type is ¢, and the player earns
the cooperative payoff for k additional periods and then the pre-emption
payoff 1 + g because the opponent’s type is ¢t + k.)

For large 6 and small 8 the latter is larger than the former if

1/32k+(1+g)—1)>2/3(1+9)

which holds because 2k > 1+ g + 1.

Next consider the history (t,(C,c)!~%72). Defecting after this history
yields approximately 1+ g (for z small).

This is strictly worse than playing C' and then playing D in period t —k
period provided

1
ST+ (- By

For large ¢ this inequality is approximately

1+g9g<144|1 (1+g)

1+g

T ) ()

which holds for small enough 8 since 1 + g < 2. Since we previously
showed that playing D in period ¢ — k was strictly worse than following
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the equilibrium, we can conclude that playing D in period t — k — 1 is also
strictly worse.

Next consider the history (, (C,c)*=2). For small z, conditional beliefs
are approximately

_ k
Prob(w; = ¢ + k|h) %

The equilibrium calls for the player to cooperate in stage t — 1 and defect
in stage t. This gives approximately

(1-p)*
1+5{71+(1_/8)k(1+g)}

By instead defecting in stage ¢ — 1, the player gets at most 1 + g which for
small 8 and high ¢ is strictly worse provided
1+
1+g9g<1+ Tg
which holds because g < 1.
Finally, consider the history (¢, (C,c)!~!), after which the equilibrium
prescribes defecting forever and earning approximate payoff

1-p)*

-t Y

For z small, the best deviation will be to play instead g¢4 1, attempt-
ing to gain the cooperative payoff from w; = ¢t + k and pre-empting by
defecting in period t + k — 1. This gives approximate payoff

1 B k—2 .
TTa 5 {(—l)+(1_ﬂ)k l(sk (1+g)+;5 }

This expression is strictly increasing in §. Hence, because § < 1, for con-
forming to be superior, it is sufficient that

A-8*1+g9)>1A-B* k-1 +1+g)]—1
and for B small enough, this follows by the definition of k: [ > k — 1.
QED
5.2. Independent Private Monitoring

We now consider the game G*°(4,¢) for small e. The main result is
that the conditional beliefs implied by the correlated strategy 7(8, z) are
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continuous in g, uniformly across all histories consistent with the strategy.
Because the equilibrium is uniformly strict for € = 0, this implies that
7(B, ) is an equilibrium of G*™(4,¢) for all sufficiently small €. That is,
the equilibrium is robust to private monitoring.

LEMMA 2. Let U5 (-|h) represent i’s conditional beliefs over j’s continu-
ation strategy under 7(j3,z) in the game G*°(8,€). Then ¥ (-|h) — D9 (:|h)
uniformly for all histories h consistent with the strategy.

Proof. Begin with some notation and a preliminary result. Fix ¢ and
a player i. Define y; to be the conditional distribution over w;, j # 4 for
type w; = t of player i. Let F; be the event {w; > s}, and I the event
{w]' S {w,- —k,w;,w; + k}

Let s <t. If s #¢t — k then

pi(s) _ z(1—B)t*e

i (Fs) > Z(=pr+ > (=P

n>t+s, n¢l n>t+s, n€l

which can be bounded uniformly as follows

23 < i (8) < B

1-8  m(Fs) 1-8

and if s =t — k then

puls) _ (1)
wE) -y 0Bty (1-h)"

n>t+s, n¢l n>t+s, nel

which can be bounded uniformly as follows

B Nt(é’) B
-8~ mE) < 20-7)

Thus, for all s < ¢t

B ms) B
(1-8)  m(Fs) 2(1-p)

Consider any history of the form h = (¢, (C,¢)®) for s < t. There
are three types of events which could have lead to this history. First, the
opponent’s type could be some w; > s and there were no errors through
period s. The probability of this event is

pe(Fs)(1 —€)*

Second, the opponent’s type could be w; > s, but the opponent saw
an erroneous d in some period A, began defecting, but player j erroneously
saw c in all periods from A + 1 to s. The probability of this event is

8

pe(F) (1 - ) lerhi
A=1
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Finally, the opponent’s type could be w; < s. In this case the first error
was observed in some period no later than w;. The probability of this event

is less than®

Zut )>a

A=1

5)2()\—1)65—)\+1

Thus, using Bayes’ rule, conditional on such a history, player ¢ believes
his opponent is using continuation strategy g, for n > 1 with probability

p(n +s)(1 - 6)25

7; (gnlh) > - -
P [ 2Pt 5@ -epteran] + 3 pum) F (1 - e ver
L A=1 m=1 A=1
_ pe(n + s)
- [ S es—A+1 S m es—A+1
pe(Fs) |1+ >0 oozt | T > we(m) Y [(ESECT=y
L A=1 m=1 A=1
+
> pe(n + s) _
es—A+1
uEN {1+ 555 5 (] b+ S mlm) £ 525
_ ue(n + s)
1 d s—A41
Nt(F){l-i- (=) [1_1_5)g:| +mZ::1 ( )Z a= 2)2(5 3FD)
_ u(n+s
Ht(Fs) [1 +61(5)] + Zl Ht( ) Z a EES2();+1A+1)
m=
noting that lim,_,g e;(g) = 0.
Consider the last term in the denominator. For every m =1,...,s—1,

we have the following inequality

s~ A+1

m+1

s~ A+1

S

)\=1

1 _ E 2(5 A+1)

<

m—+1

= (1_622 (1 — £)2G—A+D)

Es—)\—i-l

Thus

m s~ A+1

Zﬂt ;W<Zﬂt

S
9The exact probability is > u:(m)

m=1

A=1

i

3

1—¢

(1-¢)? Z (1 — )=+

8

Pl 2

21 (1 — ¢)2(—A+1)

68—)\-‘,-1

1— E)ZA—ISS—)\+1 + (1 _ E)?(m—l)ss—m+1:|



Now pi(m) < ﬁut(m +1) for every m =1,...,s — 1, hence

s r B s —
s—m e A+1

) _
Sut(S)mZ:l_m_ ;m
oo r c qm o0 6)\-1—1
<ul) 2 | paep) & oo

oo 1m oo A
€ £
=m() 2 | ;i pa o] 2LL@4

o >
Il

1 1-¢)?
= pe(s) 1— c 1_ =
2(1-p)(1—¢)? (1—)?

/8 1 (1—55)2
< /J/t(Fs) c €
d0=8) |1 = so=pia=ar | [~ =

= pu(Fy)ea(e)

noting that lim,_, ex(g) = 0.
Combining these results, we have for every n > 1, for all h = (¢, (C, ¢)®)
for every s <t

pe(n + s)
wi(Fs) [1+ e1(e) + eafe)]

pe(n + s)

~0 —

> i (gnlh) >

so that
-0 e pe(n + s) pe(n + s)
Zilonl) =2 < T T ) L+ @) + e
_pue(n+s) [ eie) +exe)
 w(Fy)  [1+ei(e) +eale)
e1(g) + ea(e)
1+ei1(e) + ea(e)

Since {gi1,92,.--.} is the support of both #(-|h) and &% (-|h), it follows
that o¢(-|h) converges to #)(-|h) uniformly for every h = (t,(C,c)®) for
every s < t.

Next consider a history for player i of the form h; = (¢, (C,c)*~ 1, (C,d))
for s < t. Some additional notation is necessary. Let P,(-) represent the
probability distribution over s-length histories (i.e. over Nx Nx ({C, D} x
{c,d})?*) induced by the strategy profile 7(3, z). The event that the history
of signals seen by ¢’s opponent is ¢® will be denoted E. We will identify
the history h; with the event that player i’s private history is h;.

Note that 7 (g1|h;) = 1. We wish to show that #§ (g1|h;) — 1 uniformly
for all h; of the form in question. There are two cases in which the opponent
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will be playing g;. First, the opponent’s type could be w; < s+1 in which
case the opponent will play ¢; in accordance with 7(8,2). Second, the
opponent’s type could be w; > s+ 1 but the opponent has seen an error
and switched to g; in response. Thus, by Bayes’ rule, the probability of g;
conditional on h; is given by

Sf 1) Py (it m) + e (Fogn)PaCi \ EJt, Fopn)

i;out(m)Ps(hut,m)

v; (g1/hi) =

Since this fraction is less than 1, we can subtract all terms i (m) Ps (h;|t, m)
with m # s from both the numerator and denominator to obtain the fol-
lowing inequality

i (5)Pa(ilt, ) + e (Frn) Pa(hi \ Elt, Fopn)
/‘t(s)Ps(hilt: s) + /‘t(Fs+1)PS(hi|ta Fyi1)

Now noting that Ps(h;|-) = Ps(h; \ E|-) + Ps(h; N E|-) we can further
simplify by subtracting the terms involving P;(h; \ E|-) from numerator
and denominator

S ue(s)Ps(hi N EJt, s)
~ (8)Ps(hi N Et, ) + pe(Foq1) Ps(hi N Elt, Foq1)
pu(s)(1 =€)
pri(8)(1 — €)% + pu(Foqr)e(1 — g)>~
1

pe(Fsq1) e
1+ Tpe(s) 1-e

Finally, noting that £ pelFps) o p(Fy) we have

Ce(s) [0
1

zﬁ’

1—e

Since this bound holds for all s < ¢, we conclude ¢ (g1]h;) — 1 = #9(g1|hs)

so that
75 (hi) = 7 (-|hi)
uniformly for all h; = (¢, (C,c)* 1, (C,d)) with s < t.

Finally consider a history h; for player ¢ in which i played D in the
last period. Conditional on any such history, the probability that the op-
ponent’s continuation strategy is g; is at least the probability that the
opponent correctly saw d in the last period. This probability is (1 — ¢).
Hence ¢ (g1|hi) = 1 = 99 (g1|h;) implying

75 (-[hi) = 7 (-[s)
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uniformly for all such h;.

The histories considered are the only histories for 7 consistent with the
strategy. We have thus established the result for player . The symmetric
argument applies to player j.

QED

To this point, it has been assumed that [ > 1. This implies that when a
type w; reaches stage w;, he will strictly prefer to defect as the loss [ from
having cooperating and seeing the opponent of type w; = w; defecting
is larger than the possible gains from being able to cooperate with an
opponent of w; = w; + k for k — 1 periods. If instead ! < 1, then in the
correlated strategy used above, type w; will be willing to take the chance of
being defected against if his opponent’s type is w; = w;, and will prefer to
cooperate in hopes that the opponent’s type is w; = w;+k. These strategies
then fail to be an equilibrium. In this case, the correlation device u derived
from the following function f forms a correlated equilibrium:

flwr,we) = {(1 3 5)%2‘*’1“’2—? i wa 6 tor =L 1y
2(1 = B)z(witw2=1)  otherwise

For z = 0, this correlation device generates two disjoint common knowledge
components, one of which is illustrated in figure 5 below. For z and 3 close
to zero and 6 close to 1, it is a uniformly strict correlated equilibrium for
type w; to play g,,. Verifying this involves checking incentives as in Lemma
1, and is omitted. Then, just as in the case of [ > 1, because all histories
consistent with the strategy occur with positive probability when ¢ = 0,
the beliefs after these histories change continuously as € increases. Finally,
the stationarity implies that this continuity is uniform and therefore that
the equilibrium is robust.

5.3. Convergence to Grim Trigger

The correlated strategy profiles analyzed in the previous section con-
verge to the pure grim-trigger strategies in the weak sense that behavior
after every history converges to that prescribed by grim trigger. Never-
theless, there are two senses in which these strategies stay far away from
the grim trigger profile, even in the limit. First, the true grim trigger
strategy is never played with positive probability, and second, each player
always believes that either he or his opponent will unilaterally defect after
some history. In this section, I sketch how the correlated profile from the
previous section can be embedded in a larger correlation device to obtain
convergence in these stronger senses.

Let goo denote the true grim trigger strategy. Fix values 8 and z for
which 7(8, 2) is a strict correlated equilibrium, and consider the following
two-stage correlation device. First, a type profile (W ,uWs) is drawn accord-
ing to the correlation device p with parameters 8 and z. The players are

23



2 1 @) |

3

P IRREETEEE :

4 (1) (1-B) |
5

4

(1-B)

6 _

FIG. 5 Correlation device

not informed of the profile drawn. Next, a type profile is selected from
the distribution represented by the following matrix, and each player is
informed of his realized type.

w2 Jo
Wi o y
9o | Y 1

Let 7(v,y) be the correlated profile in which types are drawn as above
and each player plays the strategy corresponding to his realized type. Sup-
pose € = 0, so that monitoring is perfect. Then for every v > 0 there is
a y(v) > 0 such that 7(v,y(7)) is a strict correlated equilibrium. To see
this, note that for sufficiently small y, the strategies prescribed for a type
w; < 00 remain strictly optimal. A player of type g, assigns conditional
probability close to 1 that his opponent’s type is also goo. Therefore, such
a player should begin by cooperating. However, there is a chance that his
opponent is of type w; < oo and therefore any signal of d will be inter-
preted as evidence that the opponent has begun defecting. Thus, type goo
will respond to a signal d by defecting, hence his optimal strategy is geo-

Just as in the previous section, since every history consistent with a
player’s own strategy has positive probability, and because of the structure
of the conditional beliefs implied by u, this equilibrium is robust. In par-
ticular, it remains an equilibrium for € positive but sufficiently small. With
these observations in hand, we can prove the following:

24



THEOREM 2. For all sequences gy, | 0, there is a sequence of correlated
equilibria of G (0,ex) along which the probability that the profile (9oo, goo)
s played converges to 1.

Proof. Let ¢ | 0. Let 7, | 0 be any sequence of positive numbers
decreasing to zero. Note that (goo, goo) 0ccurs with probability approaching
1 in any subsequence of 7(vn, y(Vn))-

For each n there is a &, > 0 such that 7(v,,y(yn)) is a correlated
equilibrium for all £ < &,. Define n(k) to be the largest n such that g5, < &,.
(If there is no largest n then there is a subsequence of &, such that e, < &,
for all n. This implies that 7(yn,y(7vn)) is a correlated equilibrium for all
€ < &g, in particular for ejy,. and we are done.) The sequence n(k) is
weakly increasing (ex41 < € < Ep(r) 50 n(k +1) > n(k).) and unbounded
(if n(k) < N for all k¥ then ény1 < e for all k implying eny1 < 0, a
contradiction).

Since €y, < &), the strategy T(Vn(k),y¥(Yn(k))) is a correlated equilib-
rium for g;, for every k, concluding the proof. QED

6. CONCLUSION

Finally, let’s consider the payoff restriction g < 1. In either of the
two correlation structures considered above (with z = 0), each type w;
eventually comes to a date say ¢ < s, when there are only two possible
types of the opponent w1 and wsyg. The equilibrium demands that he
cooperate at such a t. Let p denote the conditional probability, having
cooperated up to period ¢t of the opponent’s type being w1 and 1 — p
the conditional probability of w;ig41. Defecting in period ¢ gains 1 + g for
sure in stage t and zero forever after. Whereas cooperating and instead
defecting in stage ¢ + 1 gains 1 in stage ¢ and (1 — p)(1 + g¢) in the next
stage. Given discounting, if g > 1, then the latter can exceed the former
only if p < 1/2. But it is impossible for infinitely many types w; to assign
probability exceeding 1/2 to higher types for the opponent. Thus, these
equilibria require g < 1.

The crucial feature of these equilibria is the unilateral deviation that
occurs on the equilibrium path in every period. Whether there exist other
approaches to the construction of robust correlated trigger-strategy equiil-
bria when g < 1 remains an open question.
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