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Abstract

We prove an existence result for games with incomplete information
with continuous type spaces under the assumption that players have
atomic posteriors. This information structure is an extreme example
of the failure of absolute continuity of information, hence our result

complements the classical result of Milgrom and Weber (1985).
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1 Introduction

In their seminal paper on equilibria in games with incomplete information,
Milgrom and Weber (1985, M-W) provided conditions ensuring the existence
of equilibrium in incomplete information games with continuous type spaces.
The interest of such games is obvious: many games in applications involve
one or more player having private information about a continuous parameter,
such as a bidder’s valuation in an auction or a firm’s cost parameter in an
oligopoly setting.

The two key assumptions in M-W’s theorem are that players have contin-
uous payoffs and absolutely continuous information. While the role of payoff
continuity is clear (one can easily find examples where equilibrium existence
fails without it), the role of absolute continuity of information is much less
obvious. First, there are no known examples in which existence fails when
information is not absolutely continuous. Second, it is also easy to find sim-
ple examples where this condition is violated, and yet an equilibrium exists
(see below). Finally, absolute continuity of the joint distribution does not
always reflect intuitive notion that players’ beliefs about their environment
change continuously with their information.

This paper provides an equilibrium existence result for games where,
although the marginals on players’ types may be atomless, players’ posteriors
(conditional on their types) are atomic. In a sense, the class of games
covered by our result is disjoint from that considered by M-W: every game
we consider violates their absolute continuity of information, and every game
with absolutely continuous information is necessarily one where players have

non-atomic posteriors.!

1This is true when the marginals on players’ types are atomless. The two equilibrium

existence results coincide if players have countably many possible types (or more generally,



Our setup largely follows that of M-W, the only difference being the na-
ture of the information structure. After introducing the basic setup, we state
the main result and provide a sketch of the proof. The proof then follows,
starting with new measurable selection results for transition probabilities,

which may be of independent interest.

2 The Incomplete Information Game

We study a game of incomplete information played by a finite set of players

I={1,2,...,1}.

2.1 Strategies and Payoffs

Player ¢’s information is represented by a type space (T% 7*), with T* a
complete separable metric space and 7; its Borel o-algebra. The space of
type profiles is T = [[; T* with the product o-algebra T.

Each player has a compact metric space of actions A;. Denote action
profiles by A = [],; A;. Each player also has a payoff function u; : TxA — R.
Assumption 1: The payoff function u;(¢, a) is jointly measurable on T x A,
and continuous in A for every t.2

For every measurable space (S,S), the space of probability measures
over S is denoted by P(S). ,

A (behavioral) strategy for player ¢ is a measurable function o; : T; —

P(A;), with o;(t;) denoting type t;’s mixed action. A strategy profile is a

if the marginals on their types are atomic.
2We do not need to require payoffs to be equicontinuous as in M-W, since, by our as-

sumption on the information structure the strategic environment of any type is countable,
and as in Proposition 3 in M-W, whenever the type spaces are countable it is sufficient to

require that payoffs are continuous.



vector o = (0;)ier of strategies.

2.2 Information and Equilibria

The information structure is given in terms of a joint distribution u € P(T)
on players’ type profiles. Given y, a profile o induces a payoff u;(o) for each
player i:

ui(a)=/T/Aui(t,a)dal(al)---da;(a;)du(t).

Definition 2.1 A profile o is an equilibrium if for every player i and every
strategy 7; of player i

ui(o) > ui(o—i, 7).

Thus, in equilibrium the set of types in which a player can improve his payoff

has a measure 0.

2.3 Information Structure: Discussion and Examples

M-W define a game to have absolutely continuous information if p is abso-
lutely continuous with respect to the product of its marginals on players’
types. They then show that if payoffs are equicontinuous and information
is absolutely continuous an equilibrium in distributional strategies exists.?
While one can easily find examples where equilibrium existence fails
without payoff continuity, the role of absolute continuity of information is
much less obvious. It is easy to find simple games for which this condition
is violated, yet an equilibrium exists. The game in Example 1 below (found

in M-W) violates absolute continuity of information, yet an equilibrium for

3They also prove the continuity of the equilibrium correspondence as a function of the

information structure.



this game obviously exists:*

Example 1: There are two players, each with type space [0,1]. The joint
distribution is uniform on the diagonal {¢ : t; = t2}. Each player has two
actions, and payoffs are those of a battle of the sexes, independently of the

realized players’ types. [ |

A less obvious example is the following:

Example 2: Types and actions sets are as in Example 1 (payoffs are not
important here). The joint distribution is one that puts a mass of 1/2
uniformly on the diagonal, and a mass of 1/2 uniformly on {t : to = 0.5 +

0.5t1}. Graphically, the information structure looks as follows.
1

Player 2

Player 1

“The game violates absolute continuity because the diagonal has zero mass relative to
the product of the marginals, which is a uniform distribution on the square. On the other
hand, any measurable mapping from the diagonal to the stage game equilibria constitutes

an equilibrium.



This information structure violates absolute continuity of information,
and an equilibrium (for general specification of payoffs) is not obvious. To
see the problem, consider player 1 of type t; = 0. His action choice may be
influenced by his belief about the actions of types 0 and 0.5 of player 2—the
two types to which he assigns positive probability. But when player 2’s type
is 0.5, his action is affected by types 0 and 0.5 of player 1. Continuing in
this manner we find that, although the payoff of player 1 of type 0 depends
on the actions of only two types of his opponent, solving for this type’s
equilibrium behavior requires that we take into account all types of player
2 in the infinite set {0,0.5,0.75,0.875, ...}, and all the types of player 1 in
the infinite set {0.5,0.75,0.875,...}. [ |

3 Main Theorem

3.1 Statement

Our main theorem states that an equilibrium exists if the posterior of every
player on the types of his opponents is atomic. While the intuitive idea
underlying this assumption is straightforward, stating it precisely requires
the concept of disintegration, which is more convenient to introduce later.
For now we state an informal version of assumption 2; Section 4.1.3 contains

the formal statement.

Assumption 2¥*: For every player ¢ and almost every type t;, his posterior

on T_; given ¢; is purely atomic.

Theorem 1 Every game satisfying assumptions 1 and 2 has an equilibrium.



3.2 Sketch of the Proof

While the details of the proof are elaborate due to measurability consider-
ations, the underlying intuition is quite simple. We illustrate it here in the
context of Example 2. Since payoffs play no special role in this informal
sketch, we suppress any reference to them.

In Example 2, player 1, of type t;, say, cares (i.e. his payoff is directly
affected by the actions of) two types of player 2. If ¢ is one such type, then
t may also care about the action taken by some other type t] # t1, who
in turn may care about what type tj # t2 does, and so on. Clearly, the
equilibrium action of t; must take into account all types of player 2 whose
actions either directly appear in his payoff (more precisely, expected payoff,
given his information), or affect him indirectly through their strategic effect
on the behavior of player 2 types he cares about. Similarly, the equilibrium
action should take into account all types of player 1 which affect type t;
indirectly.

Informally, a type t; directly affects his opponent’s type t; if ¢; is an
atom of the posterior belief of player j when his type is t;. Let R;(¢) denote
the set of type profiles s such that one player type in s directly affects an
opponent’ type in t. Define R,(t) inductively as the set of type profiles s
such that one player type in s directly affects an opponent’ type in some
t € R,_1(t), and set R(t) = UR,(t).

Since the information structure is atomic, R(t) is countable, and one can
prove that on a set of type profiles of measure 1, R defines an equivalence
relation: s € R(t) implies that R(s) = R(t). Moreover, for every player 4
and every type t; of player i, there exists a unique set R(t) such that ¢; is
in the projection of R(t) over T;.

Thus, when their type profile ¢ is randomly drawn, players find them-



selves in a strategic environment represented by the incomplete information
game R(t) with countable type spaces. From standard results, each such
game has an equilibrium, and an equilibrium of the original game induces
an equilibrium in (almost every) game R(t). To prove existence of equilib-
rium in the oringinal game, we need to show the opposite: one can select
equilibria for every game R(t) that collectively form an equilibrium of the
original game. To do this, we first show that the information and payoff
structures of the games R(t) change measurably with ¢. In addition, we de-
velop new measurable selection theorems that allow us to measurably select

equilibria for the games R(t) that form an equilibrium for the original game.



4 Proof of the Theorem

We begin with a convenient technical tool used frequently below.

4.1 Conditional Probabilities and Disintegration
4.1.1 Disintegration of measures

The concept of disintegration of measures provides an intuitive and con-
venient representation of conditional distributions. See Stinchcombe (1990)
for more detailed exposition and game theoretic applications. We begin with
preliminary concepts.

A transition probability from (X, X) to (Y,Y) is a mapping p : X —
P(Y) such that for every B € ), the real-valued function x — pu.(B) is
X-measurable.

Let A be the o-algebra generated by a measurable function ¢ : X — [0, 1]
(so A is a sub-o-algebra of X). The set X(z) = {# € X : ¢(z) = q(£)} is
called the atom determined by z. The idea is to think of ¢ as defining a
measurable equivalence relationship on X, in which case X(z) is just the

equivalence class of z.

Definition 4.1 Let u € P(X). A disintegration of p relative to A is a
transition probability x — uy from (X, A) to (X, X) such that:

1. Fora.e. x, u,(X(z)) = 1 (that is, the support of pi, is the atom X (z));
2. For every B € X, u(B) = [x pz(B)dp

The following theorem guarantees that in our setup a disintegration ex-

ists.



Theorem 2 Suppose that X is a complete separable metric space, and X
is the o-algebra generated by the Borel sets. Then a disintegration exists
relative to every o-algebra A generated by a measurable function q : X —

[0,1].

Proof: Dellacherie and Meyer (1978), pp. 78-79, and Stinchcombe (1993)
p. 242. ]

4.1.2 Conditional Probabilities

Disintegration enables us to obtain a more powerful version of conditional
probabilities.5 Specifically, for every player i, let p'(- | t;) denote (a version
of) the disintegration of u with respect to 7;.6 Note that the atom T'(t) of a
profile t = (¢;,t_;) in this case (i.e. relative to 7;) is simply the set {t;} xT_;
of all profiles ¢’ in which player 7 has the same type as in ¢.

From the definition of disintegration, we have

e for a.e. type profile t, pf(- | t;) is a probability measure on T with
support T'(t) = {t:} x T—;;

o for every B € T, p*(B | t;) is a version of the conditional probability
of B given 7;.

5Two potential problems with the usual definition of the conditional probability are:
(1) in general, player i’s conditional probability given his information 7; does not induce
a probability measure on the type profiles of his opponents. That is, while it is possible,
for a given event A € T, to find a version P(A | T;)(t) of the conditional probability given
this player’s information 7;, this does not guarantee that we can find versions so that,
for a.e. t, P(- | T:)(t) is a probability measure on T. (2) Even if P(A | T;)(t) defines a

measure for each t, there is no guarantee that this measure is carried by {t:} x T_;.
SEvery complete separable metric space can be mapped via a measurable bijection into

[0,1}, so 7; can be obtained as the sub-o-algebra generated by some function ¢ as in the

definition of disintegration.



4.1.3 Formal Statement of Assumption 2

We can now state assumption 2:

Assumption 2: For every player i and a.e. type t;, p*(- | t;) is atomic.”

4.2 Selection Theorems

In this section, (X, X) is an arbitrary measurable space, (Y,)) is a complete
separable metric space and v € P(X) is a measure. For every probability
distribution v € P(Y), let atom(v) = {y € Y | v(y) > 0} be the set of atoms
of v. Note that atom(v) is always countable.

A correspondence ¢ : X — Y is measurable if for every closed set B C Y,
the set {x € X | ¢(z) N B # 0} is measurable. We use the following facts

about measurable correspondences (Himmelberg (1975)):
1. A union of countably many measurable correspondences is measurable.

2. Let f : X — Y be a measurable function, and ¢ : ¥ — Z be a
measurable correspondence. Then the correspondence x — ¢(f(x)) is

measurable.

3. The graph of a measurable correspondence ¢ : X — Y is a measurable

subset of X x Y (endowed with the product topology).

Kuratowski and Ryll-Nardzewski (1965, K-RN) proved that every mea-
surable correspondence from X to Y with closed values has a measurable
selector. If the correspondence is measurable w.r.t. some sub-o-algebra, we
would like the selection to be measurable w.r.t. this sub-o-algebra as well.
We provide here a version of K-RN’s theorem for simultaneous choice of

selections of different correspondences.

"That is, there is a countable set A € 7; (in fact, A C T(t)) such that i (A) = 1.

10



Lemma 4.2 Let ¢1,...,¢n : X — Y be measurable correspondences with v-
a.s. closed values. There exist measurable functions f; : X —»Y,i=1,...,n

such that v-a.s. fi(z) € ¢i(x), and fi(z) = f;(&) whenever ¢;(z) = ¢;(%).

Proof: The original proof of K-RN constructs for every correspondence ¢

a selection f such that f(z) depends only on ¢(z). The result follows. B

Lemma 4.3 Let z — ug be a transition probability from X toY such that
Uz s atomic v-a.s. Then there exists a measurable function f : X —'Y such

that v-a.s.
o f(z) € atom(uz).
o 1(f(®)) 2 pa(2) for every & € X.
o f(z) = f(&) whenever uy = iz

In other words, there exists a measurable selection that assigns to (al-
most) every z an element with maximal weight relative to pu..

Proof: We prove that the correspondence
z +— H(z) = {y € Y | y has maximal weight w.r.t. p,}

is measurable. Since this correspondence has finite values, we can use
Lemma 4.2 with n = 1 to prove the desired result.

Let (P,,) be a sequence of increasing finite partitions of X that generates
X.

For every n € N and every P € P,, the real-valued function fPx) =
pz(P) is measurable, hence so is gn(z) = maxpep, fL(z). Since for every
fixed z, (gn(x))n is a decreasing sequence of non-negative numbers, the real-

valued function g(z) = lim,, g,(z) is measurable.

11



Note that g(z) is the weight of the maximal atom of p,.
Let A CY be a closed set. It is easy to verify that

{z | uz(y) > g(y) for some y € A} = {z|Vn AP € Py s.t. uz(ANP) > g(z)}

= NneN Upep, {Z | z(ANP) = g(z)}
and
{z | pa(y) < g() for all y € A} = (Uken{z | pz(y) > g(z) + 1/k for some y € A})®,

where A° = X \ A is the complement of A. Since z — p, is a transition

probability and g is measurable, these sets are measurable. Finally,

{z|H@z)NA#0} =
{z | pz(y) > g() for some y € A} N {z | pz(y) < g(=) for all y € A},

hence H is measurable. [ ]

Corollary 4.4 Let © — pu, be a transition probability from X to'Y such
that py is atomic v-a.s. Then there exist measurable functions f, : X —
YU{0}, n =1,2,... such that v-a.s. (i) Up{fa(z)} = atom(ps),® (ii) if
fn(z) = fm(z) # 0 then m = n and (iit) fo(z) = fu(Z) whenever py = ps.

Proof: By Lemma 4.3 the correspondence z — atom(y;) has a measurable
selection f; such that v-a.s. fi(z) is maximal atom of p, and f!(z) = f}(2)
whenever p, = pz.

Define the function p! : X — P(Y)U {0} as the probability distribution
over Y \ {f1(z)} induced by p,. Note that if atom(u;) contains a single

point, then yul is not defined, in which case we set pl=0.

8In this union we identify the set that includes the empty set with the empty set.

12



p! is measurable, hence as before there exists a measurable function
fo: X — Y U {0} such that v-a.s. whenever ul # @, (i)f2(z) € atom(ul),
(ii) f2(z) is a largest atom of ul, and (iii) fo(z) = f2(2) whenever u} = pi.

Continue this way inductively, to generate a sequence of measurable func-
tions f, : X — YU{0} such that v-a.s. whenever A? = Y\{f1(z),..., fa(z)}
is not empty, fnt1(z) is a maximal atom of the probability distribution in-
duced by p, over A7. It is easy to see that (i) is satisfied, since at stage n
we choose a maximal atom of u?, and if u? > u? then p?*! > patl. (i) is
satisfied by the construction of y™*!, and (iii) is satisfied by the choice of

the measurable selections fp,. |

Corollary 4.5 Let £ — u, be a transition probability from X to Y such
that ug is atomic v-a.s. Then the set-valued function z +— atom(ug) is

measurable and has a measurable graph.

Proof: By Corollary 4.4, on a set of measure 1 z — atom(uz) is a union
of countably many measurable functions, hence it is measurable. Since T is

complete separable metric, this correspondence has a measurable graph. B

4.3 Equivalence Classes of Types

Let 1*(- | t;) be the conditional probability of 4 relative to each 7; as defined
in Section 4.1.2. For every type profile t = (t;), define

Ri(t) = Uiatom(ui(- | t:)-

In words, Ry(t) C 7 is the set of type profiles s to which at least one player

assigns positive probability when his type is the one given in ¢.°

9Recall that u’(- | #;) is a measure on 7 (not 7_;) with the property that it puts unit

mass on {t;} x T_;.

13



For every n > 1, define
Rps1(t) = User,, (¢ Ui atom (' (- | 8)).

Finally, we set

R(t) = Uan(t) .

Example 2 (continued): In this example,

{(t1,t1), (t2, t2), (t1,0.5 + 0.5¢1)}

Ri(t,t2) =
{ {(tl, tl), (tz,tz), (tl, 0.5 + 0.5t1), (2t2 — 1,t2)}

and R(0,0) = {(0,0), (0,0.5), (0.5,0,5), (0.5,0.75), (0.75,0.75), ...}

It is clear from the construction that:

Lemma 4.6 If s € R(t) then R(s) C R(t).

Lemma 4.7 R(t) is countable for every t.

ty < 0.5
to > 0.5

Proof: R;(t) is a finite union of countable sets, hence countable. By induc-

tion on n, Rpy1(t) is a countable union of countable sets, hence countable.

Finally, R(t) is a countable union of countable sets, hence countable. ~H

Lemma 4.8 The correspondences t — Ry(t) and t — R(t) are measurable.

Proof: By Corollary 4.5 the correspondence t — R;(t) is measurable. By

Corollary 4.4 there exist measurable functions fx : T — T, k= 1,2,..., such

that p-a.s. Un{fr(t)} = R1(t).1® Since Rni1(t) = UpRn(fi(t)), it follows

10By Corollary 4.4, the range of the functions fi is TU{0}. By redefining fi(t) = f1(t)

whenever it was equal to @ we get the result that we need.

14



by induction that t — R,y1(t) is measurable, and therefore ¢t — R(t) is

measurable as well. | |

Define
T*={t=(;):€T | ,u,i(t |t;) >0 Vi}.

That is, T* is the set of all type profiles t = (¢;); such that each player, when
his type is given by ¢;, puts positive probability on the profile ¢.

Lemma 4.9 T* € T and p(T*) = 1.
Proof: Define
St ={teT|pit|t;) >0} = Graph(t — Ri(t)).

By Lemma 4.8 SF is measurable, hence T* = N;S} is measurable.

If u(T*) < 1 then, since the number of players is finite, there exist two
players i and j and a subset ' € T such that u(F) > 0 and for every
t = (t;); € F, yi(t | t;) = 0 while p?(t | t;) > 0. In particular, for every
t=(t); € F, p'(F | t;) =0 < p(F | t;). Then

0= [ W(F |todu(®) = w(F) = [ #(F | t5)dn(t) > 0

a contradiction. [ |

As a corollary we get that R is an equivalence relation.

Corollary 4.10 For every t = (t;); € T* and s = (si); € T, if s € R(t)
then t € R(t). In particular, R(t) C T*.

Proof: Clearly, R; is symmetric: if s € R;(t), then for some player ¢,
s € atom(u®(- | t;)). But then, t; = s; (that is, player ¢ has the same type
in the two type profiles ¢ and s), so atom(ui(- | t;)) and atom(u'(- | s;))

15



coincide. This implies t € atom(u(- | s;), so we indeed have t € R;(s). The
proof for R follows by the definition of T* and induction. |

For every subset B C T, denote by proj;(B) the projection of B over
T;. Clearly proj;(R(t)) is countable for every t € T, as R(t) is countable for
everyte€T.

Lemma 4.11 For every s,t € T* and every i € I, R(s) = R(t) if and only
if proj;(R(s)) N proj;(R(t)) # 0.

Proof: Let s,t € T*. It is clear that if R(s) = R(t) then proj;(R(s)) N
proj;(R(t)) # 0.

Assume now that proj;(R(s)) N proj;(R(t)) # . Then there exist § =
(3i)i € R(s) and £ = (£;); € R(t) such that §; = ;. By the definition of
T*, pi(f | 8;),p4(8 | £) > 0, hence £ € R(s) and § € R(t). It follows that
R(t) C R(s) and R(s) C R(t), as desired. [ |

Example 2 (continued): One can take T* = {t | t; = t2} U{t | t2 =
0.5 4+ 0.5t;}. Note that for every t ¢ T*, R(t) = R(t1,t1) U R(t2,12). [

We summarize the results so far in the following proposition.

Proposition 4.12 There exists a set T* € T such that
1. w(T*)=1.

2. For every t € T* and every s € R(t), (i) s € T*, (i) R(t) C T* and
(ii3) R(s) = R(t).

3. For every s,t € T*, proj,(R(s))Nproj;(R(t)) # 0 if and only if R(s) =
R(t).

16



Let T* be the set defined by Proposition 4.12. Define a correspondence
Y; : T; — T as follows.

R(s) t; € proj;(R(s)) for some s =€ T™*.
Yi(ti) = )
0 Otherwise.

By Lemma 4.11, 1; is well defined. The information available to each player
i is his type t;, and therefore the type profiles that indirectly affect his payoff
are the type profiles in ¥;(t;). '

Corollary 4.13 1; is measurable.

Proof: Let f : T, — T U be a measurable function that assigns to every
type t; an element in atom(u(- | ¢;)) whenever the latter is not empty, and
is the empty set otherwise. By Lemma 4.3 such a function exists. On T,
¥i(t;) = R(f(t;)) is a composition of a measurable correspondence and a
measurable function. Since T is complete separable metric, it follows that

1); is measurable. [ |

4.4 Standard Games

Definition 4.14 A standard game is a game with incomplete information

where
o The set of players is I.
e The type space of each player is the set of positive integers N.
e The action space of player i is A;.

The game is parameterized by (i) an information structure, which is a

(atomic) probability distribution over the space NT of type profiles and by

17



(ii) measurable payoff functions u® : NI x A — R such that for every fized
type profile k € NI, ui(k,-) is continuous over A.

The space of strategy profiles in a standard game is 2 = (P(A)N)!. Since
A is compact, P(A) is compact in the w*-topology. Hence ¥ is compact when
it is equipped with the product topology.

Let G be the space of all standard games. We endow the space F(A4,R) of
continuous real-valued functions defined over A by the supremum topology,
and the space G C (F(4,R) x [0, 1])NI of standard games by the product
topology ([0, 1] is endowed with the usual topology). Since F(4,R) and
[0, 1] are complete separable metric spaces under these topologies, it follows
that G is complete separable metric as well.

It follows from Proposition 3 and Theorem 1 in M-W that each standard
game admits an equilibrium. Thus, the correspondence E : G — ¥ that
assigns to each standard game G the set of Nash equilibrium strategy profiles
in the game has non-empty values.

Our next goal is to show that this correspondence is upper-semi-continuous.
This result does not follow from Theorem 2 in M-W, since their topology

on the space F(A, R)NI is that of uniform convergence.
Lemma 4.15 The correspondence E is upper-semi-continuous.

Proof: Let G™ = (u", (ul');) be a sequence of standard games that converges
to G = (u, (u;);). For each n let (oF*); be a strategy profile in G™ such that
o — o for every i.

It is immediate to verify that

/W/Au?(k,a)da"(a)d#n(k) —»/W/Aui(k,a)da(a)dy(k)

which implies that a limit of a sequence of equilibrium strategy profiles in

G™ is an equilibrium strategy profile in G. |
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For each player i, let ji* € P(T;) be the marginal probability distribution
of player .1
By Corollary 4.4 and Proposition 4.12 there exist measurable functions

fi.T; - TU{0}, n=1,2,..., that satisfy the following ft-a.s.:
L Un{f(t)} = atom(@i(- | ).
2. If fi(t;) = fi.(t:;) # 0 then m =n.
3. fi(t;) = fi(f;) whenever R(t) = R({).

For every type profile t we define a corresponding standard game G(t)

as follows.

e The information structure is given by:

ik, .. k1) = n(fa, (t1), -5 fi, (1))
whenever f,il, (t) # 0 for every i € I, and 0 otherwise.
e The payoff is given by
u(k, a) = u(fg, (t1), - --» i, (t1), )
whenever f7 (t) # 0 for every i € I, and 0 otherwise.
Note that if R(s) = R(t) then G(s) = G(t). Thus, we can write G(R(t))
instead of G(t). By convention, G(0) is an arbitrary fixed game.
4.5 The Final Proof

Proof of Theorem 1:
Recall that by Proposition 4.12 there exists a set T* € T that satisfies the

following conditions

UThat is, for every set A C T;, a*(A4) = u(A x T-;).
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1. u(T*)=1.

2. For every t € T* and every s € R(t), (i) s € T*, (ii) R(t) € T* and
(iii) R(s) = R(t).

3. For every s,t € T* and every player i, proj;(R(s)) N proj;(R(t)) # 0 if
and only if R(s) = R(t).

Define
R' = {proj,(R(t)),t € T"}.
Each set in R* is countable, and the union of all these sets has /i’ measure
1.

Let A’ be the coarsest sub-o-algebra of 7; for which all the sets in R*
are measurable. Let v* be a disintegration of 4* w.r.t. A;. In particular,
V(- | t;) is a measure over T; that is carried by proj;(R(t-:,t:)) whenever
(t_;,t;) € atom(u’(- | t:)).

Define the correspondence E} : t; — E(G(¥(t;))). That is, for each type
t; we assign the set of Nash equilibrium strategy profiles in the standard
game that is defined by the equivalence class that ¢; belongs to.

Since the correspondence E is upper-semi-continuous, E has closed val-
ues. Since F is upper-semi-continuous, the pre-image of any closed set under
E is closed. Since G is continuous, the pre-image of any closed set under
G is closed as well. Since 1 is measurable, the pre-image of any closed set
under v is measurable. Hence the pre-image of any closed set under Ej is
measurable, and in particular E} is measurable.

By Lemma 4.2, there exist measurable functions (e;); such that each e;
is a selection of E}, and e;(t;) = e;(s;) whenever ¢(t;) = %(s;), which is
equivalent to t;, s; € proj;(R(f)) for some € T.

Moreover, e;(t;) = e;(s;) whenever thereisf € T such that ¢; € proj;(R(%))
and s; € proj; (R(f)).
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Thus, for each t € T*, e;(t;) is an equilibrium strategy profile in the
standard game induced by R(t). Moreover, for every equivalence class R(t)
and every s € R(t), (ei(s;)); all refer to the same equilibrium strategy profile
in the game defined by R(t).

We are now ready to define the equilibrium strategy of player i in the
game. The equilibrium strategy profile of player i is to play the mixed-action
prescribed for him by the profile e;(¢;) when his realized type is ¢;.

Since p(T*) = 1 and whenever the realized type profile  is in T* all the
players play the same equilibrium in R(t), the strategy profile induced by

(€;); indeed forms an equilibrium. |
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