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Abstract

In this paper I consider a dynamically complete market model with-
out intrinsic uncertainty. The only uncertainty is modelled by sunspots.
Agents’ beliefs are heterogeneous, but eventually become homogeneous in
the sense that agents’ beliefs are identical in the limit. I show that if some
states of nature occur rarely then arbitrarily large market crashes may oc-
cur infinitely often. This result contrasts with Cass and Shell’s (83) results
which show that when beliefs are homogeneous, in complete markets with-
out intrinsic uncertainty, sunspots do not matter.
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1. Introduction

There has been considerable amount of interest concerning the economic implica-
tions of speculative trade generated by differences in beliefs. For example, Harris
and Raviv (93) argue that speculative trading accounts for a major part of stock
market operations and they show how differences in opinion may help explain
erpirical regularities concerning prices and volume of trade. This view is re-
inforced by Kandel and Pearson (95), who show that the empirical evidence of
volume of trade and stock returns around public announcements is inconsistent.
with the hypothesis that agents interpret this information identically. Kurz (97)
and Timmermann (93) show how agents’ disagreements about. future probabilities
may help explain the predictability of excess returns and the excess volatility of
stock prices. Morris (96), based on a model developed by Harrison and Kreps
(78), shows how a heterogencous beliefs may help explain the pricing of initial
public offerings. Nyarko (91) obtains cycles in a model in which a monopolist. sets
prices according to incorrect beliefs.! However, it has been conjectured that spec-
ulative trade should eventually disappear if agents learn over time i.e., if agents’
posterior beliefs converge to the true distribution. In this paper, I present an
example in which speculative trade remains relevant, although there is no asym-
metric information and agents’ posterior beliefs eventually become identical (and
correct).

A key feature of the example is that some events occur with vanishing proba-
bility. It is clearly difficult to ascertain the probabilities of rare events and, conse-
quently, it is natural to expect that agents will disagree about these probabilities.
For example, stock market crashes (and other relevant economic phenomena) do
not happen often. It is likely that most agents believe that the probability of
a stock market crash is small, but some agents believe that this probability is
smaller than do others. Thinking a market crash more likely, pessimistic agents
may be more inclined to buy bonds, while optimistic agents may be more inclined
to buy stock. The main theoretical question is whether heterogeneity of beliefs
allows for the existence, in equilibrium, of a rare phenomenon, such as a market
crash, which otherwise would be impossible if all agents held identical beliefs.
Morcover, can this phenomenon persist even if agents’ beliefs eventually become
identical?

Assume that markets are frictionless and dynamically complete, and that there

'See Morris (95) for an excellent overview of some of these issues.
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is no intrinsic uncertainty. The only uncertainty is sunspots. Cass and Shell
(83) have shown that if agents have homogeneous beliefs then sunspots do not
matter.? In particular, extrinsic uncertainty can not generate a market crash
regardless of whether or not some sunspots occur infrequently. These results are
of great theoretical importance because they identify the environments in which
extrinsic uncertainty matters.®> However, the assumption that agents have rational
expectations is extreme. A weaker and more natural requirement might be that
agents have prior beliefs which are not exactly correct. Then, after observing
enough data, agents’ predictions would converge to the true distribution.? In this
paper, it is shown that if the conditional probability of a sunspot vanishes over
time then sunspots may continue matter.

Consider a standard dynamic asset pricing model in which there exists a long-
lived tree, as in Lucas’ (78) model, and a risk-free asset. There arc two states of
nature h and [. The probability of state [ vanishes over time slowly enough so that {
occurs infinitely often. The tree gives the same fruits in both states. Therefore, the
states h and [ may be interpreted as sunspots. The number of assets (two) is the
same as the number of states (two) and markets are dynamically complete. Two
long-lived agents maximize an expected discounted logarithmic utility function
according to their beliefs and discount factor. Both agents believe that state (
has vanishing probability. Hence, there is convergence to rational expectations in
the standard sense that, in the limit, both agents’ beliefs are correct. However,
agents’ belicfs are different because they believe that the probability of state [
vanishes at different rates.

An e—market crash occurs infinitely often if the gross return on a share of a
tree is smaller than ¢ infinitely often. The central result in this paper is that, for
every € > (), there exist discount factors for both agents such that, in equilibrium,
an —market crash occurs infinitely often. Hence, sunspots matter.

The intuition behind the result is as follows: Assume that the propensity to

2 A related result was obtained by Milgrom and Stokey (81), who show that under the common
prior assumption and complete markets, no speculative trade is possible.

3There exists a considerable literature showing that if there are frictions in the economy then
market crashes (interpreted as a discontinuity in equilibrium prices) may occur. These papers
usually consider a repeated static economy with asymmetric information. A price discontinuity
may arise because of differences in information revealed by prices. See, for example, Gennotte
and Leland (90), Jacklin, Kleidon and Pfleiderer (92), Romer (93), Caplin and Leahy (94), and
AMadrigal and Scheinkman (97).

*See Woodford (90) for a learning model of sunspots



save of some agents is greater than that of others. For example, assume that
some agents are more patient than others. The price of a share will be high if the
wealth is concentrated in the hands of more patient agents because they value the
tree the most. The price of a share will be low if the wealth is concentrated in the
hands of less patient agents because they value the tree the least. If agents’ beliefs
are heterogeneous there will be speculative trade in the economy. Therefore, share
prices will fluctuate as the wealth becomes more or less concentrated in the hands
of agents with different discount factors. I assume that the more patient agent
believes that the rare state, [, has lower probability than does the less patient
agent. If there is a market crash associated with state [, then patient agents will
be more inclined to buy stocks than impatient agents because they assign smaller
probability to market crashes. Therefore, when state [ occurs and the market
crashes, the wealth becomes more concentrated in the hands of the impatient
agent. This is consistent with a drop in share prices because impatient agents
value the tree the least.

After the crash there may not necessarily be a quick share price rebound,
although no bad information about the tree has been revealed by the crash nor has
such information been generated by the realization of a state of nature (because
those states are sunspots).> The patient agents would like to buy more shares then
they did before the crash, but they may not precisely because a significant part of
their wealth was lost during the crash. It may take time for share prices to return
to the same level as before the crash and it may take time for the patient agents
to recover the wealth lost during the crash. This eventually happens partially
because patient agents exchange current consumption for future consumption,
and partially because their speculative trade generates wealth when state h occurs
and, consequently, the market return is greater than interest rates. Before patient
agents accumulate a significant fraction of the total wealth the state [ may happen,
but the market will not necessarily crash (in the sense of there being a very small
return). Perhaps only a small decline in prices will be observed. A Narket crash
will only occur if [ happens and the patient agents hold a significant portion of
the total wealth. Thus, a market crash is more likely to occur after a long period
in which most of the time market returns are greater than interest rates.

In this paper, agents are long-lived and they have different discount factors
and different beliefs. If the wealth eventually ends up in the hands of a single

“Aoreover, in the examples in this paper, the conditional probabilities of states of nature do
not depend upon past histories nor on current outcomes. It depends only on time.



agent then prices will eventually be as if there is a representative agent in the
economy. Hence, market crashes will eventually cease. So, in the examples pre-
sented in this paper, agents’ discount factors and beliefs are chosen such that the
wealth does not become concentrated in a single agent’s hands.® This restric-
tion makes these examples somewhat special, but in a very precise way. Agents’
characteristics must. be such that the wealth bounces back and forth between
them. This restriction must always be satisfied in models where there are a few
long-lived agents and the core economic issue is related to permanent interactions
between two or more agents. An alternative modeling choice would be to con-
sider an overlapping generation model because natural death would, of course,
stop the transactions between the agents. Then, agents’ characteristics would not
have to be precisely chosen in order for meaningful interactions among different
agents to continue eternally. However, introducing natural death may not add a
relevant insight to the ideas presented in this example. Moreover, this modelling
choice would, perhaps, make the analysis less transparent because sunspots may
matter in overlapping generations models under rational expectations. Hence,
the contrast between the complete irrelevance of sunspots when agents’ beliefs
are homogeneous and the possibility of recurrent market crashes when there is
convergence to rational expectations may not be present in an overlapping gener-
ations model. This contrast shows that, in the model presented in this paper, the
market crashes are associated with speculative trade.

The general conclusion of this paper is that it is possible for speculative trade,
generated by a difference in opinions regarding rare events, to persist even if
agents’ beliefs become eventually identical. This speculative trade may induce
the wealth to bounce back and forth among agents with different propensities to
save. These fluctuations may, in turn, be associated with market crashes which
could not exist if agents’ beliefs were identical.

This paper is organized as follows: The model is presented in section 2. Con-
vergence to rational expectation is defined in section 3. In section 4, agents’
beliefs and the true probabilities are defined. The central result is presented and
demonstrated in section 5. Section 6 concludes the paper.

“In the example presented in this paper, agents have identical preferences over risk and
identical beliefs, in the limit, but different discount factors. A surprising feature of this example
is that the wealth may bounce back and forth between the agents and does not necessarily
become concentrated in the hands of the most patient agent. This would not be possible if the
conditional probabilities of the sunspots were bounded away from zero.
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2. Frictionless Markets Without Intrinsic Uncertainty

In this section, the basic framework is described. Time is discrete and continues
forever. There are two long-lived agents, a long-lived tree, a risk-free asset in
zero supply, a single consumption good ¢, and two states of nature given by the
set. ¥ = {h,l}. Markets are dynamically complete. The tree gives d units of
consumption in every state of nature. Hence, there is no intrinsic uncertainty.
The only uncertainty is price uncertainty modeled by sunspots.

Agents are born with shares of the tree, as in Lucas’ (78) model, and receive
no other endowments. Agent 4’s initial share is k}. Hence, k} + k7 = 1.

Let. Zt, 1 <t < oo, be the set of all t-histories. Let &; C .3y C ... C S be
the filtration on > 7 where 3 is the o-algebra generated by all ¢-histories, and
< is the g-algebra generated by the algebra 3% = | S,

t>1

At period ¢, agent i’s consumption, share holdings, and bond holdings are ¢} |
ki, and b} respectively. Share prices and interest rates are p; and 4, respectively.
The variables ¢!, ki, b, p;, and 7, are assumed to be ¥, —measurable.

The market value of agent ¢’s assets before consumption takes place is defined
by w! = (p; + d)k! + bi. T will refer to w; as agent i’s wealth.

At period t, agent ¢’s observed and anticipated budget constraints are

i i b;+j+1 i i i i

Craj T Prejhi + fees = (P + derj)biy; + by ey 2 05wy 2 0.

1+)

Markets clear at period ¢ if
el =d b+ =0,and k! + K =1.

Let P and IP' be probability measures on (£, ) representing the true prob-
ability measure and agent i’s belief about the histories of states of nature.
At period ¢, agent i’s expected discounted utility function is given by

E™ 8N (8 log(chy ) /S p
7=0

where ' is agent i’s discount. factor, and E¥" is the expectations operator associ-
ated with agent i’s belief P'.

In equilibrium, agents maximize expected discounted utility subject to the
budget constraints, and markets clear in every period.



3. Learning

In this section, convergence to rational expectations is defined. In arational expec-
tations equilibrium, agents’ beliefs are identical to the true probability measure.
That is, in a rational expectations equilibrium, P* = P. Hence, agents’ beliefs
are exactly correct. In this case, it follows from Cass and Shell (83) that equi-
librium allocations may vary with time but not with states of nature. Therefore,
equilibrinm allocations are deterministic. In this example, if both agents have
rational expectations, and identical discount factors, then share prices would be
constant. But, if agents have different discount factors then share prices increase
deterministically since the agent with the highest discount factor accumulates all
wealth.

A weaker requirement than rational expectations is that agents have prior
beliefs which are not exactly correct, but, after observing enough data, their
predictions converge to the true distribution. In this case, convergence to rational
expectations obtains. To measure the distance between the true probability and
agents’ beliefs we use the standard metric associated with the weak topology. The
distance, d. between two probability measures (@ and Q) is given by

0052 (s
k=1

A€

QL) - Q)

According to the distance d, two probability measures are close if they assign
similar probabilities to all events except, possibly, those in the distant future.
Given a t—history s, € &', let P, and P! be the true posterior probabilities

and agent i’s posterior belief, respectively.

Definition 1. Convergence to rational expectations occurs if there exists a set €}
such that P(Q) = 1. and for every s € Q, s = (54, ..),

d(Pi P,,) — 0.

§¢7
¢ t—oc

That is, convergence to rational expectations occurs if both agents’ posterior
beliefs are eventually arbitrarily close to the true distribution.”

"In a game-theoretic framework, Lehrer and Smorodinsky (97) and Sandroni (97a) showed
that if players eventually make accurate short-run predictions then the actual play is close to a
Nash equilibrium play. A similar result could be obtained in this model.



4. Rare Events

In this section, true probabilities and agents’ beliefs are specified. Let 6 > 0 be a
parameter of the model. Let the function y be defined by

6 +1n <1‘L§;ﬁ;6>
y(t) = - Int?
Slnt+1n (——1’”_"4 )

Int—1

It is easy to check that limy(¢) = 1. NMoreover, if the period ¢ is greater or equal

t—oc
to 3 then % € (0,1); &= € (0,1); and 1 € (0,1).

The true probability of the state of nature [, conditional on all information
available at period t — 1, t > 3., is 17{1((?).

Agent 1 believes that the probability of the state of nature [, conditional on
all information available at period ¢t — 1, ¢t > 3, is ﬁ

Agent 2 believes that the probability of the state of nature {, conditional on
all information available at period t — 1, ¢ > 3, is té—}n—t

Agents’ beliefs and the true probability of the state of nature [ at period 1 are
not relevant and, therefore, are not defined.

Clearly, the state of nature [ is the rare event. Convergence to rational ex-
pectations occurs because the state [ has vanishing probability and both agents
believe that state | has a vanishing probability. However, agent 2 believes the
probability of state [ vanishes faster than it actually does.

The probability of the state of nature [ converges to zero slowly. By the Borel-
Cantelli lemma, [ will occur infinitely often. Narket crashes will be associated
with the rare event [. That is. the market will crash only when [ occurs. However,
in the limit economy, when agents have rational expectations, the state of nature
[ has probability zero. Hence, when there are rare events, there is no logical
contradiction between the fact that a certain phenomenon cannot occur under
rational expectations and the possibility that the same phenomenon will occur

infinitely often during the learning process of convergence to rational expectations.

8The results would be the same if y(¢) were simply defined as 1. However, the complicated
expression for y(t) will actually simplify some calculations.



5. Recurrent Market Crashes

The main result is described in this section. The gross return of a share of the
tree is &, = %ld. I refer to ®, as the market return.

Definition 2. Given a path s ¢ ©>°, an e—market crash occurs at period t if
®,(s) < e. An e—market crash occurs infinitely often if there exists a set ) €
such that P(Q) = 1, and for every s € ), an e—market crash occurs at infinitely
many periods.

In equilibrium, a O-market crash cannot occur. Even if the tree becomes
worthless, i.e., p, = 0, the market return would still be %~ > 0. If an e—market
crash occurs ‘rhen the gross return of the share is smaller then . In this case, the
value of a share and its dividends is the fraction ¢ of the value of a share during
the last period.

The interpretation of a market crash is that there is an extremely low market,

return. I will not specify precisely how low the market return must be to qualify
as a market crash. Instead, I show that, for all ¢ > 0, an e—market crash may
arise as an equilibrium phenomenon.

Both agents arc assumed to hold log utility functions. The true probability
measure and agents’ beliefs are fully specified, given the parameter 6. Therefore,
the economy is defined given ¢ and the discount factors 3 and $%. The main
objective of this section is to prove that there exists an economy such that, in
equilibrium, the market will crash infinitely often.

Proposition 1. For every £ > 0, there exists an economy (5,5’1,5’2) such that,
in equilibrium, an s—market crash occurs infinitely often.

Proposition 1 will be demonstrated as follows: First, the equilibrium market
return will be calculated as a function of agents’ discount factors and agents’
relative wealth. Second, it will be shown that under certain restrictions on the
parameters of the model, the wealth will bounce back and forth between the two
agents. Then, it will be shown that some fluctuations in agents’ relative wealth
are be associated with market crashes. Noreover, these fluctuations in agents’
relative wealth recur.

Let 6 =1 — C' be agent i’s saving ratio. It is known that if agents have
log utility then ‘rheu optimal savings ratio is identical to their discount factor.
Lemma 1. below, shows this result in the model presented in this paper.



Lemma 1. The optimal savings ratio of agent i is §;' = /3.
Proof - See Appendix.

Lemma 1 simplifies many calculations. This simplification is the primary rea-
son why it is assumed that both agents have log utility functions. The central
result should extend to other utility functions, but explicit expressions relating
the market return and agents’ relative wealth would be more difficult to obtain.

Let w, = w! + w? be the aggregate wealth. Let @} = 1’:—2 be agent i’s fraction

. 2 )
of the aggregate wealth. Let v = % be agent 2’s relative wealth.
t

2

.. v e .

By definition, w;} = H—lug and w? = o7 In equilibrium, w; = p; + d, and
1 t

¢t = (1 — 3")wi. Moreover,
d d

1-8w +(1 - el = — = d= ——.
(1= + {1 =)=, wy Pet (1- 8w+ (1= 5w}

Hence,

d(1+ v?)
(1=61)+ (1 -8

d(8' + p2E)
(=30 + (1=

p+d= and p; =

Therefore. the market return can be computed as a function of the agents’ discount

factor and the ratio of agent 2’s wealth relative to agents 1’s wealth. That is,

(1-p5Y+ (1= 8y (1+v)
(B +80f) (L= + (=8,

D1 =

For future reference, let us call the expression above equation 1. Let n?, | =

2
v . . . . . .
—41 be the ratio of agent 2’s relative wealth in consecutive periods. With some

t
clementary calculus, it is possible to show that lemma 2, below, follows from
equation 1.

Lemma 2. For every £ > 0, there exist (8%, 3%), 3% > B, and strictly positive

numbers ¥, @, and i} such that if ¢ < v} < 7 and n},; < 7, then &, < €.
Moreover, if v} > 7 and v7,; < ¢ then ;. < =.

10



Proof - See Appendix.

Lemma 2 shows that there exist discount factors such that the market will
crash in two situations: first, if the relative wealth of agent 2 is within certain
limits and becomes smaller during the next period; and second, if the relative
wealth of agent 2 is starts above a certain level and during the next period falls
below another level. In both cases, the market crash is associated with a wealth
transfer from agent 2 to agent 1. This makes intuitive sense. Assume that agent.
1 is a representative agent in this economy. Then, in equilibrium, the price of a
share would be p; = dl{g% On the other hand, if agent 2 is a representative agent

in the economy then, in equilibrium, the price of a share would be p; = dl—fﬂg—.z. So,
lower share prices are associated with lower relative wealth in the hands of more
patient agents.

Clearly, agents’ relative wealth is fundamentally important in determining
market returns. Lemma 3, below, shows that if agent 2 is more patient than
agent 1, then there exists a true probability measure and agents’ beliefs, given
by a parameter 8, such that the wealth will bounce back and forth between the
agents.

Lemma 3. If 3% > 3! then there cxists a parameter § and a set Q € § such that
P(Q)) =1 and for every s € Q, limsupv? (s) = oc and liminf v?(s) = 0.

t—o0 t—0o0

Proof - Sce Appendix.

Lemma 3 is quite surprising. The two agents have the same utility function
and their beliefs are similar in the sense that both agents’ posterior beliefs are
ceventually arbitrarily close to the true probability distribution. However, their
discount. factors may be completely different and the wealth may still bounce
back and forth between them. This could not occur if there were no rare events.
For instance, it follows from Sandroni (97b) that if convergence to rational ex-
pectations occurs and the conditional probability of states of nature next period
arc bounded away from zero, then the aggregate wealth will eventually be con-
centrated in the hands of the most patient agent even if the difference between
the discount factors is small.

The dual result of lemma 3 is also true. Given 6, there exist. 4* and 3% such that
the wealth will bounce back and forth between the two agents. The relationship

11



that agents’ beliefs and discount factors must satisfy is In3? = In ' + 6. If this
is not satisfied, then the wealth will end up in the hands of a single agent and
share prices will be as if there were a representative agent in the economy. In this
case, of course, share prices converge to a certain level and market crashes will
not occur after a certain period.

Lemma 4. For every path s € ¥, s = (s,_1,1,...), limn?(s) = 0. Moreover, if
t—o0

3% > B! then for every path s € ¥, s = (s;_1,h,...), n7(s) = 1.

Proof - See Appendix.

Lemma 4 shows that agent 2’s relative wealth will decrease if [ happens and
increase if h happens. This is natural because agent 2 assigns a higher probability
to h than does agent 1. Morcover, lemma 4 shows that agent 2’s relative wealth
will be much smaller than before if | happens. This result, per se, does not
imply that once [ happens most of the wealth will go to agent 1, because before [
happened the wealth could have been very concentrated in agent 2’s hands.

The proof of proposition 1 is now as follows: Fix ¢ > 0. Let 3%, 3!, 7, ¢, and
7 be defined as in lemma 2. By lemma 3, there exists 6 such that limsup v? = o

t—oc
and liminf Uf = (. By lemma 4, there exists a time ¢ such that if t > t and [

t—oo

occurs at period ¢ then 7? is smaller than 7. By lemma 3, after period ¢, agent 2’s
relative wealth will cross @ downwards infinitely often. That is, after period £, v?
will be higher than ¢ and v2 ;| will be smaller than ¢ infinitely often. If v} > 7
then, by lemma 2, an s—market crash will occeur at period ¢ + 1. If 2 < 7 then [
must have occurred at ¢ + 1, otherwise, by lemma 4, v? would have risen. Then,
17, is smaller than 7. Hence, by lemma 2, an e—market crash will occur at period
t + 1. Therefore, an e—market crash occurs infinitely often.

6. Conclusion

In this paper, I consider a dynamically complete market model without intrinsic
uncertainty. Speculative trade, generated by differences in opinion regarding the
probability of rare events, may result in wealth bouncing back and forth between
agents with different propensities to save. These fluctuations of relative wealth

12



may, in turn, be associated with market crashes which could not exist if agents’
beliefs were identical. These market crashes may not cease to occur even if agents’
beliefs become eventually identical.

7. Appendix

Proof of Lemma 1 - Consider period 0. The proof in all other periods is
analogous. The fraction of agent ¢’s savings allocated in tree shares and in the
risk-free asset are defined by

AZ t4+1
i (i iy — t+1 i
ap = (aj,. 1 —aj) = b ,i
okt Ll Dkt !
(1T . Pt t+1 T ir.

Let 7., be (¥, i;). By definition, agent i’s budget constraint can also be
written as

wi oy = widi(agr), ¢ = (1— 6w

>0 0<6<1.t=0.
Note that

t—1
uf = i [ 8ok
k=0
and
log(ch) + B {Z ()" log(e >/\so}
t=1
log (1 — &) + log (w)) + E” {Z log (1= 6w )/\50}:
oG : t—1
log (1 — &) + log (w)) + £ {Z 'log ( (1-— 6;)wéH6 (akrk+1)> /\So} =
t=1 k=0
log (1—&3) + Y (3) E” {log(aym)/So} + > (8')" log(8))
t=1 t=1

+ extra terms that do not depend on & and aj).

13



Thus,
ayt = argmax E7 {log (ajr) /So} and é;' = argmaxlog (1

The first order conditions of the problem above imply that

1 3 1 ; i d 1
R = & =4 and BV { —2/Spp = 0.
1 — 6 - [)’6*1 agir
g.e.d.
Consider the function f(z) = Si% The derivative of f is %(T) : (%;%’g

Hence, f is a non-decreasing function of x if de > eb and f is a non-increasing
function of z if de < eb. For future reference, lets call this result lemma A.1.

Proof of lemma 2 Fix £ > 0. Let ¢ and 7 be defined by

4 16
l+p=—-and 1+7=—.
£ £

Consider the functions hi(a) = 11: o(a) = 1;” 111; Clearly, hi(a) and hs(a)

as a goes to infinity. Let @ > 1 be large enough such that

converges to

1+2 3 1+114 (,9 £
¢ < - and a - -
1+¢ 3 1+71+% 3
. . . . 141 1+ 5
Consider the functions g(3'. 5%) = T and k(3', 3?) = e e 1%5 Clearly,
. 1+ 2 e ) 1+114 6 -
lim (8", 3%) = —2 < - and lim k(3. 5°%) = - +(€ < -
s,y 1+ 3 g1, gy 1+TI+Z 3
(1-31) = a(1-32) (1-81) = a(1-432)
Let 5% and 3" be such that
1+ € 1+ 149 ¢
(1—31)25(1—32)7_“,_\—; and —2— +t<i.
g+ 32 2 4+ 327142 2

14



Consider the function u(n) = 31a++ ﬁTz - = + =, Clearly, u(n) converges to 7 [32

as 71 goes to infinity. Let 7 be large enough such that

N> |m

a+T 1+Tn
8+ B2 a+<,,77

By the definition of nZ, |, and equation 1,

o . 1=+ =8w  (L+vi)
! (B + 727 (1=8Y+ (1- B84t

However, (1 — 3') = a(1 — 3?). Then,

&+Vt,2 (1+Vt71t+1)
(3" + 52}) ((z +v; 77t,+1) '

Pryy =

Assume that /; <vi<Foand 7, <7
Note that if £ < 4 then ¢ < 7. Moreover, by definition, a > 1. Hence, a7 > ¢.
By lemma A.1, LT,Q is an inc reasmg functlon of 7. Therefore, if n7,; < 7 then

+¢n

(Ltviny) | is smaller than . Thus, by the definition of 7,

fL+U;T]‘f+1
(1+1/,77,+1)< a+7 1+77
+ B2@)a+ o1

= 2
a -+ v <.
X &

Q) = — — - < —
T3+ ) (a+vind,) (B

Assume that v} > 7 and v}, < ¢.
(1+u,?7],2+1) .

14+vin ] ) . . 2 9 9
By lemma A.l. (v, increases with v = v?, .. Hence is
y RNV 3€S t hi+1 t+1 » arvind, )

a+v{ M1

smaller than 112,
a2
a+v? a+v? .
By lemma A.1. ﬂf—i’g—z decreases with v?. Hence, —s—=t— is smaller than
J C(31+3 t- > (B1+52v7)

(—-3%;—%) Thus, by the deﬁmtlon of 3% and 3!,

N
™

Byy, = _1&+1/52 (1 +viniy) < G+T 1+o
(B'+ 3 Vt)(a+Vt77t+1) (B +

@D
[}
2
)
+
Y
Do ™M

g.e.d.

15



Let z; be a $;—measurable random variable defined by
P; (C(s1))
i(s)=In| = ——— | + 6.
Jf<<5> 11 <Pslt_1(C(St))

where s = (5;,..) € ®, 5, € X', 5, = (s;_1,a), s;-1 €27 ae X,
By the definition of agents beliefs P! and P’?, r, = —éInt + 6 if [ occurs at
period ¢, and z; = In <I“""’_6> +6 if h occurs at period t. Hence, by the definition

Int—-1
of y(t) and the true probability measure P, if ¢ > 3 then

: : t Int —t°
EP {2/S 1} = ~oyt) + (1 — M)hl <1111T_1—> +6=0.

Let Var” {z,;/3,_1} be the conditional variances of z; according to the prob-
ability P. By definition,

, ‘ t Int —t=0\\"
Vart (a3} = @y e+ (1 - 20 (1“ (JD -

Int Int -1

Hence, Var? {z,/S, 1} > 6*(Int — 1). Therefore,

o2C
Z Var’ {z,/3_1} = oc.
1=3

m

Let T, be Y Var?” {z;/S_1} . Then, T, = 3 §*(Int — 1). Moreover, Int goes
t=3 t=3

to infinity as iittlg‘O(%s to infinity. Hence, there exists m such that if m > m then
1, = m.

It is easy to check, by L’Hopital theorem, that the ratio ﬁ%ﬁ goes to

In(m+1) —(m+1)~¢
In(m+1) —1

infinity as m goes to infinity. Moreover, In < ) + 6 goes to 6 as m

rnU.’Za

goes to infinity. Hence, the ratio

oes to infinity as m goes
ntmt 1) ("0 4 O y g
In(m+1) —1

to infinity. Thercfore, there exists a positive constant ¢ such that

; n(m+1) — (m+1)"
C(Tm)o'Q"2max{ln<n(m+ ) (m+1) >+6, (5111(m+1)+6}

In +6

In(m+1) —1
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for every m = 3.
Let e(b) = (b=, Let ¢(b) = b°3. Clearly, ¢(b) = (b~"*® tends to zero as b
goes to infinity and €(b)o(b) is a non-decreasing function of b. By construction,

22| < e(Tn)o(Tn).

m

Let S,, be > a;. By Freedman (75), proposition 2.6,
=3

limsup S,, = o¢ and liminf §,, = —oc a.s. P.

m—oC Tm-—00

For future reference, lets call this last result lemma A.2.

Proof of Lemmas 3 and 4 Assume that In 3% = In 3" + 6.

Agents’ first order conditions imply that, in equilibrium, for every path s =
(Sms ) S Ex? Sm € Em,’

(3" PAC(sm))(c(s) ™ _ X

2
(81" PHC(sm)) ()™t AV
where A is agent ¢’s Lagrange multiplier.
By lemma 1,
(3" PAC () 4, AT1— 32
m—1 = l/n7,(8>_1 1°
(BH)" " PHC(sm)) A1 -0

Taking logs on both sides,

3? P C(sm)) ) A1 - 32
(m—1)In 31 +In PLClom)) =Inv;(s)+In N1 g
By assumption,
P*(C(sm)) N1 — 3

InvZ(s) = mé+1n -1

PHC(sy))  A1—3

By Bayes’ rule,

m

P(C(s,) _ T )
PYC(sm)) ﬁpslH(C(st))

t=2
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where s, = (84, .....).
Hence,
4 m P2 (C(sq9)) . N1 -3
2 00) — , 51 _ .
Inv: (s) = ;:3 T+ In P (C5) +6—1In N1

By lemma A.2,

< 2 S 2 _
limsupv;, = oc and liminfv;, =0 a.s. P.

The equation above proves lemma 3. In order to prove lemma 4, consider again
the equality
(8" P Clsm)) o, N1= 3
m—1 = Vm(s)_l 1°
(3™ PHC(sm)) A1=p

Then,

BPE (Clsmin))  Vhns)

Sm

OIPL (Clsmar))  V2(s)

If the state of nature [ at period m + 1 occurs then, by definition,

= Nms1($).

P? (C(smy1))

Sm

]Dsl,,, (C(Sm+1 ))

Hence, 7,1 (s) is arbitrarily small if the state of nature [ at period m +1 and m is

321)2 C S L.
large enough. Moreover, 7, ,(s) = Tlﬁ% and, by the definition of agents’
P2 (Csmy1)) 0

o TTE is greater than 1 if h happens at period ¢ + 1.

Sm

— ¢

beliefs

q.e.d.
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