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Abstract

A folk theorem of game theory illustrates that strategic use of
reputation can drastically alter the equilibrium play of an isolated
group of n-players engaged in a finitely repeated game. We show that
this folk theorem may fail in social settings where many groups of
n-plavers play the game. as the ability to strategically use reputation
dies out over time due to players’ opportunity to observe the play
of earlier groups. This phenomenon is demonstrated in a model of
Bayesian recurring games by using old and new techniques from the
rational learning literature combined with a notion of purification.
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Roger Myerson for a conversation out of which this project was born. and the participants
of several seminars for helpful comments and suggestions. We gratefully acknowledge
financial support under grants SBR 9515421 and SBR 9507912 from the National Science
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1 Introduction

The role of reputation in strategic interaction is a topic of major concern to
economists. and has received considerable attention in the literature. Kreps,
Milgrom, Roberts. and Wilson (1982) (KMRW for short) show that even the
famous paradox of the finitely repeated prisoners’ dilemma game disappears
when reputation phenomena are brought into the analysis. A small uncer-
tainty about a piayver’s preferences can be used by the player to create a
favorable false reputation in a long game. Such a false reputation can lead
to long periods of cooperation in equilibrium.

Generalizing this result, Fudenberg and Maskin (1986) establish a repu-
tation “folk” theorem. They study an n-person normal form game  played
repeatedly m times with perfect monitoring (m x G. for short) and show
that if there is a small uncertainty about players’ payoffs. but the number of
repetitions m is large, then any vector of individually rational payoffs of the
stage game (7 is obtainable as the average pavoff of a Bayesian equilibrium
of a Bayesian version of m x (.

While the above papers show that false reputations can be sustained in
long finitely repeated games played by an isolated group of n-players. it is
not clear that the same phenomenon can be sustained by an entire society. If
many different groups of players play m x G recurringly, and later groups of
players ohserve the play of earlier groups. does the ability to maintain false
reputation disappear?

We study this question in the context of a Bayesian recurring game where
the stage game is itself a finitely repeated (m x ') game. (To avoid confusion
with a double use of the term stage game. the m iterations within a stage
game are called rounds.) A recurring game is one where the stage game is
plaved in periods ¢ = 1.2.... as follows. In period 1 a group of n-players play
m x ( aund the resulting play path becomes public knowledge available to
all future players. In period 2 a new group of n-players plays m x (G and
the resulting play path becomes publicly known. This iteration continues
indefinitely so that after every social history of play paths a new group of
n-players plays the stage game and adds one play path to the cumulative
social history.!

Each of the infinitely many plavers in the recurring game has preferences

!See Jackson and Kalai (1997) for more on recurring games.
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over the play paths of his or her own stage game. To allow for uncertainty
about opponents’ preferences. an essential ingredient for the reputation ques-
tion. the recurring game is augmented to be a Bayesian recurring game. In a
preliminary stage, according to a commeonly known prior probability distri-
bution. an infinite vector of Harsanvi (1967) types is drawn and each player in
the infinite horizon is informed of his or her own realized preferences. With
this private information they proceed to play the infinite recurring game
described above.

Since the first stage of the Bayesian recurring game is the Fudenberg and
Maskin game, initial uncertainty can lead to a large variety of reputations
and possible play paths. For example, if the underlying normal form game
G is a prisoners’ dilemma game and all the players in the Bayesian recurring
game were selected to have standard prisoners’ dilemma preferences. but the
prior distribution assigns positive probability to player types that prefer 1o
use a tit-for-tat strategy. then (following the results of KMRW) the first play
path will be mostly cooperative. It is not clear, however, what late play
paths are likely to be. There seem to be two competing arguments.

One argument, combining learning and backwards induction, builds on
the fact that in this example all of the realized types hold standard prisoners’
dilemma preferences and so they will certainly fink in the last round of their
stage games. After learning to predict this. later players will fink in second
to last round. As later plavers learn to predict this, they will fink in the third
to last round. and so on.

Another argument leads to an opposite view. After the above learning
has led things to unravel to the point where agents are finking even in the
first round, a cooperative first round action by a late player is likely to
be interpreted by his opponent as a signal that the player is not a standard
prisoners’ dilemma type. In turn, this could help this player build a favorable
reputation for the remaining m — I rounds of his stage game. So, is it
possible to construct a cyclical equilibrium of the recurring game where the
play in different stages alternates between long periods of cooperation and
long periods of finking? The answer to this question would seem to be yes.
especially if the set of possible types is rich enough to allow for preferences
of later players potentially to be unrelated to those of earlier players.

This paper illustrates the strength of the learning argument by showing
that even when the prior probability distribution over types is uncountably
rich. the false reputation phenomenon dies out with time and in equilibrium



late plavers play near the equilibrium of the stage game. For example. in
the Bavesian recurring repeated prisoners’ dilemma game, for a large set
of initial beliefs. if the realized players are close to the standard prisoners’
dilemma types. then the probability of a finking play path approaches one
over time. In more general terms, while for the first period of the Bayesian
recurring repeated game one obtains a general folk theorem, in later periods
one obtains what may be thought of as an anti-folk theorem.

To demonstrate this conclusion. this paper combines the purification ideas
of Harsanvi (1973) with results from the recent literature on rational learning
(relating to the merging of measures as shown by Blackwell and Dubins
(1962) and Kalai and Lehrer (1993a)). Recent criticisms of the Kalai and
Lehrer (1993a) approach center on the assumption that the prior assigns
positive probability? to single vectors of types (see Jordan (1993). Nachbar
(1997ab). Foster and Young (1996)). For instance. if the set of types is
sufficiently rich. then it is impossible to have players’ predictions eventually
become accurate. and to have the players best respond to those beliefs. One
intuition, following Jordan (1993). is that with a rich cnough type space
best responses generically are pure strategies. yet equilibrium convergence
may require mixed strategies. The requirement of predicting an opponent’s
behavior cannot be met as it implies prediction of the actual pure strategy
played. contradicting the best response requirement for a game with a mixed
strategy equilibrium.

We overcome this difficulty in the face of a rich type space by studying
the play of c-neighborhoods of a given player. We refer to the players in
the neighborhood as -variants of the given player. Even though the prior
probability of a given type may be zero. the prior probability on the player
being some &-variant may be positive. Our results rest on the fact that,
although any single player will always be choosing pure strategies, any set
of z-variants of the playver eventually will choose actions that average to
the correct mixed strategy. Thus. Harsanyi’s (1973) purification idea arises
naturally and plays an important role in our recurring context.

The indirect contributions of this paper to rational learning are similar
to, yet different from, some existing papers. First, like Jordan (1991). Nyarko
(1994), Jackson and Kalai (1997), and Lehrer and Smorodinsky (1997), this
paper is restricted to learning Nash equilibrium within the play of Bayesian

2Gimilar criticisms apply to the weaker assumption of absolute continuity.



equilibrium. However, those papers study the repeated play of a one shot
game and assume that the stage game actions are observed.® Given that
our stage games are themselves repeated games. it is unreasonable to as-
sume that the actions chosen in the stage game are observed. since those
actions include prescriptions for play at potentially unreached nodes of the
corresponding extensive form. Thus, we assume that only play paths are
observed in the stage games, which means that the results mentioned above
cannot be applied.

In addition to the weakening of the requirement of observability of stage
game play., our assumptions concerning the prior probability differ from previ-
ous papers that have obtained results concerning convergence of equilibrium
play. Lehrer and Smorodinsky (1997) and Sandroni (1997) assume a positive
prior probability of all neighborhoods of the true type to draw conclusions
about eventual equilibrium play. However. while the assumption in those
papers relate to players’ behaviors, the assumptions in our paper are on the
primitive of preferences.?

The paper proceeds as follows: Section 2 presents the model, Section
3 presents the general theorem. Section 4 presents the proof of the theo-
rem. Section 5 examines the repeated prisoners’ dilemma and shows that a
strengthening of the theorem is possible. and Section 6 concludes.

2  The Model

The Stage Game

There are n plaver roles.

The stage game consists of m > 1 rounds of a finite normal form game
plaved repeatedly by a fixed group of n players. We refer to iterations inside
a stage as rounds. to distinguish them from stages.

A;. with generic element «;, is a finite set of possible actions that player
1 has available in the normal form game. Let A = x;4,.

#Jackson and Kalai {1997) allow for more general stage games. However, they assume
countable sets of types and some relationship between payoffs and observability.

4Jordan (1991) and Nvarko (1994) also have measures over preferences as the primitive,
but they obtain results concerning convergence of players’ expectations, rather than play,
and for the case where the stage game is a normal form game. The reader is referred to
Marimon (1995) for a survey of the learning literature.



A result of the stage game is a play path. i.c.. a vector p = {a',a*, ....a™)
with a* € A denoting the vector of actions taken at round k. A™ denotes
the set of all possible play paths.

S;. with generic element s;. is a set of possible strategies that player
can use for playing the stage game. Following Kuhn's (1953) theorem. we
consider mixed strategies of the extensive form stage game.

gs denotes the probability distribution over play paths induced by a given
vector of strategies s = (s1.....8,). Let g,_ ., denote the distribution over
play paths obtained when players other than i play according to s and ¢ plays
the strategy r;.

The Recurring Game

The stage game is plaved sequentially but each time by a new group of
n plavers. After each stage the play path resulting in the stage becomes
publicly known to all future plavers.

For each time t € {1.2.3....} &' denotes the history of play paths that
resulted in stages preceding stage ¢. Thus, ' is a vector (p'.....p"7"). We
follow the convention that A' = @). For each ¢ the set of histories A is denoted
H. and the set of all finite histories is = U, H*.

After every history a new group of n players is selected to play the stage
game. The pair (i, #') denotes the plaver who plays in role 7 at stage ¢ if the
history through £ is A'.

Types

The set denoting the possible tvpes for players in role 2 is ¥, with generic
clement v; 1 A™ — [0.1].> A type v; specifies the payoff to the player in role
as a function of the play path played in his stage. It is assumed that players’
objectives are to maximize their expected payoffs. The type of player (i. k')
is denoted u; .. where u; i € Vi, V' = x;V; denotes the set of vectors of
stage game types,

This formulation of types is more general than the standard one. Usually
different types are described by different payoff matrices for the underlving
normal form game. with each player type assessing his payofl for a given play
path bv adding up (and perhaps discounting) the payoffs from each round.

3The bound on utility 1s not important to our results. It allows us to easily define a
metric on the space and avoid using topological arguments.



Assigning payoffs directly to play paths allows us to casily incorporate a rich
variety of types. including boundedly rational ones like “tit-for-tat” types (see
Remark 1. below).

A tvpe profile for plavers in role 1 (i-type profile. for short}, is an infinite
vector u; = {u; pe Jpeepy which specifies a type for player (z, k) for each A € H.
Note that a plaver's tvpe may be history dependent.

A social type profile is a vector u = (u;) specifying an i-type profiles for
every i. The set of i-type profiles is denoted ;. and the set of social type
profiles 1s denoted {°

The Bayesian Recurring Game

A Bavesian recurring game allows for uncertainty over the types of oppo-
nents as follows.

The Prior Distribution

Given two i-type profiles u; € U; and u} € U, define the metric

luy — ul] = sup '“i.h'(Pt) - “It\h‘(pt)"
f,h’,p'

Given social type profiles u € {7 and v’ € {’. define the metric
t !
|t — u'| = max |u; — ull.
H
For z > 0 let u® denote the neighborhood
ut = {u o ju—d| <)

D; is a type-generating measure over i-type profiles. i.e.. a Borel proba-
bility measure over the set {’;. The support of D; may be uncountable. ) is
the product measure. D = x;D;, over the set of social type profiles {".

This formulation does not assume independence of i-types across time,
but does assume that the tvpe of opponents a playver faces is independent
of his own type. This assumption drastically simplifies the mathematics of
computing best-responses in a model with uncountably many types.

The social tvpe profile u is non-isolated if D(u®) > 0 for all z > 0.

Strategies

|



A strategy for player (i. h') is a Borel measurable function o; 4 1 Vi — 5,
which specifies a stage game (mixed) strategy for (:./') as a function of
(i. h')'s type u, pe-

A social strategy profile ¢ is an infinite vector of strategies o = (o at)ine.
which specifies a strategy o; ¢ for each player (2, h').

The Bayesian recurring game is played as follows:

In ap initial stage a social type profile u is chosen according to the prior
D and each plaver (2. k') is informed of his or her own realized w; 4.

Stage I Players (1.2Y)..... (n.h') select strategies as a function of their
tvpes. i.e.. 8; = ;4 (u; 1 ). to play the stage game. A play path p! is deter-
mined by the distribution g, and the social history at the beginning of stage
2. h* = (p'). is publicly revealed.

The infinite recurring game is defined inductively for ¢ = 2,3,.. ..

Stage t: The new players (i.h')1<icn select stage-game strategies (s;) as
a function of their types. i.e.. s; = gip(u;pe). A play path pf is randomly
selected by the distribution g, and the social history of length t. A"! =
{p!.p?.....p"). becomes publicly known.

Outcomes and Probability

A fully specified outcome of the Bayesian recurring game is an infinite
sequence
o= (u,p.p’...).
A social strategy profile o, together with D. determines a probability mea-
sure P, as follows. For any o = (u.p'.p ..). let o) = (u) and o =
(u.pt.p*,....pt7Y). The Borel ficld over social type profiles induces a o-
algebra, F'', over the space of all outcomes. Similarly, given the finite set of
play paths at each time, we have an obvious o-algebra, F'. over outcomes
based on the social tvpe profile and the information observable through the
beginning of stage ¢. for each ¢ > 1. The o-algebra on the space of all
outcomes. ', is the one generated by the sequence F*. To define the prob-
ability measure P, over the space of all outcomes, we define P} for events in
F for each t. inductively. For any A € F! let

P;(A)z D({u : u=o0".0¢€ A})



and. inductively, for any A € [ let
PUA = [ aoio(pl) 42 o)

where p! is the play path at stage { under outcome o, and o(o') is profile
of behavioral strategies (o( noy(trpt), ... Oman{Unne)), where Rt and u; e
correspond to the outcome o'.

P, is the uniquc extension of the sequence P! to the field £,

Equilibrium in the Bayesian Recurring Game

An equilibrium of the Bayesian recurring game is a profile of social strate-
gies o such that o, u(u;s) maximizes the expected utility (w; e conditional
on k') for cach u, 5. That is, for cach (i.h)

/ Zgg—l.h‘{u—l_h')'auh‘(ul.hf)(pt)ui'h‘(pz) (lPa(u—i~ht|ht)
u

vht p
> /
u

for all s; € S;. Given the independence of types across roles. there is no need
to condition on (7. h,)'s type in addition to conditioning on k.

S ot s P ine (P | AP (e BY)

—1.ht
1 h L »

3 Convergence to Equilibrium: A Purification Theorem

Harsanyi (1973) introduced the idea of a purification of a mixed strategy
equilibrium, where a player may be any one of an infinite number of variants
whose privately known preferences are close to some publicly known pref-
erences. In an equilibrium of this Bayesian game. the average play of the
variant tvpes, who cach play pure strategies, is close to the mixed strategy
Nash equilibrium of the complete information game relative to the publicly
known preferences. The following definitions are analogous concepts for re-
Curring games.

:—Variants

Fix ¢ > 0. For a type ;. a vector of types v, an i-type profile u;, and
a social type profile u. let vf, 0% uf, and u* denote the corresponding sets of
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s variants. ie.. vf = {v!  |v] — vi| < efovt = {v' |L" - 'Ul <chouf = {ul
w; — ui‘ < ¢} and uf = {u: ‘u{ - u' <&}

Given v € V. a vector of stage game types. let (i denote the complete
information stage game defined by these types. Also. let ¢ denote the con-
stant social type profile defined by v (i.e.. ;4 = v; for every ¢ and h*) and
o be a fixed social strategy profile. Thus. ¥ is a set of societies where the
plavers in every stage game are z-variants of the constant vector of 1ypes v.

Playing Like

Given ¢, let Pgi?s(:‘{) = P.(Alu € ©°) for every event A, and for any A
let Pﬂl;c‘ht(p) = Pa‘?c(p|h*) for any stage game play path p. Pal;a may be
thought of as the distribution over social outcomes when the society consists

of z-variants of the constant vector of types v and Pg|€7‘ .« 1s the corresponding

distribution over play paths of the stage game following A*.

Fix 4 > 0 and two distributions over stage game play paths ¢ and ¢. We
say that ¢ plays v-like g il max, |§(p) — g(p)| < ~.

Given ~ > 0. P, eventually plays y-like a Nash equifibrium of G, if
for P,z —a.e. outcome there exists T such that for cach t > 1 P,z » plays
~-like g, for some Nash equilibriumn s of &..

Theorem 1. Consider an equilibrium of the Bayesian recurring game. o.
and a vector of stage game types v such that T is non-tsolated. For every
~ > 0 there exists &= > 0. such that if 0 < ¢ < ™, then P,z eventually plays
~—like a Nash equilibrium of Gi,.

Theorem 1 states that for a non-isolated vector of stage game types v. if
the society consists of s-variants of v, then in equilibrium late stage games
will play arbitrarily close to a Nash equilibrium of the stage game with the
known tvpes. Inother words. the difference between the Bayesian equilibrium
with uncertainty about opponents” types and equilibrium of the game with
the known types disappears in late stage games. In particular, the strategic
use of reputation due to uncertainty about opponents’ tvpes must die out
with time. Before proceeding with the proof of the theorem. we remark on
some aspects of the model and their role in Theorem 1.

Remark 1: On the permissible types. Describing a player type by pay-
offs over play paths rather than over a matrix for round payoffs, enriches the

10



analysis and strengthens the above result. Any type that can be described
by a pavoff matrix can be described through this more general formulation.
His path pavoff is simply the sum of the round payoffs computed using his
type payoff matrix. In addition. however. a new large variety of types. de-
scribing rational and boundedly rational plavers. can be accommodated. For
example. a player 1 type who always plays the tit-for-tat (tft) strategy in
the prisoners’ dilemma game has payofl over play paths described as follows.
Play paths which are compatible with a tft strategy of player 1 are assigned a
pavoft of 1. and play paths which are incompatible with play of tft by player
1 are assigned a 0 pavoff. Even if the original motivation for this player is not
‘rational’. in the type formulation just described it is a (strictly) dominant
strategy for him to follow the tft strategy. In other words, any fixed rule of
behavior in the repeated game can be described by the behavior of a rational
plaver with appropriately chosen preferences over play paths. For example
we can have types who always (like to) cooperate, types who always fink.
and tricky tvpes who play tft in the first m — 1 rounds but fink in the last
round. Since the prior distribution over types is defined over this abstract
set. going into his stage game a player may not a priori rule out any of this
rich set of types.

Remark 2: On the prior distribution. While each player knows his
own realized type. he forms beliefs about the types of his opponents by
updating the prior distribution I based on the observed social history. Since
the distributions [); operate directly on profiles of tvpes. they can describe
a rich family of beliefs about the generation of types. Ior example. the
prior might be a totally random distribution where after every history and
for every play path plaver i is assigned a random payoff between 0 and 1
according to a uniform distribution, independently of all past assignments.
Thus, the opponents that plaver 1 faces in any given period are new and.
moreover. have preferences believed to be independent of all the ohserved
earlier plavers. Clearly such beliefs make learning difficult, and violate the
non-isolated types condition. Another example. that clearly does lend itself
to learning and satisfy the non-isolated types condition (for each possible
realized type). is one where a pavofl matrix is randomly chosen for each
¢ and used to compute payoffs in each round of every stage. That is, any
plaver i’s payoff for any play path is computed by summing his round payvoffs
according to the matrix which was randomly selected, once and for all. prior

11



to the first stage. Despite the fact that a continuum of social profiles can
be selected. learning is possible since the preferences of future player ¢'s are
identical to the preferences of past player t’s.

The description of the prior distribution also allows the inclusion of un-
certainty on which prior is used to generate types (by the usual phenomenon
that a prior over priors can be replaced by a single prior). For example.
plaver 1 may believe that player 2’s types are generated by one of the pro-
cesses described above, but not sure of which one. Representing D) as the
convex combination of these two distributions, captures the idea that player
1 assigns probability to each of these models of type generation.

Remark 3: On the assumption of non-isolated profile. As discussed
in Remark 2 above. the belicfs held by players about the types of their
opponents may be quite general and in some cases may preclude learning.
The condition that a social profile ¥ is non-isolated 1s sufficiently strong
to make learning possible. conditional on having a social profile realized in
neighborhood of #. When priors are mixed it is sufficient to assign a positive
probability to a prior satisfving the non-isolation condition. in order to have
the mixed prior satisfy this property.

Remark 4: On learning and purification: Considering play of the -
variants of ¢ rather than the play of ¥ is critical to the validity of Theorem 1.
Jordan (1993) makes it clear that it will be impossible to have players lcarn
to play mixed strategy equilibria. since they generally will have pure best
responses to their beliefs at any stage. Here. we do not require that players
make correct predictions about the actual player that they face or that the
particular paired players play close to a Nash equilibrium. Instead. we find
that actual play averaged over types in any arbitrarily small neighborhood
of a given profile of types converges to Nash equilibrium play, which provides
a true purification of the Nash equilibrium.®

Remark 5: On Other Impossibilities in Learning. In two recent papers
on repeated games. Nachbar (1997a.b) presents conditions on the richness of
tvpes under which rational learning is impossible.” Nachbar's results show

fGSee Nyarko (1994) for a different approach where beliefs are not necessarily correct in
any single period, but match the empirical distribution of play over time.

"Although his setting is repeated, his assumption of myopic behavior by agents allows
his setting to be translated into a recurring setup and so it appears that his results would

12



the incompatibility of three things: a specific condition of richness of types,
consistency of each type’s beliefs with respect to the actual set of types. and
hest response behavior by all types. An implication of his results is that there
is a fundamental incompatibility between just having a Bayesian equilibrium
in a recurring (or even repeated) game and having a rich set of types in his
sense. Given that our equilibrium admits a very rich set of types and beliefs,
this suggests that one needs to better understand his richness conditions and
explore the degree of irrationality required in order to satisfy them.

Remark 6: A Corollary on Expectations: Since P, merges® with Py,
we can modifyv the statement of Theorem 1 to conclude that for F,x=—ae.
outcome there exists 7' such that for each ¢ > T P, plays 4-like g, for
some Nash equilibrium s of G,.. Then. in the case where almost every social
profile is non-isolated. we can conclude that P, eventually plays ~-like a
Nash equilibrium of G, (where v is the realized stage utility profile). This
provides a result similar to that of Jordan (1991), but for the case where the
stage game is itself an extensive form game and only its play path is publicly
observed.

4 Proof of Theorem 1.

A direct proof of Theorem 1 is possible but complicated. It involves combin-
ing a delicate backward induction argument (within the stage games} with
repeated use of Baves' formula and the law of total probability, taking lim-
1ts as £ goes to zero and T goes to infinity. However, the purification idea,
combined with the concept of § — s—subjective equilibrium. and a result on
the merging of measures provides a “simple” proof.

Fix v to be a vector of types for the stage game (. Given two strategy
profiles s and r for G(v), we say that s playvs y-like r if g, plays v-like g,.

i
n

For each player role 7 consider a profile s* = (st.....: 5
the stage game and let s = (s}, 3, ....s7). s is interpreted as the strategy

that playver ¢ believes player role j plays, and s, under the assumption that

) of strategies for

hold here too.
8For P,z —a.e. outcome and any v > 0 there exists T such that for ¢t > T', Pyp« plays
7 —like Pglﬁl!hf .



plavers know their own strategies. is the vector of strategies actually used.

The following concept is defined by Kalai and Lehrer (1993b):*

A profile (s%);; forms a 6 — ¢ —subjective equilibrium of the stage game,
(v,. if for each »

(i) ' plays é-like s. and

(i) 8! 1s an ¢—best response to s' ..

The following Lemma strengthens a claim (Remark 2) of Kalai and Lehrer
(1993b) and is useful in the proof of Theorem 1.

Lemma 1. Consider a stage game and a utility vector v. For every > 0
there exists 8 > 0 and == > 0 such that each & — z—subjective equilibrium
with & < & and : < & plays y-like some Nash equilibrium of the stage
game (.

Proof: Pick anv 4 > 0. By Proposition 2 in Kalai and Lehrer (1993b) there
exists 6= > 0 such that each & — 0— subjective equilibrium with 6 < 6™ plays
~-like some Nash equilibrium of the stage game (. Suppose that Lemma 1
is false. Then. there exist sequences 6 — 0, ¢¥ — 0. and a corresponding
sequence {(e;)fj}k of 6 — =¥ _subjective equilibria that do not play ~-like
any Nash equilibrium of (.. Given the finiteness of the stage game. find
a convergent subsequence of {(s})f,}¢ and let its limit be (93)” [t follows
that (s%);; does not play 7-like any Nash equilibrium of (7.. It also follows
that (3%);; is a é* — O—subjective equilibrium (since payoffs are continuous
in mixed strategies). This contradicts the fact that any é* — 0— subjective
equilibrium plays 4-like some Nash equilibrium of the stage game G,. 1

The proof of Theorem 1 is then based on the following construction.
Consider the (non-Bayesian) recurring game. R;. with stage games (.. For
each player role 7 consider the z™-variants of »;. Construct an z-player mixed
strategy profile 7, in Rz which corresponds to the average play of the £7-
variants of v; in the Bayesian recurring equilibrium. The play generated by
the constructed profile of strategies  induces the same distribution over the
play paths of all stage games as does the Bayesian recurring game equilibrium

®Also, see Battigali (1987) and Fudenberg and Levine (1993) for the related concepts
of conjectural and self-conforming cquilibria.
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when restricted to the s*-variants of v. Thus. it suffices to show that these
constructed strategies 5 play v-like a Nash equilibrium of R; in all late stage
games, which is the use of the purification idea. Relying upon Lemma 1. this
is accomplished by starting with a small enough =, and then showing that in
late subgames the constructed strategies n are a é-z-subjective equilibrium
for small enough 4. The é-convergence of beliefs follows from results on
merging.

Formalily. for every measurable set of i-type profiles B; define the B;
average strategy (induced by &) ;v g, by

Tli.htlB; = / O'i_h:(l[i.ht)dpg(u,"hr‘ht. g - Bt)

t.hi

Lemma 2: Fir ¢ > 0.8 > 0. and a vector of non-wsolated types ¥. For
almost cvery history generated by the strategics (n;pepye )i there is a time T
such that for all t > T the matrir defined below is a §-2-subjective equilibrium
of G: _

5;- = I]j‘ht”_fj if _] 71: ¢ and S:- = 7fi.h‘|1'f'

The probability distribution over play paths induced by the strategies
st = nyaeees ts the distribution generated by the c—variants of " under the
Bayesian equilibrium. The distribution generated by the strategies s! =
i, 15 the distribution generated on {conditionally weighted} average by
all types of j under the Bayesian equilibrium, and corresponds to the beliefs

of 7 about the other plavers.

Proof of Lemma 2: Part (ii) in the definition of §-s-subjective equilibrium
is satisfied by (s;),j. by the definition of 7; se)e. (Each action in the support
of intpe 1s a best response to (sL) for some s—variant of v;. and is thus
an z-best response relative to v;.) To see part (i) of the definition of §-z-
subjective equilibrium. notice that each strategy 7; pr, 1s a mixed strategy
composed of 7; ne,e and a second strategy (n;c with C being the complement
of vf) which assigns strictly positive probability to 7; p,e under the non-
isolation condition. A result about merging (e.g.. Theorem 3 in Kalai and
Lehrer {1993a)) is then sufficient to guarantee that Part (i) of the definition
of é-z-subjective equilibrium is satisfied after a sufficiently long random time

T. 1



Proof of Theorem 1: Fix 4 > 0 and v such that D{¢?) > 0 for all o > 0.

By Lemma 1. find 6™ and = such that for any 4 < 6% and ¢ < &7 any
§ — c—subjective equilibrium relative to v plays 7-like some Nash cquilibrium
of (7,. It follows from Lemma 2 applied to § < 6™ and = < £” that for P
almost everv outcome there exists 7 such that P, (p' | A, u € ) plays -like
some Nash equilibrium of 7, for each ¢t > T'. 11

5 Noncooperation in the Prisoners’ Dilemma

('onsider the situation where the stage game is a finitely repeated prisoners’
dilemma. Following well known terminology. in each of the m-rounds each
of the two plavers chooses one of two actions: C (cooperate) or I (fink).

Of special interest are the types whose utility is computed to be the sum
of the payvoffs of the m-rounds of their own stage game obtained from a
standard prisoners’ dilemma table. The following table describes such single
round pavolfs for plaver 1:

Player 2
C F
Cil -1
Plaver 1
P2 0

and the svmmetrically opposed table describes the single round pavoffs of a
standard player-two type. Let r;,1 = 1.2, denote such standard types and.
as before, let 77 denote the corresponding social profile.

The noncooperative play path is one where both playvers play action £ 1n
each round of the prisoners’ dilemma.

Theorem 2. Consider D such that ¥ is non-isolated. and an equilibrium o
of the Bayesian recurring m-times repeated prisoners’ dilemma. There exists
% > 0 such that for every 0 <z <:z7

limy—n Py~ (anoncooperativepathattimet) = 1.
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Theorem 2 states that if player roles are really being filled with players
who are close to having standard prisoners’ dilemma payoffs, then play will
converge to that of the Nash equilibrium in the sense that it will become
arbitrarily likely that players will play noncooperatively. The stronger con-
clusion. that plavers will plav noncooperatively with certainty after some
time is not necessarily true. Consider. for instance a version of the KMRW
world. where there are social types who are sometimes tit-for-tatters and
sometimes rational plavers. In equilibrium rational players could mix on C
(in the early rounds reclative to m) with positive probability in every stage
following every history. This follows along the KMRW reasoning. Players
can never completely rule out tit-for-tat types after any finite history. If
rational players did not mix on (. then a rational player who did play C
would be believed with certainty to be a tit-for-tat plaver and could gain.
contradicting equilibrium.

Notice that the conclusion of Theorem 2 is stronger than the conclusion of
Theorem 1. In Theorem 1. = depends on how close one would like to be to the
Nash equilibrium play: i.e.. £* depends on 4. In Theorem 2. we can fix a single
z* and eventually play as close as one likes to the (unique) Nash equilibrium
play path. This stronger conclusion is derived from the particular structure
of the prisoners’ dilemma. To prove Theorem 2. we introduce a new concept

which 1s a strengthening of the concept of § — ¢ —subjective equilibrium.
Tight 6 — :—Subjective Equilibrium

A profile (33),—_3- forms a tight & — z—subjective equilibrium of the stage
game, (7, if for each ¢

(1} s' plays é-like 5. and

(ii) each pure strategy in the support of s} is an ¢—best response to s .

The concept of tight & — = —subjective equilibrium' places a restriction on
the nature of the s —best response: each strategy in the support of a player’s
strategy must be a best response relative to some s-variant of v. The usual
definition of e-best response allows for mixtures that place small probability
on strategies that are far from being best responses. Such mixtures are ruled
out under the tight definition. This stronger definition and the structure of

19The notion of “tightniess™ is useful in other contexts as well. See Jackson and Kalai
(1997) for the related notion of a tight e-Bayesian equilibrium and its usefulness.

17



the prisoners’ dilemma allows us to strengthen Lemma 1 to find a uniform ¢

across -y.

l

Lemma 3. Consider the prisoners’ dilemma stage game with utility vector
r. There erists == > 0 such that for every v > 0 there exists 6 > 0 such that
each tight 8§ — c—subjective equilibrivm with § < 6™ and ¢ < £~ plays 1 — like
the Nash cquilibrium of the stage game G..

Proof of Lemma 3: Suppose the contrary. Then there exists a sequence of
zx — 0. and a corresponding sequence of ~; > 0, such that for every!' 6 > 0
there exists a tight 6 — zy—subjective equilibrium that does not play 74 —like
the Nash equilibrium of G,. Consider any k. Since the above staternent holds
for all 6 > 0. it follows that there exists a tight 0 — ey —subjective equilibrium
that does not play 4z —like the Nash equilibrium of G... (Take the limit of a
convergent subsequence of tight § — g —subjective equilibria as 6 — 0.)

Next. given the structure of the finitely repeated prisoners’ dilernma. G,
we can find = such that if |[v — 7| < &7, then the following holds: If in a given
round a plaver i expects finking with probability 1 in all subsequent rounds.
then anv best response to the player’s beliefs relative to v; resuits in the player
finking in that round. (Finking in that round results in a higher payoff than
cooperating in that round. and can do no worse in the continuation since the
current continuation has finking with probability 1 in any remaining rounds.)

Finally, combining the two ideas above, choose & such that ¢, < 7 and
consider a tight 0 — sx—subjective equilibrium that does not play 4 —like
the Nash equilibrium of (. There exists a last round in which some player
finks with probability less than 1 on the play path. Consider that round and
some such plaver ¢. Given that i must expect finking with probability 1 in
all subsequent rounds and that &, < £”. a best response for ¢ to any v; where
|v — r| < " must be to fink in that round, which is a contradiction. i

To prove Theorem 2, we need to restate Lemma 2 for the concept of tight

§ — z—subjective equilibrium.

Lemma 4: Fir =z > 0,4 > 0 and a vector of non-isolated types ©. For
almost every history generated by the strategies (ninue)i there is @ time T

1INote that any tight 6 — e—subjective equilibrium is a tight & — e—subjective equilib-
rium. whenever & < 6.
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such that for all t > T the matrir defined below 15 a tight & — ¢—subjective
equilibrium of G ...

sy =mmep, 1 J F 0 and s; = giager

Proof of Lemma 4: This follows the proof of Lemma 2. substituting
the words “tight § — ¢ —subjective equilibrium” instead of "¢ — c¢—subjective
equilibrium.” |

Proof of Theorem 2: Theorem 2 is proven by combining Lemma 3 with
Lemma 4 in the same way that Lemma 1 and Lemma 2 are used to prove

Theorem 1. except that Lemma 3 allows for a uniform choice of £™ across

~—0.1

6 Concluding Remarks

Extensive form stage games present specific off-equilibrium path learning
problems (see Fudenberg and Kreps (1988)). Here the recurring play of mx G
leads to convergence to Nash equilibrium even though the off-the-cquilibrium
play is never observed. However, in order to obtain results concerning conver-
gence to subgame perfect equilibrium play, stronger assumptions are needed
since there are additional requirements on off-equilibrium-path play. Explicit
trembling is used by Jackson and Kalai (1995) to consider learning in Selten’s
chain store game. However. that analysis assumes a limited set of types. but
it suggests that a similar approach may be possible in the context studied
here.

The analvsis in this paper. as well as that in much of the Bayesian learning
literature. assumes that agents can observe the play in all previous periods.
An interesting issue for future consideration is how results such as those
presented here extend when agents” historical horizons are limited.’* For
instance. if plavers can only observe the last n play paths - but realize that
ecarlier players were reacting to earlier observations and use this additional
information - will similar results hold?

12This question was raised by Bob Aumann in a seminar presentation of this paper.
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Finally. one might also consider the following question. Consider again.
the finitely repeated prisoners’ dilemma and suppose that the realized world
is the one that actually (randomly) has some types playving tit-for-tat. and
other types with standard payoffs. (In other words. types are in fact gen-
erated according to the prior of KMRW rather than just being variants of
standard plavers whose beliefs allow for for such generation.) If players start
with beliefs that put very high probability on all standard payoffs so that
they begin by finking. under what conditions would they learn to play the
KMRW equilibrium where standard types would enjoy a false reputation’
This would be a case where specific beliefs about non-rational types are ac-
tually justified. Qur results do not answer this question since the stage game
equilibrium in that context is a Bayesian equilibrium where very different
tvpes are playing across time. and so the non-isolation condition does not
apply. However, the techniques we have used here seem to extend {e.g.,
Lemmas 1 and 2 have analogs for Bavesian subjective equilibrium), and so
the answer should he "ves’ given an appropriate analog of the non-isolation
condition.
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