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Abstract:

This paper develops a framework in which a model with a continuum of agents and with individual
and aggregate risks can be viewed as an idealization of large finite economies. The paper identifies
conditions under which a sequence of finite economies gives rise to a limiting continuum econormny
in which uncertainty has a simple structure. The state space is the product of aggregate states and
micro-states: aggregate states represent economy-wide random aggregate fluctuations. while micro-
states reflect individual shocks which fluctuate independently around aggregate states and have no
further discernible structure. In the spectal case where shocks in the finite economies are exchangeable.
the limiting economy satisfies a continuum-version of de Finetti's Theorem. The paper then uses this
framework to derive implications for the interpretaticns of the Strong Law of Large Numbers and the

Pettis Integral.

KEY WORDS: Aggregate states, mucro-states. erchangeability, de Finetti’s Theorem. Strong Law of

Large Numbers.



1. INTRODUCTION

Models of large economies with individual and aggregate risks are extensively used. A typical setting
15 that of an economy with a large number of agents where individuals have random characteristics or
attributes such as their levels of wealth; valuations for a product; private information about an aggregate

variable: preference. technology or cost parameters: or random returns on investments.

From the perspective of economic modeling, economies with a continuum of agents represent a
conceptual idealization that can be useful in discarding incidental features of finite economies and
highlighting the forces that become predominant as the number of agents increases. The view I take
in this paper 1s that, while the world economic modelers are interested in is always finite. finite models

are not necessarity the best tool to understand that world.!

The paper develops this interpretation of continuum economies with risk and explores its implications
for the issues of aggregation and the Law of Large Numbers. I take as a primitive a sequence of finite-
characteristic economies {f¥}, which is meant to capture a modeler’s representation of an economic
environment with increasing number of agents or risk-types (think, for example, of the case of replicas
of a fixed initial economy). Each economy fV has a space of agents T = [0, 1] that is partitioned into
N subpopulations such that agents in each subpopulation have identical risk-tvpe (z.e.. have identical
random characteristic). Finite-characteristic economies can be interpreted as models with large but
finite number of agents (See Section 2.1}, Conversely, an economy with a finite number of agents can be
mapped into a finite-characteristic economy by appropriately choosing the weights of the characteristics.
Working with finite-characteristic economies 1s more convenlent because they ehiminate the need to use

different index sets as the number of agents increases.

Assume, for simplicity, that agents receive binary (0-1) shocks and let f¥(+) denote the shock
recetved by agent ¢ in the Nth model economy when the state i1s w. Since there are only fimtely many
characteristics. the empirical frequency of shocks on a subpopulation of agents A in state w is simply

the fraction of 1's in that subpopulation at state w and can be expressed as the weighted average

1 .
.\'-“‘::_ ,\‘H,d‘
W) = o [ ftar

where 7 denotes the Lebesgue measure on the space of agents [0,1]. We will say that {fV} is a stable
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sequence of finite-characteristic economies if, as .V increases. the empirical frequencies ¥ (4. ) settle

down to well-defined limiting values (which may depend on both 4 and ).

The economic content of stability 1s that correlation patterns found in the finite economies eventually
settle down to some limiting pattern. This requirement seems natural if one wishes to use an idealized
limiting model to capture corresponding patterns in large finite economies. A more practical justification
is that this stability requirement is satisfied in the most familiar and widely used economic applications
where models with a continuum of agents with risk are used. For example, stability is satisfied if the
component random variables in f% are exchangeable (1.¢.. have a symmetric joint distributions) and, in

particular, if they are i.i.d. Stability is also satisfied if f* is generated by replicating a fixed economy.?

The paper’s main result is that any stable sequence of finite-characteristic economies gives rise to
a limiting economy m which uncertainty has the following simple structure. The state space can be
expressed as the product of aggregate states and micro-states. Aggregate states encode all aggregate
information about correlation patterns in the limit economy, while micro-states fluctuate independently

around the aggregate staies and contain details about agents’ realized shocks.

In the special case where the component random variables in the finite-characteristic economies
are exchangeable {i.e.. symmetrically dependent), individual shocks in the continuum economy can be
represented as 1.1.d. fluctuations with an unknown aggregate parameter. This provides a version of de

Finetti’s Theorem, well-known in statistical decision theory. for economies with a continuuin of agents.

The decomposition of uncertainty into aggregate and micro-states provides a clear distinction be-
tween what an outside observer can and cannot learn about the state of the economy from observing
the realized shocks of an arbitrarily large but finite number of agents. Since all information about
svstematic correlation patterns in the agents’ shocks is contained in aggregate states, this abserver will
be able to approximately correctly deduce the value of the aggregate state, but not the micro-state of
the economy. Implications of this observation on the interpretation of the Law of Large Numbers are

discussed next.



Implications for the Law of Large Numbers for Continuum Economies

Despite the extensive use of models of continuum economies with risk, serious doubts concerning
their interpretation were raised. The doubts raised center on whether in a continuum 1.i.d. economy
f where agents shocks have mean o the following interpretation of the Strong Law of Large Numbers
(LLN) 15 vahd:

filw)dr=a. = —as. (%)
[0.1]

Judd {1985) and Feldman and Gilles (1983) pointed out that this interpretation of LLN is problematic.
Basically. for a tvpical state of nature w the realized shock fi(w) is not necessarily measurable as a

function of {. so the integral in (*) is not well-defined.

As its stands. the non-measurability of realizations arising in (*) 1s difficult to interpret because it is
not clear how the idealized model economy f relates to large finite economies. Using the framework of
this paper. I provide an interpretation of the measurability of realizations in terms of the informational
content of observed shocks in large finite economies. With this interpretation, I argue in Section 4 that
(*) represents qualitatively a much stronger conclusion than the one obtained in the classical Strong

Law for an infinite sequence of random variables and propose an appropriate weakening of it.

Related Papers

The present paper is related to the papers by Uhlig (1996) and Al-Najjar (1993) who used linear
methods to bypass the non-measurability of sample realizations. Uhlig's (1996) starting point is a fixed
continuum i.1.d. economy viewed as a function defined on the space of agents [0.1] and taking values
in the linear space of random variables with the L, norm. He proposed to integrate risk by taking

3

Riemann sums® and showed that for the 1.1.d. case with mean a these sums converge to an essentially

constant random variable that is @ with probability 1. and that this limit coincides with an integral for
vector-valued functions called the Pettis integral {Diestel and Uhl (1977)}. While the Pettis integral
presents a number of advantages, its interpretation as a law of large numbers remained unclear. In

Section 5. 1 relate the framework of the present paper to Uhlig's (1996) work by proving an exact

relationship between the Pettis integral of an idealized limiting economy and the limiting empirical

3



frequencies of shocks for a stable sequence of finite-characteristic economies. This relationship holds for

general continuum economies, not just ones with independent shocks.

In Al-Najjar {1895). I characterized a class of continuum economies (which includes i.i.d. economies
as a special case) in terms of the approximation by finite collections of random variables and in terms
of the decomposition of risk into idiosyncratic and aggregate components. I derived results with LLN-
flavor. namely that an agent with an anonymous payoff function and who regards the continuum model

as an idealization of large finite economies will ignore i1diosyncratic risk in the hmit.

The present paper provides a different perspective on the problem and a number of important

improvements. There are two key differences with respect to earlier works.

First. analvsis in the present paper is carried out at the level of states (rather than at the level of
random variables. viewed as linear objects). This yields results with different flavor and implications.
For example, the decomposition of uncertainty into aggregate and micro-states is quite different from
the linear decomposition obtained in Al-Najjar (1993) in that the latter only ensures that the residuals
are uncorrelated. The difference is ¢ritical in applications where the main focus is on the informational
content of the shocks. The decomposition provided here guarantees that all aggregate information has
heen extracted. while the linear decomposition is consistent with some of this information being left in

the residuals.

The second main difference is that, rather than starting with a fixed continuum economy. the present
paper takes the perspective of an economic modeler studying a class of possible environments each with
large but finite number of agents or characteristics. I then ask whether features of the finite economies
that persist and eventually predominate as the number of agents becomes large can be captured by some
limiting model. This approach provides a straightforward way of interpreting assumptions and conclu-
sion derived for the limiting continuum model. For example. the measurability problem implicit in (*)
discussed earlier can now be traced to features of finite economies. This often enhances understanding

of what the limiting model is trying to capture.



2. THE MODEL

We start with a space of agents (7.7 ,7). where T = [0,1], 7 is the coilection of Borel sets on
[0.1] and 7 is the Lebesgue measure. To simplify the exposition. I will focus on the case where risk
is represented by random vanables taking the values of either 0 or 1. This is the case that received
most attention in the literature; extensions to the more general case raise no significant new technical

or conceptual issues.

An economy is a function f which assigns to each agent ¢ a (-1 random vaniable f; representing the

random shock received by this agent.

2. 1. Fintte-Characteristic Economaies:

Definition and Interpretation

Of particular interest is the class of finite-characteristic economies. Any such economy consists
of a partition of the space of agents # = {4;,...,. Ax} and corresponding set of random variables

o={op..... o} such that f; = ¢, for every t € Apd

In a typical application. a modeler might be interested in an idealized limiting environment where
each risk-tvpe has a negligible weight (as, for example. in the case where agents receive i.i.d. shocks].
We will think of this as corresponding to a sequence of finite-characteristic economies along which
d% = max, 7{A,) = 0. Here, §¥ measures how diverse agents’ charactenstics can potentially be, so
the requirement that 07 — 0 says that there are no restrictions on the diversity of charactenstics in
the limiting economy. An example where this occurs is when the space of agents is divided into .V
subintervals of equal length with i.i.d. shocks (in which case ¢ = %) Thus, for very large values of V',
this finite-characteristic economy appears as a good candidate to be the sort of finite economy that the

continuum i.i.d. economy is meant to capture.

Two interpretations of finite-characteristic economies are as follows. First. a finite-characteristic
cconony may be viewed as representing an economy with finitely many agents so that a fraction 7(.1,)
has characteristic ¢,.* Similarly. an economy with finitely many agents can be mapped into a continuum

economy by simply assigning agents to subintervals of equal length. This interpretation is particularly
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relevant 1n models where equilibria depend only on the distribution of characteristics and is otherwise

independent of the number of agents (as is the case with competitive equilibria).

The second interpretation is to imagine a fixed continuum and the partition n as representing a
categorization of agents according to the information available about them (e.g.. according to socio-
economic criteria such as income level. number of children, ... etc). The random variable &, then
represents the random characteristic thought of as being typical for the subgroup A,. Refinements in
the partition 7 can be interpreted as corresponding to finer categonzations of agents, e.g.. by including

new criteria that were previcusly ignored.

2.2. Structure of the Probability Space

In this paper. the structure of the probability space will be of some importance. The theorems below
construct limiting economies starting from a sequence of finite-characteristic economy {f¥}. Each f*
can be defined in terms of a probability space (2%, X%, P¥) with finitely many states. A natural choice
for a probability space for the entire sequence is the product 2 = 2! x % x ---s0 astate w € Y is a
sequence of functions giving the details of the shocks received by each agent at each stage. Uncertainty
in the finite economy f 1s represented by the marginal of P on §1¥, denoted P¥. Except in special
cases (e.g.. when all economies are 1.1.d.), we cannot take P to be the product of its marginals. The
reason 1s that the distribution of shocks in economy NV might contain useful information about the
distnibution of shocks in economies later in the sequence. This. in fact. is the basis of the aggregation

result in Theorem | which basically ensures that all such information can be extracted.

While the special product structure of the probability space described above i1s not essential (and
none of theorems depends on it} it can be quite useful to keep in mind in order to better appreciate
the intuition. For example, this structure makes it clear that there is a potential cardinality problem
in constructing a limiting continuum economy, namely that § might not contain enough states (...
() might not be rich enough) to support non-trivial correlation patterns of shocks.® This problem
makes 1t necessary to introduce the following technical device. Define an ezpansion of (2, X, P) to be a
measurable space (/. 7) and a probability distribution P* on the product {2 x [, X x I} such that the

marginal distribution of P~ on 2 is equal to P.



Expanding the state space is standard technique in many contexts (for example, it is widely used
in Decision Theory). One way to interpret this procedure in the present context is that each original
state w Is divided into sub-states or micro-states {(w.i) : i € I} so that the distribution on the original
states remains unaffected. An expansion amounts to choosing a ‘nice’ probability space to work with.
and so should be thought of as a useful technical device. In particular. any random variable r(w) on
the original state space can be mapped into the random variable on the expanded space z'(w, i) = z{w)
without affecting any of its relevant properties. Distributions and “a.e. convergence” statements on the

original space can be carried cut to the corresponding objects in the new space.



3. EMPIRICAL FREQUENCIES AND THEIR STABILITY

3.1, Stability

For a finite-characteristic economy f*, define the empirical frequency over a subpopulation of agents
AT with 7(4) > 0 by:
pM(A.w) = 7’(—1—1)— Lf,”v(.u)dr.
This is the fraction of agents in A receiving shock 1 when the state is .. Note that for a finite-
characteristic economy. f¥{w) is a step function so the integral in the definition is just an appropriately
weighted sum. Note also that the fraction p¥ (4, w) will typically be random. as the distribution of
shocks fluctuates with the underlying state w even when the underlying random vartables are indepen-

dent.

DEFINITION: {fV}%_, is a stable sequence of finite-characteristic econornies if for almost every

state w and every subset of agents A. the sequence u”(A4,w) converges.

Stability is the central condition underlying the analysis of this paper. It says that even though the
number of characteristics .V continues to increase without bound, the correlation patterns of agents’
shocks. as reflected in the empirical frequencies, eventually settle down to a well-defined limiting pattern.
Alternatively, stability ensures that the limiting behavior of the sequence of economies can be captured
{approximately) by looking at a finite economy f~ for a large enough . This means that the correlation
patterns that can be identified by looking at a finite economy f~ for large .V will not be drastically

altered when the information contained in the tail {f™'}.,+ is taken into account.

To further clarify the informational natural of stability, restrict attention to the weaker concept that
requires convergence of empirical frequencies on subintervals of agents.” One can think of stability
as reflecting the perspective of an observer who can make a good assessment of the average shocks
affecting agents over subintervals. Crucially, however, stability does not require this observer to keep
track of shocks for any particular individual agent. Thus. stability makes sense in situations in which
an observer has information that is coarse relative to the increasingly finer differences in the agents’

random 1diosyncratic characteristics.



2.2, Main Theorem

Let G be the set of all measurable functions g : T — {0, 1].28 The conclusion of Theorem 1 below will
Justify the interpretation of elements of G as aggregate states. We will also be interested in G-valued

random functions g{w) which we will interpret as a random aggregate state,

THEOREM 1. If{f"} is a stable sequence of finite-characteristic economies, then there is a random

aggregate state g(w) € G and a limiting economy f on an expanded state space such that

1- With probability 1, conditional en knowing g(w), the shocks {fe, ... .. fta } are independent

for every subset of agents {t;.. ... tar}, and E[f; | g(w)] = g¢(w) for almost everv agent ¢;

2- For every subpopulation of agents A of positive measure (1.e., 7(A) > 0) we have

. . N ‘ L
;\ll_l;nmp (_{'w)ﬁ—r(_—l),/;gt(d)dr’ W —a.s.

The Theorem constructs a limiting mode] economy f that mimics corresponding correlation patterns
in large finite economies and in which uncertainty has a particularly simple structure. Condition (1)
says that all correlations between the agents’ shocks can be completely reduced to the dependence
of their shocks on the random aggregate state g,(w). Thus. the random aggregate state contains all
information about systematic patterns in the distribution of shocks in the sense that once the aggregate
state 1s known, remaining fluctuations are independent and have no discernible pattern. Condition (2)
savs that the limiting economy encodes all relevant information about the limiting empirical frequencies
and justifies viewing this economy as a faithful representation of the distribution of shocks for a large

finite economy fV.

The construction in Theorem 1 performs both a reduction as well as an expansion of the state space.
Thus. on the one hand. some elements of the original state space {2 are merged into aggregate states.
This effectively reduces the complexity of the original state space as states inducing similar limiting

distributions of shocks are lumped together. On the other hand, to ensure that the limiting economy
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has randomness that mimics the one found in finite economies, Theorem 1 erpands the state space by
creating micro-states that encode all detailed (micro) information about the nature of shocks received

by particular agents.

Stability has no force for individual agents, so the implication fA Effdr — f}l Ef. dr in Condition
(2) cannot be strengthened to Ef — Ef: in general.® On the other hand. in many cases the sequence
of finite economies considered has more structure than stability. For example, if the component random
variables in the sequence {f} are either i.i.d.. exchangeable or arise from replicating a fixed given

economy, then we also have:

Corollary  Suppose that. in addition to stability, {f¥} converges in distribution for almost every
agent!. Then the limiting economy f constructed in Theorem 1 has the property thatlimy o f¥ = E f;

for almost every t.

~10-



3.3. Economies with Frchangeable Risks

and de Finetti's Theorem

An important special case to which Theorem 1 applies is the class of exchangeable sequences:

DEFINITION: A finite characteristic economy f = (. ¢) has exchangeable risks (or exchangeable.

for short) if the component random variables (@, . ... o) are exchangeable {i.e., they have symmetric

joint distributicen).

Qur next theorem is in the spirit of the classical de Finetti’s Theorem for infinite sequences of
random variables (see Hewitt and Savage (1956)). Theorem 2 says that for an exchangeable sequences
of economies the random aggregate state g{w) is now a random parameter #{.v) € [0, 1] so that agents’

shocks fluctuate in an 1.1.d. manner with mean #{w):

THEOREM 2. Suppose that {f¥} is a stable sequence of exchangeable finite-characteristic
economies such that, for each N, #~ is a partition of [0.1] by equal subintervals. Then there is a
fimiting economy f on an expanded probability space and a random parameter #{w) € © = [0, 1] such

that:

1- The conditional shocks [fy |8(w)] are 1.i.d. with mean 8:

2- For every subpopulation of agents A of positive measure (i.e., 7[A) > 0] the limiting empirical
frequencies satisfy:

lim p™{d.w) = f{w).

N—ooo

An infinite sequence of random variables {zi(w). z2{w),...} is exchangeable if {z,,....z~} have a
symmetric joint distribution for every V. One of the most natural ways to generate an exchangeable
sequence is to first choose the probability of heads 6 at random from the parameter space © = [0.1]
according to some distribution v, then generate the sequence {r,.r,...} as an infinite independent

tosses of a coin with probability of heads #. Conditional on knowledge of the true probability of the

~11-



coin f. tosses are i.i.d. with mean 4 and distribution P? on {r; rs...}. However. without knowledge
of the value of § (but knowing that # was generated according to v} the distribution P of {zy,z5...}

is symimetric and the sequence is exchangeable.

De Finetti's Theorem roughly says that any exchangeable sequence is generated in this way: Any
distribution P of an exchangeable sequence is generated by a random draw of a parameter § according
to some distribution v on § followed by an infinite independent tosses of a coin with probability 8. This
implies that. with probability 1. the limiting empirical frequency converges to the realized value of the
random parameter §(w). Conclusion (2) in Theorem 2 above has the same content for the continuum

model.

The conclusion of de Finetti's Theorem can be formulated more abstractly (Hewitt and Savage
{1956)) as the statement that: There is a distribution v on the set of parameters © such that P
is a convex combination of the 1.1.d. coin tosses Py with weights given by ». This formulation has
the advantage that 1t can be defined directly for continuum economies without reference Lo a specific
approximating sequence. Call a continuum economy exchangeable if for every finite subset of agents
{t,..... tar}, the random variables {f, .. ... fi,,} have a symmetric joint distribution. The next result
shows that the economy constructed in Theorem 2 is exchangeable and satisfies a continuum analog of

the concluston of de Finetti’s Theorem:

THEOREM 3. Let f be the economy constructed in Theorem 2 on the expanded probability space
{2*.£*. P*). Then there is a random parameter 6(=) € © = [0, 1] with distribution v and a collection

of probability measures {Ps} on {0 such that:
1- Py is i.1.d. with mean 8 for almost everv 8;

2- P~ Is a v-convex combination of the Py's:

P(5) :/ FPy{S)dv, for every 5 € L.
]
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Theorems 2 and 3 are not trivial consequences of de Finetti's Theorem. It is well-known that
de Finetti’s Theorem does not hold for a finite set of random variables. In our context, each
finite-characteristic economy f~ has no more than finitely many random variables. and the
Jomnt distribution is allowed to change across economies. so we never have more than finitely
many exchangeable random variables to use in the proofs. Rather, stability of the empirical

frequencies enters in an essential way in the proof of these theorems.

The reader might find it useful to note that the collection of probability distributions { Py}
form a disintegration of the original distribution of P with respect to the o-algebra generated
by the random parameter #{w) (see Dellacherie and Meyer (1978} for the basic theory and

Stinchcombe (1990) for an economic application).

An interesting feature of Theorem 3 is that uncertainty in the limiting economy has a “com-
pound lottery” form where first a probability law 8 is drawn. then the final shocks are generated
1..d. across agents using this law. In fact, the construction of the general case (Theorem 1)
also has this feature where overall uncertainty is disintegrated into first choosing a probability
law at random (the function g, (w) in the general case), then using that law to generate shocks

i an independent manner.

A learning framework can be readily adapted to our static context to address the question:
What parts of the structure of the continuum economy can be learned from fintte observations
generated using some reasonable mechanism? (this will be relevant for remark 5 below) To
illustrate this, consider (for simplicity) the economy constructed in Theorem 2 for the ex-
changeable case and imagine an outside observer who is able to inspect the realized shocks
received by K randomly sampled agents {t;.. . ..tx} (see Al-Najjar (1993) for a more extensive
discussion of such sampling model}. What would this observer be able to learn about the state
of the economy based on this limited information? Intuitively (and one can rigorously prove),
for large enough A this observer will be able to approximately correctly learn the aggregate

state of the economy. However. no amount of finite information of this sort will enable the
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observer to learn the true micro-state, regardless of how large A is.

The decomposition of uncertainty into aggregate states and micro-states is related to a recent
work of Jackson. Kalal and Smorodinsky (1996, JKS) on learnability in a Bayesian learning
context. JKS consider an infinite sequence of random variables with joint distribution P. They
wdentify a condition on P that makes it possible to break it down into a set of simpler. more
atomic measures . parametrized using some abstract space of parameters ©". Breaking
down here means that P can be written as a convex combination of measures Py- with the
property that, roughly, no additional observations can (asymptotically) help to uncover any

further systematic (predictable) structure to it.

It 1s interesting to note that some aspects of the frameworks of the present paper and that
of JKS have the same flavor. Theorems 1 and 2 also break down the joint distribution of a
continuum of random variables into a set of aggregate states that cannot be further broken
down. in the sense that conditional on knowledge of their value. residuals are independent and
have no discernible pattern. Taking finite random sampling described in Remark 4 above as
our mechanism for generating information used as a basis for inference, we also conclude only
aggregate states are learnable, while the information contained in the micro-states is not. It
should also be noted that the sense is in which learning aggregate states in our contexts leaves
no further learnable structure is stronger because we can ensure that the residuals left after
extracting aggregate states are independent. In JKS the comparable notion of asymptotic
mixing 1s weaker as it requires only asymptotic independence between past observations and

realtzations in the distant future,

,14,



4. INTERPRETATION OF THE LAW OF LARGE NUMBERS

This section discusses the problem of defining and establishing a Strong Law of Large Numbers for
continuum economies, taking the point of view that these economies are theoretical idealizations whose
purpose 1s capturing the limiting behavior in large finite economies. My focus will be on the conceptual

1ssues. so the treatment will be somewhat informal.

Benchmark: Standard Strong Law of Large Numbers

Fix an infinite sequence of i.i.d. random variables {z;, za....} which, for simplicity. we assume to
take the values 1 with probability o, and 0 with probability 1 — a. For each state « and initial V-
segment of the sequence we have a sample realization {z({w)..... ry{w)} of 0's and 1's detailing the

distribution of shocks across agents.

The classical Strong Law of Large Numbers can be thought of as consisting of;

l- Converting sample realizations {z;{w)...., zx(w)} into a sequence of random empirical fre-

quencies

S () = ri{w) + »‘.\r-+.r_w(w)‘ Vel 9.

Each empirical frequency 5¥(w) represents the percentage of agents in the initial V-segment

economy whose realized shock was 1.

2- Showing that these random empirical frequencies settle down almost surely to a unique limiting

value that is equal to the poputation average:

\!im SV w)=a, w-as. (%)

The kev observation is that the conclusion of the classical LLN (**) is formulated in terms of
implications on the behavior of a highly aggregated summary statistic 5% that keeps track only of the
information contained in the one-dimensional variable representing the fraction of agents whose realized
shock is 1. This involves considerably less information than the sample realization {z;(x). . ... ry (<)}

of 0's and 1's. an object that keeps track of the 2*¥-dimensional information vector containing details

about the actual shock received by any particular agent.
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This distinction is important for the arguments presented below, so [ further clarify it with the
following simple example. Consider an exchangeable sequence of random variables {21, z4, .. .} whose
distribution is generated as follows. There is first a lottery which picks one of the two parameter values
ap = 0.25 or as = 0.75 with equal procbability. Once a; is selected, the sequence is i.1.d. with mean
aj. Let €2 denote the set of all infinite sequences of 0's and 1's and 4 = {a1, a2} denote the set
of parameters, so the state space is .4 x { with a joint distribution defined in the obvious way. An
outside observer accumulates massive information in the form of the actual realizations of the first &
randon variables, where & is arbitrarily large. An implication of the Strong Law is that the empirical

frequencies 5% will settle down to the true value of the underlying parameter as .V goes to infinity.

The classical Strong Law implies that this outside observer will be able, with high probability,
to correctly infer the unknown parameter value o;, and consequently infer the distribution of future
realizations {zx41{w). rxg2(w)....}. It is all too obvious, but worth emphasizing nevertheless, that
the Strong Law does not imply that this observer can infer what the future realization is going to be.
In the learnability language discussed earlier, LLN implies that an observer using finite {but possibly
very large) sets of observations will learn the A component of the state space, but not the { component.
Knowing the future realization amounts to knowing the value of the true state. Clearly, one should not
expect the Strong Law to deliver such knowledge because there just isn't enough information in finite

realizations to make such inference.

Measurability as an Informational Requirement

A common view is that the Strong Law of Large Numbers for continuum economies should be

interpreted as the statement:

filldr=a, «—as. (+)
[0.1]

As we discussed earlier. the problem with (*) is that the realizations f;(w) will typtcally be non-

measurable, so the integral in {*) is not well-defined.

Does the seemingly technical nature of this measurability problem have interesting economic content?
[ can provide such content based on the view of the limiting model economy f as an idealization of

large finite economies in the way described in Theorem 1.
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For concreteness, fix a stable sequence of finite-characteristic economies { f~} where the ¥th economy
f* is obtained by partitioning the space of agents into N subintervals of equal length. For the moment,
we will not make any additional assumptions on the distributions of shocks in the econamies {f~}. Let
f be the hmiting economy constructed in Theorem 1. For a fixed state of nature w and each ¥, we
have a realization f¥(«) that 1s a step function defined on the interval [0,1] providing full details about

which individuals received which shocks in the Nth economy in state w.

[ will argue that, in essence, the measurability problem in (*) centers on the following question: How
much (and what type of) information does knowledge of the state of the finite economy f¥ provide
about the state of ‘finer’ economies f~, X' > N later in the sequence? More concretely. suppose an
observer knows everything there is to be known about the state of an N-replica economy f* for an
arbitrarily large .V. Using this information. what will this observer be able to infer about the properties

of finer replicas f' for N/ much greater than .V?

(Consider the following two {informal} statements. For a typical w, knowing the actual realization of

shocks f;7(w) in the Vth economy provides approximately correct information about
{A) The realized shocks f¥'{w) in all finer economies N/ > V.
(B) The empirical frequencies p™ (A.w) in all finer economies N’ > V.

The relationship between the measurability problem in (*) and these two statements is expressed in

the following proposition:

Proposition: Suppose that the sample realizations of f are measurable almost surely (hence (*) is
well defined almost surely). Then for every ¢ > 0, there is N such that, with probability 1, for every

st
economy fV

Ht: ff=f"}>1-e

The conclusion of the proposition 1s a formalization of statement (A} above. The Proposition says
that a necessary condition for the measurability problem not to appear is that knowledge of the state of
the economy f~ enables an observer to approximately accurately predict the state of finer economies,

down to the details of which agent gets which shock. Statement {A) is considerably stronger than
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statement (B] because it requires keeping track of the actual shocks received at the individuals® level.
Statement (B), on the other hand. restricts attentions to aggregated information as it only keeps track
of shocks at a macroscopic level (e.g.. the level of non-degenerate subintervals of agents). Statement
{A) is also very different in spirit from the conclusion derived in the context of the classical Strong Law
of Large Numbers {**} because. as I argued earlier, the conclusions of the latter are in terms of the
limiting behavior of highly aggregated information in the form of empirical frequencies S, rather than

in terms of the detailed description of future realizations.

A Restatement of the Law of Large Numbers for Continuum Economies

The earlier discussion suggests that one defines the Strong Law of Large Numbers for continuum
economies in terms of the limits of empirical frequencies: Take as a primitive a sequence of finite
characteristic economies {f~} whose component random variables are i.i.d. with mean a, and proceed

in two steps:
1- Convert realizations of the finite-characteristic economies f¥ to random empirical frequencies

Wil = fAft () dr.

2- The Strong Law is the statement that these empirical frequencies settle down almost surely to

a unique limiting value that is equal to the population average:

pw(d,u) 2 a,  w-—as. (+)

Conclusion (+) is in the spirit of statement (B) above and appears to provide a natural continuum-
analog of the classical Strong Law. This is in the sense that (+) ignores details about the way realized
(-1 shocks are distributed across agents and instead limits attention to the asymptotic behavior of an

aggregate statistic of the sample realizations.

What role does the idealized limiting economy f constructed in Theorem 1| play in all this? Here
the object of fundamental economic interest is the sequence of finite economies {f¥}; the role of f is
Just as an analytically convenient device that provides a compact and easy-to-manipulate summary of

relevant information in the finite economies.
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5. INTERPRETATION OF THE PETTIS INTEGRAL

Uhlig (1996} suggested that a LLN for continuum 1.i.d. economies can be obtained using an in-
tegral known in Functional Analysis as the Pettis Integral. To define it, let L, denote the space
of square integrabte (equivalence classes of) random variables on Q with the usual inner product
{(F1f) = [ flw)f'{«)dP and corresponding norm.'® An economy f is weakly measurable if (0| f;)
is measurable in t for every o € L,. A weakly measurable economy is Pettis integrable if for every

measurable subset of agents A there is a random variable f, f, dr such that

(o | Lf,dr) :/A(ol_ft)dr, for alle e L,

where the integral to the right is the usual Lebesgue integral: see Diestel and Uhl (1977). The random

variable U,; fi dr](«) 1s called the {indefinite} Pettis integral of f.

Uhlig (1996} showed that the Pettis integral for an 1.1.d. economy with mean 8 is the degenerate
random variable which equals § with probability 1. While this and other applications to economies
with simple correlation structure suggest that the Pettis integral might provide intuitively plausible
answers to questions of aggregation. the value of this integral as a basis for a LLN for continuum
economies remained somewhat unclear. For one thing, while LLN is fundamentally a probabilistic
statement. the Pettis integral is an analytic concept derived using the linear structure of £, and so does

not appear to have an immediately obvious probabilistic interpretation.

The framework of this paper provides a probabilistic interpretation of the Peltis integral: When
the continuum economy under study arises as the limit of a stable sequence of finite-characteristic

economies, the Pettis integral is the limit of the empirical frequencies of shocks.

THEOREM 4. Let f be the continuum economy constructed in Theorem ! and g{w) be the
corresponding random aggregate state. Then for every subpopulation of agents A4 of positive measure

(i.e. 7(4) > 0). the Pettis integral satisfies:

! - N | e
() M . dT] W) = Jm (A = ,(A)f_*gz(w)d.
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Roughly, Theorem 4 says that the Pettis integral is the limit of the average of the agents’ shocks
along the sequence of finite-characteristic economies. In economies with independent shocks, the Pettis
integral provides a Law of Large Numbers only in the sense of Section 4, namely that averages shocks
become essentially constant 1n the limit. However. 1t would be incorrect 1n the present framework to

claim that the Pettis integral delivers a Law of Large Numbers when this law is interpreted as in (*).

Finally. Theorem 4 makes it relatively easy to calculate the Pettis integral in many situations (and
often help in guessing its value). For example. if the economy is exchangeable then the Pettis integral

15 {w), which is simply the random parameter representing the unknown probability of the coin.
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APPENDIX

PROOFS

I begin with some notation that will be needed below. All related definitions and resuits used in the
proofs can be found in Diestel and Uhl (1977). Let L,(£) and L,(7") denote. respectively, the spaces
of real-valued square integrable functions on € and T with the corresponding L, norms. Let (G to be
the subset of L,{T) of measurable functions taking values in [0.1} endowed with the (subspace) weak
topology on L.(T). This makes (& into a separable metric space. We will use ¢ to denote the induced

Borel g-algebra on G.

PROPOSITION A.1:  There is an L,(T)-valued random function g : (! ~» & such that for every

set of agents of positive measure, ﬁ IA ge{w)dt = p(A4, @),

Proof: Foreach V. define a vector measure »* with domain (7, 7, 7) and taking values in the space L,
of random variables on @ by setting v~(A) = [, f¥(w)dr. Stability implies that there is a set-function
v T — L,(Q) such that, for any given 4 € T, »¥(A4) - v(A), w — a.e., and hence in L, norm. By the
Vitali-Hahn-Sacks Theorem, the set-function » is a countably additive L,{?)-valued vector measure. It
is also possible to show that » has bounded variation. Since L.{2) has the Radon-Nikodym property.
there is a Bochner integrable function g : T — L,(Q2) such that for every 4. v{4) = fA ge d7 (where
the integral is the Bochner integral). By the Pettis Measurability Theorem, g is essentially separably
valued. so there must be a countable orthonormal set {éx} C L,{() such that 3,7, 3i¢dk(w) for almost
every {, and where each J; : T — R is a measurable function. Thus, for each & and any state .. the
function J;4d(w) i1s measurable. Since g; is (w — a.e.) the countable sum of such functions, we conclude

that t — g,(w) is a measurable function w — a.e 1!

We must now show that g. interpreted as a function ¢ : 2 — G is measurable when these spaces are
endowed with the o- algebras © and § respectively. Define G* tc be the collection of all sets of functions
of the form {r € ¢ : [, xdr > a} where a ranges over the rational numbers and A ranges over all
subintervals of [0,1] with rational endpoints. Recall that L.,{T') is the closed linear space spanned by all

indicator functions of subintervals in T with rational endpoints. Thus, the collection of sets G* defined
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above forms a (countable) subbase for the weak topology on L,(T), in the sense that any open set
can be expressed as a countable union of finite intersections of sets in G*. This in turn implies that
the Borel o-algebra & 1s cobtained by performing a succession of countable operations of unions and
intersections starting with sets in G*. Thus, to prove that ¢ 1s measurable, we only need to show that

for any 4 and a as above, the set D) = {w : ngt(;u)dt >at=g¢"'{f,zdr >a}isin T

Fix such 4 and o and define Bx = [, Jie.  Note that [, g(w) = [, 577 3ebelw) =
S %_1 Bidk(w). Since each di is a random variable by construction, sets of the form {w : Bide(w) > b}
are measurable for any rational number b;. Let n = 1. 2.... be an enumeration of all sequences {67}
such that: (1) all of the &} ’s are rational numbers; (2) no more than finitely many of them are different
from zero: and (3) 37, 67 > a. Then. the set Dy = UL {w : Bed(w) > b for all £} is the countable
umon of countable intersections of measurable sets and is therefore itself measurable. [t is now easy to
see that [y = Da, establishing the measurability of the former as required.

Q.ED.

The reader might wonder about the possibility of replacing the proof of Proposition | above by a
simpler argument based on the fact that stability guarantees that for each state we can get a limiting
measure g(w) on [0.1], and that the proof of Proposition 1 above ensures that g(w) is just the derivative
of jr. with respect to 7. This suggests that one can simply extract aggregate states directly from the
sequence. The main complication is that we also want to ensure that aggregate states are ¥-measurable,
t.e., they contain no more information that was available in the primitive sequence of economies. This
is the hardest part of the argument above. Thus, while it is conceivable that the more direct argument

mentioned earlier might work, 1t is by no means as straightforward or simple as it might initially appear.

Proof of Theorem 1: [ first define an appropriate expansion of the state space 2. Let {[,Z) be the
measure space where [ is the set of all 0-1 functions defined on the space of agents and 7 the o-algebra
generated by all finite cylinder sets (Shiryayev (1984), p. 149). A cylinder set consists of a finite set
o = {t,.....ty} called a base. and a function z, : ¢ — {0,1}. Such function defines the subset of /

consisting of all function that agree with r,.

States in the expanded space 2 x [ will be denoted & = (w.{). Define the continuum eccnomy f
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by fi{w,i) = i{t) (recall that i is a function 1 : T — {0,1}). I now define a probability distribution P*

on ¢ x [ such that its marginal on € is P and such that the conclusion of the Theorem is satisfied.

Fix a state w and a base of agents 0. Define a probability distribution P? on all cylinders z,
with base o so that the random variables f; (w,i) are independently distributed and such that
Efi (w.i) = g, («). Clearly. the P,’s satisfy the consistency condition in Kolmogorov's Extension
Theorem (Shiryayev (1984), pp. 164-3). so there is a unique probability measure P, under which the
agents’ shocks f, are independent with mean ¢,(w). (For future reference, note that. by construction.

the support of P, is {{w.i): i€ [})

We must now ensure that the various distributions P, can be threaded together into a measure on
{2 = f. This is guaranteed {Shiryayev (1984), p. 247) provided the following condition is satisfied: For
every measurable set B € T the real-valued function w — P_(B) is measurable (i.e., a random variable
on Q). To begin, consider a cylinder set with a singleton base, e.g., z, = {i : i(t) = 1} for some fixed
t. By construction. F,(r:} = Efi{w,i) = g:(w}. From Proposition A.1, g¢(w) is a Bochner integrable
Radon-Nikodym density. and so it is a random variable. hence P_(B,) is a measurable function. For
general cylinder set z,. independence implies that P,(z,) = [l,¢, £ frlw. i) = [lico 9t(w). which is
measurable in « {for fixed ) by the same argument mentioned earlier. The extension to general sets
m I is now immediate. Thus. there is a unique probability measure P* on ¥ x Z such that its marginal

on Y15 P.

By coustruction. the distribution of random variables on any finite base is independent given g{w).
‘To prove condition (2) in the Theorem, note that 7(1(‘—) J4 ge(w)dt = p(A.w) and by stability u™ (A, 2} —
#(A w) (both statements hold w — a.s.).

Q.E.D.

Proof of the Corollary:  From the construction of the limiting economy f, we have fA fdr -
f4 fi(w)dr for every subset of agents 4 of positive measure. Taking expectations and reversing the
order of integration, we get that f.a Effdr — [ Efi(w)dr. Since Ef is a step function for every V

and since it converges pointwise by assumption, then the limit must be a measurable function. But
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then the convergence of the means implies that the limiv must be Ef, t — a.e..

Q.ED.

Proof of Theorem 2:  Apply Proposition | to get a random aggregate state g : 2 = &. The key
step is to show that. with probability 1, g{w) 1s constant ¢ — a.e. Given this, we would then be able to
replace the function g(«) by the parameter #{w) representing its (a.e.) value at w and the conclusions

of Theorem 2 are then simple restatements of those of Theorem 1.

To prove the claim that g{«] is constant { —a.e., it is enough to show that for any pair of disjoint (non-
degenerate) subintervals 4 and B and every ¢ > 0. the probability P{|p~¥ (A, w) —p¥(B.w)] >¢} 50
as n = x. To simplify notation (but this is clearly not important for the argument) assume that the
two subintervals have the same length and define € = AU B. Let K denote the (random) number of
I'sin f¥ and reindex the sequence of economies to ensure that in f* the sets A and B have precisely
.V component random variables. For large encugh, .V, the effect on empirical frequencies of random

variables which fall only in part within A or B may be ignored.

The key implication of exchangeability we need in the proof is that it guarantees that states with
precisely ' 1's all have equal probahility, thus reducing the problem of calculating probabilities 1o that
of counting states. Let ZF denote the set of draws in C at stage .V with precisely A 1's. Let I denote
the random variable representing the number of 1's that fall in 4. Then, conditional on Z¥ and using

this implication of exchangeabtlity, the distribution of L is hypergeometric with probability distribution

(%)

and variance that is essentially equal to

By Chebyshev's inequality, we have

L 15y
PH?‘?

K
=P - N—=

> .Ve}



The last term converges to 0 as ¥ — oc for any fixed ¢. and note that this bound is uniform in K.

Q.E.D.

Proof of Thecrem 3: That f is exchangeable follows from the fact that g, is a.e. constant. The
two conditions in the conclusion of the theorem follow directly from the construction in Theorem 2.

Q.E.D.

Proof of The Proposition:  From the construction of Theorem 1. if realizations are measurable
(with probability 1), then they must equal the aggregate states. Condition (2}, on the other hand,
implies that the sequence of integrals fA f¥(w)dr converge to the integral [, g;(w)dr for every measur-
able subset of agents A. This is easily seen to imply that the sequence of realizations must converge in
measure. Combining this with the fact that shocks take only the values 0 or 1 yields the conclusion of
the proposition.

Q.E.D.

The next proof gives a good 1illustration of the role played by the product structure of the state space

in the limiting econcmy:

Proof of Theorem 4: The second equality follows from Proposition A.1l. Since the Pettis integral
is uniquely defined (when it exists and up to sets of measure zero). we only need to show that for every

set of agents 4 and every linear functional ¢ € L,(02").

/A(Olft(_y-‘)) dr = (ol [Lg,(w)]) dr.

Since the random variables g;, t € A were obtained as the values of a Bochner integrable function (see

the proof of Propesition A.1). the RHS is equal to [, (0] g:(w)) so it suffices to show that (¢ | fr(w™)) =

L



(9] ge(w)) for t — a.e. (for this statement to make sense. I interpret g, trivially as a function on * by

setting g;{w. 1} = gt(w), so o is a well-defined functional relative to g).

Since I, is spanned by the indicator functions of measurable sets, we only need to prove the equality
for o that is an indicator function of a set of the form C' x D where C' C €2 and D < [ is a cylinder
set with countable base. It can also be verified that we only need to examine the case where D is a

cvlinder set x, with finite base.

For a fixed t we have:

(o] filw" jc N

=P ({fi=1}Nz,NC)

/ ({fe=1}Nx,) dw (a)
f ({fe =11} Pulzs) dw (b)

:/gt(w)ﬂ(ra) du, (c)
[0

where {(a) follows from the disintegration property of P* implied by the construction while {b} and (¢)
follow from the fact that individual shocks under P, are independent with mean g,{w) by construction.

On the other hand. and using similar steps as before. we have:

{(oig) :f ge dw”
CxXrg

= [ oo Patza) do.
Loy

Q.ED.
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ENDNOTES

This "finitistic” view of continuum models is economically well-motivated and. in fact, quite commonly
cited as a basic desiderata for a sound theoretical understanding of this problem (see, for example,

Judd (1985) and Uhlig (1996)).

By way of exampie. suppose there are two agents, each with a shock that assumes one of two possible
values {their tvpes). Thus, resolutions of uncertainty can be represented by a random variable taking
values in the four point set {0, 1}? (reflecting, in particular, the possibility of correlation between the
types of the two agents). The analysis of this paper, which is carried out here only for the 0-1 shock

case can be easily generalized to the fintte-valued case (see Al-Najjar (1995) p. 1209 and Section 6).

This process can be roughly described as partitioning the space of agents into finitely many subinter-
vals: selecting an agent from each subinterval then averaging their random shocks. As the partition
becomes finer, the Riemann sums converge in L, to a constant random variable which is the popu-

lation mean o with probability 1.

Throughout the paper, the only subsets of agents considered will be assumed to be measurable (i.e.,

belong to 7).

If the weights 7(:1,) are rational numnbers, then we can always find M large enough so that this is
true. If the weights are irrational. then they can be approximated arbitrarily closely by a large finite

economy with rational weights.

To illustrate this problem, note that supporting a finite characteristic-economy f* does not require
the state space Q™ to have more than 2V states. This means that a sequence of economies can be
supported by the countable product of finite sets 0 = Q! x 2% x ..., and this has the cardinality of
the continuum. On the other hand, supporting the limiting economy may require a state space of
the cardinality of the power set of the continuum. To see this, consider the continuum i.i.d. economy
and note that there has to be as many states as there are characteristic functions of subsets (not

necessarily measurable) of the continuum [0,1].

This is no restriction as Borel measurable subsets of agents are in fact generated by subintervals.
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Throughout, G will be given the topology of weak convergence and the measurable structure obtained

by taking the Borel o-algebra generated by that topology. Both are formally defined in the Appendix.

Consider, for example, a sequence in which the space of agents in economy N is divided into equal
subintervals indexed I..... 2.V, Intervals with odd index are populated by agents with mean shock
0.75, while agents in even subintervals have a mean shock 0.25. Shocks are otherwise independent.
[t is easy to see that this sequence is stable, so Theorem 1| applies yielding a limiting economy with
a single aggregate state at which all agents receive i.i.d. shocks with mean .5. The limiting economy
correctly reflects the limiting frequencies aggregated over measurable subpopulation, and these indeed
converge to .3. The additional structure we find in each finite economy in the sequence (namely that
there are two distinct subgroups whose characteristics differ) is lost because the two subgroups are
too finely mixed in the {imit to distinguish between them based on aggregate information. This is

reflected in the fact that the sequence of functions {E £} does not converge to a measurable limit,
Abusing notation, we will use the same notation for random variables and their equivalence classes.

A technical issue of some importance i1s that we are often not explicit about the fact that the 4's.
which are members of L,{Q?). are equivalence classes of random variables. Thus, strictly speaking.
in evaluating these functions we are selecting representatives di of the equivalence class d;. If
{dc} and {d}} are two such selections. then di and dj, agree on a set of measure zero (e C ©2. Since
the span of the d’s is separable, the two selections will agree cutside Ui Ag, which is a set of measure

zero. Here, separability 1s crucial in making sure that sample realizations are well defined.
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