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Abstract

This paper compares two decision rules available to myopic players
who are repeatedly randomly matched to play a 2 x 2 symmetric game.
Players using the simple decision rule evaluate the strategies by comparing
their current payoffs to those of an opponent currently playing the other
strategy, while those following the clever decision rule assess the strategies
under the assumption that opponents' actions are fixed. It is shown that
while populations of simple players can fail to learn to play Nash
equilibria or even dominant strategy equilibria, populations of clever

players always learn to play approximate Nash equilibria.



1. Introduction

Evolutionary game theory models the development of rational group behavior
in populations of myopic individuals. What distinguishes this literature from
traditional game theory is the assumption that players' strategy adjustments only
depend on the performance of available strategies in response to opponents’ current
behavior. Neither the history of the interaction nor considerations about future
play affect the adjustment process.

Recent work in stochastic evolutionary game theory, most notably the papers of
Foster and Young (1990), Kandori, Mailath, and Rob (1993), and Young (1993), have
used evolutionary ideas in defense of Nash equilibrium and its refinements. It is
well known that strong information and rationality requirements are needed for
players in a one shot game to play Nash equilibrium or any refinement thereof. In
contrast, work on stochastic evolution has shown that when populations of players
are repeatedly randomly matched, their individually myopic choices can lead to
rational outcomes on a societal level. The rationality assumptions needed in these
models are quite weak, as are assumptions concerning players’ knowledge about
their opponents. The main result of this literature demonstrates that in
coordination games, when players independently switch strategies arbitrarily with
small probabilities, in the long run society will nearly always be coordinating on the
risk dominant equilibrium.

We study the behavior of populations all of whose members follow one of two
myopic decision rules. In order to decide whether to switch strategies, players using
the simple decision rule compare their payoffs to those of opponents currently
selecting the other strategy. Under certain assumptions about the situation
modeled, a player can implement the simple decision rule without any knowledge
of the game being played or of the population playing it. He must simply ask a
player who is playing the other strategy how well he fared, and switch if the
opponent's strategy outperformed his own.

Players using the clever decision rule players are more astute. A clever player
realizes that in a single population random matching environment, the payoff
received by an opponent currently playing another strategy is not the same as the
payoff he himself should expect from switching to that strategy. This difference
arises because no player is ever randomly matched against himself. For example,
suppose a player currently playing s1 were to switch to 5. Compared to that which a

current s; player encounters, the §; player would face a population which contains
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one less s; player (himself) and one more s, player (his opponent). Unlike a simple
player, a clever player assumes that the play of the rest of the population is fixed
when evaluating his options. Doing so requires that a clever player know the
payoffs of the game, so that he can carry out the counterfactual reasoning required to
calculate his payoffs from switching. However, as players no longer must rely on
realized payoffs to make their decisions, sporadic matching is sufficient to drive the
model.

We show that when players use the simple decision rule, the play of the
population may converge to distributions arbitrarily far from Nash equilibria, and
may not converge at all. In particular, we give an example of a dominant strategy
game in which the dominant strategy equilibrium payoffs are the Pareto dominant
payoffs of the game, but in which members of a population of simple players
eventually all play the dominated strategy. This is a counterexample to Theorem 2
of Kandori, Mailath, and Rob (1993).1 For any fixed dominant strategy game, there is
a population size large enough that the dominant strategy equilibrium is selected;
however, for any fixed population size, a counterexample can be found.
Furthermore, we show that generically, the play of a population of simple players
will not converge to distributions in which both strategies are used. Thus, mixed
strategies cannot be learned by such a population.

When players are clever, the results are much brighter. We show that in all 2 x 2
symmetric games, and for all population sizes, the play of a population of clever
players converges to a distribution of strategies which approximates a Nash
equilibrium of the underlying game. In particular, in games in which there is a
unique symmetric Nash equilibrium which is in mixed strategies, play always
converges to the distribution which best represents the Nash equilibrium.?

The interpretation of these results depends in turn on one's interpretation of
stochastic evolutionary game theory. One may view stochastic evolution as a
defense of Nash equilibrium and its refinements. Given some game, one would
then want to find a model with the weakest possible assumptions concerning the
players’ capabilities in which play converges to a Nash equilibrium. We show that

for fixed population sizes, the simple decision rule, and hence the assumptions

I I have learned through correspondence with one of the authors that the first such counterexample
was discovered by Peter McCabe.

2 We do not apply any notion of stochastic stability in this paper. The purpose of the paper is to
contrast the behavior of populations following the simple and clever decision rules; adding the
machinery of stochastic stability would only obscure the main point. Of course, the results which
would arise from a stochastic stability analvsis are easily derived.
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which underlie it, are insufficient to generate convergence to Nash equilibrium.
Allowing arbitrarily large population sizes may temper this conclusion somewhat,
but it should be borne in mind that generically, simple players never learn to play a
mixed strategy equilibrium. In contrast, if one is willing to allow the knowledge
assumptions required for clever players, convergence to Nash equilibrium is
guaranteed.

Rather than viewing stochastic evolutionary game theory as an attempt to
defend Nash equilibrium, it may also be understood as a modeling tool for
situations in which players base their decisions on heuristics. To act in a fully
rational manner in an environment involving repeated interactions requires that a
player perform complex computations based on the history of play and beliefs about
opponents' entire repeated game strategies. In many situations, in particular those
in which the interaction is only of minor consequence to the players, a less
sophisticated analysis may be warranted; everyday problems are not solved with
dynamic programs.

Consider, for example, a situation in which players deem reputation effects
unimportant, as would be the case in a random matching environment, and in
which players believe that changes in the play of the population as a whole develop
slowly. In this setting, rather than undertake the immense effort of calculating a
fully rational strategy, players might simply choose best responses to the current
distribution of strategies in the population, in the hope that this simple choice
might perform reasonably well in the short run. Even if he does not actually think
that his opponents will not switch actions, a player following the clever decision
rule uses this conjecture to inform his decision. If all players do so, convergence to
an approximate Nash equilibrium is guaranteed.

We observe that the differences between the simple and clever decision rules
only exist in single population models of evolution. If instead there is a distinct
population for each role in the base game (as in, for example, Samuelson (1994)),
then players need only concern themselves with the behavior of populations other
than their own when deciding whether to switch strategies. Hence, the features
which distinguish the simple and clever decision rules are of no consequence in this
setting.

In independent work, Rhode and Stegeman (1996) analyze the behavior of the
simple decision rule in the model of Kandori, Mailath, and Rob (1993). They
consider an example similar to the one which we study in the following section, and

perform an analysis which corresponds to our analysis of the simple decision rule in
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Section 4.1. However, in contrast to our own work, their analysis does not consider
any alternative decision rules.

We proceed with an example which shows the counterintuitive results which
can arise under the simple decision rule, as well as the manner in which the clever
decision rule avoids these difficulties. The model and our results can be found in
Sections 3 and 4, respectively, and Section 5 concludes.

2. An Example

Consider a group of eight people who work in an office. During the course of a
typical day, each pair of officemates meets once. Upon meeting an officemate, a
person has two options. He may be helpful, (by, for example, providing some
information that his officemate would find valuable), or he may not be helpful (by
not doing so). Being helpful is a dominant strategy, because it is costless, and it
makes the person feel good about himself. Naturally, a person would rather meet
an officemate who is helpful than one who is not. Everyone feels that the tangible
benefits of being matched with a helpful officemate far outweigh the psychological
benefits of being helpful oneself.

Such a situation is modeled in the game in Figure 1.

H NH
H199]|L.8
NH| 8,1 (0,0
Figure 1

Notice that H is a dominant strategy, and that (9, 9) is the unique Pareto efficient
payoff.

In order to analyze this game, we need to specify a decision rule for each player
and a mechanism which indicates which players will be allowed to switch strategies.
For the sake of simplicity, we shall assume that exactly one player each period is
allowed to switch. In the sequel, this arrangement will be called I-selection. In
addition, to simplify our exposition, we call a state unanimous if at that state all

players use the same strategy.



Suppose that the players use the simple decision rule. Under this rule, a player
decides whether to switch strategies by comparing his payoff to that of another
player who selected the other strategy. Surprisingly, at all nonunanimous states,
simple players who are currently being helpful would prefer to stop being helpful:
letting 7.(z) denote the payoffs to a player using strategy s if z players are currently
playing strategy H, it is easily checked that my(z) = (82 — 1) < 7(8z) = mypu(z), where
the state z is the number of players currently being helpful. At states 0 and 8, the
players rules must be somewhat arbitrary, since there are no opponents using the
unchosen strategy to consult. However, regardless of what is assumed, play from all
states other than 8 leads to states 0 and 1. If players have any probability of switching
at state 8, states 0 and 1 are always reached and never exited. Thus, not being
helpful, the dominated strategy, becomes the norm.

Rather than using individual selection to generate a stochastic dynamic, one
may, as in Kandori, Mailath, and Rob (1993, henceforth KMR), define a
deterministic dynamic which is based on the simple decision rule. The slowest such
dynamic is given by b, where #(z) =z - 1 at all states z e {1, ..., 7}. KMR focuses on
the long run equilibrin of the game: states which occur with non-vanishing
probability when players have small probabilities of choosing their strategies
arbitrarily. One can show that if b(0) < 6, state 8 is not a long run equilibrium. Thus,
all players selecting the dominant strategy need not be a long run equilibrium,
contradicting Theorem 2 of KMR.

What goes wrong? In random matching environments, it is assumed that
players are never randomly matched against themselves. When the population is
finite, this fact is made explicit in the payoff functions, which as a result differ from
the standard von Neumann-Morgenstern expected utility functions. In the game
above, when the state is z, a player selecting H plays z - 1 helpful players. Using the
simple decision rule, he compares his payoffs to those of a player currently playing
NH. She plays z helpful players. The player selecting H fails to take into account
that he is one of the helpful players with whom his opponent is matched.
Consequently, when he switches to NH, this zth helpful opponent no longer exists,
so he only gets to play the z — 1 helpful players who remain. This, of course, is the
same number of helpful players he was facing originally. However, he is now is
being unhelpful, and so does worse against each of his opponents. Thus, the player
is worse off after switching.

Now consider a group of clever players. To apply the clever decision rule, we
need to compare the payoffs to H at each state in {1, 2, ... , N} to the payoffs to 57 in
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the state with one fewer H player. Forany z€ {1,2, ..., N}, my(z) = (82 - 1) > +(8z -
8) = myp(z - 1). So, under the clever decision rule, helpful players never want to
switch when given the opportunity; players who are not helpful always want to
switch. Thus, the unique stable distribution has all players choosing H, the

dominant strategy.?

3. The Model

Consider a population of N players which repeatedly plays the symmetric 2 x 2

game in Figure 2.

$11 a,a | b, ¢

so| ¢, b | d.d

Figure 2

We identify 2 x 2 symmetric games with vectors G =(a, b, ¢, d) € R LetlI=1{1,2, ..,
N} denote the set of players. In each period t =0, 1,2, ... , { represents the number
of members of the population playing strategy s; in period t. Thus {; takes values in
7 =10, 1, .., N}, the set of states of the world or distributions.

Players are repeatedly randomly matched to play the game in Figure 2. The
pavoffs to players selecting sjor s; when the current state of the population is z are
given by:

m(z)= (Zﬁl)aw@(N_z)b forze {1,2, .., N},
(N-1) (N-1)

z (N-2z-1)

c+
(N-1) (N-1)

d forze {0,1,..., N-1}.

3 It may be interesting to note that when we define payoffs to include the possibility of being
matched against oneself, a population of simple players will move towards playing the dominant
strategy (in a 2 x 2 symmetric dominant strategy game). However, clever players still do better: for
example, in many "prisoners’ dilemma" games, clever players eventually all play the dominated
strategy. This result is analogous to Proposition 2(iii), below.
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The payoffs to strategy s; in state 0 are undefined because no player is selecting s; in
that state. 7, is undefined in state N for the analogous reason. The equations take
into account that in the process of random matching, a player will not be matched
against himself. Hence, the payoffs differ from those that would be generated by
facing a mixed strategy with weight (z/N)on s;. A precise interpretation of the
payoffs will be deferred until after the formal introduction of the decision rules.

To model the actions of the myopic individuals playing this game, we need to
define a function which specifies their (possibly randomly selected) action given
their previous action and the state of the world. Before doing this, we must develop
notation which will allow us to define random variables. Let (2, .# P} denote the
probability space on which all random variables in the model are defined. Given
some set A, AA = {X : 2 — A} is the set of all random variables whose range is the set
A. When defining random variables, we abuse notation and identify a random
variable with its distribution; all of the basic random variables are assumed to be
independent. Let §, represent a distribution degenerate at a, and let (a1, p1; - ; ax, px)
denote the distribution of a random variable X for which P(X=a;)=p;, i =1, .. , k.

We define a decision rule r = (ry, r2) to be a pair of functions ri: {1, ... , N} = A{S,
D}and r»: {0, ..., N =1} = A{S, D}, where S and D stand for "Switch" and "Don't
switch” respectively. A player using decision rule r makes his decision about his
action in the next period according to r; when his current strategy is s;. The
argument of the function is the current state; thus rq cannot take 0 as an argument
since in state 0 no one is playing sj; similarly, r; cannot take N as an argument. The
output of the function is the player's choice of action.

Ideally, evolutionary economic models make minimal assumptions on the
knowledge and computational abilities of the players. To construct a model with
weak knowledge assumptions, suppose that in each period, exactly one match occurs
between each pair of players. In this case, m; and m, are the payoffs per match that
the players actually receive.* As a consequence, one can define a decision rule
which is based only on realized payoffs, requiring no knowledge about either the
game or the number of other players. In particular, an sy player who is considering
switching to s can simply ask an opponent who played s; last period how she fared,
and then switch strategies if her payoffs were higher than his own.

4 Alternatively, as noted in KMR, for this interpretation one could specify that in each period, an
infinite sequence of matches occurs, with each match being selected independently with equal
probability. Then the strong law of large numbers guarantees that the realized per match payoffs are
given by my and m,.



This is the simple decision rule, e. Players who use this rule will be called simple

players. The rule is defined formally by

(8. ifz# Nand n,(z)> 7,(z),
e,(z) =140, ifz# Nand 7,(z) 2 m,(z),

(S,a; D,1-a) ifz=N,

&, if z# 0 and (2} > m,(z),
e.(z) =10, if z#0 and n,(z) 2 m,(z),

1(5,,8; D,1-0) ifz=0,

where @, B e {0, 1] are constants. At states besides 0 and N, the rule simply expresses
formally the procedure described above. At states 0 and N (the unanimous states), a
player cannot follow this procedure because all other players have chosen the same
strategy as he. We assume that in this situation, a player will choose his actions
randomly according to some fixed probabilities and that each player make this
choice independently of the others. In the sequel we will make more specific
assumptions about what the players do at these states; however, the exact
assumptions made are not important.

Traditionally, game theory has players choose best responses to some conjecture
about opponents' play. For myopic players involved in repeated interactions, the
simplest such conjecture holds that opponents will continue to play in the coming
period the strategies they chose in the previous period. The best responses to such a
conjecture define the clever decision rule, c. Formally, the clever decision rule is

defined as follows.

Cl(z):{ﬁn if 7,(2)2 m,(z-1),

(
i o, ifm(z+1)>m(z2),
Gz)= 5, ifrm(z)zm(z+1)

if m(z-1}>m (z),

Players using this rule will be called clever players. By using this decision rule, a
player essentially takes the actions of the other players as the "state of the world" (in
the commonly used sense of the parameters which are outside his control) and
makes his myopic best response under the assumption that this "state” is stationary.
This requires counterfactual reasoning: a player must be able to calculate what his
payoffs would be in the unrealized event that he were to change his strategy,



holding the choices of the others fixed. In order to make this calculation, a player
needs to know the state, his own previous action, and the base game payoffs; no
actual matchings need occur. Therefore, for clever players, the payoff functions m,
and 7, can be interpreted as expected per match payoffs under the assumption that
all matches are equally likely.

Throughout the paper, we assume that all members of each population being
considered use the same decision rule. Doing so will emphasize the differences
between the performance of the simple and clever rules; namely, that populations
of players playing the clever rule always learn to play Nash equilibria, while
populations of simple players do not.>

[n order to generate a Markov chain representing the evolution of the play of the
population, we need to explain how in each period the set of players who may
change strategies is determined. Formally, a selection mechanism is a random
variable m € A{0, 1, ..., N} which indicates the number of players who may switch
their strategies in each period. The exact subset selected is determined by choosing
randomly from all subsets of the population of the appropriate cardinality. That is,
the selection mechanism is anonymous. Furthermore, we assume non-triviality:
Pm=0)<1.

A game G, a decision rule r, and a selection mechanism m determine a |Z|x|Z|
transition matrix Q which gives the probability transitions between any two states.
Fixing the initial distribution over states y € AZ allows us to define the Markov

chain {¢ }r:“ which describes the evolution of play.

For concreteness, we mention two examples of selection mechanisms. When m
= &, with k € {1, ..., N}, the mechanism is called k-selection; exactly k players are
selected each period, with each subset of cardinality k occurring with equal
probability. If m is given by the binomial distribution,

Y (N . r
m=(0,(1-6N, .. ;i |  |Q-)"";..;N, oV,
)
for some @¢ (0, 1), the mechanism is called 6-selection. This mechanism results
when each player is selected independently with an identical selection probability of
0.

What does it mean for a player to be "selected"? A natural interpretation is that

in each period, because of some restriction inherent in the game environment, only

5

See the Conclusion for comments on modeling non-homogenous populations.
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certain players are able to switch actions; others simply may not or cannot switch.
However, when evolution is used to model situations in which players use
heuristics to make decisions, selection need not be interpreted as a constraint on the
players' flexibility. Rather, selection may reflect that the players do not constantly
monitor the efficacy of their actions. One may think of a "selected” player as one
who has opted to put forth the effort to consider changing his strategy in the given
period; whether he actually switches strategies depends on the application of his
decision rule. Selection is thus interpreted as self-selection; that players are only

selected occasionally is a consequence of their disinterest.

4. Convergence to Stable Distributions

A base game G, a population [, a decision rule 7, a selection mechanism m, and
an initial distribution g e AZ, one can determine a Markov chain {{,};7, describing
the evolution of the play of the population. We study the limiting behavior of this
process. Given a decision rule r and a population size N, we define a stable
distribution to be any z € Z such that: ri{z) = p for all r; that are defined at z, where |
€ (1, 2}. Once a stable distribution is reached, no player switches strategies ever again.

£

Thus, stable distributions are simply absorbing states of the Markov chain {{,} .
The remainder of this section considers whether populations of simple or clever

players eventually arrive at stable distributions.

4.1 Convergence with simple players

When players use the simple decision rule, each compares how his strategy is
currently performing to how the other strategy is currently performing. Such a rule
is well defined at all non-unanimous states. Furthermore, at these states, it can be
completely characterized by a single linear function. One may define the (simple)
payoff difference A1 {1, ..., N =1} — N by

A(z) = m(z) - my(z).

At a nonunanimous state z, players currently playing s; would like to switch if and
only if A(z) is strictly negative, and an s, player will want to switch exactly when
A(z) is strictly positive. Stable interior distributions are those for which A(z) equals

zero. It will be convenient to extend A to a linear function on the real line.
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Substituting in the payoff functions, we define the (extended) payoff difference A .
R— R.

Ax) = Hilla—c)+(d-b)]x + N(b—d)+(d —a)}.

One may characterize simple population dynamics by using the sign of the first
derivative of the payoff difference function, which is constant for any fixed game. In
Table I, we partition the set of 2 x 2 symmetric games, represented by R*, into six
varieties according to their best response properties. In the final column, we note
the signs of the derivative of the payoff difference, A', which may arise in each
variety of game. Let V ={ops, vwp1, Twp2, ¢, "Ms, Yoct be the partition of R* into
the different varieties of 2 x 2 symmetric games listed in Table L.

Variety of Game Payoffs BRtos; {BRtosy| SignofA’
Dominant Strategy [a>c b>d |s; 1 +, 0, or —
a<c b<d 5o Sy +, 0, or -
Weakly Dominant (1){a=c b>d both 57 -
a<c b=d S both -
Weakly Dominant (2){a > ¢ b=d S3 both +
a=c b <d both S2 +
Coordination a>c b<d 57 §2 +
Mixed Strategy a<c b>d |5 51 -
Opponent's Choice |a=¢ b=d both both 0

Table I: Varieties of 2 x 2 Symmetric Games

For payoff differences with non-zero derivatives, define

N({d-b)+{a—d)

x*=A10) = .
(d-b)+{a-c)

When A' is positive, the population moves away from x*. Thus, it would appear
that the distribution tends to coordinate at one of the unanimous states. However,
this is only true when x* € [0, N]. When x* is outside of this range, motion from
any internal state will always tend toward one of the two unanimous states: sy if x*
<0, orspif x* > N. When A’ is negative, the population moves towards x*. Thus,
when x* € (0, N), the law of motion satisfies our intuitive notion of how the
population should behave in mixed strategy games. But once again, when x* is

outside this interval, play converges to a single unanimous state: towards sy if x* >
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N, and s, if x* < 0. When A" equals zero, A is a constant. The direction that the
population moves is the same in every nonunanimous state: towards N if A> 0, or
towards 0 if A < 0. When A =0, every state is stable.

At this point, we make assumptions about what the simple decision rule
suggests at the unanimous states. Given the lack of information that players have
about their alternative, one might want to always have the players experiment
occasionally at these states. However, for most games, doing so would prevent any
state from being stable. We want to define the simple rule at the unanimous states
in a way that balances these two concerns. We proceed under the following
somewhat arbitrary assumptions: e(N) = & if and only if A(N} 2 0. e(0) = & if and
only if A(0) < 0. Under other circumstances, we assume that players will choose to
switch strategies with some probability strictly between zero and one. While the
results are easier to state under these assumptions, the particular assumptions made
do not alter the main conclusion.

Under the assumption stated above about play at unanimous states, we can
characterize the states that are stable under the simple decision rule. Which states
are stable depends only on the sign of 4’ and on the value of x* (or, if A' = 0, on the
unique value of A). In Table II, we completely characterize the possibilities for
stability. Items included in parentheses describe the non-generic cases, which occur
when Nx*e Z.

A >0 A <0 A=0
Condition | Stable States | Condition | Stable States | Condition | Stable States
x* <0 {N} <0 {0} A>0 {N}
e [0,N]| (0, x*)N} [ x*e (0,N)| @ (or{x*}) A=0 Z
v* > N {0} x*>N {N} A<l {0}

Table II: Stability classes under simple dynamics

Since the values of A" and x* (and, when 4’ = 0, A) only depend on the payotfs of
the game, we can partition R*, representing the set of payoffs to 2 x 2 symmetric
games, according to the stability properties under simple dynamics. In particular, let
lc',ctc") partition R* into regions where A' is positive, negative, and zero,
respectively. For each ¢, ie {+1, -1, 0}, let {c},c,ci}t partition ¢ into the three
conditions in Table II. For example, ¢;' is the set of games such that 4" > 0 and x* <

0, so that the unique stable state 1s N.
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We can now state our main proposition concerning the simple decision rule.

Proposition 1: Fix a varietyv e V. fonc#0,ie {+1, -1, O, thenv ¢, # D for |
=1,2,3.

Proof: In order to prove this Proposition, we must show that for each of the six
varieties of 2 x 2 symmetric games listed in Table I, and for each sign of A" that is
possible for that given variety, each of the conditions listed in Table II under the
value of A" is possible. For what follows, we assume N > 2 to be fixed.

Dominant Strategy (a >c¢, b > d): The different values of A4’ are generated by
varying (a-c¢)and (b-d). ForA' >0, letb=1d=0 andlete=a-c= 2. Thenx*=a
— N, so picking a appropriately generates any desired x*. For A" <0, choosea =0, ¢ =
-1, f=b—d = 2so that x* = 2N + d, where d is a free variable. For 4" =0, letb=1,d =
0,and e =a - c=1. Then A= <5(N -a), so the appropriate choice of a can make the
payoff difference positive, negative or zero.

Weakly Dominant (1) (1=¢,b>d = A <0): Leta=c=0,b=1 Thenx*=N -

L sosinced <b=1,any x* >N - 1 is possible. Choosing b =-2, x*=N - /15, s0

any x* <N + 2 can be generated.
Weakly Dominant (2) (a>¢c,b=d= A" >0): Letb=d =0 Lettingc=1x"= %4

a-17

so since a > ¢ = 1, a can be chosen to generate any x* > 1. Similarly, letting ¢ = -2, x* =

-, 50 by choosing a > ¢ = -2 appropriately, one can generate any x* < 2.

Coordination (a>¢c,b<d= A >0) Letb=-1,d=0,e=a-c=1. Thenx*= 3(N
+a).

Mixed Strategy (a <c,b>d = A <0): Letb=1,d=0,e=c-a=1 Thenx*= 3(N
—a).

Opponent's Choice (a=c,b=d = A" =0): Here,A= ¢5(d-q). W

This result shows that when players use the simple decision rule, play can converge
to states that are arbitrarily different from what one might expect, and often may not
converge at all. For a nonunanimous state to be stable, it must be the case that the
payoffs to s; and s, are identical at that state; generically, this does not occur. This is
particularly relevant in mixed strategy games, in which the population always

adjusts towards x*. These observations imply the following result.

Corollary: Fix a population of N players and any selection mechanism. In mixed
strategy games for which play does not converge to a unanimous state, it Is

generically true that play does not converge at all.
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Under 1-selection, play in most mixed strategy games will eventually cycle
between two adjacent states. However, under more general selection rules, the
recurrent set will be much larger. For example, under 8-selection for any 8¢ (0, 1),
the recurrent set encompasses the entire state space.®

To emphasize particular oddities which may arise under the simple decision

rule, we present the following results.

Proposition 2: Fix a population of N players using the simple decision rule, and
assume 1-selection.

(i} Fix a state z € Z,and a constant B e (0, 1). Then there exists a mixed strategy
game G whose unique mixed strategy equilibrium is (B, 1 - B) and whose unique
stable state is z.

(iiy There are coordination games with a single strategy that is both Pareto
dominant and risk dominant such that play from any initial state converges to all
players selecting the other strategy.

(iii) If play in a dominant strategy game does not converge to all players
choosing the dominant strategy, then the dominant strategy equilibrium payoffs
Pareto dominate the payoffs when two players select the dominated strategy.
Furthermore, if from any initial state play converges to all players selecting the

dominated strategy, the payoffs to the dominant strategy are the unigque Pareto
efficient payoffs.

Proof: (i) Recall that a game G = (a, b, ¢, d) is a mixed strategy game if 2 <cand b >
d, that 51 is played in the mixed strategy equilibrium with probability

B+la—ci? and

that the unique stable state, if it exists, is given S50, So, if z > N, chosea = 1,4
=0,b= ﬁj\{—:, and c =1+ ﬁl\;fi A similar choice can be made if z < Nf§. If z = Nf,
chosea=d=0,b=f,andc=1-.

(ify For any fixed N, choosea=1,b=-N-1,c=0,and d =-N.

(iif) Without loss of generality, assume that s; is dominant, so thata>cand b >

d. m(z)> m(z) if and only if

6 One might argue that the maximum number of players that can be selected in a single period can be
assumed to be small if we think of the period length as very short. However, such an assumption is not
without loss of generality, since the timing of the payoffs, information aggregation, and opportunities
for reconsideration in the environment being modeled should determine the selection rate. For instance,
in the example from Section 2, if the officemates only reassess their behavior at the end of the day,
restricting the rate of selection is not sensible.
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() z((@a =)+ (d=b)) < N{d-b) + (a-4).

There are three cases to consider, depending on the sign of ((a —c) + (d - b)).
If ((n—c)+ (d-B) =0, then (*) reduces to a > N(b - d) + 4. It follows thata > b +
(N -1)(b—-d)>b, so(a,a) is the unique Pareto efficient payoff.

Now suppose that {(a —c) + (d - b))} > 0. In this case, (*) reduces to z < SEHeD,

Thus, if play does not move towards state N from all initial states, it must be that

AUt d) 5 (). This reduces to a > N{b —d) + d > d, so the payoffs to (s1, 51) are greater
than the payoffs to (s, 57). If play always moves towards state 0, then S0l > N
- 1. This implies thata > (N - 1){(a-c) + b > b.

Finally, suppose that ((a —¢) + (d — b)) > 0, so that (*) reduces to z > LoD - If

N{d-hy+(a-d)

the dominant strategy is unstable, it is necessary that =557 < N, which in turn

implies that @ > N(a —¢) + d > d. Now, in addition suppose that play converges to

Nid-bh)+{a-d) < 1

state 0 from any initial state. This implies that =55

Rearranging terms,
the previous equation becomes a > (N —2)(b —d) + (a —c) + b > b, completing the

proof. B

What drives these odd results is the combination of the form of payoffs in
random matching environments with the finitude of the population. As long as
each player has a positive mass in the population, games can be constructed that
make the simple decision rule look foolish. On the other hand, if the game is held
fixed and the population size made large, each player's mass relative to that of the
population becomes small. Hence, one might expect that the oddities described

above might cease to exist. The following result makes this argument precise.

Proposition 3: (i) Fix a dominant strategy game G. For N large enough, play under
the simple decision rule converges to the dominant strategy.

(i1) Fix a coordination game or mixed strategy game G'. Let x*(N) be the division
point of the simple dynamic when the population size is N, and let {o*, 1 — o) be
the mixed strategy equilibrium of G'. Then Na* — x*(N) = for all N, so

(x*/N) > a*as N — oo,

d—a
(d-bP1+la-0)

Proof {i): Assume without loss of generality that s; is the dominant strategy, so
thata > ¢ and b > d. Recall that A(x) = & {[(a-o)+ (@ -b)x+ N(b-d)+(d-a)}. Ifa-c

> b —d, then for x € [0, N], A(x) > <5 (N(b—d)+(d—a)), which is positive for N large
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enough. Ifa—c¢ <b-d, then for v € [0, N], A(x) 2 A(N) = 5 (N{a—c) +(d —a)), which
is positive for N large enough.

(iiy The result follows immediately from the observation that x*(N) = -t
and of = —-— M
The interpretation of part (i) is clear. Part (ii) says that if the state space is
superimposed on to mixed strategy space, represented by the unit interval, the
division point of the simple dynamic approaches the mixed strategy equilibrium as
N approaches infinity. Hence, viewed from this light, the simple dynamic works
properly once the population is large enough. Note, however, that the Corollary
above still applies: it is generically true that play will not converge in mixed strategy

games, since this can only happen if x*(N) is an integer.

4.2 Convergence with Clever Players

Under the clever decision rule, the population dynamic is also characterized by a
single function which compares how strategy s; performs in state z to how strategy
s7 performs in state z — 1. However, it will be more convenient to represent the
decision rule by two payoff difference functions, used by s; players and s; players
respectively to determine whether they want to switch strategies. These functions,
Az} = m(z) - m(z - 1) and A(z) = m(z) ~ ma(z + 1) are initially defined on {1, ... , N}
and {0, ..., N — 1} respectively, and are nonnegative when a player using the given

strategy is content. Extending these to functions on the entire real line, we see that

A (x) = =[x —Dla—c)+ (N - x)}b-d)],
A (x)=(x(c—a)+ (N -x=1)(d-b)).

The remaining results are all proven using standard finite state Markov chain
arguments. In what follows, the population size N is any fixed integer greater than

one, and "convergence” means almost sure convergence.

Proposition 4: Suppose that players use the clever decision rule. Then for any
selection mechanism ni:
(i) In dominant strategy games, play converges to the state in which all players

choose the dominant strategy.
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(ii) In weakly dominant strategy games with one Nash equilibrium, play
converges to a state in which all or all but one player select the weakly dominant
strategy.

(iif) In weakly dominant strategy games with two Nash equilibria, both
unanimous states are stable, and play from any nonunanimous state converges to
the state in which everyone plays the weakly dominant strategy.

(iv) In opponent’s choice games, all states are stable,

Proof: (1) Suppose without loss of generality that sy is the dominant strategy: o >
cand b >d. Then A; >0 on {1, .., N}and A> <0on {0, ..., N — 1}. Thus, state N is
stable, and for all z < N, there exists a x > z such that Q., >0, and forall y > z, Q,, = 0.
Thus, play converges to state N.

(if) Suppose without loss of generality that s; is the weakly dominant strategy.
Since only (s1, 51) is a Nash equilibrium, a2 =cand b >d. Thus A1(z)20on {1, ..., NJ.
Az <0on 0, ..., N-2}, and Ax(N - 1) = 0. So, states N and N — 1 are stable. Also,
for all z < N — 1, there exists an x > z such that Q.. > 0, and for all y > z, (-, = 0. Thus,
play converges to state N or state N — 1.

(iif) Suppose without loss of generality that s; is the weakly dominant strategy.
Since (s2, s2) is a Nash equilibrium, @ > c and b =d. So, 41(z) > 0 on {1, ..., N}. 4Ax(z) <
Oon {1, .., N=1}, and A>(0) = 0. So, states 0 and N are stable. For all nonunanimous
states z, there exists a x > z such that Q_, > 0, and for all y >z, Q., = 0. Thus, play
from all nonunanimous states converges to state N,

(iv) Under these assumptions, A; = Ay = 0. Thus, no one ever wants to switch. B

We now consider the cases of coordination games and mixed strategy games. In

both cases the payoff difference functions cross zero at

_ N{d-by+{a-¢)

wh=a4r0) d-D)+(a-0)
Ay - (N =1)(d - b)
S

Thus, x¥1* — x3* = 1. The probability of playing s; in the symmetric mixed strategy
Nash equilibrium in coordination games and mixed strategy games is given by

_ (d-b)
C(d-D+(a-¢)

*
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Therefore, Nor*, the representation of the mixed strategy Nash equilibrium on [0, N]
always lies between x1* and v,*.  The convergence result for coordination games is

now easily proved.

Proposition 5: Suppose players use the clever decision rule, and that the selection
mechanism m satisfies P(m = N) < 1. If G is a coordination game, 0 and N are the

stable states, and play converges to one of them.

Proof: Since,a >cand b <d, A >0 and Ay <0, so A{z) =2 0 if and only if z 2 x1%,
and Ay(z) 20 if and only if z < xp*. Thus, states 0 and N are stable, and following the
steps in the proof of Proposition 4(i), it can be shown that play starting at any node
outside (x2*, x1*) converges to state 0 or N.

It remains to show that play starting at a state z € (x2, x1*) will leave this set.
Since x1* — x»* = 1, there is at most one such state. Since 4;(z) and A;(z) are both
negative, any player selected at this state will switch strategies. Thus, we only need
show that it is possible at z for the selection not to select the same number of s; and
s; players. That P(m = N) < 1 guarantees this. B

In mixed strategy games, a slightly stronger condition on the selection mechanism is
needed to guarantee convergence. Clearly, if all players are selected every period,
and play begins at a state which is not stable, the distribution will cycle between
states 0 and N forever. Moreover, it is easily checked that for k > N/2, if no stable
state is within k of 0 or N, then play that does not start at a stable state will cycle
between states within k of state 0 and states within k of state N. However, barring

this, convergence is guaranteed, as Proposition 6 shows.

Proposition 6: Suppose that a population of N clever players plays a mixed strategy
game G, and that the selection mechanism m satisfies P(m > 5) < 1. Then play
converges to the unique z € (x2*, x1*) if x1* & Z, or fo either x1* or X537 otherwise.

Furthermore, no stable distribufion is unaninmous.

Proof: Since sgn(41(z)) = sgn{x1* —z) and sgn(Ax(z)) = sgn(z — x27), 51 players want
to switch at states z > x1%, and s, players want to switch at states z < xp*. Thus, the set
of stable states is given by S = [x2*, x1*]nZ.  To prove convergence into 5, we only
need to show that for every z ¢ Z, there exists a path z = zp, 21, ... , gj such that Q.. >

0. ... Q. . >0. Suppose without loss of generality first that there is a stable state z*
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< & Foreach x <z* z ¢ S, there exists a y > x such that Qy, > 0, so we only need to

consider states z > z*. For states z > [¥]_, if [§]_players are selected, including all of

the N - z s, players, the next state will be [§].. 1f less than [53] players are selected, it
is possible for the next state to be in {[3]., ...,z = 1}. Thus, a path may always be
constructed from z to [§].. For states z in {max S, ..., [$].], there is a positive
probability of a transition to z — 1, since it is possible for exactly one s; player to be

selected. Therefore, the path needed can always be constructed. B

Combining Propositions 4 through 6, we can state our main result. To relate
symmetric Nash equilibria of a 2 x 2 symmetric game G to the stable distributions of
an N player random matching game, we define an approximate Nash distribution
in an N player random matching environment to be any state ze Z = {0, 1, ..., N}
such that there is a symmetric Nash equilibrium of G, (a*. 1 - «*) satisfying
|z-Na* < 1. The following result is an immediate consequence of the three

previous propositions.

Theorem: Let G be a 2 x 2 symmetric game. Suppose that a population of N clever
players is repeatedly randomly matched according to a selection mechanism m
satisfying P(m > 3) < 1. Then play from any initial distribution converges almost

surely to an approximate Nash distribution.

5. Conclusion

This paper compares the behavior of populations whose members all use either
the simple or clever decision rule. Populations of simple players need not learn to
play Nash equilibria or even dominant strategy equilibria of the underlying game.
While these negative results are somewhat mitigated when the size of the
population is large, it is generically true that simple populations cannot learn to play
mixed strategy equilibria. In contrast, populations of clever players always learn to
play approximate Nash equilibria.

These results can be interpreted as a comparison of two heuristics which players
might use in lieu of computing best responses to their beliefs about the play of
opponents. Using such heuristics is sensible in large population games in which
reputation effects are minimal. In particular, if players follow the clever decision

rule, the population will eventually reach a stable distribution of strategies which is
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an approximate Nash equilibrium of the underlying game. Once such a distribution
is reached, no player can benefit from a unilateral deviation. The clever decision
rule thus has a self-sustaining property: if all players follow the rule, in the long
run (once a stable distribution is reached), there are no benefits from deviating.
Clearly, the simple decision rule does not share this property. This suggests the
following question: What is the myopic decision rule with the weakest knowledge
requirements which is self-sustaining and results in Nash equilibrium play?

While the simple decision rule is not self-sustaining, this does not necessarily
mean that simple players would discover the inadequacy of their rule. Recalling the
example from Section 2, consider a simple player who just switched from being
helpful to not being helpful. One might think that after receiving a lower payoff,
the player would realize that he was doing worse against both helpful and
unhelpful officemates, and would conclude that he should return to being helpful.
However, if the player reasoned like this, he would be well on his way to being
clever, since in order to undertake this analysis he would need to know much of the
information required to implement the clever decision rule. Indeed, the main
advantage of the simple decision rule is that a player can implement it without
knowing the distribution of strategies in the population or even of the base game
being played. He may see his payoffs as a single entity, not as the sum of the results
of a series of encounters. Consequently, the realization described above need not
occur to him. Rather, when a simple player wishes to evaluate his choice of action,
he comes equipped with a means of doing so: his simple decision rule. And at all
interior states, he is satisfied with his choice: a player who has just decided not to be
helpful may notice that he is worse off, but comparing his lot to that of players who
remain helpful, it appears to him that his choice was the correct one. Thus, that the
simple decision rule is not self-sustaining does not imply that it would never be
used by a population of sufficiently uninformed players.

Nevertheless, in many situations of economic interest, it is reasonable to assume
that players have the capacity to apply either decision rule. In light of our results,
and because of its intuitive appeal, it seems sensible to assume that such players use
the clever decision rule. However, this paper has only compared performance of
populations which are homogenous in their choice of decision rule. A better
comparison of decision rules might be attempted by considering evolution in a
population of players who are able to use the simple and clever decision rules, as
well as other easily implemented rules. Evolution would occur on two levels: The

distribution of strategies within the population would evolve according to the
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decision rules in the population, which would themselves evolve according to their
relative performance. Such a model would provide harder evidence concerning the

viability of the clever decision rule, and is a topic for future research.
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