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Abstract. In a recurring game, a stage game is played consecutively by differ-
ent groups of players, with each group receiving information about the play of
earlier groups. Starting with uncertainty about the distribution of types in the
population, late groups may learn to play a correct Bayesian equilibrium, as if
they know the type distribution.

This paper concentrates on Selten’s Chain Store game and the Kreps, Mil-
grom, Roberts, Wilson phenomenon, where a small perceived inaccuracy about
the type distribution can drastically alter the equilibrium behavior. It presents
sufficient conditions that prevent this phenomenon from persisting in a recurring
setting.

Keywords. Recurring Game, Social Learning, Chain Store Paradox

1 Introduction

In a recurring game, a stage game is sequentially played by different groups
of players. Each group, before its turn, receives information about the social
history consisting of past plays of earlier groups. Game theorists have studied
sich recurring situations using various dynamics like fictitious play, last period
best response, and random matching, since Nash in his dissertation {1950).

Of interest here is a Bayesian version of a recurring game, where each stage
game player is uncertain about the types of his or her opponents. Observed
social histories are used by players to update beliefs about the unknown distri-
bution of types in the population. With time, players’ behavior converges to
that of the Bayesian equilibrium of the stage game, as if the true distribution
of types in the population were known.

In a recent paper (Jackson and Kalai, 1995a) we present a general model of
recurring games and sufficient conditions that yield such social convergence. Our
purpose in this chapter is to apply this approach to Selten’s (1978} chain-store
games and study the implications on the phenomenon illustrated by Kreps and
Wilson (1982) and Milgrom and Roberts (1982) (KMRW for short, also some-
times called the “gang of four”). A specific question is whether this phenomenon

'The authors thank the California Institute of Technology and the Sherman Fairchild
Foundation for their generous hospitality while doing this rescarch. They also thank Eric van
Damme for comments on an early draft and the National Science Foundation for financial
support under grants SBR-9223156 and SBR-9223338.



{described in more detail below) can persist in a recurring setting. To better
fit the recurring setting we replace Selten’s chain-store story with a strategi-
cally equivalent story about a bully terrorizing a finite group of individuals, the
challengers. The rest of the introduction presents a verbal description of our
model and conclusions. A broader survey of the related literature can be found
in Jackson and Kalai {1995a).

The “challenge the bully” stage game (the bully game, for short) is played
by a bully and L challengers. It consists of L preordered episodes each played
by the bully and one challenger. In each episode the designated challenger
chooses whether to challenge the bully or not, and if challenged, the bully
chooses whether to fight or not. The bully prefers not to be challenged, but
if challenged he would rather not fight. The challenger prefers challenging a
nonfighting bully, but if the bully fights he would rather not challenge. (The
single episode payoffs are represented in Figure 1 of the next section.) Both
bully and challenger know the outcome of all previous episodes before making
their decisions.

Recall that Selten’s paradox is that backward induction applied to this game
dictates that all challengers challenge and the bully never fights. Yet, when L
is large, common sense suggests that the bully may choose to fight in early
episodes in order to build a reputation so that challengers will not challenge.®
KMRW point out that the backward induction result depends on the complete
information assumption. The resolution offered by KMRW is to replace the
above game by a Harsanyi (1967-68) Bayesian game in which there is a small
commonly known prior probability that the bully is “irrational,” e.g., he prefers
fighting to any other episode outcome. In such a modified game the more
reasonable behavior is obtained as the unique sequential equilibrium outcome,
even when the realized bully is rational. Thus the phenomenon iilustrated by
KMRW is that in a world with a rational bully, a small uncertainty about the
rationality of the bully can drastically change the equilibrium outcomes, and in
particular, induce the rational bully to fight.

It is not obvious whether this phenomenon will persist if this situation recurs.
In other words, if new bullies are always born rational, but challengers are
uncertain about this fact, would bullying behavior persist? On the one hand, it
seems that statistical updating will lead observers (i.c., players in later rounds)
through backward induction to the recognition that the bullies are rational and
with it will come challenging and not fighting. On the other hand, a violation
of a rational act by a bully that wishes to appear irrational, is more convincing
when done in view of such learning. Thus, one is left with the question of
whether such learning will lead the eventual discovery of the rationality of the
population and thus the unraveling of the KMRW phenomenon, or whether
the actions of the plavers will slow the learning so that the rationality of the

2 There are. of course. Nash equilibria of this type; however, they do not survive backward
induction.



population is never learned.

To meaningfully address this question, we extend the KMRW game to a
“doubly Bayesian™ recurring game with two “priors.” One prior, 7, is a fixed
probablity distribution according to which a bully-type is drawn before each
stage game. We assume, however, that this type-generating distribution 1s not
known to the playvers. They assume that it was selected before the start of the
entire recurring game according to a known probability distribution I over a set
of possible type generating distributions.?

This gives rise to what we call an uncertain recurring game whose extensive
form game can be described as follows. In period 0 nature randomly selects a
tvpe generating probability distribution 7 from a set of possible ones, according
to the prior probabilities I'(7). Players know that a selection was made according
to T, but no information is given about the realized 7. For pericd 1, one
bully and L challengers are selected. The bully is randomly assigned a type
according to the fixed (unknown) type-generating distribution 7. Only the
bully is informed of its realized type and the L +1 players proceed to play the L
episodes of the bully game. Their realized play path becomes publicly known.
The game recurs, following the same procedure. In each period ¢ > 1 a new set
of challengers and a bully are selected. Again, the bully is privately assigned its
type according to the same unknown 7 and the players proceed to play the L
episodes of the bully game, with the play path publicly revealed.

To study the recurring version of the KMRW phenomenon we will focus the
above deseribed game, with a realiztion of 7 that selects rational bullies with
probability one, indicating a world in which bullies are really rational.

Note that the above separation to two distributions is necessary since a re-
striction to a single prior 7, representing both actual type-generation and social
beliefs. will force one of the following misrepresentations of the phenomenon. If
the single 7 assigns probability one to a rational bully, then there would be no
social uncertainty about it. On the other hand, if the single T assigns positive
probability to irrational bully types, then in the recurring setting with probabil-
ity one some irrational types will be realized, leading to the KMRW equilibrium,
but in a world which truly has irrational bullies. In either situation, there would
be no social learning. That is, observing past stage games would tell a player
nothing new about the distribution of types in the population.

Our recuring game definition of a type is also significantly generalized. A

3This approach may be viewed as the multi-arm-bandit “payoff” learning model adapted to
the Bavesian repeated game “type” learning literature. [See Aumann and Maschler (1967) and
followers, and the more closely related Jordan (1991).] The utility maximizing bandit player
starts with a prior distribution over his set of possible payoff generating distributions. QOurs
is & multi-person version, with uncertainty over the distribution generating types, modeled
through a prior over a set of possible distributions. A major difference between our model of
learning in recurring games and the literature on learning in repeated games is that in our
setting players are attempting to learn about the distribution of types that they will face in
their stage game, while in a repeated game playvers learn about the actua! opponents they
repeatedly face.



tvpe's preferences can depend on the entire social history and not just on his
own stage game. So. for example, we can model a “macho bully” whose utility
of fighting increases after social histories with many earlier fighting bullies. Or
in a multi-generational setting, a bully may prefer to behave like his ancestors.

We refer to the Nash equilibria of the above uncertain recurring game as
uncertain Bayesian equilibria. In playing an uncertain Bayesian equilibrium,
expected utility maximizers perform Bayesian updating of the prior I to obtain
updated posteriors over the set of type generating distributions. As a result, the
strategies of each stage game constitute a Bayesian equilibrium of the stage game
relative to the perceived distribution over types induced by the updated prior,
but not necessarily relative to the true (realized) type generating distribution.

This discrepancy partly disappears however, after long social histories. First,
as a consequence of the martingale convergence theorem, the updated prior will
converge (almost evervwhere). This means that players’ learning disappears
in the limit. Second, the npdated distribution will be empirically correct in
the limit. This means that players’ learning induced predictions concerning
the play path will match the distribution over play paths induced by the true
(realized) distribution over types. This second result can be obtained almost
directly from a learning result in Kalai and Lehrer (1993). It means that in
late games. anv discrepancy between the true and the learning induced type
generating distributions cannot be detected, even with sophisticated statistical
tests.

" The fact that players learn to predict the play path with arbitrary precision,
does not necessarily imply that they have learned the true type generating dis-
tribution 7 or the true distribution of strategies {including off the equilibrium
path behavior).? We present an example of challengers who never challenge, be-
cause their initial beliefs assign high probability to fighting bullies, even though
the realized bullies would never fight if challenged. No learning occurs because
no challenging ever occurs. Moreover, in the example a single tremble by a sin-
gle challenger will reveal the non fighting nature of the bullies and would cause
the entire equilibrium to collapse.

In order to overcome this difficulty, we introduce trembles i la Selten (1973,
1983). The effect of introducing the trembles is to ensure that the social history
leads to informative learning.® For an exogenously given small positive proba-
bility ¢, we assume that every player chooses strategies that assign probabilities
of at least g to each one of his or her actions at every information set.

Assuming that players play an uncertain Bayesian equilibrium with trem-

4This phenomenon also arises in non-recurring situations, such as those where players play
a long extensive form or a repeated game. For detailed analyses of this in such settings, see
Battigalli, Gilli and Molinari (1992), Fudenberg and Kreps (1988), Fudenberg and Levine
{1993), and Kalai and Lehrer (1993).

5See the concluding remarks of Fudenberg and Kreps (1995) for the suggestion of a similar
approach to ensure learning and convergence to Nash equilibrium in a model with myopic
long lived players.



bling, we obtain the following conclusions for the case where the realized dis-
tribution results in only rational bullies: With probability one, in late stage
games, the challengers always challenge, and the bullies never fight. These rules
are followed with the exception of occasional trembles. This result is obtained
regardless of the initial beliefs of the society, provided those initial beliefs assign
some positive probability to the distribution which selects only rational bullies.

Thus the introduction of the trembles in the recurring model leads one to
eventually play the trembling hand perfect equilibrium {defined with respect to
the agent normal form). It is important to remark, however, that the trembles
are not working directly {as in the definition of trembling hand perfection), but
rather indirectly through the learning that they ensure. This is evident since in
early stages, the equilibrium outcomes with trembles can still be that rational
bullies fight and challengers not challenge.

We wish to remark that the general message of our results is not simply the
eventual decay of the KMRW equilibrium. For instance, if the realized type
generating distribution is truly selecting some “irrational” fighting bullies, then
this would also eventually be learned and the eventual convergence would be to
the KMRW equilibrium - even if initial beliefs placed an arbitrarily high {but
not exclusive) weight on rational bullies. Thus the more general understanding
of our results is that in a recurring game, given some randomness to induce
learning, equilibrium behavior will eventually converge to that as if players were
playing an equilibrium knowing the underlying type generating distribution.® If
plavers are truly rational, and the game is an extensive form, then this will lead
to eventual approximate play of a perfect equilibrium.

2 The Recurring Bully Game

The stage game is a bullv game consisting of one bully plaver, b, and L chal-
lengers, (c;)i=1,..L. In sequential episodes ¢ = 1,..., L, challenger ¢, decides
whether to challenge (C) the bully or refrain (R) from doing so. If the challenger
does challenge, then the bully has to decide whether to acquiesce (A) or fight
(F). The corresponding episode payoffs, to the challenger and bully, are given
by the extensive form game pictured in Figure 1.

Each player is informed of the outcomes of earlier episodes before making a
decision. The pavoffs of challengers are determined according to their episode
pavoffs while the payoff to the bully is the sum of his or her L episode payoffs.

Formally, a playv path of such a bully game is described by a vector p =
(X....,X.) with each X,, being in the set {(R), (C,A), (C,F}}, describing
the outcome of the i** episode. A partial play path is such a vector (Xy,..., X1),
but with 0 € ! < L. A (behavioral) strategy o; of challenger ¢, consists of a
probability distribution over the actions R and C for every ¢ — 1 long partial
play path (X;...... X,_1). A bully strategy, 7, chooses a probability distribution

6See Jackson and Kalai (1995ab) for general results along these lines.



Challenges Fights

Refrains Acquiesces

0, 1 1,0
Figure 1

over the actions A and F for every partial play path of every length. A vector of
strategies {(0;),7) induces a probability distribution over the set of play paths
and defines expected payvofls for all plavers in the obvious unique way.

The recurring bullvy game is played in periods t = 1,2,.... In each period
t a new group of players (bully and challengers) are selected to play the stage
game. Moreover, before choosing their strategies, they are informed of the play
paths of all earlier groups.

A social history h of length t is a vector of play paths h = (p*,...,p"). The
empty history @ is the only history of length 0, and H denotes the set of all finite
length histories. The playvers of the recurring bully game are denoted by b" and
¢, where for every fixed h, b" and ¢f describe the bully and the challenger to
play the i-th episode of the stage bully game after history of . Thus, as the
notation suggests, the players b* and ¢ know the social history h that led up
to their game. Strategies in the recurring bully game are denoted by 7" and o,
with the obvious interpretations.

3 Games with Unknown Bully Types

Alternative bully tvpes describe different utility functions that a bully may have
in plaving a bully game. There is a countable set © of possible bully types. For
each type 8 € © there is a function ug(h,p) describing the payvoff to bully 8" of
the play path p, when he or she is of type 6.

An example of a type is the one already defined whose payoff from any path
(regardless of the social history) is the sum of the episode payoffs described
earlier (in Figure 1). We refer to these payoffs as the “rational” ones and to this
tvpe as the rational type, denoted by 7.

An example of an “irrational” bully, motivated by KMEW, is one with payoff
k > 0O for every “strong path” p in which he or she never acquiesces, and
—k for weak paths p, exhibiting some acquiescing actions. We keep the terms
“rational” and “irrational” in quotes, since “irrational” bullies are supposed



to be maximizing their expected payoffs. It is simply that the “irrational”
pavoffs do not match those of the game in Figure 1. Of course, this is simply a
modeling convenience as any behvior can always be made to be expected utility
maximizing, if one can arbitrarily manipulate the payoff function.

More complex “irrational” types can condition their payoffs on the observed
social history. For example in the type just described we can replace & by kR,
taking on large values after social histories h consisting only of tough play paths
and small values for social histories b with weak bullies. This may represent an
ego maniac bully whe compares himself to earlier ones.

Probability distributions over the countable set of possible bully types, ©. are
referred to as tvpe-generating distributions. Every such distribution 7 defines a
recurring Bayesian bully game as follows. After every social history h, nature
chooses a bully tvpe 8", according to the distribution 7 (independently of all
earlier choices in the game). The bully 6" is informed of his or her realized type
6", before choosing his strategy. All other players are only aware of the process
and know the distribution 7 by which 8" was selected.

Strategies in the Bayesian recurring bully game are denoted by (TIS) and
(¢!}, with 5} denoting the strategy of the bully b" when he or she is of type 8,
and ¢! is a challenger strategy as before.

Notice that a Bavesian recurring bully game, with a type generating distri-
bution 7, induces after every history h a Bayesian bully game of reputation,
similar to KMRW, with bully tvpes payoffs given by ug(p, h) and a prior r on
passible types 8.

We wish to model, however, Bayesian recurring bully games with uncertainty
about the type generating distribution. It is such uncertainty that introduces
learning from the social history. An uncertain Bayvesian recurring bully game
(uncertain recurring game for short) is played as follows. In a 0-time move,
nature selects a tvpe generating distribution 7 according to a prior probability
distribution I'. Without being informed of the realized 7, the players proceed
to play the 7 Bayesian recurring bully game. We assume that the exogenously
giver distribution I' has a countable support {I'(7) > 0 for at most countable
many 7's) and that it and the structure of the game are commonly known to
all plavers.” Plavers update T based on observed histories and the strategies
that they believe to be governing play. This updated distribution induces a
distribution over types, which is the basis for the Bayesian stage game that
they play.

Notice that an uncertain recurring bully game may be thought of as a “dou-
bly Bavesian” game since we use a prior to select a distribution that serves as
the priors of the stage games to come. The strategies of the uncertain recur-
ring game are the same as the ones of the Bayesian game since the information
transmitted and feasible actions are identical in both games. However, as will

"see Jackson and Kalai (1995a) for discussion of extensions to allow for players’ prior beliefs
1o be type dependent.



be seen in the sequel. expected utility computations and Bayesian updating are
more substantial in the uncertain recurring game.

An uncertain Bavesian equilibrium is a vector of strategies (2}, (o)
which are best reply to each other in the extensive form description of the
uncertain recurring game defined by the prior I

4 Social Learning

In this section, we consider a given uncertain Bavesian recurring bully game with
a prior I and fixed strategies ((n}), (o). We first clarify some probabilistic
issues.

A fully described outcome of the uncertain recurring game is a sequence
of the type 7.8%,p', 8%, p%,.... Such an outcome generates progressive socially-
observed histories k', h? ... with k' = (p',...,p"). To describe the probability
distribution on the set of all outcomes it suffices to define consistent probabilities
for all initial segments of outcomes. We do so inductively by defining P(r) =
['(7) and

P{Taglwplz-- ) Y9P+15pt+1) — P(T,gl,pl,- . ,Gt,p!)7(8t+l)u(pt+l)
where u(ptt!) is the probability of p**!
h =h' and § = §'+1.

Players, observing only the buildup of histories k', A%, ..., do not know the
chosen type generating distribution 7, but they can generate posterior probabil-
ity distribution over it using the initial distribution and conditioning on current
histories. Thus, their posteriors T°, T’} ..., are defined for every type generating
distribution 7 by T%7) = I'(7) and TY(F) = P(7 | k).

Each such distribution over type generating distributions induces a direct
distribution over types. Thus we have updated posterior distributions on the
next period tvpe denoted by 4%, 71, ..., with +4(6) = 3, F(#)[*(7). Although
we supress the notation, both I'* and ~* are history dependent.

After every history A' the bully, b, and the challengers, (cf"), play a
Bayesian bully game. The bully knows his or her realized type, /', and it
is commonly assumed that he or she was drawn according to the distribution
~!. If the original strategies ((7}), (¢%)) constitute an uncertain Bayesian equi-

1
librium of the recurring game, then ((n%), (")) with h = h' and # = ¢!
constitute a Bayesian equilibrium of the stage Bayesian game with the prior ~1.

Of course, the assumed prior, 7!, against which individual challenger optimal
strategies are chosen, is “wrong”, since the real prior, by which §'*! is chosen,
is the unknown 7. In Harsanyi’s {1967-68} definition of a Bayesian equilibrium
this presents no problem. The strategies, with the commonly known assumption
that the prior is ~', are formally a Bavesian equilibrium. But in a recurring

setting, when types are repeatedly drawn, a discrepancy between a real prior

under the strategies {(n}), (c})) with



and an assumed prior may lead to statistical contradictions. These statistical
discrepencies will disappear as players learn from observed histories.

To describe the effects of learning we proceed in two steps. Our first propo-
sition states that players’ updated distributions (over distributions) converge
almost surely. Effectively, after some random time, players stop learning.

Proposition 1 For almost every outcome, v*(8) converges to e limit () uni-
formly for all types 8 € ©.

Proposition 1 follows from the martingale convergence theorem. We refer
readers to Jackson and Kalat (1995a) for a proof.

Qur next proposition states that when players stop learning they have in
fact learned all that they could, and so they are arbitrarily correctly predicting
the play path after some random time. Proposition 2 can be proven using
Proposition 1, or can be seen more directly as a consequence of Theorem 3 in
Kalai and Lehrer {1993).8

With the fixed stage game strategies, let u be the probability distribution
induced on the stage game play paths by the real prior, 7, and let i be the
one induced by the assumed prior, 4%, If for every play path u(p't1) = a(p'*!)
then no observable contradictions, even statistical ones can arise. We refer
to the strategies and the assumed prior 7' as an empirically correct Bayesian
equilibrium whenever g = ji. If for some € > 0 we have | p(p'™?) — g(p'™") <
¢ for all play paths p'*!, we refer to it as an empirically e-correct Bayesian
equilibrium.

Proposition 2 In an uncertain Beyesian equilibrium of an uncertain recurring
bully game, for almost every outcome and for every ¢ > 0, there ezists a time
T, such that ~', together with the induced t + 1 period strategies, constitute an
empirically e-correct Bayesian equilibrium of the stage game for allt > T

The fact that late period stage-game players play an empirically e-correct
Bayesian equilibrium relative to their updated type generating distribution !t
does not mean that they play a Bayesian equilibrium relative to the correct
distribution 7. It only means that players’ predictions concerning the play
path are approximately correct. Players may be mistaken concerning off the
equilibrium path behavior. This is illustrated in the following example.

Example

Consider three types of a bully, 7, f, and a, described by their episode pay-
offs as follows. The rationzl tvpe, r, has the original extensive game payoffs
described earlier. The fighting type, f, has a payoff 1 for fighting and 0 for any

8T heorem 3 in Kalal and Lehrer (1993) states that Bayvesian updating of beliefs containing
a “grain of truth” must eventually lead 1o correct predictions. The restriction in the current
model, to a countable set of tvpe generating distributions, implies that for almost every
outcome I'(7) > 0, which implies that the beliefs contain a grain of truth.



other outcome (replacing the payoffs in Figure 1), while the acquiescing type,
a, has a payvoff of 1 for acquiescing and 0 for any other outcome. Let p, % and
@, be the type generating distributions that select respectively with probability
one the types r, f and a.

Suppose the prior I" assigns high probability to a world with fighting bullies,
ie., I'(¢) is high, and only a small probability to & and to p. Suppose the
real type generating distribution was selected to be «, 1.e. only acquiescing
bullies are generated. The strategies with all challengers refrain. a and r type
bullies always acquiesce, and f type bullies always fight, constitute an uncertain
Bavesian equilibrium. This is so because the initial stage game prior 1° assigns
high probability to a fighting bully and to refrain from challenging is therefore
rational. But since there is no challenge in the first period the updated posterior
on bully types remains unchanged, i.e. 4! =+, the same logic applies to the
second period, and so on. Moreover, the induced stage game Bayesian equilibria
are empirically accurate. It is clear, however, that these strategies do not induce
a Bayesian equilibrium of the stage game relative to the real prior a. In other
words, if the challengers knew that their bully is drawn with probability one to
be of the a type, then they would challenge.

5 Trembling Rational Players

The uncertain Bayesian equilibrium in the above example is highly unstable. If
at any time, in the infinite play of the recurring game, a challenger trembles
and challenges, the whole equilibrium wilk collapse after observing that the bully
does not fight. The equilibrium is able to survive only because society never
learns what bullies would do if challenged.

If a small amount of noise, in the form of trembles by players, is introduced,
then more learning will occur and equilibria such as the one in the example
above will eventually be overturned. In short, a small amount of imperfection
will lead plavers to learn behavior at all nodes in the tree. While there are
several ways to model such trembles, we follow Selten’s (1973) approach by
restricting the set of strategies that a player can choose.

Let g be a positive small number describing the probability of minimal trem-
bles. The uncertain Bayesian recurring bully game with g-trembling is obtained
from the usual uncertain recurring bully game by restricting the players to the
choice of behavior strategies that assign probability greater or equal te ¢ to
every action available in each information set.

QOur next observation is that under g-trembling, if a Bayesian equilibrium
is empirically e-correct, then it must also be approximately correct for all con-
ditional probabilities in the game. For example, the probability that the bully
fights the ¢*" challenger, conditional on the event that the i*® challenger chal-
lenges, must be similar when computed by the learning induced distribution
and by the true (realized) distribution .

10



To see this point, let i be the distribution induced on play paths through
the learning induced distribution -, and let g be the one obtained from the true
(realized) distribution 7. The fact that | u(p) — @(p) |< ¢ for any play path p
implies that this can be made (by starting with a smaller €) true for any event
(i.e. a set of play paths) in the game. The g-trembling property implies that
there is a small positive number s such that the probability of any non empty
event in the game is at least s. The conditional probability of event E; given
E, is P(E; and E;)/P(F,). Since we have all denominators (over all possible
E.’s) being uniformly bounded from zero, by making ¢ sufficiently small we can
make all such ratios when computed by g or by i be within any given § of each
other. Thus we obtain the following.

Define j to be strongly empirically e-correct if for any two events Ey, and
E; the conditional probabilities of E, given E;, computed by u and by 7 are
within € of each other.

Lemma 3 Consider any Bayesian equilibrium ((ny), (01}) of a g-trembling Bayesian
bully game with an assumed type generating distribution v and a true type gener-
ating distribution 7. For every € > 0 there ts a 6 > O such that if the equilibrium

is empirically &-correct it must be strongly empirically e-correct.

Notice that by combining the result of Proposition 2 with the above lemma,
we can conclude that for almost every outcome of an uncertain Bayesian equi-
librium of the recurring game, after a sufficiently long time, stage game players
must be playing a strongly empirically e-correct Bayesian equilibrium.

We consider now the special case, of an uncertain Bayesian equilibrium of the
recurring game, where the true (realized) type generating distribution, p, gener-
ates the ratiopal type r with probability one. The prior I' over type generating
distributions can be arbitrary, as long as T'(p) > 0.

For a game with ¢-trembling, a bully stage strategy % is essentially acqui-
escing if its probability of fighting at every information set is the minimally
possible level g, i.e. is only due to trembling. Similarly, a challenger ¢ strategy
is essentially challenging if the probability of refraining is g. We can now state
the following result.

Proposition 4 Consider an uncertain Bayesian equilibrium of an uncertain re-
curring bully game with q-trembles (g > 0). If the realized type generating distri-
bution places weight one on rational players, then for small enough ¢ (1/2 > g)
and for almost every outcome there 1s a finite time T such that the t-period stage

game strategies must be essentially acquiescing and essentially challenging for
allt > T.

Given the previous propositions and lemma, the conclusion of this proposi-
tion is straightforward. For every € > 0 there is a sufficiently large T so that
all the later stage games are played by strongly empirically e-correct Bayesian
equilibrium. So all we have to observe is that for sufficiently small €, a strongly
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empirically ¢-correct Bayesian equilibrium must consist of essentially acquiescing
and essentially challenging strategies. This is done by a (backward) induction
argument, outlined as follows.

In the last episode, following any play path, a rational bully must acquiesce
with the highest possible conditional probability given the (positive probability)
event that the last challenger challenges. Therefore the rational bully must
acquiesce with probability 1 — ¢ in the last episode. Thus, after time T (as
defined in Lemma 3) the last episode challenger’s assessed probability of the
bully acquiescing in that episode is at least 1 — g —e. Therefore, for sufficiently
small € and g < 1/2 the last challenger’s unique best response is to challenge,
and so he or she challenges with probability 1 — ¢. Since this is true for any
play path leading to the final episode, the assessed probability of challenge in
the final episode is at least 1 — ¢ — ¢, indepedent of the play path leading to that
episode. It follows that a rational bully in episode L — 1, will have a unique best
response of acquiescing in that episode. The L — 1 period challenger, assessing
this to be the case with probability at least 1 — g — ¢, will essentially challenge,
and so on.

6 Concluding Remarks

The KMRW phenomenon extends to a general folk theorem for finitely repeated
games with incomplete information, as shown by Fudenberg and Maskin (1986).
The failing of the phenomenon in a recurring setting has parallel implications
for this folk theorem. Jackson and Kalai (1995ab) contains general results that
have direct implications on this question. Again, we should emphasize that our
results imply that under certain conditions players will learn to play as if they
knew the realized type generating distribution. To the extent that there exists
a true diversity of types in the population, this is learned and players will play
accordingly. Thus, the variety of equilibrium outcomes allowed for by the folk
theorem can still be realized, but will require a true diversity of types, rather
than just a perceived one, in order to survive in a recurring setting.

Stronger, and even more striking, versions of the KMRW phenomenon might
be possible in the manner described by Aumann (1992). This would involve
higher order misconceptions on the part of players. For example, replace the
KMRW situation, where challengers are uncertain about whether the bully is
rational or fight loving, by a situation where all challengers know that the bully
is rational, but are uncertain about whether other challengers also know it. If,
for instance, challengers believe that other challengers believe that there may
be a fighting bully, then the KMRW results might be extended. This situation
is incorporated into our model by using the type space to allow an explicit
description of the beliefs a plaver holds about the beliefs of other players (and
choosing 7's and T to reflect this uncertainty). Proposition 4 covers these cases
and thus, if bullies are born rational, then this extended version of the KMRW
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equilibrium would also unravel in a recurring setting,.

Getting back to Selten’s paradox, it seems to become more severe in the
recurring setting. A bully in later stages of the game who fights the first chal-
lenger can be explained as having trembled, and thus is not perceived as being
irrational. Moreover, in the equilibrium play in late enough stages, even a bully
who fights the first few challengers will be explained as having trembled several
times, as this likelihood is larger than the alternative explanation of the bully
being irrational. Although in late enough play it is relatively more likely that
this behavior is due to trembles rather than irrationality, both of these events
were very unlikely to start with. Thus, it may be that the challenger would
prefer 1o doubt the model altogether {or believe that the bully has done so},
rather than to ascribe probabilities according to it. Thus we are back at Selten’s
paradox.

Let us close with two comments relating to “technical” assumptions that we
have maintained in our analysis. The restriction in this chapter to countably
many types is convenient for mathematical exposition. The generalization to an
uncountably infinite set (and an uncoutably infinite set of possible type gener-
ating distributions) requires additional conditions, in particular to assure that
Proposition 2 extends. Lehrer and Smorodinsky (1994) offer general conditions
which are useful in this direction.

One strong assumption we have made is that players start from a common
prior over priors. This is not necessary for the results. The content of Proposi-
tions 1 and 2 can be applied to situations where each type of player has their
own beliefs. The equilibrium convergence result then needs to be modified, since
playvers’ beliefs may converge at different rates. When these convergence rates
are not uniform. then the conclusions are stated relative to a set of types which
receives a probability arbitrarily close to one (under the realized distribution).
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