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Information Acquisition in Affiliated Decision
Problems

Nicola Persico”

[irst. version: September 1995.
This version, February 1996

Abstiract

This paper investigates information acquisition in decision problems. We
introduce a new notion of “better information™, Accuracy-order (A-order),
defined on continuons families of signals. Accuracy [ormalizes the jdea that
" signal that is more correlated with the unknown random variable is better™.
This concept is ndigenous to an economically interesting subset of all decision
problems, those where signals are alliliated and the payofl function satisfics
the single-crossing property. Ouw this subset. this notion is fonnd to be "tight™,
in Lhe sonse that A order is an il-and-only-if condition {or hetter information.
Thus, a Blackwell-tvpe result is obtained, On the subset. it is shown that
Blackwell's Sulliciency is a special case ol Accuracy. Finally, a comparative
statics result is oblained, about which decision problem will induce more

information acquisition,

1 Introduction

The present paper addresses the question of infurmation acquisition in decision
problems. The idea is that a signal is acquired before taking a decision, and
the decision maker can choose its accuracy al a cost. We provide a nnified

“Departinent of Heonomics, Northwestern University, Pvanston 1L GO208. e-
mearl npersico enshalvaens nwo.edu. wish to thank Steve Matthews, Wollgang Pesendorfer, Juuso
Vidimaks and Asher Wolinsky, A Sloan Foundation Fellowship is gratelully acknowledged.



model 1o address questions such as “what is useful information in a decision
problem?” and “given two decision problems. which one will induce more
information acquisition””.

Besides the theoretical interest. large amounts of resources are devoted to
information acguisition. Consider a monopolist facing an unknown demand
function: most likely ke will acquire information about it. for example through
a market research, But marketing departments in organizations are just one
example: pre-auction exploration of oil tracts and preparation of biddings
in procurement auctions are others. Many of these situations have a game-
theoretic flavour. The framework developed here is applicable to games of
incomplete information: a companion paper uses this framework 1o ask the
question “which auction form (1st or 2nd price) will induce more information
acquisition?”, and draws conelusions that mayv {and in some circumstances do)
overturn revenue-ranking. Fndogencizing information acquisition is hound to
modifv our perspective on the basie results of information LCONOMICS,

The main contributions of this paper are:

a) offer a general framework to study information acquisition using dif-
forential methods. This allows us to reason in familiar terms of "marginal
revenue” and “marginal cost” of information.

b} introduce Accuracy. a new concept of “hetter information”. which re-
lines Blackwell's notion of Sufficiency on a subset of decision problems. On
this subset. Accnracy is a “tight” (if-and-only-if) notion.

¢} spell out conditions under which one decision problem induces “mare
information acquisition”™ than another.

We posit that asignal X, about an unobservable random variable V7 is cho-
con atl a cost before taking an action a: any one signal in the family {_,\',,.}”_E[_‘.
mav be chosen. at a cost (). The goal is to maximize the expected value of
a pavofl function. u(r.a). which depends on the realization of 17 and on the
action. The more informative X, is. the higher the expected pavolf. Let B(y)
denote the expected value of the payolf function. given an optimal choice of
a with sienal X,. We can formalize our information acquisition problem as

max Ry — ().
ne kY
We assume that £ is an interval of the real line.

We give conditions under which (n) increases with 7. In other words.
we assess when increasing 1 to # produces “hetter information™. in the sense
of raising the expected payvoff to the decision maker.  The answer to this
question depends. in principle. on the characteristics of the pavofl functions



and on the statistical structure of the problem {the family of signals and the
prior). Blackwell's well known answer is independent of all these primitives.
and furthermore is a necessary and sufficient condition. It defines the notion
of Sufficiency. and the answer 1o the question then is “for any decision prob-
lem. if and onlv if signal Xg is sufficient for X7, Qur approach hereis to place
constraints on the pavolf function and on the family of signals. that enable
us to answer the question in the following way “for any decision problem in
4 rostricted class. if and only if the family of signals is A-ordered™. This is
a Blackwell-tvpe result. The next two paragraphs intuitively discuss the re-
striction on the pavoff function. and the new concept of "better information™.
\We then put the two together to provide intuition for Theorem L increasing
Accuracy increases the pavolf.

Roughly speaking. in a problem where the optimal strategy is increasing
in the signal. our restriction on the payoff function is equivalent to the single-
crossing property in (o1 ). The single-crossing property has fundamental
relevance in the theory of monotone comparative statics (see Milgrom and
Shannon [9]). and is satisfied in a mnmber of economic situations.  Loosely
speaking. it can be phrased as “for each fixed a. %u(r.n) changes sign at
most once. from negative to positive. as » increases”. Consider for example
the monopolist’s case discussed in the beginning: here a is the quantity 1o
produce. and let the demand function be Pla) = r—a. where ris the unknown
parameter. Marginal costs are 0. Then w{r.a) = «a Pla) = ar = a?. hence
_%u( roa)is just the marginal revenue: it is increasing in r. whereby the single-
crossing property is satisfied.

The concept of A-order {Accuracy-order) is the new notion of “hetter
information”. Consider the transformation T, ;.(-) which. given 1wo signals
N, and X;is uniquely defined by 75, ey~ X | eo This is the function

N

i’ !

that transforms a signal into another (possibly better) signal. We say that
,

ey
f

X, is more accurate than X, when # > (. This means that the T
transformation is positively correlated with r: when v is high. T'() will be
a bit higher than » would have been. and a bit lower when ris low. In this
sense. we can see the action of T, 4..(+) as "adding correlation with »7 1o X,

Now. we are ready to describe the first result of this work: why increasing
Accuracy (Tadding correlation”™) is useful when the decision pavofl satisfies the
singte-crossing condition. The first-order conditions for the decision problem
are the average of %tl( . @) with respect to r. By single-crossing. this quantity
ix negative for low #'s and positive for high r's: this means that we would
like 1o lower @ when r is low. and increase @ when ¢ is high. But then this
is exactly what a{7T, () does. when X i1s more accurate than X, In



the monopolist s example. inereasing Accuracy allows 1o produce more when
the marginal revenue is higher, and fess when it is low. This 1s the intuition
behind Theorem T

We now want to understand which decision problem induces more infor-
mation acquisition.  We can loosely interpret the “single-crossingness” of a
pavoll as the degree to which it varies with the unknown . i.e. its Tvari-
ability™. Then if a pavoll function is “very single-crossing™ . i.e. %u(r'.n) is
highlv sensitive 1o changes in r. it is reasonable that passing to a more accu-
rate signal should give a higher increase in expected revenue than if u were
“less single-crossing”. We exploit this property in Theoren 3 to answer the
question “which decision problem will induce more information acquisition”.

Consider 1he set of decision problems where the family of signals is affili-
ated and the pavoll is single-crossing. We have seen that increasing Accuracy
is sufficient to guarantee increase in payofl: but is it necessary? Indeed. yes:
we prove that on that set. Accuracy is a “tight” notion: if A-order fails. there
exists a single-crossing pavoil such that choosing a higher signal is detrimen-
tal. Thus we can’t beat Accuracy. This is why this work is in the spirit of
Blackwell's. only restricted to a subset of decision problems: these with affil-
iated signals and single-crossing pavoff. Ol course. we need 1o compare this
new notion of “hetter information” with Blackwell's Sufficiency. Increasing
Accuracy inereases expected pavoff on a subsel of all decision problems. while
Sufficiency works for all decision problems. Thus. given a signal. we may ex-
pect that the set of signals that represent an increase in Accuracy is larger
than the sufficient ones: actuallv. we are able 1o demonstrate strict inclusion.
Consider a family {X,} of signals affiliated with V@ if X iz sufficient for

X then Xo» is more accurate than X/, but the converse is not true. In this
sense. we are able to prove that Accuracy refines Sufficiency on our subset of
decision problems.

This paper makes two points: one more theoretical. the other more prac-
tical. The theoretical message is that, by restricting to an economically in-
teresting subset of decision problems (those with afliliated signals and single-
crossing pavoff). we can refine Blackwell’s notion of Sufficiency: this work
introduces Accuracy. a tight (ifF-and-only-if) notion. The practical byvproduct
is a comparative statics result: the more the pavofl s “sensitive 107 {single-
crossing in) the unknown variable. the more information will be acquired. As
a special case. this holds when acquiring information in Blackwell's sense.

We start off by restricting the class of decision problems: some literature
has investigated the opposite question. of how Blackwell's notion performs
when the set of preferences is expanded 1o include non-expected-utility prefer-



ences [see Safra and Sulganik {12]). Blackwell's Sufficiency is found inadequate
(not restrictive enough) in such settings. It is also worth pointing out that we
analvze decision problems. and not games. like for example principal-agent
vames (e.e. Kim [7]). In a principal-agent model, information is acquired
bv the principal only in order better 1o manitor the agent. It follows that
new information is useful only insofar as the agent believes the principal has
acquired it. and adjusts his (the agent’s) strategy accordingly, This is ob-
viously a different case than our. where the principal (decision maker) plavs
against nature. and nature’s behaviour does not change with the principal’s
information. Qur theory can be used to analyze game-theoretie situations.
for example auctions (see Persico [11]): however. the question of whether the
information acquisition process is observable by the opponents is crucial in
such an analvsis,

The rest of the paper is organized as follows:

Section 2 spells out the model. Subsection 2.1 enumerates hypotheses on
the pavofl function. and 2.2 those on the signal structure.

Section 3 illustrates the definition of the 7 transformation. with the aid of
an example (subsection 3.1): subsection 3.2 presents several other examples
of M-ordered families of signals.

Section | containg the analvsis.  Aflter two technical lemmas (subsec
tion 1.1}, subsection 1.2 contains the theorems that motivate this paper:
Thearem | establishing the notion of Accuracy. and Theorem 2 showing that
this notion is “tight™ on the set of afliliated decision problems satisfving a
monotonicity requirement on the pavofl functions. Subsection L3 discusses
this restriction on the pavoll functions. under which Theorems 1 and 2 apply.
Subsection 1.1 explains why. under affiliation. Accuracy refines Sufficiency:
this is formalized in Proposition 3.

Section 5 investigates the information acquisition problem introduced in
the beginning. H containg Theorem 3. a comparative statics result on which
problem will induee more information acquisition.

Section G presents three applications: a monopolist faces au uncertain
demand function. and can acquire information abont it. The choice of a
doctor under incomplete information about their skill. A take-it-or-leave-it
offer with incomplete information about the valie of the object.

Section 7 concludes.



2 The model

The model is the following:
Let us define a payoff function as a function

wlea)y: Vx A — X

Here. a represents an action. and v is an unknown parameter. seen as the
realization of a random variable 3. Let g(r) be a prior for V. with c.d.f.
(iir).

The decision maker cannot observe 1. but can observe a signal. a randomn
variable X, with conditional density f7(x | r). The associate c.d.f.is denoted
bv (e | o). This signal will be chosen  prior to observing its realization
from a family of signals { N} _,. where Jis an interval of the real line.
We will sometimes refer to a statistical structure as a prior for V' together
with a family of signals.

Seript letters are reserved for supports of random variables and domains
of functions. Thus. we denote with V the support of V.o with V¥ the support
of V1 X, = & and with ¥7C its complement. Let X, be the suppont of X,.
and V= Uyep .

A pavolf funetion together with a signal X, and a prior for V' oconstitute
a decision problem. the problem being

max / ul a0 L),
1eA Ty

Define a®(r) as
a"(r) € argmax, 4 / wie.a)dGM e | x)
SV
and let
wer) = ule e,
and

Riny) = [ / alea (e Vd e eydGir)
FATAFRY

be the expected revenue 1o the decision maker with signal X,

We will consider choosing one’s signal X, in a decision problem. at a cost
(7). Given a pavoff function. a prior for 1. a family of signals {X,}, o and
a cost funetion C'iy). the following optimization problem

max Kin)— ()
ne §l
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will be referred 10 as the information acquisition problem.
[.e

“IH(U) = % L [{ ?i‘( [ rf’:’(,p))([[-'g(l. \ -")([(:(r‘)

=
denote the marginal revenue to the decision maker from increasing 7). b.c.
choosing a slightly higher signal.

Troughout this paper. smootiiness assumptions are used in various places.
and the fiavour of results is often that of “marginal reasoning™. The main
reason for this is that Theorem | requires the use of an envelope condition on
the optimal action. This point is expanded upon in the discussion following
Theorem 1.

2.1 About payoft

Here we spell out some notation. and the restrictions we are going to place
on the pavofl function,

Let 7 be an interval of the real line. Let 0 denote the real function
that is identically 0. We present now a definition due to Karamardian and
Schaible [6].

Definition 1 We say that a real function H{r) is quasi-monotone on 7 if
(QM)T Hiey> 0= ()20 Joral o' >0 with v, v’ in 7.

We shall say that a function (-} satisfics (DQM)I whencver —H (-} sat-
isfies (QM)T. We say that a real funetion H{-) s strictly quasi-monotone
on 7 or (SQM)I if H safisfics (QM)T and is almost cverywhere differcnd
from ¢ on T. We define (SDQM)T analvgously.

Condition (QM)T is a condition of single-upward-crossing. It states that
moving rightward on the r-axis inside Z - a function cannot bhecome negative

again once it has assumed positive vaiues.

{QM)
Definition 2 Given two real functions Hoand 1. we say that I > [ on

T if I — L sabisfies (QM)I.

QM)
We can loosely interpret the relation I > L as 7 is more (QM) than
1" A notion 1hat is closely refated to (QM) is that of weak single-crossing

isee Milgrom and Shannon [9]):



Definition 3 - real function H{v.a) has the weak single crossing prop-
erty in {(a:v) on Z if. for any fircd pair ' > a. we have

(WSCP)I D ey = Hivoao )= H e a) satisfics (QM)L.

Remark 1 Whenever f/{e.a)is differentiable with respect to a and satisiies

(WSCP)Z. then o> (r.a) satislies (QM)T. &

2.2 About signals

In the following we list several definitions pertaining to the signal structure
of our model.

Definition 4 We say that fwo random variables X and Y owith jomnt distre
hution f(r.y) are affiliated when

(AFF) sy sy iy fleo 2 fle g foelo

When X and 1 are affiliated. we use the terms affiliated signals and
affiliated decision problem (sce Milgrom and Weber [10]).

Remark 2 It is casv 1o see that. if X and Y arc affiliated. then >
Jr) o JLrly)
T = flaly)
0. This is called monotone likelihood ratio property. because when y. '

whenever the denominators are different from

R

are in the support of f(y | 7). increasing the value of y to ¢" monotonically

. flrl A . o AT

rediuces the ratio ;#T,: )). Morcover. i X and Yoare affiliated the ratio "([:'I‘::)J
J S - - N

is nonincreasing in y (see Milgrom and Weber {10]). <

-

Definition 5 e say that random variable X is non-weakly affiliated with
vandom variable Y when X and Y are affiliated. and both of the following

conditions hold:

o for all &' in the support of X and for all y in the support of f(- | ')

. . . . f
there isan v < o' such that y is a point of decrcase for the ralio f([—’T

o forallr < &' € X such that Vo2V, # @, there s a y in the support of
. . TR
- ") sueh that i is a point of deercase for the rato - (r))

eI

v



Remark 3 The concept of non-weak afliliation is weaker than that of stricf
affiliciion. which requires the affiliation inequality to hold strictly inside the
support of X and Y. Yor example. consider flr.y) = hogla | y) where
gl | y)is a uniform on (y— .y +a for some a € R4, This joint distribution
implies that X is non-weakly afliliated with ¥ hut not strictly aflilated. <

Remark 4 The first condition in the definition of non-weak affiliation implies
i)
el

Plavers can choose their signal from a family of random variables (X e
each of which has a conditional c.d.f. F7{r | ). In what follows we shall

that the ratio is strictly decreasing as a function of y. &

make extensive use of an increasing function 15 5..(-) which has the following
propertv: given i < # and X, ~ (& r). then 7, .{.X,) has distribution
Fo(r b ), In other words.

Definition 6 (iven a family {X, ep. the transformation T, 5.(-) is defincd
by

Voot B — Risinereasing  and Lo (N o)~ Xo | 1.
Definition 7 Considor a family of signals {‘\v-’f’}nE:’:" We say that this famaidy

of signals is A-ordered by i if. given anyn < 8 m Iowe have %}’[};_g_l.( £

ift:?,
is nondeereasing in e, for ali v and o in the support of Xo | v f thes quantify
is striclly incrcasing in v, we say that the family s strictly A-ordered.

The term " A-ordered”™ stands for " Accuracy-ordered ™ & more accurate
signal corresponds to a higher parameter value. We will also use the term A-
ordered decision problem. with the obvious meaning. Given an A-ardered
family {X,}, o, wesay that Xy is more accurate than X, if n.@ € F and
TR 3

3 The 7,,.(-) transformation

This paper introduces the transformation 7, .(-). This is « novel concept.
For given X, Xg. . this transformation is defined by

10t B — N is increasing and  To (X, T~ X

Our definition of “better information”. or greater Accuracy. Definition 7.8
based on this object. It is necessary to investigate the existence of such a
transformation. before proceeding further. The next subsection explores this
concept. while subsection 3.2 presents several examples.

9



3.1 A discussion of the T transformation

The next proposition asserts that the T transformation s well-defined. This
transformation is a natural concept [rom statistics: it is the function needed
10 transform a conditional distribution (signal) into another (a possibly better
signal). 11 is clear that the transformation ust depend on r. since it has 1o
work for all #'s. This dependence makes it possible for 77 to "add correlation”

10 its argument.

Proposition 1 Given a family of random cariables {Xg} with continuous
densify fHe | e) with conver support. there s a unique real vafued function
T, ac5). strictly mercasing on the support of X, | v. such that

-['.'j.t?.i‘(—'\'r'; | 1o~ ‘r" \ .
Proof:  Lor any triplet (5. 8. ¢) the function 75 .(-) must solve the differ-
ential equation

STy ey = et e)

(the change-of-variable identity). coupled with a suitable initial condition. A
family of initial conditions that will work is

1,500 g-th gquantile of X, | r) = q-th quantile of Xg | r.

Then a standard 1heorem for differential equations gives existence and unique-
ness of the 7 lunction. O

Definition 7 suggest that increasing the g index of a family of randomn
variables represent an increase in the informative content of the signal when-

T, 5.0}l is nondecreasing in o Let us comment on this notion of
‘ i=7y;

“useful information™.
In this work the transformation 7, 5.(-) will increase the informative con-

over

;
i

tent of a signal: thus. a more informative signal is defined stariing from a less
informative one. This is in contrast with the standard definition of a “more
informative signal™. given by Blackwell. There. a less informative signal is
defined starting from a more informative one. We will see more about this in
the following sections.

Like Blackwell's. our definition is independent of the prior on e as s
appropriate for a notion ol accuracy of signals.

1o eot some intuition for the condition 1hat %II"“”-"(‘I')%_,. be nondecreas-

=

ing in . we can profit from the following simple

10



Proposition 2 Fosddn) >0 & e le) > 0 for y.f sufficiently

e

elose. -
Proof We can write
()2 . 7![? gl ) — 7"’?7 I’{-F
0 < s Tpnle)] =l 2 () = g funn )
e o dls d— 1

But 7,,.{x) = +. whereby the second term in the numerator of the fraction
is 0. Thus. our condition is equivalent 1o

Oy e 0
i X
P

for 5.6 sufficientiy close. -

Thus. our condition that the family of signals be A-ordered means tha
%}'};_{,_i.(r) > 0. i.0. the transformation T, 5..(-) varies together with r. The
new signal obtained applying this transformation. is a bit higher than the old
signal when ¢ is higher. and a bit lower when ¢ is low. We see how our notion
of a “more accurate signal” can be interpreted as one of a signal that is more
correlated with the true value of the object. v The T{-) transformation adds
this additional correlation to the original signal.

et us see the definition at work. in an example,

Example 1 Lot 5 € (0.}, and 17 be distributed according 1o any c.d.f.

.ot X, be distributed according to a uniform on [0 = 1/ + 1/
wyo 1 ¢ a
frrt i‘):g on [r— 1/ e+ 1/l

Using the definition of affiliation we can check that X. 1 are affiliated. Tur-
therinore. we can compute that

oy .

Foocley= i —rl+r.

f
Indeed. 7. ;5 i) solves the change-of-variable equation
Lol 2 |

(’l -',l = i
= Loty
22
together with the relevant houndary conditions. T, 5.,(-) Is an increasing
function and )
a 1
——]rr (l) = — > U
o T

Il



—— -

L]

Figure - Xy is more accurate than X,

Figure 20 The 10-) transformation in action

Do)



Thus, the family {'\':'-F}"E(U.K) is strictlv A-ordered by n. If the support of

Vois bounded. then =1, 5 (] is hounded (as a function of ©) nniformly in .

&

It is perhaps heipful to understand the geometric meaning of the condition
that %'[',L;,.,. ~ 0. with the aid of Figure 2. The first thing to notice is that
1,.6.00) has slope less than 1. and crosses the diagonal at r. This means that
T “contracts” mass around ¢, the parameter we want to infer.

Second. observe that in this example 7,,5,.(+) is a straight line. depending
on v onlv because it passes through (. ¢). Thus. increasing » to ¢ produces a
parallel shift of the 7" function. upwards to the line passing through a higher
point {#'.r"). Now. fix a value for o such a shift produces an increase iu
7tr) only if the slope of T(+) is less than 1. If the slope were higher than 1.
increasing o would actually reduee T(0). Hence. we see how in this example
‘—""1",,_5_;‘ > 0 {7{r)increases with 1) can be iranslated into a

I3

the property
“contraction property” {the slope of T1-)is less than one).

3.2 More examples of A-ordered families

This subsection illusirates several examples of affiliated A-ordered families.
I the next 1wo exaniples. i appears as an exponent of a c.d.f: thus increas-

ing 5 causes a first-order stochastic shift in the distribution of X conditional

on . without changing its support. Since »is also the upper hound of the

support of X | r.this is the same as
grC Koy < B implies PUNs € wov]) > PIX, € [l

In other words. the distribution of X is more concentrated around the true
value o than that of X,,. Thus it seems reasonable that an increase in should
increase the precision of a signal.

Fxamples 3 and 1 are of particular interest because there our definition of
“more useful signal™ coincides with Blackwell’s notion of Sufficiency. For the
first example this has been shown by Matthews i%]. while the second example
‘s the texthook example of Blackwells theory (see for instance DeGroot L.
We will indeed show later on that Sullicieney. in our Taffiliated” framework.
alwavs hnplies Necuracy. Besides. example 1 1reats the normal case. one that

is of obvious interest in information theory.

Example 2 Let 5 € (0.x), and 17 be distributed according to any c.d.f.
Se1

ile+1) .
Flijlr )= Tt on [0 (1)

13



The corresponding density Tunction is

palr+1=1

Sy ey =nlr+ 1)

W on [U ]
It is readily verified that
i ! H
——log [T{r ri= U > ()
Arilr T

whereby signais are affiliated for any 7.

l.ot 6 be some number greater than 7 the corresponding c.duf. is

- J.ff( v+1)
[' (." i"):: m (2}

et

. o
foelr)i= PRI

Using the change-of-variable formula. one may verify that. when X is
distributed according to (1) then Ty (X ) is distributed according to (2).
Indeed., we mayv check that T, 4..(+) verifies the change-of-variable equality

J,lf:‘(l'ﬁ-l)—k B "]'—I(U‘J]i,(a'+l)—l

. N L .._1 T F
B¢ 1)—-7"&(?.“) =nlr+1) ety VAT

We observe that T, 5 {r) is increasing in 7. and can compute

) f s

Y FRRara o — T > ().

i ' =T

Hence. the family { X, ) is strictly A-ordered. When the support of 1 is a finite
s - Pl

strictly positive interval, 521 6. 00 118 bounded (as a function of ¢ uniformiy
on r.

<

Example 3 Let € (0.5 ). and V" be distributed according 1o any c.d.f.. Set

Fige !l r)yi= F—] i on {0.v] (3)




It is readilv verified that
i)
drér

wherebv signals are affiliated for all 5.

log [ ) =10

Lot A be some number greater than s the corresponding c.d s

fet

Fooa(r) = ROUCRESS
Using the change-of-variable formula. one may verify that. when X 08
distributed according to (3). then T, 5.1X ) s distributed according to (1)
Indeed. we mayv check that 7,,4,.(+) verifies the change-of-variable equality

7 ti—1 '['71(, “.',-—l”vg g
/ :.’][——L—[[ l(y);.

n P

A

Since this is the same 7(-) as in the previous example. we can conclude
that the family { X, } is strictly A-ordered. When the support of Vs a finite
£, ¢ () is bounded (as a function of ) uniformly

H

strictly positive interval. o7

an oz,

<

Example 4
Let ;€ 10, % ). and V7 be distributed according to any c.d.f. Suppose X,
has a normal conditional distribution with mean ¢ and variance 17?0 It s
readily verified that
32
{7
drie

whenee all the random variables are affiliated. Moreover, hasic notions re-

(o] )= n? > 0.

log f

garding the normal distribution tell us that when
o n .
Loelr) = 5(‘7' — ).
we have that

A].r ,t'f.:'( -'\'.r, ) ~ -\—ﬂ.

i

Furthermore. 15, q. (&) is increasing in . and we can compute

P = s
s b= .
dear T g
Hence. the family { X} is strictly A-ordered. &
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4 The concept of Accuracy

In the first subsection we present a couple of Lemmas we shall need Turther
on. The second subsection contains the main theorems involving Accuracy.
The third discusses the import of an assumption of our theory. that of quasi-
monotonicity. Subsection 4.1 discusses the relationship between Accuracy and
Sufficiency.

4.1 Two technical lemmas

This subsection presents two lemmas. which will be of use in the following,.
First is a change-ol-variable lemma:

Lemma 1 /et X be a randon vartable, X ~ F(-). and {el hi-) be any real
Junction, If T{) s an inercasing real funcltion such that T(X )~ G4, then

+ +
/ haedG(e') = / TN F{r),

J— o —
Proof:  This is just a restatement of the change-of-variable principle. O
The next lemma. like many theorems later on, is divided into a weak (W)

and a strong (5) part.

Lemma 2 Lt {e.d) be an interval of the real linc. J(-} a nondecreasing real
function, H(-) a real function salisfying (QM)(c.d). Assumc that for soime
mcasure jroon W owe have

wl
—

{
/ H{ryduir)y=10. (f
Then
W
i
/ HieyJ(eydp(e) > 0.

S1) o in addition the support of g contaans {c. dy, -y # 0 oniceodyand
J{-) is strietly increasing over (eod). we hare

4
/ Hio S (eydp(r) > 0.
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S2) {f in addition the support of ji confains (e.d). () satisfies (SQM) (e, d).
and J(-) has a poin! of increasc on (e d). we have

/‘ e dieydptey > (.

Proof.

Part W): Because of (5). toghether with (QM). we know that there
must be a vy € [e.dl. before which I is nonpositive. and after which it is
nonnegative. Let J(e) = () — J(rg): because J(-) is nondecreasing. J{r) s
nonpositive hefore rg. and nonnegative after. Then we can wrile

q .
/H(r']. Fdplre / Himd(eydu(e) =

:/‘ H(e) eyl / (e edp(e) > 0

where the first equality uses (5) and the inequality follows from ff and .J
having the same sign on (e, rg) and {vg.d).
Parts S1), $2) In this cases. strict inequality will hold for at least one of

the two addends after the second equality above. a
Remark 5 Suppose that. in the above Lemma. ¢ = —x and f = +x. Then.
(3) reads [, (1) = 0 and thus the conclusions of Lemima 2 can be restated as
Coc (.02 0. &

Remark 6 1f J(¢) is decreasing, then the inequalities ol part WY and 5)
are reversed, To see 1his. it is enough 10 observe that in this case. —.]( v s
increasing. and then apply Lemma 2. <

Remark 7 11 is immediate 1o show that Lemma 2 holds whenever f/{-)
satisfies (DQM) and J(-) is decreasing. <

4.2 Accuracy

This is the section containing the results motivating this work. Theorem |
can be read as follows: given a family of signals and a problem w here —u
satisfies (QM). choosing a signal with a slightly higher index is boneficial if

the family is \-ordered.



When the family of signals is nou-weakly affiliated. Theorem 2 gives us
1h(' converse result: a failure of A-order implies that there is a problem where
=’ satisfies (QM) but choosing a signal with a higher index is detrimental.

Theorem 1 and 2 together show that. nnder non-weak afliliation of signals.
the A-order condition is necessary and sufficient for an increase in payolf in
the class of problems where %,u” satisfies (QM). Therefore. A-order is a
tight notion of "more informative signals™ on a subclass of decision problems.
those where a restriction of afliliation is placed on the signals. and one of
monotonicity is placed on the payvofl function.

The intuition underlving Theorem 1 is best understood when .—)n Hror)
satisfies (QM). Counsider the first-order conditions for a i(‘(mon problem
with Accuracy 7. in terms of “type reports”: the average of —u i) with
respect to v must equal 0. Condition (QM) implies that for ]0\\ values of
this quantity is negative. while 1t is positive for high values of r. Thereby. in
terms of first-order conditions. it would be desirable to report a slightly lower
r when ¢ is low. and a slightly higher & when ¢ is high. But this is exactly
what Ti-) allows vou to do when the family of signals is A-ordered. Indeed.
introducing the 77 transformation sways the type report in the dircetion the
decision maker would have. had he known the true value of v

Theorem 1 Consider an A-ordered family of signals and assume that. for
all . —u Yo satisfies (QM)VIEL Then

V) _Ulf’(!]) >0

if fnoaddition fz—_u“(r..z') 20 on V7 and the signal family is strietly
A-ordered, we hare MR(p) >0

Proof.
Part W): We wish to show that M R(n) > 0. that is

(m/[ aCrNd F |G| > 0.

lir=r}

To apply Lemma 1. let us identify P ey as G B ) as FOOand
Tty as T Then we can rewrite the above LHS as

T / / ] !l', Gl N E e e G ﬂ‘)ig:,} =

(19//” VIR ))d(”'(‘1.1-)rff*”(.1->‘1g:n:




/ < / (a7 g NG (] S E)] (6)
Y (]9 JV

fi=r

Taking into account an envelope result that allows us to omit differentiating,
the optimal strategy with respect 1o . the inner integral can be computed as

() ‘ ) i
/ [#u( . n’*'(.r})l al'la) (_;—9']',#;,_;,(.7'))!5:7: A e Ly =

[ D vy S| G, (7)

-
v oo i e

But. first-order conditions tell us that

Jo
/ _(—u“(a'..r)r[(}”(r' L) = 0.

v or

. ST . - .
and sinee —u"( e ) satisfies (QM) by assumption. we can apply Lemma 2

ta conclude 1hat (7). and hence (6). are nonnegative,
Part S): follows from Lemma 2 part 51). C

A-order. our notion of “better information”™. 1s defined on a continnous
family of signals. rather than through the comparison of any two signals.
This is because Theorem | is a marginal result. Two things in this theorem
require changes in Accuracy to be infinitesimal:

1. an envelope condition (allowing to disregard the change of the optimal
action with small changes of Accuracy). and

2. a first-order {optimality) condition. needed to apply Lemma 2.

A discrete analogue of Theorem 1 is not straightforward. since it would pre-
sumably entail assumptions on how the optimal strategy changes when 1he
signal changes. Iurthermore. Lemma 2. the cricial 1ool in the proof of The-
orem L. fails in the absence of the first-order {zero-mean) condition which
1o be satisfied  requires infinitesimal changes in Accuracy. Naturallv. in
an A-ordered family it is possible 10 rank the pavofl of any two signals that
are not infinitesimally close. since then Theorem 1 would hold for cach signal
in the familv: moving from any signal towards a higher one in the family
would monotonically increase pavofl. It must be noticed however that this
result relies on the existence of a familv spanning the two signals we wish te
campare.
The role of the first-order {optimality) condition in the prool of Theorem 1
suggests that this result is nof in the spirit of the literature on stochastic
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dominance: there. optimality is not required. and the conclusions are different
{and weaker).

The next theorem provides the converse to Theorem 1. under the assuwp-
tion of non-weak afliliation of signals: if a family of signals is not A-ordered
there exists a decision problem where increasing 7 is detrimental.

Theorem 2 Considera family { X}, .- of signals non-weakly afliliated with
V. If this family is nol A-ordered, there erist payoff funclion u(r.a). a prior
gl ) and an y € F such fhat %u”(r'..r) satisfies (QM)VT for all r in the
support of X, but M E{n) < 0.

Proofs  We will show that if {X,/}is not A-ordered. ie. for some (3. 07007}

we have that =1, 5 .(r” is sirict!y decreasing in o at r=. then we can
TARINON . =

H=r

construct a decision problem in which slightly increasing n reduces the payoff.

First. we mayv assume. using continuity. that %’[',;_g.,.(.l') is decreasing in v
in some square neighbourhood N around {v=.0~). Furthermore. we choose a
prior g{r) that is all concentrated on V.

This done. consider the following decision problem (and revelation game):

ulr.oa) = / Fals)fls | o)+ tils)l (s ] )] ds.

Here « is the action. and may be seen as the revelation of one’s type. fi(-] is
an arbitrary negative function. and £5(-) is some positive function. When £,(-)
i« a bounded Tunetion. ul(r.a) is bounded from above. It is readily verified
that %ir(z'. ) satisfies (QM).

We first of all want to construct a payoft for which truthful revelation is
the unique optimal action. This property has to hold for fixed 7. hence 1o
fighten notation we omit reference to .

Part i: truthful revelation is optimal

The ohjective function for a decision maker observing signal X = z ( a

Ttype 27 ) s
/ / dale) fls] Pl (s s | e dsdGee |z i)
JV -
The first-order conditions are

/ Ualaifla vy + ey la | eV dGir 2y =0, {9)
SV



et f5(-) he delined by
Flz|r) 0oy o
Liz) + {1(3)f—ﬁ fiz | mydCi(r] zy =0 for cach z. (10]
Jv ) :

For every (). eq. (10) defines a [unction fy(-) having the property that
truthtelling is a stationary point for the decision problent. To show that it is
indeed the unique maximum. suppose that a tvpe z declares { > 2. First.o it
is suboptimal to declare a ¢ > = sueh that Ve N Ve # 0. since reducing the
action would improve the payvoll at rate fi(a).

Then the first-order conditions are

/\J fvc( Py () {f-z(() + fl(';)‘——‘

AV &
].' - ~
[ n (i')lvz(r)[h{u+!1(§) o '}} pro mlz
flerr) z
= v[l'» (o ey O SC ey + (OIS ) dGile ) =
_f{Q)/ [ - . f‘(if')] - [f(:!?‘)} . .
Iy (e Ty (o) (1) + B | fIC e — 16 (] Q)+
o b v (el (o) 1aiQ) 1(&)'”{".| - St ek (1)

9 FIC|r _ sl
S /vak.(r)[u(c)+r.(g)(“_f|’)] f(gr)[LI—)] dC(e |

fizy Jig e CRED
f() A N (D N P I {0 ) R
—?(i*_J / Iy (o) fyeir] [f'zlu* fm',)ﬁ] Ji ) [_f(i{ i P)] A O~

v
+ / lvf-(r')lv:(ﬁ‘){lu;(g‘)f(c,’ S G UCHRIS T )] dGe 2y < 0
Jy s

To justify the inequality. let us discuss the sign of each term in the above
EXPression.
e The first term is nonzero. since we restrict attention to ¢'s such that
V. N V. £ 0. Let us show that it is negativer we want to make use of
Remark 6 applied to Lemma 2 S21. We can then identify Je) with



o=l R . . . . . .

%H since 11 is noninereasing in ¢ and has a point of decrease because
C

of non-weak affiliation. The term

-

i A
POy = F () ———
1‘2(\) i L.)f(‘;

satisfies (SQM)V, inon-weak alfiliation again). and because of eq. (10)
mav be identified with f{r). We can therefore use Remark 6 applied to
Lemma 2 52) to conclude that the first term is negative.

e The second term vanishes because of the combined action of fyc(r) and
Jtz1r). "

e The third term is nonpositive. because the indicators indicate a region
of 7% below the infof Ve (using afliliation). Thereby. f(C ) =0 and
FC ey =1

The inequality shows that it is profitable to decrease one’s bid. The con-

verse holds for declarations below one’s true type. and hence we have proved
that truthtelling is the only optimal action.

We now construct the decision problem that will vield the result.

Part ii: increasing n lowers the payoff

For anv given negative function t](-). pick the associate t5(-) function that

renders truthtelling optimal with signal X, (Part I above ensures such a 20
exISts )

Lot us define the pavoll of our decision problem when the agent is observing

X oas
z 1) , , . ]
/ / [ ) s | ey s T (s ] ) dsd GR (e | o) 7 () (1
SV IV ==

where a?(-) is the optimal decision function with signal Xy in problem (11).
\We can rewrite this expression. alter the algebra of Theorem 1. as

,1.‘,-(-1,-”-“-F () , , i .
/ [ [ P f(s Do) = s s e dsdGTe Dyd P
JY IV S

In view of Part i above. ') = + and thus the derivative with respect to #

evaluated at # =y is

B PR () .
) e e e ey T G (e L) d F ).
A[vtw ltl'f?-'i‘z‘;r)]f\rf L] !ézn( (o | a)d ")
(12)



We will show that the inner integral. namely

o Fe e L, Tl e ‘
/‘V |:1‘2(.I)T[](J.)4__fq(‘rlr)] [ }z)———aﬂ | dG e | ) (1:3)

is negative for » € V. and may be rendered arbitrarily close 10 0 for » ¢ .
This will allow us to conclude that (12} 1s negative.
To see that expression (13} is negative for + € V. it is sullicient to re-

Ay d)
0

call that in this case is strietly decreasing in ¢ (recall » € N

=y
by construction). while the term i’n brackets is (SQM) becuse of non-weak
afliliation. Then Remark 6 applied to Lemma 2 §2) will vield the resnit.

To make expression {13) arbitrarily small for o ¢ V. it is sufficient to
choose {0 very close 1o 0 for » @ V. =

4.3 The (QM) assumption

Theorems | and 2. the theorems that motivate this paper. rely on —u ea)
satisfving (QM). This condition does not apply 1o [)1111]111\(“1 of the plol)]('m
but 10 optimal quantities (given a fixed Accuracy). It is then appropriate to
provide a sufficient condition on primitives for %u”( o) o satisly (QM).

Proposition 3 Consider an affiliated deciston problem wherc u(e.a) has the
stngle-crossing property in (azv) on V.o Then ﬁu”( roa) sabisfies (QM)V.

Proof: By definition.

D ey [‘) (i ))] ()
— o) = [—uir. £ a-(r).
ilr ita

The first term in the product satisfies (QM)V since u(r.a) satisfies (WSCP)V
(sce Remark 1), It is therefore sufficient to show that @) is nonnegative.

Bui this follows from Theorem 5.1 of Athey 1] 3

In addition to the above proposition. we are able to provide a characteri-
zation of the quantity fu"(z 23 in a general affiliated decision problem (that
is. without imposing (WSCP)). This is of special interest given the results of
the next subsection. Roughly. these say that in an affiliated decision problem.
“increasing information” in Blackwell's sense can be represented as increasing
the Accuracy parameter in a family of signals, But the proof of Theorem |1
implies that increasing Accuracy, while "good™ in a problem satisfving (QM)
is “had” in a problem where ,—u vip. oy satisfies (SDQM). This suggests that
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in an afliliated problem —=u(r.r) cannot satisfy (SDQM). which is con-
firmed by the next proposition. The proof is carried out using second-arder
conditions.

e vy - . " y
Proposition 4 [1a non-weakly affiliated decision problom. given anyx. soutie.r)

cannol satisfy (SDQM)V.

Proof. By comradiction. suppose :‘ﬁu”( o) satisfies (SDQM). Consider
the first-order conditions for any tvpe z < » who plays like an r type:

[ [,(.)r.'"(i'..t‘)} d(v ! z) =
Jy Lo

A Be (o) (I, (e 4 () L})(u)} .r;(r-)'7,;(:—)’rh- =

. j‘r;(:) frf(.?' : f‘)J f'f{_j“)

- / I (eilyo{e) [‘i)—u”(r..r)} Al e | 2y =
Jyv : it
P f [0 TE
f”(Z)/v ]1,[(?)[, (e )] ] r‘}ﬁ](r (vlr)

- ;’:((i; / Iy (edye(r) {%iﬂ(r..r]jl Lﬂd({”(r b+

Vv

7 i
/ v teilyoie) {; u"(r‘..r)] dC7 e 2 i 1-1)
Jv :

dr

Recalling now that first-order conditions for the r-type are

/ [;in”(e'..r )] Aoy = 0.
Jy Ldr

that }% has a point of decrease at some r by non-weak affiliation. and that
T':_u’-’(r‘_.r) satislics (SDQM) by assumption. we can conclude that the first
addend of {11} is positive by virtue of Remark 7 applied 1o Lemma 2 partS2),
The second term is 0 beeause of the combined role of Iy and flz 1 ¢). The
third term is nonnegative also. because of (SDQM). since alfiliation implies
that the set of s such that the indicators are nonzero lies in the arca where
ﬁu’f(r..r‘} is nonnegative. Thus. the whole expression (11 is positive. But
this contradicts the lact that plaving (=) is optimal for type z. C



4.4 The relationship between Accuracy and Black-
well’s Sufliciency

It must be noticed that our notion of Accuracy is indigenous 1o a particular
class of decision problems. those where %u”(z‘..r) satisfies {(QM). A notion
that. instead. characterizes “hetter information™ in any decision problem is
Blackwell's definition of Sulficiency.  Let us report it here. as presented in
DeGroot (4], and explore its connection with Accuracy.

fet X and Y be random variables. or signals. with support Sy and Sy
respectivelv, 1t s said that the signal ¥ s sufficient for the signal X if there
exists a nonnegative function k on the product space Sx x Sy for which the

following three relations are satisfied:

fxie )= / e oy fyly | e)dyfor v €V and r € Sy
Sy

/ hr.yyder =1 for y € 5y (15)

hi'
and

0 < / hir.oydy < >x forre Sy .

A nonnegative function that satisfies equation (15) is called a stochastic
transformation from ¥ to X. Roughly. a “bad™ signal is obtained subject-
ing a “good signal” to an additional randomization independent of the lrue
rahie. 1t is intuitively appealing that. il the “good™ signal was positively cor-
related with r. then the “bad™ one will be less correlated. since it reflects
an additional noise element independent of v, Thus. also Blackwell's notion
informally predicts that a better signal will be maore corrclated with the true
value. In some sense we can see the action of our T(+) transformation as the
opposite process of Blackwell’s stochastic transformation; the T(-) transfor-
mation produces “better” information by taking X and addmg 10 ioa little
correlation with 172 converselv. Blackwell’s notion implies that “worse” in-
formation is obtained by taking X and adding a little noise to it. thereby
reducing its correlation with v

Blackwell's theorem asserts that if the decision maker can act upon ob-
serving X or Y. and seeks to maximize the expected value of u. then for every
prior g( 1) and for every pavofl function u{v.a} he is better off observing signal
Yoif and onlv if ¥ is suflicient for X,

in the light of the resnlts of Section L2010t is reasonable that Accuracy
be a more general definition of "more informative” than Sufficiency. on the



restricted set of decision problems to which the former applies. This is be-
cause Sufficiency is a necessary and sufficient characterization of “more useful
information” for all decision problent. Section 1.2 shows that Aecuracy is also
necessary and suflicient. but of course on a subsefof all decision problems. In
other words. let 1) represent the set of all decision problems. and DY C D orep-
resent the ones with a non-weakly affiliated signal structure and where %Iu”
satisfies (QM). It must be that the signals which increase the revenue for all
problems in £ (Sufficiency) are fewer than those which increase the revenue
for all problems in D'( Aecuracy ).

A more formal way to approach this issue is a restatement of Theorem 2.
Consider a family {X,} non-weakly affiliated with 17 taking into account
Blackwell's theorem we can rewrite the statement of the theorem as

[The Tamily {X,} is not Acordered  } = { X is not suflicient for X}

The counternominal of this sentence shows that Sufficiency implies Accu-
racy in a non-weakly affiliated family. and thus in this setting Accuracy is
more general {less restrictive a condition) than Sufficiency.

Fven more formallv. define a family of signals to be S-ordered (Sufficiency-
ordered) when 1 < 5 implies X is sufficient for X,.. In other words. i an
S-ordered family a higher signal is sufficient for a lower one. Then

Proposition 5 [f « family of signals is non-wcakly affiliated and S-ordered,
then it is A-ordered.

Proofs  The statement of Theorem 2 may be written as
Jdy s Ve > 0.d8 € (n.n+ ¢

{The family {X,} is not A-ordered } = {snch thai Xy is not suflficient

for X,
Negating the above sentence gives

Yy 3c > Osuchthat 8 € {(p.n+
¢y implios Xy is sufficient for 3 = { The family {X,} is N-ordered }

A
(16)
Since the sentence { The family { X} is S-ordered }implies the fefi-hand sen-
tence in { 16). the proposition is proved. O
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This means that all results of the form “increasing Accuracy implies some-
thing™ hold. a forfiori. in the form “increasing informativeness in the Black-
well's sense implies sowething”™. This is of interest for results of the tvpe of
Theorem 3.

The next proposition shows that. while Sufficiency implies Accuracy. the
converse is not true. Here we have a non-weakly affiliated family where in-
creasing the parameter increases Accuracy (see Fxample 1) but does not
increase informativeness in Blackwell's sense. To show this. we construct a
pavofl function for which increasing the Accuracy parameter results inoa re-
duetion of revenue: this. in view of Blackwell's theorem. shows that increasing
Accuracy cannot produce a suflicient signal. Of course. to find such an ex-
ample. we have 10 resort to a payoll where %H’? is noi (QM). otherwise

Theorem 1 would doom the effort.

Proposition 6 Lci b < ¢ b lwo real numbers, and consider signals Xy ~
Ule—bov+biand No~Ule—cort ). If ¢ < 2b then Xy is not sufficient for
X..

Proofs  In view of Blackwell's theorem. to prove our claim it 1s sufficient to
find a decision problem and a prior for 17 such that X, yields lower expected
utility than X.. Let us do this.

As a prior for 1 let us choose a very diffuse distribution (a Uniform on
[ 10006, + 10006] will doj. Consider the following pavoll function:

Gifacie—=bo+bh)
(e a) = Ky >0ifac(r—cor=blul{r+br+e
Ay < 0 elsewhere
where @ is an action. Sce fig 3
Consider the decision problem with signal ¥ the decision maker wants
to play in (r— .o —bYU (¢ +bor+e). However he does not know r. but only
r. 1he realization of his signal. He can thus decide for an a lower or higher
than . Because of the pavolf structure. any deviation of size less than ¢ — b
is advisable. because at worse it produces no effect. and at best it puts him in
the Ay region. Any deviation of size larger than ¢ — b. however. carries with
it the risk of landing in the Ay region. By choosing A low enough. we can
therefore make sure that 1he optimal strategy. @”( ). lies within e — b+ cof r.
Vor definitencss. assume that at o+ the optimal strategy prescribes a negative
deviation of size ¢ — b+ «.
Lot us now caleulate the optimal expected pavoll to a decision maker
with signal X, and realization . Given his signal. the posterior for V7 is
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concentrated on Lr — bor 4 bl is strategy will be successful whenever he
lands on the Ay region: because his action is lower than his signal. for this to
happen i1 must be that

r—je—-b+ay<r—1b (1)

Whenever the opposite inequality holds. he will have landed on the "0 region”.

Because the prior is very diffuse. we may approximate the posterior dis-
tribution for 17 with a uniform on [ = b2 + bl and the set of ¢'s where the
strategy is successful is (looking at eq. (17)) at most [r4+b—le=bt )]
whereby the posterior probability of success is at most (¢ — b+ )/ 2b. We can
thus compute that given any signal » (except possibly those around — 10006
and =10005)the expected pavoff is at most

(¢ —b+¢)

0.
w0

Observe now that a decision maker endowed with signal X. can. by jusi
sotting a{r) = o. obtain an expected pavoll of

2ezMp 1o
Qe b )

By choosing ¢ small enough. it is seen that sienal Y. will vield a larger pavoll
than signal Xy when ¢ < 2. for nearly all values of r. Integrating over r
concludes 1he proof. a

5 The information acquisition problem

In this section we discuss the information acquisition problem we presented in
the introduction. The core is a comparative statics result. on which problem
will induce more information acquisition. when acquiring information means
increasing Accuracy. Since the previous section showed that  under non-
woak affiliation  a sullicient signal is more accurate, we have that Theorem 3
holds. a fortiori. when acquiring information is meant in the Blackwell sense.

Proposition 7 and Corollary | give suflicient conditions for the information
acquisition problem to admit finite solution. Theorem 33 parts 2) is a com-
parative statics result: it tells which of two pavolf functions will vield greater
information acquisition in equilibrium. In order to do so. and given a fam-
ilv of signals. Theorem 3 defines (in its parts 1) a partial ordering on the
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sot of pavoll funetions. according to the incentives they give to increase the
Accuracy of one’s signal.

The intuition underlving Proposition 7 below is quite simple. Supposc
that when Aceuracy goes to infinity the signal hecomes totally accurate: then
asvinptotically the returns to increasing one’s Accuracy must go to 0. since
knowing almost evervthing already gets vou very close to the “full informa-
tion™ optimum. which is the hest one can do in the decision problem. In other
words. we can think of the function () as being bounded from above. and
that this bound is actually approached as n — x: it therefore makes sense
1hat its derivative with respect to 5 goes 1o 0 asymptotically.

Proposition 7 (iven an A-ordered information acquisifion problem with b =
o). assume that limg, o Xy = v almost surcly. Suppose a'(x) has bounded
de rivative. that the support of V. and of the family of signals is bounded. and

finally that 5T, 5.(r)| s bounded (as a funetion of v} uniformly in v as

g=r

15— . Thenlim, . MKEn) =0
Proof  Becanse lim,_ . Y, = v, we will have that

lim «{r) = argmax, uir.aj.

f— <

?

Therefore. since w(r.a) is continuously differentiable and o™ is hounded for

all i,
B U i nif 1t
B |—ul(r ey a™(e) =0a"{x) = 0.
i—x |t
But then equation (7} converges to 0 because %'/',f_.?_!‘(.r)*i,_ is bounded as
b =n
1y — . and this concludes the proof. 4

Corollary 1 If an information acquisilion problem is as i Proposition 7 and
ifliny, . MC(y) > 00 an oplunal Accuracy erists and is finite.

Proaf:  Straightforward. -

Wo now tiurn 1o the main result of this subsection. The intnition behind
Theorem 3 parts 1) is as follows. We have seen that Theorem | gets its kick
from = u" being (QM). It is therefore reasonable that. the “more (QM)”

i
[

Ly is. the higher the increase in revenue [rom increasing 5. The "more
. . . (QM) - :
(QM) relation is what we defined as > . Once this is established. Parts

2 follow quite casily from marginal reasonings.
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Theorem 3 Suppose two payofl functions, say wi(r.oa) and wpp(voa) are os-
sociated 1o the same A-ordered statistical structure. giving risc to hro infor-
mation acquisition problems, If for all r and 1 we have %u’;(r'..r) (an
%u':,’,,( eoryon VI fhen

W)

1) for all y. MRp(n) > MEy(n).

2) the set of optimal accuracies in problem [ is lngher (in Hie strong secl
arder V) ihan that of problem 11

)

supposc in addition that for all v we have %u; 7+ 7:721;; on VI and the
family of signals is strictly A-ordered. We have

1) for all y. MBrin) > MRin).

2) the mindmal oplimal Aecuracy tn problem [ is greater or cqual than the

marimal optimal Acouraey in problein 1.

Proof:
Part W): The proof of 1) follows directly from the definition of the relation

{QM) L .
> . coupled with Theorem | part W),

Part 2) follows from the fact that the function Il (n) = R.in)y—Cly)
(where m = [.f0 and 11 < I)is seenr to have the single-crossing property
in (mrm). This is casily proved using part 1) above. Then Theorem 1 by
Milerom and Shanunon [9] on monotone comparative statics vields the result.

Part S): 1) follows from Theorem | part S1).

The proof of part 2) is straightforward. =

6 Applications

6.1 A monopolist’s information acquisition.

This subsection is meant to provide a simple application of the theory de-
veloped above to the problem of a monopolist acquiring information about
an unknown parameter of his demand function. Throughout this section we
will tmplicitly assume that the quantities involved are finite. in order 1o avoid

trivial problems.

“Chiven A and 3 subsets of the real Hne. we say that 4 is higher than 7 in the strong set
order when. for every a € 4 and b € 13 we have max{a. b} € /1 and min{a. b} € 13
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Suppose that a monopolist has (0 marginal cost of producing quantity ¢ of

a good. lor whick the demand function is
P,olq) = ar = bg.

Here a.b are some known parameters, and v is unknown. with a prior distri-
bution g{ ).

The monopolist ohserves a signal X, distributed according 1o f7(x | ).
which convevs information about +. We assume that X and 17 are non-weakly
afliliated. and that the family of signals {X,} is A-ordered.

The choice of 5. the signal’s Accuracy. is made prior to observing the
sional. at a cost (). We posit g€ [ +x). and lim, . C{y) > 0.

The monopolist’s problem is. for a given  and 7.

f

max/ q Py ) dG e | ).
| Jv

Solving the first-order conditions it is scen that the optimal production

FESRE
y a ooy s a
gl )= SRV XY =r) = qu_l(.r).

In view of non-weak affiliation. this quantity is increasing in .r.
We may thus calculate the expression
- -} 2 .
ia o, as o, ) (e {)
] ' r Bynt 1 i )
(o) = =g ()= 2q) ()] = ooy (e (18R]
Oy bl L= i
and notice that it satisfies (SQM) (indeed. it is increasing in ). Thus. we
can apply the theory developed above. and conclude that M Ry > 0. The
optimal Accuracy. let us call it 57 ,. will lie at a point where M R crosses (7
from below.
As an application of Proposition [, we have

Proposition 8 When =21, 5.0} s bounded fus o funetion of v uniformty
on «. the optimmal Accwracy ns o s finide,

it is of interest to conduct some comparative statics resnlts on @ and b. as

thev vary separately or together.

Proposition 9 Consider two pairs of parancter calues. {a.b) and [a' V).

e

-y . Lpoqle
Then no > nis if and only if 57 > 5.



Proof:  Using equation (18). 1t is immediate to show that

a o, (Q>M) a o i g - a'? ot
—u,, 2 ol oand ——u,, F ool o
Ao e T dr T dr B b

But then Theorem 3 part S2) gives the result. G

Corollary 2 Supposc the monopolist had a constani marqginal cost of produc-
tion . Then the highor oo the lower the equalibrawm Aecuracy.

6.2 Market for doctors

Freixas and Kihlstrom in (3l examine the demand for information in the mar-
ket for doctors,
The set of doctors is ( —ac. 4+ ). the patient’s health after visiting doctor

o is denoted by u(roa) where

w(r.a) = ra — ba®.

Here b is a known positive constant, but r can take on any real value, Later
on. they consider the alternative utility function

(e a)= -l

where 5 and A are known positive constants. In their work. thev consider
the case where the prior distibution on ¢ is normal with mean g and variance
/. with ¢ a known constant. In addition. the agent can observe a signal
Ny, with mean ¢ and variance 1/8. The parameter # can be chosen by the
agent at a cost. The agent’s decision problem is. after having chosen a 6. 1o
nse it to infer the right « in order 1o maximize his expected utility.

It is siraight forward 1o verify that both u{e.a) and U (v.a) satisfv (WSCP).
We are able 1o conclude that in this framework any affiliated A-ordered family
of signals would have served the purpose. and it is not necessary 10 restrict
to the normal environment.

6.3 A take-it-or-leave-it offer

A seller owns an object which he values r. and knows its value. A buyver
has utility w(e) for the object. where w{e) > . The buver does not know

r. but can abserve a signal X, at cost (5] The game is as follows: the
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buver makes an ofler a(.r). conditional on observing X, = r. The seller either
accepts or rejocts. 1 the seller rejects. the buyver gets utility 0.

I any subgame perfect equilibrivm. the seller accepts if and only if a(r) >
. Thus. we can express the payoff to the buver as

i .
/ fLu(!')—njll.@d(:'(r‘} .

W= O

In the notation of this paper. we have

u(r.a) = [u(r) —all <,.

This is readily verified to be weakly single-crossing. and thus Theorem 3.1 of
Athey 111 gives us monotonicity of the optimal strategy. under affiliation of
signals.
Using an appropriate notion of derivative. we can write

J .

——u{ria)= —lieq + Tula) = algla | ).

ta

.

. RO Y [T T I KT L /I S (L S
I'his is (QM ). and sinee a’(0) > 0. we conclude that s=u"(v.r) = ‘L —ufr.oala ))J
is (QM) also.

7 Conclusions

This paper deals with decision problems. where an agent lras a pavoll depend-
ing on his action and on an unobserved parameter. The agent maximizes his
oxpected pavolf conditional on the realization of a signal. The novelty is that
the agent can choose the informational content of the signal. at a cost.

In this work we have introduced “A-order™. a novel concept of “better
information™. suited to a subset of economically interesting decision problems:
those where the pavoll function exhibits the single-crossing property, and the
oplimal strategy is monotone in the signal.

The concept of A-order is defined for continuous families of signals: a
family of signals is A-ordered when a slightly higher signal is siightly more
correlated with the unknown random variable. This notion captures the in-
uitive idea that “more correlation with the unknown parameter is better”.
We show that. whenever a family of signals is non-weakly affiliated and is
Sufficiency-ordered (higher signals are sufficient for lower ones). then it is A\-
ordered. while the converse is not true, In this sense the coucept of A-order
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is more general (less restrictive) than Biackwell’s Sufficiency. on the set of
non-weakly afliliated families of signals.

Further. we show that the property of A-order is a “tight™ notion on the
class of decision problems with single-crossing pavolls and non-weakly affili-
ated signals: whenever A-order fails. we can find a single-crossing pavofl where
a hicher signal gives lower payvoll. In other words. by restricting to decision
problems with single-crossing pavolfs and non-weakly affiliated signals. we are
able to give an if-and-only-if characterization of “better information”. Iu this
sense. this work is similar in spirit to Blackwell's. only restricted to a subset
of cconomically interesting decision problems.

As a more practical byvproduct of the analysis. a comparative statics roe-
sult is developed. ordering decision problems by the amount of information
acquired at the optimum. The flavour of the result is that the more single-
crossing the payolf. the higher the optimal Accuracy. The intuition is that
“single-crossingness” should be seen as “amount to which the pavoll varies
with the unknown parameter”. Hence. when Accuracy is acquired at a cost. a
problem where the pavollis highly dependent on the unknown variabie {hence
highly nueertaing will display a higher optimal choice of Accuracy. This re-
sult obviously holds when a higher signal is more informative in Blackwell's
sense. since this s just a special case (under non-weak affiliation) of increasing
Aceuracy,

A-order. our notion of hetter information. is defined on continuous fami-
lies of signals rather than through the comparison of two given signals: this
i« becanse Theorem | is a marginal result. The guestion of whether the re-
sriction 1o continuous families of signals is inessential. or it carries with it
mathematical substance. is an interesting one. This is a matter for [uture

research,
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