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1. Introduction

There are many situations where a group of agents must share a task or a good,
including dividing up assets among creditors in a bankruptcy {e.g., Aumann and Maschler
(1985)), sharing the cost of a public project or the surplus of a joint venture (e.g., Moulin
(1985ab, 1987) and Young (1987)), and rationing goods traded at fixed prices (e.g., Benassy
(1982), Barbera and Jackson (1995)). In allotting the task or good there are several issues

which are of interest, such as efficiency, equity, and incentive compatibility.’

We examine sharing problems when individuals have single-peaked preferences over
their desired share. Consider, for instance, a partnership investing in a project, where the
benefits from the project are paid out in proportion to the amount each partner invests.
Suppose that each partner has an ideal amount that they would like to invest and has
preferences that are single peaked about that amount. The total of these ideal investment
amounts may add up to more or less than the total amount required to undertake the project,
and so partners may have to invest more or less than their ideal amounts. There are many
different ways in which one can decide how much each partner will be allowed (or required)
to invest. One could simply require that each partner make an equal investment. This
solution is not very satisfactory, since it is Pareto inefficient in cases where some partners
wish to invest more than the equal amount and other partners would like to invest less
than that amount. A more sophisticated method for deciding on the investment levels is by
the uniform rule. The uniform rule may be thought of as starting from the equal amounts
solution, but then correcting it to be efficient. To illustrate the uniform rule, suppose that
the total of the partners’ ideal investment levels exceeds the total required to undertake
the project.? If there are any partners who wish to invest less than an equal share, let
them invest exactly their ideal amounts. This frees up additional investment opportunities
for the remaining partners. Now divide this remaining total equally among the remaining
partners. If any of them desire less than this equal amount, then let them have their ideal
investment levels. Continue iterating this procedure until all of the remaining partners’
ideal investment levels are at least as high as the equal shares of the remaining total. These
partners each invest this equal share. The uniform rule has many nice characteristics: it 1s
efficient, strategy-proof, anonymous, and envy—free,” and is consistent, individually rational

from equal division, and satisfies {one—sided) replacement—domination, and population and

! See Moulin and Thomson (1995) for a recent survey of axiomatic approaches to resource
allocation.

? The case where the total is less than or equal to the required amount is analagous. A
complete definition is provided in Section 2.

> See the characterizations in Sprumont (1991). Ching (1992, 1994) extends Sprumont’s
characterizations to a domain of single plateaued preferences and weakens the envy-free
and anonymity conditions to an equal treatment of equals property.



resource monotonicity conditions.? All of these properties seem to make it an overwhelming

candidate to be the “ideal” allotment rule.

However, the anonymity and envy-free properties of the uniform rule make it an inap-
propriate rule when there are asymmetries among the agents that one wishes to respect.”
Often partnerships are repeated relationships, where based on historical contributions or
tenure some partners may be considered more senior than others. In other applications,
other considerations may lead some agents to have natural claims to minimal or maximal
allotments. For instance when sharing a task, some participants may be younger and one
might wish to limit their inputs. There are allotment rules which respect such seniority
or asymmetry, while still respecting efficiency and strategy-proofness. In the case of the
partnership, a simple such rule is a queuing rule where partners are lined up according to
seniority (see Benassy (1982)). The most senior partners are allowed to choose their invest-
ment levels first. The second most senior partners choose next, and so forth. If at some level
there is a need to ration, it can be done uniformly. An alternative method which is based
on seniority or other asymmetries, and still respects efficiency and strategy-proofness, is to
entitle partners with different guaranteed levels of investment. (The uniform rule entitles
partners to equal shares: what they obtain is always at least as good as an equal share.)
These shares can have guaranteed minimum and maximum levels, A partner would end
up with a share outside of this limit, only if the total of the ideal amounts permits it and
he or she desires it. Feasibility imposes restrictions on how one can choose these minimal
and maximal levels across agents, as described in our theorems. Notice that such rules,
when coupled with existing asymmetries, can result in more equitable allotments than a
rule which treats all agents symmetrically in the strong senses implied by anonymity or

envy-freeness.

In this paper we characterize a class of allotment rules that are strategy-proof, efh-
cient, and satisfy replacement monotonicity. Strategy—proofness is quite appealing from
the point of view of decentralization; but it is known to be a strong requirement on any
collective decision making rule (Gibbard (1973), Satterthwaite (1975)). Yet, under appro-
priate domain restrictions, non-trivial strategy—proof mechanisms are known to exist. An
interesting example for the case of one-dimensional decisions is given by the generalized
majority rules (see Moulin (1980) and Barbera and Jackson (1994)). For the case of two

4 Consistency requires that a rule’s recommendations are unalterred if it is reapplied

to the remaining pie after some agents leave with their allotments. The replacement-
domination condition require that agents’ welfares all be affected in the same direction as
some characterstic of the economy changes, while the monotonicity conditions make similar
requirements on the allotments. Characterizations involving these conditions are given by
Thomson (1991, 1992, 1994ab).

K

5 Thomson (1994a) provides some other criticisms of the uniform rule.
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agents, the generalized majority rules and strategy-proof allotment rules are closely re-
lated, as we shall describe. This close relationship is due to the fact that with two agents,
an agent’s preferences can be expressed as preferences over the other agent’s allotment since
this uniquely determines his or her own allotment. With more than two agents, however,
this relationship is no longer true and so the allotment setting is complicated by the fact

that the alternatives are multidimensional.

The replacement monotonicity condition applies to situations where one individual’s
preferences change, which may lead to a change in his or her allotment. In such a situation,
there will be a compensating change in the remaining agents’ allotments. The replacement
monotonicity requires that no two of the remaining agents’ allotments move in opposite
directions. One might classify this as a very basic symmetry condition. The idea 1s that
an increase in one individual’s allotment decreases the amount left to be allotted among
the remaining agents. The restriction is that none of the remaining agents’ allotments can
increase as a result. This does not mean that they have to be affected in a similar manner
- some of the remaining allotments might not change at all. It is simply that none of the
remaining agents allotments should increase as a result of this change® This condition
does not make any requirements on the levels or rates of change of allotments. This 1s an
important distinction from conditions such as equal treatment of equals, anonymity, and
envy—freeness. This allows us to capture rules of the type informally described above (thus
avoiding possible conflicts with equity), while still imposing enough order (or fairness) to
clearly define a class of rules.

The paper proceeds as follows. After this introduction, Section 2 provides notation,
definitions, and Sprumont’s (1991) result in a form which will help us to describe our
procedures. In Section 3 we provide a full characterization of strategy—proof and efficient
allotment rules and examples which illustrates some unappealing aspects of the rules which
are admitted if no further conditions are imposed. In Section 4 we introduce and characterize
a new subclass of strategy-proof and efficient allotment rules, which can be thought of as

natural extensions of the procedure which underlies the uniform rule. Section 5 concludes.

2. Notation, Definitions, and the Uniform Rule

N ={1,...,n} is a finite set of agents.

Allotments are n—tuples a in the set A= {a € [0,1]" | 3 .. & = 1}.

¢ Much of the normative justification for this condition relies on the single peaked pref-
erences and efficiency. This means that the condition is equivalent to a statement in terms
of the welfare of the remaining agents. It should not be that some of them are made better
off, while others are made worse off. This condition {one-sided replacement—domination) is
defined and discussed by Thomson (1992).



An agent’s preferences over allotments are selfish and are thus identified with a complete
pre-ordering on [0,1]. Given two allotments a and o', agent ¢ prefers a to a’ if and only 1f
he or she prefers a; to a!. Preferences are also assumed to be continuous, and will therefore
always be representable by continuous utility functions. These are denoted u,, ul, u;, etc.

Finally, preferences are assumed to be single peaked with a unique ideal point. That
is, if u; represents the preferences of 1 € N, then there exists z° € [0,1] such that for any
y,z € 0,1

r <y<z = ul(z)>u(y) > u(z), and

z<y<z > u(z) > wu(y) > uw(z)
We call z° the peak of u; and denote it by z*(u;). Let S denote the set of all continuous
utility functions representing single-peaked preferences on [0,1].

Preference profiles are given by n-tuples of utility functions. They are denoted u, v’,
etc. u_; represents the (n — 1)-~tuple obtained from u by deleting u; and (u_;,v;) represents
the n-tuple obtained from u by substituting v, for u;.

An allotment rule associates a vector of shares with each preference profile. It is thus

a function f : S™ — [0,1]" satisfying feasibility:

> fi(w)=1forallue s
iEN
We consider only single valued rules, as opposed to correspondences.
A standard requirement on ailotment rules is efficiency: the selected allotment should
be Pareto efficient at each preference profile. It is easy to check that when coupled with
the assumption that preferences are single-peaked, the efficiency requirement is equivalent

to requiring that at each u € §":

Z 2 (1) < 1] = [z*(w) < fi(u) Vi € N] and
jzz'(u,) > 1) = (27 (w) > fi(u) ¥i € N].

Another basic requirement of allotment rules is strategy—proofness:

“i(f’(u)) 2 Ua(f"(u—.',v,')) Vie N, ue §", and v, € 8.

v

The virtue of strategy—proofness is that it guarantees that agents will have no incentive
to manipulate the allotments. It implies that agents will voluntarily declare their true
preferences when asked to, which establishes the desired connection between individual

preferences and allotments, as expressed by the rule f.
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A third property of allotment rules is anonymity: for all permutations = of N (7 is a
function from N onto N) and u € 8", f, ;) (v™) = fi(u) where ™ = (up-1(1), - s Up-1in))-
Anonymity implies an equal treatment of equals property which is sometimes desirable:
agents with identical preferences are treated identically.” As we argued in the introduction,
it need not be desirable in cases where different agents have different entitlements, rights,
or endowments. Sprumont (1991) has provided a full characterization of efficient, strategy-
proof, and anonymous allotment rules. It is our purpose to extend his results to the non-

anonymous case. Before we do, it is helpful to present Sprumont’s main result.

The uniform allotment rule, f*, is defined by

min|z” (u;}, A(u)] of EieN z'(u;) > 1,
filu) = {

maxz (), w(u)] 3 Tiep 2 (w) < 1,
where A(u) solves 3.y min[z*{w;), A(u)] = 1, and p(u) solves 3 max|z’ (u;), p(u)] = 1.

THEOREM (SPRUMONT). An allotment rule is efficient, anonymous, and strategy—proof,

if and only if it is the uniform rule.

In order to begin to extend the characterization to the non—anonymous case, let us lock
at the case of two individuals, which does not capture all of the features of the problem
but gives us some interesting hints. With two agents, the allotment is fully described by
a,, since a; = 1 — a,. Hence, the preferences of agent 2 can be expressed as preferences
on a, as well, by letting %;({a,) = uz(1 — a,). Clearly, %, is continuous and single peaked
whenever u, is. The allotment problem is now reduced to choosing a single point in {0, 1]
when both agents have preferences which are single peaked over the same variable. It is then
known (Moulin (1980), Barbera and Jackson (1994)) that the only strategy—proof efficient
and anonymous rule is the one which chooses the median among the ideal points of the
agents and a third “phantom” voter at 1/2. {We leave it to the reader to check that this
is indeed equivalent to the uniform rule, given n = 2.) It is interesting to notice that any
other median voter rule, with the phantom at any point in p €[0,1], is also strategy-proof
and efficient. The point p plays a role similar to that of a guaranteed level, since it suffices
for either of the two agents to propose p for this to become agent 1’s share. Thus, agent 1
can guarantee himself p and agent 2 can guarantee herself 1 — p.

There are, in fact, more complex two person strategy—proof and efficient rules, and
they correspond to those described by Moulin’s theorem. As shown in Barbera and Jackson

1994). such rules depend only on the ideal points of the agents. Let x, represent the ideal
) p p g 2 p

" See Ching (1994) for more on the equal treatment of equals property and its role in
characterizing the uniform rule.



point of i, (agent 2’s preference expressed in terms of a;). Fix 0 < p; < p; < 1. Two

person strategy-proof and efficient rules are of the following form.

z] ifpr <z <p2
f(z$,23) = ¢ max(z],z3] if 2] <p,
minjzy,z;| if 2} > ps

The case where p; = p, corresponds to the simple median voter rule, while the dictatorial
rule corresponds to the case where p; = 0 and p» = 1. A symmetric formula can be written
by interchanging the roles of agents 1 and 2.

The above characterization for two agents, gives us a hint towards the extension to
n > 3 agents. An agent is offered an interval of values. If one of the values is accepted,
the agent is allotted that value. Otherwise we proceed to a next step, in which a median
allotment is chosen, with the guarantee that the agent is not penalized for having let the
previous opportunity go by.

Let us take a last look at the uniform rule through an example with n = 5 agents with

3
207

ideal points r] = T, = %, T3 = 22—0, I, = Ll
As described loosely in the introduction, the uniform rule can be reached through the

following algorithm (see Sonmez (1994)).

STEP 1. Determine whether ) ., z*(u;) equals, exceeds, or fallsshort of 1. If ), ., =" (u)
= 1, then allot shares equal to the ideal points. If ..\ z*(u;} > 1, allot their ideal points
to those agents who demand no more than . If 3~ ., z'(u,) < 1, allot their ideal points

to those agents who demand at least ;.

In our case, 5 ..., z*{u;) > 1, and agents 1 and 3’s ideal points are less than +. Thus
iEN g 5

_ 3 _ 2
a; = 57 and a3 = ;.

STEP 2. Determine the remaining number of agents to be alloted, and the remaining share
to be alloted. Say there are k agents and an amount s to be shared. Perform the same
procedure as in step 1, letting s replace 1, and considering only the k agents. Iterate on
this step until all of the k' remaining agents have ideal points exceeds (respectively, falls
short of ) ;—'

In our case, k = 3 and s = é—; Agent 2 is allotted a; = 2“—0 There are now k&' — 2

agents remaining with ' = 2. Each has an ideal point which exceeds %, = >
g g 20 k 20

F,

STEP 3. Allot the remaining k' agents ;f:, each.

In our case, a; = a5 = 5.



We conclude that agents are allotted the shares (55, 2, %, &, 55 ), which corresponds

S

to the outcome of the uniform rule with A(u) = = = ;.

The above descriptions suggests a number of possible ways to extend an allotment rule
to drop anonymity:

(1) Rather than have i as a starting reference point, choose any collection of shares
such that ) . ¢ = L.

(2) Rather than having the same reference point for the cases of > . z"(v;) < 1 and
2w T {w) > 1, choose different reference points g~ and ¢ff .

(3) Let the reference levels depend on the share remaining in each iteration of step 2
(with some qualifications on that dependence, in order to preserve strategy—proofness).

The above remarks give us ideas concerning some of the ways in which we can alter
the uniform rule and still retain strategy—proofness and efficiency. The characterization in

the next section shows us all of the ways.

3. Strategy—Proof and Efficient Allotment Rules

Lemma 2 in Sprumont {1991) provides the basis for a characterization of all strategy-
proof and efficient allotment rules. We provide this characterization below. As we shall
see, however, this class is very large and contains some unattractive rules. The class has
some of the features discussed at the end of the last section, but also includes rules where
the reference points (or guaranteed levels) can depend on u in almost arbitrary ways. This
makes it impossible to describe a simple algorithm which results in these rules. We narrow
the class to be more manageable in Section 4.

An allotment rule f is strategy-proof and efficient if and only if for each 1 there exists
a, :S" ' —[0,1] and b; : S"~! — (0,1}, such that a;(u_;) < b;(u_;) and
> oien min[z” (u), b (u_;)]=1 for all u such that 3 ., z°(w} > 1,

Y ien max(z (u;), a;(u_;)]=1 for all u such that 3 ., 2" () <1, and
min[z* (v;),b:(u_;)] if > p z7(w) > 1,
filu) = {max[a:' (), as(usy)] i Dop 2 () < L.

[The proof of this characterization follows easily from Lemmas 1 and 2 in Sprumont
(1991)

The above characterization, although it provides a functional form for all strategy—proof
and efficient allotment rules, does not provide us with much insight into such rules. That
is, it does not provide an understanding of an algorithm or procedure which underlies such

an allotment rule. The difficulty stems from the fact that there are an enormous number
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of quite varied strategy-proof and efficient allotment rules. In particular, the choices of
the functions a; (u_;) and b;{u_;) can be made in many different ways, some of which are
normatively unappealing. Although we wish to characterize allotment rules which aliow
for asymmetric treatment of the agents, the class of all strategy-proof and efficient rules
admits some questionable rules. The following examples illustrate such rules, and provide

suggestions for a normatively appealing subclass.
EXAMPLE 1.

Consider an allotment problem with three agents and the allotment rule which is defined
as follows,
Agent 1 receives her ideal point r*(u;).
If z*(u,) is a rational number, then agent 2 receives his most preferred point from
(0,1 — z*(u,)] and 3 gets the remainder,
If z*(u;) is an irrational number, then agent 3 receives her most preferred point from
)

(0,1 — z*(u;); and 2 gets the remainder.

This rule is strategy-proof and efficient. This rule also makes it clear that it will be
difficult to find an easy step by step procedure which captures all strategy-proof and efficient
rules. Notice that in addition to strategy—proofness and efficiency, the above described rule
is coalitionally strategy-proof, depends only on agents’ ideal points, 1s non-bossy, and is
such that f; is continuous in u; for each 1. One unappealing nature of the example is that
a slight change in agent 1’s allotment can change which of agents 2 and 3 gets to choose
next, and thus dramatically increase or decrease their respective allotments. Thus, the rule
8

is not fully continuous in u.

As we shall see in the following example, one can find rules which are similar in flavor

to the one in Example 1, but are fully continuous.
EXAMPLE 2.

Consider an allotment problem with three agents and the allotment rule which is defined
as follows.

Agent 1 receives her ideal point z* (u,).

If 27 (uz) < 27 (u,)[1—z* (u;)] then agent 2 receives his ideal point z7 (u2) with 3 getting
the remainder.

If z°(uy) > z*(u, }[1 — z* (u,)! then agent 2 receives

8 Sprumont (1991) makes use of continuity in his proofs, but the condition he refers to
only requires f,’s continuity in u; for each 1.



median|z* (u,), z°(u,)[1 = z7(w)], 1 — z*(u;) — 2”7 (us)], with 3 getting the remainder.

In addition to being coalitionally strategy-proof, non-bossy, and efficient, the rule
described in Example 2 is fully continuous. The part of the rule which is arbitrary is the
manner in which the remainder (1 — z*(u;)) is split between agents 2 and 3. This splt
depends in a nonmonotonic way on the choice of agent 1. The rule is such that agent 2
gets to choose from some part of 1 — z*(u, ), and is rationed if he wants more than that
part. However, the relative size of that part depends on z*(u,). Here, sometimes when we
increase the desired allotment of agent 1, both of the remaining allotments decrease, while
at other profiles when we increase the desired allotment of agent 1, agent 2 gets a larger
allotment and agent 3 gets a smaller allotment.’

In a rule such as the one described in Example 2, we can think of agent 1 taking an
allotment and then leaving the rest for the remaining two agents. Thus the remaining
allotment problem is simply a two person allotment problem, but with a varying sized pie.
It seems normatively appealing to suggest that as the size of the pie (as left by agent 1)
increases neither of the remaining two agent’s allotments should decrease. This condition is
violated in Example 2. This replacement monotonicity condition is defined more carefully

in the next section and used in our main characterization.

4. Sequential Allotment Rules

In this section, we characterize a collection of rules which are strategy—proof and ef-
ficient, and allow for asymmetries among the treatment of agents. The characterization
involves a third condition, replacement monotonicity. This rules out the troublesome ex-
amples described in Section 3 and brings us back to procedures which are more clearly

variations on the procedure described in Section 2.

REPLACEMENT MONOTONICITY.

An allotment rule is replacement monotonicif for allu e 8", 1€ Nand v, € S
[f,(u) < ff(u*iwvi)] = UJ("’) 2 fj-(u_;,v,-)‘v’j # 'J

Replacement monotonicity states that if a change in one individual’s preferences results
in that individual receiving at least as large (respectively, small) an allotment as he received

before, then all other individuals’ allotments are no larger (respectively, smaller) than before.

9 For example, fix z*(uy) = 1 and z* (u3) = 1. If 2" (u;) = 1/4, then 2’s allotment is
3/16. If z"(u;) = 1/2, then 2’s allotment is 4/16. If z"(u;) = 3/4, then 2’s allotment is
3/16.



Notice that replacement monotonicity implies the non—bossy condition of Satterthwaite and
Sonnenschein (1981) ({f.(u) = fi{u_;,v;)] = f{u) = flu-.,w)).

Replacement monotonicity is closely related to the one-sided replacement-domination
condition of Thomson (1992).!° The difference is that Thomson’s condition Is stated in
terms of the welfare of the agents rather than their allotments, however, given efficiency,
these two conditions are equivalent. The idea behind replacement monotonicity 1s that if
we think of individual 1 as walking away with a smaller part of the pie, then the remaining
pie has increased for the remaining agents, and so they should all receive at least as large
an allotment as they did before.

Thomson {1992) provides a characterization of the uniform rule using one-sided re-
placement domination. Our characterization turns out to be different from Thomson’s
(Theorem 1)'* since he marries one-sided replacement-domination with envy-freeness, ef-
ficiency, and replication invariance. Envy—freeness implies a symmetric treatment of agents
which results in the uniform rule. Qur deliberate move away from this type of symmetry
and concentration on strategy-proofness results in a different (larger) class of allotment
rules.

There is some flavor of symmetry to the condition of replacement monctonicity, in that
it says agents should be affected in a similar direction in response to a change in some
agent’s preferences. However, this type of symmetry is substantially different from the
type of symmetry required by equal treatment of equals, anonymity, or envy—{reeness. In
particular, equal treatment, anonymity, and envy-free conditions can preclude an equitable
treatment in situations where there are existing differences in agents, such as in age or
ability. In the presence of such differences, equity may require an allotment which is to some
degree asymmetric (and which may involve envy). Such allotments are not precluded by
replacement monotonicity, since it only prescribes a symmetry in the directions that agents’
allotments should move in in response to a common change, rather than a symmetry in the
relative sizes of agents’ allotments.

We now define the class of allotment rules which are strategy-proof, efficient, and
satisfy replacement monotonicity, which we call “sequential” allotment rules. Such rules
follow a procedure that considers initial guaranteed levels for the agents and compares

these to their ideal points. Consider the case where the sum of the ideal points is at least

10 There are a number of conditions that are in the spirit of requiring that the allocations
or welfare of some group of agents move in the same direction in response to a change
in some characteristic of the economy which affects the availability of resources for that
group of agents. Examples of such conditions can be found in Kalai (1977), Roemer (1986),
Sprumont (1992), Thomson (1994ab), and Young (1987), to mention a few. See Thomson
(1992) for more discussion.

11 See also Thomson (Thm 1, 1994b) for a characterization involving one-sided resource-
monotonicity, envy-freeness, and efficiency.
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one (the other case is analagous). In this case agents whose ideal points are less than
their initial guaranteed levels will receive those ideal points. This frees up excess to be
redistributed among the remaining agents. We can think of this as an adjustment of the
guaranteed levels. The levels are adjusted to the ideal points of the first group of agents
(who wanted less than their respective guaranteed levels}, and the remaining agents’ levels
are adjusted to incorporate the excess. This is done so that none of the remaining agents’
levels decrease (but it is possible that some increase while others stay constant). Thus, at
each step the levels are “guaranteed” in that an agent will always receive at least that much
from the procedure (and possibly more in future steps), unless they desire less in which case
they get exactly what they desire. This procedure is repeated as in each step some of the
agents whose levels were adjusted may have an ideal point less than their new guaranteed
level. This frees up new excess, etc. The process ends when there are no agents whose ideal
points are less than their their new guaranteed levels. The ending guaranteed levels form
the allotment. Strategy—proofness will impose some constraints on how this adjustment
procedure depends on the ideal points of the agents. For instance, an agent whose new
guaranteed level is less than his or her ideal point should get the same new guaranteed level
if he or she announced an even higher ideal point. The formal description of this adjustment
procedure is now given.

First, given ¢ € A, ¢¥ € Aandue S™,let¢* =¢7 if )}, .y z"(u) > 1,and ¢* = ¢*
if 37 cn 2 {ux) < 1. Consider a function g : A x S®™ — A x §”. The notation g* denotes g
composed with itself ¢ times, with g° (g, u) = (g, u).

The function g is a sequential adjustment function relative to ¢ € A and ¢” € A if the

following are true for any (g%, u) such that (¢*,u) = g(¢"~*,u) = g*(¢*, u) for some ¢t > 1:
12

1. gt =z (w,)if (1 - ZJEN (u;) (¢t — =7 (w)) <0,
2{q g -y T (w)) SO (130 2 (w)){gl ' — 2" (w)) >0,
3.1z (v) 22 (w)>q ‘and 3y 2 (u;) > Lorif *(v) < z7(w) < ¢ ' and

2 jen T(y;} <1, then glg* u)=g(¢" ' ui,v).

4. Consider v, and §" such that (§",u_;,v;) = ¢"(g*,u_;,v;). Let ¢" = ¢"(¢*,u). Then
If 2*(v;) > 2" (w,) and 3, . =" (ux) 2 1, then ¢} > g} for j # 1.
If 7 (v;) < 27 (w,) and 3, . z"(ux) < 1, then ¢} < g} for 7 # 1.

12 Notice that a sequential adjustment function is defined over all possible guaranteed
levels, and utility function profiles. Our requirements only apply to those combinations
which can be reached by some iteration applied to inmitial guaranteed levels and profiles
of utility functions. A sequential function could be arbitrary at points never reached and
would still respect strategy—proofness, etc.
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Let us briefly paraphrase the above definition for the case where the total of the ideal
points is at least 1 (3 z"(u;) > 1). In the definition of g, part 1 says that if at any
stage some agents’ ideal points are not higher than their guaranteed amounts, then their
guaranteed levels adjust to be their ideal points. Part 2 says that the guaranteed levels
of the remaining agents {whose ideal points exceed their current guaranteed levels) cannot
adjust downward. Part 3 states that if one changes the preferences of an agent who desires
more than their guaranteed level at some stage, so that the agent still desires more than
their guaranteed level at that stage, then the adjustment is unaffected. Part 4 states that
if an agent’s ideal point is increased, then the remaining agents’ guaranteed levels cannot

decrease.

A sequential allotment rule f, is an allotment rule such that there exist initial guaran-
tees ¢“ and ¢” in A and g, a sequential adjustment function relative to ¢ and ¢”, such

that f;(u) = ¢, where

Y

1

n

(4. = {gnw’u} i Ve 2 (u)
) g (g"u) if ey zi(w) <L

Notice that a sequential adjustment function will adjust at most n times.*®

Before stating our characterization theorem, we illustrate the definition of a sequential

allotment rule.

EXAMPLE 3.

Seven children attend a party and share a cake. We will simply consider the case where
the sum of their ideal shares exceeds 1. (In this example we actually have free disposal: the
case where the ideal shares sum to less than 1 can be handled by a hungry parent.'*)

Let us name the children Lisa, Emily, Andrea, Claudia, Pablo, Marc, and Quim. Con-
sider a situation where the children line up (in the order Lisa, Emily, Andrea, Claudia,
Pablo, Marc, Quim) and then each takes whatever amount of the remaining cake they
please when they reach the front of the line. Here, we start with ¢ = (1,0,0,0,0,0,0).

3 By parts 1 and 2 of the definition, an adjustment only takes place if some agents ideal
points are less than their current guaranteed amounts (in the case where 3. o =" (u;} > 1,
and the opposite for the other case), and then those agents’ new guaranteed levels adjust
to their ideal points and stay there. Since there are only n agents, at most n adjustments

take place.
14 In situations with free disposal the allotment problem can generally be adapted by
simply giving agents their ideal points whenever they sum to no more than 1.
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This follows since Lisa, at the front of the line, can have as much cake as she wishes, but
nobody else is initially guaranteed anything. Next, Emily’s guarantee is adjusted to be the

amount of the cake left after Lisa has left so that
g = (z*(u1),1 - 2" (u1),0,0,0,0,0).
This continues in the obvious way so that
¢°> = (z" (u,), min[t — 2 (1, ), 2" (u)], max|1 ~ z* (v, ) — =" (u,),0],0,0,0,0),

and generally

L~
=
I}

{min[max[l = 2 ei 2 (u5),0], 2 (u)] ift <¢and

0 otherwise.

EXAMPLE 4.

Let us reconsider Example 3, assuming that the parents take a less laissez faire attitude
about the division of the cake. For simplicity let us consider a party with four children:
Lisa, Emily, Marc, and Quim. Emily and Quim are clder than their respective siblings,
Lisa and Marc, and it is agreed that Emily and Quim be entitled to twice as large shares
of the cake. However, Lisa and Emily are guests, so it is also agreed that they have first
rights to any excess, should someone desire less than their share. In the case of any further
excess (if at least one of the guests does not want all of the excess offered to them), it is to

be split uniformly among those not already full.

Given this description, and ordering the children Lisa, Emily, Marc, Quim, we have an
initial guaranteed level of ¢¥ = (1/6, 1/3, 1/6, 1/3).

Let us consider any situation where Lisa wants less than her share (z*{u,;) < 1/6), and
the others want more than their respective shares (z*(u;) > ¢”, 1 > 2). In this case the
adjustment is to (g*,u) = g(g¢”,u) where ¢' = (z'(u;), 1/3 +1/6 — z"(u,), 1/6, 1/3).
Now if z"{u,) > 1/3+ 1/6 — z*{u; ), then this is the final allotment (so ¢* = ¢! for all
t > 1). Otherwise, we move to ¢ = (z"(u,), z"(u), 1/6 + 1/2_1'(”21]"1'["", 1/3 +

1/2—1'“'-1)*1'51-‘1))
5 .

this is the final allotment. If one wants less, then the other receives the undesired portion

If both Marc and Quim desire as much as their ¢? allotments, then

of the other’s allotment. {We know that at most one will want less since we started with
the assumption that the total of the ideal points is at least 1). For instance if z*(u;) <
1/3+ 2= (UZ’FI tv3) then g% = (z* (wy), 2°(u2), 1—z"(uy) — 27 (ug) — =" (uq), z°(uy)).

Next, consider a situation where Quim wants less than his share (z*(u,) < 1/3), and the

others want more than their respective shares (z*(u;) > ¢, 1 < 3). In this case the adjust-

ment is to (¢',u) = g(¢” ,u) where ¢' = (1/6+ 5&2—.(&, 1/3+ M, 1/6, z°(uy)).

13



Now if Emily and Lisa want at least as much as they are allotted here, then this is the final
allotment (so ¢¢ = g¢* for all ¢ > 1). If both want less, then the final allotment would be
g> = (z°(u)), z°(uz), 1= 2*(u,) — 2" (uz) — 2"(us), =°(u4)). If just one wants less, say
2t (uy) < 1/3 + 3‘%“—‘1 then this excess is divided in two and added to the guaranteed
allotments of Lisa and Marc!®, so we move to ¢° = (7/12 - 33‘;"‘1 -z e2) 20 (up), 5/12—
zllua) M, z*(u,)). If either Lisa or Marc wants less than this amount, then they re-

4 2
ceive their ideal and the excess is given to the other. Otherwise, this is the final allotment.

There are many other cases that could arise, which we will not go through, but follow

similar progressions.

THEOREM. An allotment rule is strategy-proof, efficient and satisfies replacement mono-

tonicity if and only If it is a sequential allotment rule.

Remark: The theorem can be strengthened by replacing efficiency with the requirement
16

that f map onto the set of possible allotments.
Remark: The sequential allotment rules depend only on the ideal points of the agents,
and not on further information concerning preferences.!” With this in mind, it i1s easy to
see that any sequential allotment rule is fully implemented in dominant strategies by the

(direct) mechanism which asks for reports of ideal points. *®

15 Once the guests have gotten a first excess allocation, then all of those who are still
hungry are treated equally if there is any excess at this stage. Notice that the rule would
still be strategy—proof if instead of treating all equally, one “favored” Marc at this stage,
and then went back to favoring Lisa, etc..

16 We can see that if an allotment rule is strategy—proof, satisfies replacement monotonic-
ity, and maps onto A, then it is efficient. Suppose that f is not efficient. Then there exists
some u € S" and partition of the agents into 7;, T, [ such that f;(u) = z*(u;) for all
it €I, filu) < z¢{(u) for all 1 € I, fi(u) > 2°(u,) for all 1 € I3, and I, and I5 are
nonempty. Find a € A such that fi{u) = a; = z*(w,) for alli € I, fi(u) < a; < z"(w)
for alli € I, and fi(u) > e; > z*(u;) for all 1 € ;. Choose v € §" such that z*(v;) = g,
for all 1. If we change agents’ utility functions one at a time from u, to v, it follows from
strategy—proofness and replacement monotonicity that f{u) = f(v). However, since f is
onto A, there exists some 4 such that f(@) = a. By the same argument f(v) = f(%), which
leads to a contradiction. Hence our supposition was wrong.

17 In other words, sequential allotment rules are “tops only,” a consequence of strategy—
proofness, efficiency, and the non-bossiness implied by replacement monotonicity. By
strategy—proofness and efficiency, an individual cannot affect their own allotment by chang-
ing to a new preference with the same ideal point. By non-bossiness ([f,(u) = fi{u_;,v)] =
f(u) = f(u_;,v;)) none of the allotments are affected.

8 This equivalence to full implementation in dominant strategies is not true more gen-
erally of strategy—proof social choice functions. This is discussed in Dasgupta, Hammond
and Maskin {1979) and Jackson (1992).
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Remark: The sequential allotment rules are coalitionally strategy—proof. That 1s, there
is no group of agents who could all benefit by coordinating a misrepresention of their

preferences.!?

In the introduction we mentioned rules where agents have initial claims or entitlements.

The following corollary characterizes this subclass of sequential aliotment rules.

COROLLARY . An allotment rule is strategy—proof, efficient, satisfies replacement mono-
tonicity and is individually rational®" with respect to an allotment e if and only if it Is a

sequential allotment rule such that ¢ = ¢ =e.

Remark: Notice that the above characterization does not place restrictions on the evolution
of guaranteed levels after the first stage of the sequential allotment (beyond those restrictions
imposed in the defintion of sequential allotment rule}. For instance, if ideal points sum to
more than 1 and some agent’s ideal point is less than his or her entitlement e,, then this
frees up excess so that some other agent(s) may get more than their entitlement. Individual
rationality does not have implications for how this excess be allotted. It could be done in
any number of ways consistent with a sequential allotment rule. For instance, it could be
done according to a queue, according to some further entitlements, or even uniformly. A
recent paper by Klaus, Peters and Storcken (1995) characterizes this last set of rules, where
rationing away from these entitlements is done according to the uniform rule. This rule,
which they call the uniform reallocation rule, is the only one to satisfy strategy-proofness,

efficiency, and a property of equal treatment.?!

Proof of the Theorem: We begin by showing that any allotment rule which is strategy-
proof, efficient, and satisfies replacement monotonicity, is a sequential allotment rule. Then

we show the converse.

19 This can be seen using the strategy-proofness, efficiency, non—bossiness, and tops only
properties. For instance, consider the case where ). z*(u,) > 1. By efficiency, any coalition
C that could improve for all of its members must have f;(u) < z*(u;) for y € C. Consider
a change from u. to v, changing one member of the coalition’s utility at a tirme. Let k be
the first member whose new announcement changes the allocation. By strategy-proofness
and non-bossiness, it must be that z*(v,) < fi(u). If under u_.,v; the sum of the ideals
is still at least one, then by efficiency k will end up worse off (f(u_,ve) < z°(v)). If
under u_ ., v~ the sum of the ideals is less than one, by efficiency —C will get more than
their ideal points, leaving a smaller total pie for C so someone is worse off.

20w (fi(u)) > e for each v and 1.

21 Their setting is slightly different from ours in that the consumption set for each agent
is unbounded. They use such a specification to allow for a translation invariance condition
which is part of their equal treatment condition. Of course, our approaches are complemen-
tary in that they characterize different classes of rules.
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Consider f, which is strategy-proof, efficient, and replacement monotonic. We will
construct an associated sequential adjustment function as follows. Let u, and u be such
that " (%;} = 1 and z*(u,) = O for each + € N. Let ¢ = f;(u} and ¢F = f;(v). Define g as
follows. Given (¢, u) let (§,u) = g(q,u) be such that ¢; = f;(w) where

u if (1 - ZJ'eN z* (u)){q — =7 (w)) <0
w, =< % ifz(u)>g¢and p ' (w) 21, and

u, if z7(w) < g and 3, ' (u) < L.

We show that f,(u) = ¢; where ¢; = ¢"(¢*,¢) and ¢* = ¢ if } ., z"(w)} > 1, and
q“ = ¢~ if 3.y " (w.) < 1. Then we show that conditions 1 through 4 in the definition of
sequential adjustment function are satisfied with respect to the above defined adjustment
function.

Let us assume that u is such that > . . z"{w;) > 1. The proof for the case where

2ien T (w) < 1is analogous. The following two facts will be useful in the proof.

By efficiency
filw) < 2" (u) (1)
By strategy—proofness, for every u € S¥ : f;(u) < f;(u_;,4,), and by replacement

monotonicity it follows that for every 1 # 7 : fi(u) > fi(u_,,4,). Changing u’ to ¥, one

agent at a time, 1t follows that for any C € N and any 1 € C:
filw) 2 fi(u-c,ue). (2)

Now, let us show that f,(u) = ¢, where ¢, = ¢" (g%, u). Let (¢*,u) = ¢'(¢¥,u) and let

w' be such that:??

v, iz*(w)<g ' and
wr =
, ifz(u)>q "
We proceed by induction on t, showing that f;(u) = ¢ = f;(w') for all ¢ such that
*(uw;) < ¢'" ', and forall 1 € N if z7(u,) > ¢! for all 1.

We begin with t = 1.
Case A: z°(u;) > ¢ for all 1.

We show that ¢ = fi(u) = fi(w') (= ¢;}) for each 1. By strategy proofness at u,
g% = fi(u) > fi(u_,,u;) for each 1 € N. By strategy-proofness at u_,,u,, it follows

22 This definition is assuming that 3, 2" (1) > 1. If 37, 2" (u;) < 1, then set w! = u,

ifz° () > ¢, and w! = u, if 27 () < g

16



that ¢ = f.(u) = fi(u..,w). By (2), filv) > fi(tu_,,w.)) = ¢” for each 1 € N. Thus,
since 3. ¢ = 1, it follows that f;(u) = ¢¥. By replacement monotonicity (implying non-

bossiness), we also have that f;(u) = f;(w').

Case B: z*(v,) < ¢ for some 1.

We want to establish that for such an 1 f,(u) = f/(w'). By (1), z*(uw.]) > fi(u).
By (2), fi(u) > fi(u :,w). By strategy-proofness and the fact that ¢” = f,(u), it fol-
lows that ¢¥ > f,(u_,,u;). By the continuity of f;(u_,,w) in w (see Sprumont Lemma
1) and strategy—proofness, it follows that fi{(u_;,u;) > z'(u,). Thus, z*{u,) > fi(u) >
filu_i,u) 2 z7(w), so that fi(u) = 2*(v;). Since f;(¥_,,u;) = z*(v;) = fi(u), for any
such 1, it follows from replacement monotonicity and strategy—proofness (considering each

such 1 in sequence) that fi{u) = f,(w').

We now proceed by induction on t. Suppose that for all t < T f,(u) = ¢ = fi(uw*) for
all ¢ such that z*{v;) < ¢~ ' allt € N if 2*(v;) > ¢ for all 1. We must show that the
same 1s true for t =T,

Case AT: z°(u,) > ¢ for all 1.

By strategy—proofness at w? !, q‘T_l = filwT™ 1) > f,-(w'r_‘:l,u,-) for each 1 € N. By
strategy—proofness at w’ ', u;, it follows that ¢7 ' = fi(w’ ') = fi(v" ', w). By (2),
filw) > fi(w' ' w) = ¢/ ' for each i. Thus, since 3, ¢;”' =1=13__ fi(u), it follows that
fi(u) = g, for each 1. By replacement monotonicity (implying non-bossiness), we also
have that f;(u) = fi(w').

Case BT: z°(u;) < ¢/ 7" for some 1.

Consider such an t. By (1), z'(v;) > fi(u) and by (2), fi{v) > f:(u ;,u) By
strategy—proofness and the fact that g7 =% = f,(w” '), it follows that ¢7 > fi(w” ', w).
By the continuity of f; in u; (see Sprumont Lemma 1) and strategyproofness, it follows that
f‘(w‘ffl,ul-) > z*(u;). Thus, we have shown that z* () > f;(u) > fi(wffl,u{) >z (u,),
so that fi(u) = z"(u;). Finally, since f,-(wifl,ui) = z'(u;) = fi(u) for for any such 1, 1t

follows from replacement monotonicity and strategy-proofness that f;(u) = f;(w").

We have shown that f is represented by the above defined adjustment function. It
remains to be checked that conditions 1 through 4 in the definition of sequential adjustment
function are satisfied.

To see condition 1, we need to show that if z*(u,) < f;(w'™') then z*(w;} = f:(w').
This is shown in both cases of our inductive proof, above. Condition 2, then follows from
replacement monotonicity applied to our inductive proof above. Condition 3 follows from
our definition of g and the fact that in this case w! is the same for both u; and v;. Condition

4 follows from replacement monotonicity.
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Now let us establish the converse. Let f be a sequential allotment rule. We need to

show that f is strategy-proof, efficient, and satisfies replacement monotonicity.

Claim: f is efficient:

PROOF: Consider u such that > .., z*(u;) > 1. The case where 3  _, «*(w) < 1
analogous. We must show that f;(u) < z*(u,) for each 1. Consider ¢ such that f;(u) #
z* (u;). Tt follows from 1 (in the definition of sequential adjustment rule) that ¢; < z"(u,)
for all t < n. Then by 2 (in the definition of sequential adjustment rule} it follows that

flw)=gqr <z (w) 1

1

wn

Claim: f is strategy-proof.

PROOF: Consider u such that ), z"(u) > 1. (Again, the case where >, ., z*(w)} <1
is analogous.) If f;(u) = z*(vw,), then there can be no improving deviation. So consider
the case where f,{u) # z*(v;). By efficiency (above), fi(u) = ¢ < z*(w,). By 1 and 2
(in the definition of sequential adjustment rule) it follows that ¢/~ ' < ¢! < z*(w,) for each
1 <t < n Then by 3 (in the definition of sequential adjustment rule}, in order to affect
any change in [ via v; at u it would have to be that z*(v;) < ¢! for some 1 <t < n. But
then by 1, fi(u_,,v;) = qf+1 < g = fi(u). Thus, v, (fi(u_,,v)) < w(fi(u)) |

Claim: f is replacement monotonic.

PROOF: Consider uf and v; as in the definition of replacement montonicity. From strategy-
proofness (above) it follows that to have fi{u) < fi(u_;,v;) (as in the definition of re-
placement monotonic) it must be that z*(v;) > z*{w;). Thus, Z;’EN zt(u;) < z7{(vi) +
2T uy) 3y 2 (y) <1 <2 (v) + 32, 27 (u;), then replacement monotonicity
follows from efficiency (above). So consider 1 < . .. z*(u;). Then replacement mono-
tonicity follows from 4 (in the definition of sequential adjustment rule}. The same is true

for the case where = (v,) + 3., 2" (4;) < 1. |
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