A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Kalai, Ehud

Working Paper
Games

Discussion Paper, No. 1141

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management

Science, Northwestern University

Suggested Citation: Kalai, Ehud (1995) : Games, Discussion Paper, No. 1141, Northwestern University,
Kellogg School of Management, Center for Mathematical Studies in Economics and Management

Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221497

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221497
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 1141
GAMES. COMPUTERS, AND O.R.
by
Ehud Kalai’
Northwestern University
October 1995

The following is an extended abstract of a lecture prepared for the Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms.

*Department of Managerial Economics and Decision Science. J. L. Kellogg Graduate School of Munagement.
Northwestern University. 2001 Sheridan Road. Evanston. Hlinois 60208, ¢-mail: kalai@casbah.acns nwu.edu. Rescarch
is partially supported by NSF economics, Grant No. SBR 922223156



The scientific interaction of game theory with
computer science and operations research is broad
and fundamental. It covers a large variety of
applications in all three fields. and it transfers
concepts, language. and results across fields.
Listing all the areas of overlap will be long and
tedious. I will therefore restrict myself to discuss
a few. easy to present examples, where the cross-
fertilization of ideas was successful, and point to a
need for further research.

Graphs in Games

In coalitional games it is most often assumed that
the grand coalition, consisting of all the players,
will form. But the process of coalition formation
is often complex, only partial, and seems difficult
to describe mathematically. To model this process
rigorously, Myerson (1977) introduced the notion
of a communication graph. where each node
represents a player and a link represents the ability
of the two linked players to communicate. He then
extended the Shapley value of the game to reflect
this partial communication ability. Kalai,
Postlewaite. and Roberts (1979). extending the
notion of the Core of a game to incorporate
communication graphs, were able to study and
compare different trading structures. For example:
How does complete free trade, described by a
complete  comunication graph. compare with
centralized trade, where each player is only
connected to one fixed middleman?

Multi-Person Operations Rescarch.

Typical operations research problems, where a
single objective function is maximized, model one
person optimization. Often, however, the real-life
problem involves different maximizers with
different objectives and different  resources.
Assignment games, studied by Shapley and Shubik
(1972), linear production games, studied by Owen
(1975), and spanning trec games, studied by Bird
{1976), are all examples of multi-person extensions
of well known operations research problems. T will
use flow games, studied in Kalai and Zemel
(1982). to illustratc the synergy. of operations
research  optimization techniques with game

theoretic solution concepts, obtained in such

prablems.

Consider a standard max-flow problem with a
source s and a sink t and with a non-negative
capacity associated with each of its undirected arcs.
Assuming that each unit of flow from s to t
generates $1 profit, the standard problem is to find
the profit maximizing flow pattern. 1If, however,
different arcs are owned by different individuals.
or players, then we deal simultaneously with two
questions: (1) what is the optimal flow pattern.
and (2), how should the profit from the optimal
flow be distributed among the players?

Modeling this problem as a coalitional game we
assign to every coalition (a subset of players) S a
value V(S) describing the maximum profit (s to t
flow) S can generate by using only its own arcs.
The coalitional form game described by the
collection of these values, V = (V(8)). is the
resulting flow game. A vector of individual
payoffs is in the Core of the game 1f the total
pavoff allocated to all players is feasible, i.e.. it
sums to no more then the value of the grand
coalition, and is “coalitionally stable.” i.e.. the total
payoffs allocated to the members of every coalition
S is at least as great as their own value V(§).

Using the standard max-flow min-cut result, it 1$
easy to see that any flow game must be “totally
balanced.” which means that its Core and the
Cores of all its subgames (restricting the game to
subsets of players) are non-empty. Conversely,
starting with any totally balanced game V, we can
find a flow problem describing it. Thus the class
of totally balanced games coincides with the class
of flow games. Moreover. the intuition obtained
shows that every such game can be written as the
minimum of additive games. This simple
decomposition is useful for understanding this
important class of games (an older result of
Shapley and Shubik (1969) showed that the class
of market games also coincides with the class of
totally balanced games) and the strategic structure
of multi-person flow problems.



The Complexity of Playing a Game

A traditional assumption in non-cooperative game
theory is that players are fully rational and have
unlimited computational ability. Made for
modeling  convenience, this  assumption 18
especially disturbing when we deal with complex
games. First rigorous studies (see, for example,
Ben-Porath (1986) Neyman (1985) and Rubinstein
(1986)), showed that concepts from computer
science are uscful for modeling bounded
computational ability. But we must be precise in
classifying the types of complexities that can arise.
We first discuss the notion of strategic complexity,
through the example of a 2-person repeated
prisoners” dilemma game.

In successive discrete periods. each of the two
players must choose one of the actions:
“cooperate” { C ). or “fight” ( F ). However,
before making his t-period choice. a player is told
the full history of play. consisting of the t-1 pairs
of earlier choices. Thus, formally, a player's
strategy is a function choosing C or F for every
history, i.c.. a finite length string consisting of
pairs of actions. Clearly this definition is too
broad. and it even includes strategics that cannot
be described in any fimte time.

Aumann (1981) proposed using automata (o
measure strategic complexity. Consider automata,
Moore machines, whose inputs are history strings
and outputs are recommended actions. Then for
every strategy let its complexity be measured by
the number of states of the smallest automaton
describing it. If we allow countably many states
then every strategy can be described by such an
automaton, and paralleling the Mpyhill-Nerode
Theorem. Kalai and Stanford {1988) show that the
complexity of a strategy equals the number of
distinct strategies it induces (a strategy f induces
the strategy g. if a player using f will be led to
use g in the “new’ infinitely repeated game that
starts after some finite history).

Using the above measure of complexity, a
resolution of the finitely repeated Prisoners’
Dilemma Paradox was obtained. In such a game
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the (rational) equilibrium strategies prescribe
fighting throughout the game, yet most people
consider this unreasonable.  Neyman (1985)
showed that in the game where the players are
restricted to use bounded complexity strategies
there are highly cooperative equilibria. This holds
true even if the exogenously given number.
describing the upper bound on the complexity of
strategies that can be used. is large.

Rubinstein (1986} and Abreu and Rubinstein
(1988) showed that the high degree of outcome
indeterminacy (the Folk Theoremj). exhibited in
infinitely repeated games with patient players. can
be significantly reduced. If we impose minimal
additional costs for using more complex strategies,
the set of cquilibrium payofts of the infinitely
repeated prisoners’ dilemma game shrinks from a
two dimensional set to a single line segment.

Ben-Porath (1986) studied the advantage of using
a bigger automaton in a repeated 2-person 0-sum
games with patient players. Having a bigger
automaton than the opponent's can be highly
advantageous, but no advantage is materialized
unless the automaton is exponentially bigger.

In unmodified infinitely repeated games, with no
exogenously imposed complexity bounds or added
complexity costs, interpersonal complexity bounds
exist. For example, players must be using equally
complex strategies at generic equilibria of 2-person
games. Moreover, the set of equilibrium payoffs 1s
uniformly approximated by the equilibria where
players choose to use strategies of a given level of
high, but finite, compiexity (see Kalai and Stanford
(1988)).

Restricted strategic complexity, through the use of
automata or Turing Machines, has been the topic
of many papers. The reference list contains some
additional examples.

The Complexity of Solving a Game

A different issue is the difficulty of determining
optimal strategies (without complexity or other
restrictions) for playing a game. This turns out to



be more of a computational problem and. not
surprisingly, measures of algorithmic complexity
became useful.

Gilboa (1988) studied the difficulty of computing
an optimal automaton in a repeated game. If the
number of opponents is known, then this turns out
to be only of polynomial difficulty. However. with
an unknown number of opponents the problem is
NP complete. Gilboa and Zemel (1989) studied
the difficulty of computing equilibria for one shot
normal form games with large number of
strategies.  Questions regarding Nash equilibria
tend to be difficult, often NP hard, while questions
about correlated equilibria tend to be easy. This
suggests that  Nash equilibrium. the most
established solution of non-cooperative game
theory, may be the wrong concept for modeling the
behavior of players in large games. Our references
contain additional examples of such studies.

Modeling Boundedly-Rational Players

Combining restrictions to simple strategies with
restrictions to computable solution concepts leads
to new problems. not identified when these two
restrictions  are  dealt  with  separately.
Papadimitriou (1992) shows a model where
computing an optimal automaton with no
restrictions is easy, yet computing an optimal
automaton subject to restriction on the number of
states is hard. Similarly. incorporating complexity

costs into the objective function makes the
optimization problem significantly harder.
Papadimitriou’s  results  suggest a  modeling

difficulty.  As players become bounded their
computational requirements increase since their
optimization problems are objectively more
difficult. It seems that this type of difficulty is
EVEN MOre severe.

One of game theory’s basic premises is that a
rational player, in order to guess opponents'
actions, puts himself in the opponents’ shoes, and
simultaneously with his own he also solves the
opponents’ optimization problems.  In a fully
rational world this assumption leads to a Nash

fad

equilibrium where n-players simultaneously solve
n interrelated problems. and each solution 18
optimal relative to the other n-1 solutions.

In moving to a boundedly rational world it is still
reasonable to assume that players put themselves
in their opponents’ shoes, at least to a limited
degree. This means that the bounded player has to
make assumptions about the way that the bounded
opponents behave (he may even have to make
assumptions about the assumptions that they make
about his own bounded behavior, and so on}.
While there is only one way to be rational (I
assume maximization of expected utility and ignore
the issue of multiple solutions) there are many
behavior modes possible under bounded rationality.
So we may have him assign probabilities to all the
bounded modes of behavior that they may follow,
and following a Bayesian game approach a la
Harsanyi (1967), have him select an optimal
response. But this modeling approach is faulty
since it solves the bounded rationality problem by
assuming that players are extremely rational (the
full treatment. with assumptions about assumptions,
will require putting probability distributions on
probability distributions, etc.).

As game theory attempts to model larger (in the
number of players, strategies, and periods of play)
games realistically . the need for a good model of

boundedly rational players becomes urgent.
Creative conceptual input from other fields,
computer science, artificial  intelligence.

mathematical psychology and alike, may help us
overcome modeling difficulties described above.
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