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by
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Abstract

We study the play of mutual interests games by satisficing decision makers. We
show that, for a high enough initial aspiration level, and under certain assumptions of
“tremble,” there is a high probability (close to unity) of convergence to the Pareto
dominant cooperative outcome. Simulations indicate that the theoretical result is robust
with respect to the "trembling" mechanism.
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1. Introduction

A central question in game theory is under what conditions will agents who act
solely in their own interests evolve to cooperate. One reason for cooperation failure is the
inability of agents to agree on a preferred outcome. It is therefore natural to focus first on
games with a Pareto dominant outcome, and ask whether agents would cooperate to
obtain it.

Games with Mutual Interests’ (MI) are games in which there exists an outcome
which is strictly preferred by every player to any other outcome. Even though the efficient
outcome is always a Nash equilibrium outcome, there are reasons to doubt that it would
actually be chosen. For instance, Harsanyi and Selten’s [1988] risk dominance criterion
might select a different equilibrium. Similarly, Aumann [1990] argues that in the “stag

hunt” game the cooperative outcome might not be a reasonable prediction.

However, if the M/ game is repeated, the Pareto dominant outcome 1s more
compelling. Indeed, many authors have tried to derive it as the unique prediction for the
repeated game. Some authors have appealed to players’ rationality, For instance,
Osborne [1990] used forward induction to achieve the pareto optimum for a class of
repeated pure cooperation two by two games. Balkenborg [1993] studies two player
common interests games and uses strictness and stability concepts to guarantee that

players achieve the efficient outcome.

Following the derivation of the cooperative outcome in the prisoner’s dilemma
from bounded rationality (Neyman [1985], Rubinstein [1986], and Abreu and Rubinstein
[1988]), several authors have attempted to employ bounded rationality arguments in A/
games as well. Aumann and Sorin [1989] single out cooperation in a two player repeated
common interests game by using players with bounded memory and “trembling hand”
perturbations. Binmore and Samuelson [1992] show that a modified evolutionary stable
strategy in a repeated symmetric two person game must maximize the sum of the payoffs
to both players. Anderlini and Sabourian [1990] derive payoffs which are arbitrarily close
to the efficient payoffs in games were players are restricted to choose strategies which are
implementable by Turing machines. Kandon, Mailath and Rob [1993] and Young [1993]

assume noisy imitations of successful strategies in games between randomly matched

' Aumann and Sorin [1989] diffcrentiate between games with Mutual Interests and games with Common
Interests (C/), where the unique parcio optimal pavoff can be achicved via several different strategy
profiles.



players chosen out of a large population. On the sub-class of pure coordination games
their results imply that as the “mutation” rate tends to zero, the limit frequency of the M/
outcome tends to unity.

Furthermore, several papers have shown that the application of an evolution
inspired solution concept to a cheap talk game would result in the Pareto dominant
outcome, if such exists. For example, Kim and Sobel [1991] consider a subclass of C/
games where the pure strategy Nash Equilibria are Pareto ranked. Similar results were
obtained by Wiirneryd [1990] (sender receiver games) , Matsui [1991] (pure cooperation),
and Schlag [1993] (symmetric partnership games).

In this paper we take the bounded rationality approach to an extreme. Players are
so naive that they do not even realize that they are participating in a game; all they know is
that, at every stage, they choose an action and get a payoff. We assume that each player
has an aspiration level which can be interpreted as a payoff level she would like to get. At
every stage each player adopts an action which has the highest cumulative payoft relative
to her aspiration level If a certain action was never tried by the player, she evaluates it by
the aspiration level Thus she is “satisficing” a la Simon [1955] and March and Simon
[1958]. Namely, she will not attempt to optimize as long as the “familiar” actions obtain
the aspiration level. On the other hand, among the actions that were chosen, the player
does “optimize” by choosing a maximizer of the cumulative payoff. The latter is re-scaled
relative to the aspiration level. (l.e., the action is evaluated by the sum of the differences
between experienced payoffs and the current aspiration level.) Thus, our notion of an

I M . 7 . 43 M 2
aspiration level” can also be viewed as a “reference point.”

Cumulative payoff is arguably one of the simplest possible evaluation rules. It may
be viewed as an index which summarizes a player’s memory of the action’s performance.
It should be noted that this rule is not invariant with respect to “shifts” of the utility
function. By contrast, traditional game theory chooses the “zero” on the utility scale
arbitrarily. It therefore makes sense to enrich the model by the inclusion of “aspiration
levels” or “reference points”—which might differ from the arbitrarily chosen “zero.” On a
more conceptual level, the impression that an action forms in the player’s mind depends on

her implicit expectations.

Qur decision rule pre-supposes less information and less “rationality” than the

existing learning/evolution “myopic best response” rules or even “fictitious play.” In those

2 Note. however, that it differs from Kahneman and Tversky’s [1984] “reference point™ in that the latier
refers to an agent’s most recent wealth or endowment.



models players know the game, observe the past path of play, form implicit beliefs about
the other players strategies, and myopically choose a best response relative to these
beliefs. Under our rule players need only remember the cumulative payoff they achieved
from each of their actions, the number of times they played each one, and their current
aspiration level.

We further assume that players are ambitious at the beginning of the game and
“hope” to achieve high payoffs, but they become more and more realistic as the game
progresses. They update their initial aspiration level towards the maximum payoff they
have received in the past. Thus our agents are case-based decision makers (Gilboa and
Schmeidler [1992]) and their aspiration level updating rule is similar to the case-based
optimization one (Gilboa and Schmeidler [1993]). In contrast, Bendor, Mookherjee and
Ray [1994] explore leng-run equilibrium notions where players use the “satisficing” rule
with fixed aspiration levels, which turn out to be the long run payoffs. Shoham and
Tennenholtz [1993] introduce the notion of co-learning to the artificial intelligence
literature. Co-learning refers to a process in which several agents simultaneously try to
adapt to each other’s behavior s0 as to produce desirable global system properties. Their
agents use the “Highest Cumulative Reward” rule, which is equivalent to our rule with a
fixed aspiration level of zero. They prove convergence to the desirable outcome in a class

of symmetric two by two games, with random matching and finite memories.

In the following we show that in a mutual interests game, if players are sufficiently
ambitious at the beginning, and if they “tremble” whenever they switch an action, then,
after a finite stage of experimentation, they will settle down and play the Pareto dominant
action profile forever after (with probability which is arbitrarily close to one). Specifically,
we assume that at every stage each player computes the cumulative payoff of each action
relative to the current aspiration level. If the “current” (most recently played) action has
the best past performance, the player keeps playing it. If, however, it is not optimal in the
above sense, the player will switch to a maximizer of the cumulative payoff with

probability (l - 6‘), whereas with probability ¢, she will “tremble” and choose a random

action.

One may imagine our players as implementing their strategies by machines that
always have one button pressed. Sticking to the same choice in the stage game does not
involve an explicit action, while switching does. More generally, this assumption of an
asymmetric noise may be justified by “inertia” or by preference for the “status quo.” (See
Anderlini and Ianni [1993].) Gilboa and Schmeidler [1993] do not assume any “trembles”

to get their optimization result. Rather, the “noise” in their model is generated by a high



aspiration level. One might have conjectured that this would suffice in a game situation as
well. This is not the case since a high aspiration level only guarantees that each player
tries all her strategies; it does not imply that the players will try all strategy combinations.
At any rate, the assumption that some noise may exist appears rather realistic.

While our particular assumption regarding the noise is crucial to the proof of our
result, computer simulations indicate that convergence might be possible under a variety of
alternative assumptions. In particular, we examine the case of a “uniform tremble,” that s,
a tremble which may occur at any stage (regardless of switching), and the absence of noise
altogether. In both cases, convergence to the M/ profile is not guaranteed. However,
when the noise is small or non-existent, convergence appears to be the rule rather than the
exception. Specifically, games with randomly generated payoffs yield high frequency of
the MI outcome. For instance, one may reject the hypothesis that the frequency is less
than 95%.

In summary, this paper may be viewed as an exercise in modeling extremely
bounded rationality. It shows that cooperation may evolve even if players are not aware
of the interactive nature of the situation. Ironically, it appears that the more “rational”
players are assumed to be, the stronger are the assumptions needed to explain
cooperation.

The rest of the paper is organized as follows. Section 2 presents the formal
model. In section 3 we prove the main result. Section 4 is devoted to some numerical

simulations. Section 5 concludes.

2. Model and Results

We study n-player strategic form games. The set of players is denoted by
I = {1,-~-,n}. Let A be a finite set of pure actions for player /i and let
A=A"x A*x---xA” be the set of pure action profiles. To avoid trivial cases it will be
assumed throughout that there are at least two players and every player has at least two
pure actions. We further assume that players are only allowed to choose pure actions. Let
u': A —> N specify the (stage) payoff, u'(a), for player / when the action profile a € 4 is
chosen. Let %' denote the highest payoff that player / can obtain in the stage game.
Assume that the stage game is one of mutual interests. Thus there exists a unique pure

action profile which gives the highest possible payoff to all the players.



Let a” € A be the Mutual Interests Nash Equilibrium action profile,
w(@)su' >u'(a) Vaecd aza

Imagine that the players play the game repeatedly, at dates t=1,2,.... We describe
the set of possible finite game paths by:

S:{(t,(al,---,a,)] 1>0,a, €4 rzl,---,t}

Thus a game path is a list of the action choices of the players for every period. Every
player is assumed to have an initial aspiration level H| . which describes the payoff she

hopes to get at every stage of the game. As the game progresses the players become more
and more “realistic,” and at every stage they adopt a new aspiration level which is a

weighted average of their previous aspiration level and the maximum payoft they
encountered. Formally, let &’ e(O‘l) be the adjustment rate at which player i/ updates her

aspiration level.

Given a specific finite history s= (t,(al,---,a,)), we can now define (recursively)

the aspiration level of player / at the beginning of period t given history s:
For t=0 H'(s)=H,
For >0  M'(s)= Max u'(a,)

H(s)=a' -H'($)+(1-a')- M'(s)
where §'= (t -1, (a,,m,aH)) and. a' e(O,l)

After every history s = (l,(a,,---,a,)) player i evaluates each of her pure actions
according to her cumulative payoff from playing the action in the previous (t - 1) stages

relative to her current aspiration level. We thus define the functional {/'(s.a") :

For =0 U'(s,a’)=0

For t>0 U'(s,a')= Z I, . (afa,)-H'(s)

r=l|

where [, is the indicator function that gets the value 1 if player / played @’ in period 7

(and zero otherwise).



Thus, for every pure action, player i adds up the difference between her payoff
playing the action and her current aspiration level. At the beginning of the game, when
the player was very ambitious, her payoffs may seem very unsatisfactory but as she
becomes more realistic she re-evaluates past performance relative to today’s aspirations.

Being of bounded rationality, player / would like to myopically choose (at period 1)
the pure action with the highest {/'(s,a’}. In our model we include some trembles. If the
player decides to choose the same action again she will play it with certainty; however, if
she would like to switch to a different action there is an £ chance that she may tremble
and end up with another one. Thus, effectively, player 7 plays a mixed action, o', at every
stage.

[t will prove convenient to define for every i €/ and &+ B A"

o if @ €B
syay={" 7« !
O  otherwise

(note that &'is an element of the TA’| dimensional simplex)

At the initial state s, = (0( )) player i randomizes uniformly among all of her

actions :
o'(s,)=9",
Given a finite history s = (r,(a,,---, a, )) with ¢ > O player 7/ 's mixed action wouid be:
o a, €argmax{/'(s,)
g'(s)=4 "
(l - ‘9) ’ §;rgma_‘;b"(5:) te 5;‘

where ¢ E(O,l).

On the set of all possible game paths we define a Markov chain with the following

transitional probabilities:

P(s, 3‘) _ l:[a'(s)(a,'”) if s= (t,(a,,---,al)) and §' = (t + 1,(al,---at,a”]))

0 otherwise
Define the set of all possible infinite game histories:

1+

Q= {a) :(.s'o,s,,---,.s'{,n-)

P(s!,s )>O \‘/t}



For @ € Q, w, denotes the t-th component of @, i.e., for w = (.S'O,---,.s',,---) L@, =§

I

Endow €2 with the c-algebra, £, generated by finite histories and let pu be the
probability measure on € induced by the transition matrix .
Consider the set of states of the world, @, at which the mutual interest profile, a .

1s the only one played afier a certain time:

G = {a) = {508, 5,,) EQ‘HT Vi>T, o, :(t,(a,,---,al)) has a, :a'}

(Note that 1t 1s £-measurable)

We can now formulate our main result:

Theorem :  Given 77> 0 there exists M €0 such that for all H, = (H('J HU") with
H, > M Viel, the induced Markov chain satisfies u(G)>1-17.

Observe that the definition of the Markov chain, and therefore of (Q, . ,u),
depends on H,. The theorem thus applies to all Markov chains whose F, is high
enough. (To simplify notation, we suppress H, from the symbols P, Q. T, 1)

The theorem guarantees that, using our myopic rule, with high enough initial
aspiration levels, the players will play only the mutual interests equilibrium (after a finite
period of time) with a probability which is as close as we want to unity. Note that the
result is independent of the size, &, of the tremble as long as it is strictly positive.

3. Proof

Given a state 5 = (t,(a,,---,a, )) define the number of times player 7 played action a':

K'(s,a‘) :#{rst

L |
ar_a}

In the same way we define: X (s,a) =#{r < !‘afr = a}
Let 7> 0 be given.

Lemma I There exist M R _and an integer &, such that for all H, = (H1

e

- H) with

H), > M Viel, wehave ,u({a) eQ‘K(mkl,a')> O})zl— n .



Thus if all players start with high aspiration levels the probability that they will play
the mutual interest profile at least once during the first & periods is arbitrarily close to

unity.

Proof : Let k, be a large enough integer such that, if all the players switch actions
simultaneously at least k, times, the probability that they have played a’is bigger than
1- 7. Specifically, let &, satisfy:

[1];[:@1“ < .

(When all players switch actions at the same period, there is a probability of at least

H IA% that they will play a”)

il

We wish to find a lower bound, M, on the initial aspiration level, such that the
players will choose to switch actions almost every period. Roughly, when the aspiration
level is very high, all the stage game payoffs are similarly dissatisficing, and each player
will choose an action that was played a minimal number of times. This implies that every
player chooses to switch an action often enough. The only times that a player can play the

same action twice in a row is just after she played all of her actions the same number of
times. Thus during every 1+ I—[ |A,.‘ periods there must be at least one period where all

icl

the players want to switch actions simultaneously.

Formally, let &, = k, -[1 + I—“AD We will now find M, such that whenever
e

H! > M, (for all i) we have :
K(w.a)-K(w.b)|<l sk VYoecQvVielVa b cd.

Let " and u, be (respectively) the highest and lowest payoffs to any player in the stage
game. It is enough to show that Vi <k Vo eQ Viel Va',b' €4,

K’((o,,a’) > K’((u,,b') +1 = U'((of,b') > U‘((u,,af) :
Set M, =k -u"—(k,~1)-u,. Aslongas H, > M Viel, we get

Uf((u,,b’) > {1 - l)-(u, - H,’) > t-(u‘ - H,’) > U‘(w,,a')

Vi<k YVoeQVielVa' b eA .

9



We finally turn to choose M such that, if H) >AM Viel, then
H >M Viel t<k,.
Note that (Hf —u,] zal -(H,'f, —u.) > (ai)l (H; —u,,) Z(a')k' -(Hr'J —u,,)
We wish this expression to be greater then M, —u,; thus we let
U k, -(u' fu.)

C ()

+ N, .

where a, = m_i!n a’.
Hence we found M such that if H, > M Viel, for the first &, periods the number of

times each player played each of her different actions can not differ by more than one.
Thus, during those %, periods the players simultaneously switch at least &, times, and

therefore play a” with probability 1— 77 at least.
©3

Consider a particular Markov chain for H, > M Vi e/, where Mis provided by
lemma 1.

Let C= {(o eQ| K(mkl,a') > 0} be the set of histories where the M/ profile was
played at least once during the first k, stages (where k, is chosen by lemma 1). Lemma |
yields £(C) 2 1-7_ In the following we will show that (G| )= 1, which will complete

the proof of the theorem.

Let H, be player i’s aspiration level after 4, stages (note that it is still above u).
We wish to find a number of periods k, > &, such that, on (O, after &, periods, every

player will be “practically satisficed™ with #" . Specifically, we wish to guarantee that, if at
any stage k > k,, U'((uk,a") > U'((uk,b’) +1 Vb' #a” Viel  thenforall 1>k every

player i will choose a”, namely, U'(a),,a”) > U'(m,, b’) Vb za" Vi k.

Consider player i and & =2 k,. On (7, player i has experienced the maximal stage

payoff #", and therefore her aspiration level is #' + (H;I - ﬁ’)-(a')k_k' :

? See Aumann and Sorin [1989] for the precise definition of @,

10



ln(l -a ) - ln(H,: — u')
Choose &, (i)>k + : and let k, = Max k,(i). We will
- ln(a') it

show now that it satisfies the above condition: let k>k,, and assume that
Uw,,a")>U'(w,,b) +1 ¥b' #a". Then, for ali 1>k, U@, a")>U'(w,b)
vh #a”

The proof is by induction. Consider 7 = & > k, and assume that the players chose
a'for k<t<t-1at . Then we have:

Hoa) =Uona) s S 0) = foa) s S (0, -7) (o) 7

r=k T=

>U'(w,,a )— ,%,)((H;l —u')-(a')hk') = U"(a)k,a"')*[(h" —57') (a‘)k:“')_kl)- ! ,

l-a

By the selection of k;,(i) :
U'(cu,,a") >Uwna") 1> U, b) = U'w,,b') 7b =a"
when the last equality follows from the fact that, by the induction hypothesis, player ; did

not choose b'.

Lemma 2: Given a state sz(t,(a,,---,a{)) with 2=k, (in the Markov chain) and
K(s,a') >0, there is a positive probability to reach a state r where for every player i,

U'(r,a") > U'(r,b') +1 VY #£a”

Proof . For a state r, let PMI(r) be the set of players who, at r, would like to play their
M action. Assume first that PAMI(s) is a strict subset of [, the set of players. (The case
PM!(S) = I will be dealt with later.)

The idea of the proof is as follows: for every i ¢ PMI(s), there is a positive

probability that 7 will not choose her M/ action for a sufficiently long time, i.e., that every
time she wants to switch to it, the noise would prevent her from playing her part of the A/
profile. For every j € PMI(s) the player chooses @™’ . Since she will not get her Af]
payoff, this action will look less and less appealing to her until finally she would want to
choose a different one. We graciously allow her to do so. Once she chose a different
action, there is a positive probability that the noise will keep her from playing @™/ again.
Thus, with a positive probability, after a finite time no player would like to play the A/
action profile. Given that @ is not a maximizer of {/'(,;) for any i, there is a positive
probability that none of them will play a”, but will play any other action long enough,
until the condition is satisfied.



Formally, for j € PMI(s), let #’be the second highest payoff player j can achieve

in the stage game, and let §’ =%’ —#%’. Since player j would like to play her M7 action
we  know that U’(s,a") > U"(s,bf) Vb #a” and we can  define

N = Uf(s,a”) - U’(,S‘,E') where U’(S,E') is the second highest U’(s,-) value. Thus in
every subsequent period the value of U J'(-,a”) decreases by &’ at least (recall that the

aspiration level is always above #”).

;
After additional &.(j)= & +1 periods, the M/ action will cease to have the
3\JS 57

highest (}”(- ) value and player j would choose some other action. Therefore after
k, = Max k,(j) periods there is a positive probability that no player would like to

JEPMI(5)
ks
choose to play the MT action. (Note that with probability greater than [I—[(l - AL}D all
ief
the players that are not in PAMI(-) will not choose their M/ actions during these &,
periods.)

Choose a sequence B = (b,,bz,---,bp) of action profiles such that no player uses

her M/ action and all of the other actions of every player are represented in the sequence.
Formally,

(1) bza" Vv<pViel

(i) VielVa ed'\[a"} Iv<p st b =a' .
Without loss of generality, assume that 4, is the profile the players are playing after the
appropriate k, periods. Let r' = (t +k3,(~»,b, )) be a state arrived at, from s, as required.
Le, Viel b s1. U'(r', b') > U’(r',a") . We argue that there is a positive probability

that the play will follow a path:

s:(f,(a],--, ,))—) > *(t+k ( ..,a,,a!q,...,amj:b,))a
2:(t+k3+ll‘(a,‘-~- b,---.b b)) >
R A R AN (AR SCIRN T SR MY N )

rr! :(1+k3 .,.[l+---+/p,(a],---a,,---,b,,---,b,,“ )

Such that for every v< p, at r’, & has a low enough v, ) value for every i ie.
U're.b') <U(ra") - 1.

12



(e b - U (rat) -
5}

It takes at most /.(J) { consecutive plays of 4, to lower

b} ’s cumulative utility to the desired level. Let p_ be the conditional probability to get to

v-1

r'given that the current state is ' . To see that p_ > 0, note that

4,41
p. = [n ALJ where / = A/j{cfx {.(j). After going through the entire sequence of

el

stages, with probability I_[p\‘>0, we are at state r in which we have

U’(r,a") > U’(r,b*) +1 Vb za” Viel.

If PMI(s)=1 to begin with, we distinguish between two cases: if the players

never wish to switch from a’, we are done. Otherwise after a finite number of periods a
player would like to choose some other action. In this case we find a path as above.

©
The following straightforward lemma about Markov chains is essential for the proof®

Lemma 3: Let § be the state space of a countable Markov chain, {Xr}L andlet /' §
be such that V¢ > 1 P(X, eF| X, e]’)zl and Vj ¢ F
P(3s>1; X, cF| X, = j)>0. Then PAT,V1>T; X, eF)=1.

Proof . Consider the following Markov process {Y,};l over the state space
S={fYUSIF) Y,=X, if X, eF . and Y, =f if X, eF.

This process satisfies

()  P,=P(X,=i|X, =j)=PY,=ilY =j)=P, VijeSIF

2) P,=3P, YieSIF

Jei
(3) P, =1 (which implies that P,, =0 Vi# f)
Clearly f is the unique essential state in the new Markov process. Thus, by a standard

theorem about Markov chains, the unique stationary distribution, 7, of the chain satisfies
zr(f) =1. (See for example Shirayayev [1984] chapter VIII).



Observe that P(X, = j)=P(Y,=j) V&;VjeS/F and P(Y,= f)=P(X, €F) V1,

I
from which the result follows.

©

Let G,, be the set of states in the Markov chain such that the players play the A/
profile at the last stage and for every player j, U ’(-,a") is sufficiently high such that she

would like to choose to play her M7 actions forever:

Ki{s,a') >0, t>k,

G, = S:(f,(al’.,,’a{:a-)) (Sa )> .f> 2
U'ls,a”)-U'(s,p)>1 Viel,vh =a"

Lemma 2 shows that from every state s = (t,(al,---,a{)) t 2 k, with K(s,a') >0
outside G,, there is a positive probability to move into a state in G,,. For every

s= (t ( a,=a ) €G,,, with oprobability 1 the next state will be
(I +1 ( =a,a,, = a')) e€(G,,. Thus by Lemma 3, (,, is an absorbing set of

states. Hence the players will play only the AT profile after a finite time. In other words
we proved that ,u(G’ (.‘) =1.

©
4. Simulation

The proof of our main theorem hinges on the specific “trembling” assumption.
Further, it might give the impression that convergence occurs only after unreasonably long
time, and only for very large initial aspiration levels. However, it turns out that this is not
the case. Computer simulations show that convergence to the M/ outcome is both faster
and more robust than the theoretical result would have us believe. We start with the
famous Harsanyi and Selten’s [1988] risk dominance example:

L R

T 99 {08

B 8,0 7,7
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The play of this game was simulated using initial aspiration levels of 50 for both

players varying the noise level and the aspiration updating parameter. Table 1 shows that

after the first 50 stages or so the players settled on playing only the M7 outcome.

Table 1:

Contingency table for (TL, TR,BL BR):
Stage =005 =101 =01
a =095 a =095 a =09
50 25,2,2,21 23,4,3,20 24,4, 4,18
100 60, 5, 5, 30 52,7.7, 34 74, 4,4, 18
150 110,5,5,30 |102,7,7,34 |124,4,4, 18
200 160, 5, 5,30 |152,7,7,34 |174,4,4,18

The entries in the table specify the number of times the players plaved cach action profile. For cxample at

stage 100 (where the noise level was 10% and their aspiration level updating parameter was o = 095)

they played TL 52 times, TR 7 times, BL 7 times. and BR 34 times.

Next a “uniform tremble,” was used ie, one that may occur at any stage

regardless of the choice. Table 2 shows that as the noise level tends to zero the players

choose the MI outcome with a frequency approaching unity. (Initial aspiration levels were
100 for both players.)

Table 2:
Contingency table for (TL,TR.BL.BR) a = 095

Stage £=005 =001 £=00035 Without Noise
500 319, 30, 30, 121 | 467, 3, 4. 26 487, 2, 2, 9 436, 11, 11,42
1,000 637, 61, 61, 241 | 897. 17, 17, 69 969. 5. 5. 21 936, 11, 11,42
3.000 | 1949, 175,175, 701 | 2645, 59, 59, 237 | 2885,19.19. 77 2930, 11, 11,42
5,000 | 3271, 288, 288, 1153 | 4441, 93, 93, 373 |4825,29.29 117 | 4936, 11, 11,42
7,500 | 4949,425,425, 1701 | 6701, 133, 133,533 | 7253.41, 41,165 | 7436, 11,11, 42
10,000 | 6606, 566, 566, 2262 [ 8919, 180, 180, 721 | 9657.57.57.229 | 9936, 11.1].42




In the next simulation the game was chosen randomly. One thousand two-player
seven-by-seven games with a M/ outcome of (10,10) were analyzed using the “inertia” and
uniform trembles. The initial aspiration levels was 300 and the updating parameter was
a = 095 for both players. Table 3 shows the average frequency with which the M/

outcome was played after several stages and its standard deviation.

Table 3:
Frequency (Standard Deviation) for:
Stage “Inertia” “Uniform” “Uniform” Without Noise
£=005 £=00035 &£ =0.0005
1,000 78068 (.07041) S5177 ((13845) 5013 €13693) 88498 (.06969)
2,000 89034 (.03522) 61092 ((117835) 84808 (.09505) 94249 (.03484)
3,000 192689 (.02339) 63007 (.10299) 88238 (06784) 96166 (.02323)
4.000 94517 (.01409) .64002 (.09802) 90119 (.05461) 97124 (.01742)
5,060 95614 ((01200) 64634 (.09498) 91145 (.04749) 97700 (.01394)
10,600 | 98011 (.00838) 63047 (.08933) 91145 (.03191) 98850 (.00697)

Next, some games with more players were studied. The first one is the “stag hunt
game.” In this game a group of [ hunters simultaneously choose to hunt a stag or hares.
It requires all of them to hunt a stag, but each one can hunt a hare by herself. Thus the
payoff to a hunter that goes for the hare is 1 regardless of the other hunters’ action. If all
hunt a stag, each one gets a payoff of 2. But if only some try to hunt a stag they fail and
get 0. The game has two pure strategy Nash Equilibria: all hunting hares or all hunting the
stag. The game was simulated by using 7 players with initial aspiration levels of 500 and
updating parameter « = 095 for each player. Table 4 demonstrates that play will

converge to the “all-stag” equilibrium.
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Table 4:

Count of the all stag (all hare) equilibrium:
Stage “Inertia” “Uniform™ “*Uniform” Without
£=005 £=005 £ = 0005 Notse

50 16 (13) 19 (10) 37 (6) 14 (15)
100 39 (34) 50 (19) 47 (12) 46 (38)
500 429 (40) 274 (82) 441 (49) 424 (47)
1000 929 (40) 534 (l67) 930 (49) 924 (47)
5000 | 4929 (40) 2756 (785) | 4669 (130) 4924 (47)
10000 | 9929 (40) 5418 (1589) | 9339 (242) 9924 (47)

Our final example is a variation of the “stag hunt” game. The game involves 5
players, each having three strategies, Up, Middle, and Down. The payoff to a player j is :

w (Up)=6x(#{ili chose Up}). w! (Middle) = 4 x (#{i] i chose Middle}) and

u' (Down)= 2 x (# {:| i chose D(an}).

This game has three pure strategy Nash Equilibria where all the players choose the
same action and the M7 profile is for all to play Up. Table 5 shows the number of times

the players played each of the Nash Equilibria.
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Table 5:

Count of the all Up, Middle, Down cquilibrium plays:
Stage “Inertia” “Uniform” “Uniform™ “Uniform” Without
£=003 £ =003 £ = 0.005 £=0.001 Noisc
100 32,11, 8 41, 5, 4 44, 8, 8 56, 9. 8 60, 11, 12
500 424,12, 9 211,160, 7 432,11, 12 445,11, 12 448,11, 12
1000 924,12, 9 241,11, 8 926, 11, 12 944,11, 12 948, 11, 12
2000 1924, 12,9 312,14, 9 1905, 11, 12 1942, 11,12 | 1948, 11, 12
5000 492412, 9 611,21, 10 4487, 12,12 | 4931, 11,12 | 4948, 11, 12
10000 9924, 12,9 | 1296, 27 12 71765, 16, 13 9621, 11, 12 | 9948, 11, 12
50000 {49924, 12,9 | 6237, 44,24 | 41887,19,.20 | 48121, 11,12 | 49948, 11, 12

5. Concluding Remarks

1. The main theorem has a few obvious extensions.

adjustment rule need not be the weighted average one.

depend on the player and on the stage, as long as it is bounded away from zero often

enough.

2. The simulation results give rise to the conjecture that a uniform noise, which converges
to zero, would lead to a limit frequency of one for the M/ action profile, in the spirit of
Kandori, Mailath and Rob [1993] or Young [1993] (It is, however, easy to construct

examples in which convergence fails in the absence of noise.) By contrast, under our

assumption convergence is guaranteed for any ¢ > 0.

18

Similarly, the noise, ¢, may

For instance, the aspiration level




References

Abreu, D. and A. Rubinstein (1988); "The structure of Nash Equilibrium in Repeated
Games with finite Automata," Econometrica, 56, 1259-1281.

Anderlimi, L. and A. lanni (1993): "Path Dependence and Learning From Neighbors,”
Mimeo, Cambnidge University.

Anderlini, L. and H. Sabourian (1990): "Cooperation and Effective Computability,”
Mimeo, Cambridge University.

Aumann, R.J. (1990): "Communication Need Not Lead to Nash Equilibrium," Mimeo,
Hebrew University of Jerusalem.

Aumann, R.J. and S. Sorin (1986). "Cooperation and Bounded Recall," Games and
Economic Behavior, 1, 5-39.

Balkenborg, D. (1993). "Strictness, Evolutionary stability and Repeated Games with
Common Interests," Mimeo, University of Pennsylvania.

Bendor J, D. Mookherjee and D. Ray (1994). "Aspirations, Adaptive Learning and
Cooperation in Repeated Games," Mimeo, Boston University.

Binmore, K. and L. Samuelson (1992): "Evolutionary Stability in Repeated Games Played
by Finite Automata," Journal of Economic Theory, 57, 278-305.

Binmore, K. and L. Samuelson (1992): "Evolutionary Stability in Repeated Games Played
by Finite Automata," Journal of Economic Theory, 57, 278-305.

Gilboa, I. and D. Schmeidler (1992): "Case-Based Decision Theory," forthcoming,
Quarterly Journal of Economics.

Gilboa, 1. and D. Schmeidler (1993): "Case-Based Optimization," forthcoming, Games
and Fconomic Behavior |

Kahneman, D. and A. Tversky (1984). "Choices, Values and Frames," American
Psychologist, 39, 341-350 .

Kandori, M., Mailath G. and R. Rob (1993): "Learning, Mutations and Long Run
Equilibria in Repeated Games," Econometrica, 61, 27-56.

Kim, Y.G. and J. Sobel (1991): "An Evolutionary Approach to Pre-play Communication,"
Mimeo.

March, J.G. and H.A. Simon (1958): "Organizations," New York, John Wiley and Sons.

Matsui, A. (1991); "Cheap Talk and Cooperation in Society," Jowrnal of Economic
Theory, 54, 245-258.



Osbourne, M.J. (1990): "Signaling, Forward Induction, and Stability in Finitely Repeated
Games," Journal of Economic Theory, 50, 22-36.

Neyman, A. (1985): "Bounded Complexity Justifies Cooperation in the Finitely Repeated
Prisoner’s Dilemma," Economic Letters, 19, 227-2209.

Rubinstein, A. (1986): "Finite Automata Play the Repeated Prisoner’s Dilemma," Journal
of Economic Theory, 39, 83-96.

Shirayayev, A N. (1984): “Graduate Texts in Mathematics: Probability,” New York,
Springer Verlang.

Shoham, Y. and M. Tennenholtz (1993): "Co-Learning and the Ewvolution of Social
Activity," Mimeo, Stanford University.

Simon, H.A. (1955): "A Behavioral Model of Rational Choice," Quarterly Journal of
Fconomics, 69, 99-118.

Schlag, K. (1993): "Cheap Talk and Evolutionary Dynamics," Mimeo, University of
Bonn.

Warneryd, K. (1990). "Cheap Talk, Coordination and Evolutionary Stability." Aimeo,
Stockholm School of Economics.

Young P.H. (1993): "The Evolution of Conventions," Econometrica, 61, 57-84.

20



