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1. Introduction

After Aumann (1981) first suggested the use of finite automata to represent the
strategies used in repeated games. several papers have further explored that
possibility. Rubinstein (1986) focuses on the Repeated Prisoners’ Dilemma
and incorporates, for the first time, complexity costs into the analysis. Abreu
and Rubinstein (1988) extend this framework to gencral two-person games and
show, for the case of the Repeated Prisoners’ Dilemma. that the “size” of the
Folk Theorem is reduced so that enly a countable set of pavofl points can be
achieved in equilibrium. Binmore and Samuelson (1992) consider a modification
of the ESS. or MESS. as the equilibrium concept. Their results show that
evolutionary stable strategies in the conventional sense (ESS) often fail to exist.
They argue that this non existence is due to the fact that for any potential
equilibrium automaton. a successful entrant can be constructed by replicating
the first automaton and changing those states not used when playing against
itself. Under their modified concept (MESS). though. there exist equilibrium
automata which achieve the highest payoff possible in the game (utilitarian
outcome). Specifically. in the case of the Repeated Prisoners’ Dilemma. they
show that automata in a polymorphous MESS attain the cooperative payoff.
Nevertheless, they express their doubts about how stable this payoff would be
if mutations were allowed to overlap. assumption that seems more realistic 1o
a social context. #f mutations were frequent. they say. no grounds erist for
supposing that atillarian outcomes will surrice.

Probst (1993) takes on Binmore and Samuelson’s challenge and proposes.
for the repeated Prisoners’ Dilemma game, a “noisy” population in which there
always exists a small group of stubborn one-state automata that play “always
cooperate” or “always defect”. Additionally. he proposes an alternative loosen-
ing of the ESS conditions to circumvent Binmore and Samuelson’s argument on
the reason for the non existence of ESS in the Abreu/Rubinstein automata se-
lection game. Probst considers collection of automata all the elements of which
are indistinguishable for the evolutionary process. That is. every element in
the collection is of the same complexity, attains the same pavoff against itself
as the others against themselves and everybody attains that payoff against ev-
erybody else in the collection. Then. if every element in the collection is an
ESS on its own. the collection is called an Erolutionary Stable Collection or
FSC. Probst shows that there is a unique set of five three-state autoinata that
satisfies these conditions for ESC. Each of these five automata starts off with
defection but attains the cooperative payoff (they are utilitarian in the Binmore
and Samuelson’s sense) when plaving against each other.



Our approach is based on Probst but considers a different type of “noisy™
population. We believe that. in a social context. mutations are seldom random.
Indeed, we think that new behaviors arise for reasons that have, at least to a
certain extent. a logical explanation (or that are not totally irrational) and that
respond in some way to the the particular situation of the environment in which
they take place. For instance, consider an oligopolistic market in which firms
compete in prices (that is, setting a high price is equivalent 1o cooperate and
setting a low price is equivalent to defect). In that situation, one can hardly
expect that a new strategy such as: [ will always st a high price no matter
what my competitors do” will arise for no firm wants to commit suicide. On
the ather hand, oligopolistic competitors often complain about the hehavior
of “fringe” firms that go for the short run big profit instead of committing
themselves to a long run cooperative strategy. The behavior of these “fringe”
firms is to play a short run best response to what they see in the market (setting
a low price in the case of price competition) so that they get the highest payoft
possible in the short run. This could be consider “myopic” if we think that the
firm is going to stay in the market for the long run, but in a situation in which
“mutants’ constantly enter and are driven out of the population, that hehavior
is perfectly possible. In that sense. we assume that in any population there is
always a small group of people that consistently plays a short run best response
to the action taken by the main part of the population. For instance, in the
specific context of the Repeated Prisoners’ Dilemma. our approach translates
into assuming that in any population there is always a small fraction of people
that plays “always defect”™. By doing so. we find that there is one and only
one set of two automata that satisfies the conditions for ESC in the Repeated
Prisoners” Dilemma. Moreover. the automata in this set turn out to he the
ones that appear more often in the laerature: Ti-for-Tat and Grim Trigger.
Another interesting application of this idea is to games of common interests.
It turns out that for such games there always exist a unique ESC consisting
of the one-state antomaten that abwavs plays action associated to the Pareto-
domiant equilibrium.

We further explore this variation of Probst’s idea by extending the anal-
vsis to gencral symietric games with two players. We prove that, under our
modified solution concept. if a game has an evolutionary stable collection, then
it is unique. Furthermore. all the automata in the collection are utilitarian in
the Binmore and Samuelson’s sense. that is. each attains the maximum payoff
possible when plaving against a replica of itself. We also consider the case of
polymorplious populations and show that these two results (uniqueness and
efficicney) also hold. Other results refer to the complexity of the equilibrium
automata. We show that under our conditions for ESC, the number of strate-
gies of the stage game imposes a uniform bound on the complexity of such
equilibritim automata. An even more stringent bound (although not uniforni)



is determined by the number of different actions that are best response to the
strategy induced by the equilibrinm automata.

In section 2. we present the formal model and introduce some notation.
Section 3 presents the stability conditions. Section 4 contains the main resilts.
In scction 5 we extend the analysis by allowing polymorphous populations. In
section 6 we discuss the special implications that our approach has in the Re-
peated Prisoners” Dilemima game. Section 7 studies games of common interest.
Section & is a summary.

2. The Model

We consider repeated games based on 2-plavers symmetric stage games of the
! g ] pha) ge g

form (G =< S.I" > where 5 = {s;.....s.} is the space of actions for each

plaver and {7 1 § x § — R is the (symumetric) payoft function.

The repeated game G™> =< F, 7 > is constructed in the usual way based
on the stage game . The payoff functions 7y and 7o correspond to the “lirmt
of the means™:

T—n

T_1
1
Ti(ry.re) = _lim T E Uilri(he) ralhe))
1=0

where /i, denotes the history of the game up to and including time ¢, and r;(h,)
is the action taken by player i at time { + 1

The automaton selection game of Abreu and Rubinstein (1983) is G# =<
A.=>. The strategy space 1s the set A of finite automata. A finite automaton
(with output) or “Moore machine™! is just a system that responds to discrete
inputs with discrete outputs. Formally. an automaton @ € A is described by
a = {Q% q3. 5.6 A%}. @° is the (finite) set of internal states for automaton a.
qd is its initial state, A% : @ — S maps each internal state to an action and 6% :
Q% x S — Q" is the transition function that assigns a new state to each internal
state depending on the action taken by the opponent. Typically, automata are
presented as directed graphs in which each node represents an internal state
with the action attached to it and the directed paths represent the transitions.
For instance. the two automata below represent the well known strategies = T-

b See Hoperoft and Ullman (1979)



Jor-Tat™ and ~Grim trigger”™ in the Repeated Prisoncrs” Dilemma- .

c d
° d
¢
Tit-for-Tat
< c, d

Girimn Trigger

Figure 2.1 Td-for-Tat and Grim
trigger in the Repeated Prisoners’ Dilemma.

The preferences (=) over automata take into account not only the automata’s
performance but also their complexity. In this sense, the complexity of an
automaton a € A is assumed to be its number of internal states and denoted
by |a|.® The preference order over automata a and o' (parameterized by the
conmunon opponent a”) satisfy:

"
ax] a <= {ma.d")> (. d)} or

{mi{a.a”) = 2 {d’.a"”) and |e| < |d|}.

with a similar definition for =& .

The following fact is discussed in Abreu and Rubinstein (1988) and, al-
though it i1s obvious since we work with automata that have finitely many
states, we want to call the attention on it because it will be of importance for
the rest of the paper.

Fact 2.1 [eta.o’ € A Then, when playing against cach other, they get into
a finite cyele.

Cur automata are alwave depicted in such a way that their initial state is always
the leftmost state in the picture
3 See Kalai and Stanford (1988) for some game theoretical properties of this mea-

sure of complexity.



We will use € (a’) C @%(a’) 10 denote such a cycle. where Q%(a’) C Q% is the
set of internal states used by a when playing against a'

The key assumption of our tmodel is that in any population tlere is always
a small group of people that consistently plays a (myopic) best response to
the strategy induced by the behavior of the main part of the population. In
this sense. the (stage gamne) stralegy induced by a is denoted hy o{a) € A(5)
and corresponds to the (possibly mixed) strategy for the stage game implieit in
C%(a). that is:

zqecc(ﬂ) Ih(’\a(qw
L§) = s ES
ala.s) (Calal] $; €
and o(a) = (o(a. s1). . ... ola.s,)). According to the expected utility hypothesis

n . - .
we define u(s;. o(a)) = ijl ala. ;) (s,'..sj). Now, we can define the “besi
response” to a population composed of replicas of automaton a as:

Ha)y={s; €S | uls;.o{a)) > u(sj.ola)) Vs; €S}

Therefore, our main assumption is that in a population mainly formed by au-
tomata of type a.? a small proportion (¢) of one state automata always playing
some s; € Fa) completes the environment. Formally. such a population will be
denoted by P(a.3;) = €5 (1 — €)a, where 0 < e < 3. Thorough the paper. we
will use §; to represent the one state automaton that implements the strategy
“always play 5;,” (s; € S). Accordingly. the expected payoff of an automaton o’
when randomly matched against a population P.{a, §;) is

m{a' Pla.5)) =eala’ §) + (1 —e)m(d . a).

3. The Stability Condition

Probst s (1993} Payoff Indistinguishable Collection (PIC) and Evolutionary Sta-
ble Collection (ESC) are defined for the specific case of the Repeated Prisoners’
Dilemma. In this section we generalize these definitions to general symmetric
games with two plavers. Another important difference between Probst’s model
and ours is the way in which noise is added to the population. Probst as-
sunies that every population has the same source of noise exogenously specified,
namely the presence of two small group of automata playving “always cooperaic”

* \Ve will see later in the paper what happens if we allow for polvmorphous
populations.



and “always dcfeet” respectively. QOur hypothesis, on the other hand, 1s that
this noise is endogenously determined as we assume that the “noisy” players
respond, although myopically. to the behavior of the majority of the population.

Definition 3.1 A set A C A is called Payoff Indistinguishable Collcction or
PIC Y0 < ¢ < | Ya.a' € A. Vs € 3(a) and V&' € 3(a"}:

ala. P’ 5)) = 7la. Pola. ) = wla’ Pa'. §))
and la| = || (1]

An alternative and probably more intuitive characterization of a PIC is given
in the following lemma.

Lemma 3.1 A sef AC A s a PICif and only ifVa. o' € 4,

(/) wa.a)=nla d)=ala" a)
(i) wla.5) = m(a.§)y=w(a' . §'Y Vs 3a) Vs €3d)

(it} |a| = |a'!

Proof:  Vecessity: Item (i) follows from a simple continuity argument let-
ting ¢ go to zero in the definition of P{a.3). Then. parts (11} and (iii) follow
immediately from (i) and [1]

Sufficiency: Simply multiply through by (1 — €} in (1) and by ¢ in (i1) and
add them together to obtain (1] .

Example 3.1 An example of a PIC is the set 4™ = {T.{} depicted In
Figure 2.2.1. which corresponds to the automata that implement the strategics
Ti-for-Tat and Grim Trigger in the Repeated Prisoner’s Dilemma. To see that
this set 1s a PIC, just note that hoth 7" and (& always cooperate when playing
against replicas of themselves or against each other. Additionally. both end up
defecting forever when playing against the only myopic best response to any of
them. that is. when playing against the automaton that always defects.

Intuitively, it might seem that, if two automata belong to the same PIC,
then they must differ only in actions or transitions not used when playing
against each other. Although this is true for games with only two strategies. it
is not true in general as the following example shows.

Example 3.2 Consider the repeated game based on the following stage
game:

L C R
3.3 0.5 0.0
C 5.0 0.0 0.0
R 0.0 0.0 6.6




Consider now the following two automata:®

The automaton «

Figure 3.1  The automata a and o'

Since C'%(a) = {L} and Ca') = {C. R}, we have that J{«) = {C'} and
Ha') = {}:1’} To see that these two automata form a PIC, just verify that
Tla. Pela, () = 7{a’ . P!, R)) = 7(a.P(a’. B)) = (1 — €)3. Nevertheless. a

and «' induce totally different play paths.

The following definition takes Binmore and Samuelson’s (1992) and
Probst’s {1993} modified versions of Maynard-Smith's {1933) ESS and adapts
them to our framework.

Definition 3.2 Let A™ be a PIC. A” s an Evelutionary Stable Collection or
ESC if¥Ya € A7 and Yo' ¢ A~ 3¢ such that Ve € (0,¢):

(7) {7(a.P(a, §)) > n(a’" . Pa.5)) Vse€ IHa)}.
or (ii) {m{a.P(a.§)) > a(a’. Pla.§)) Vs & 3Ha)
and  7(a. Pla’. 30 > w(d . Pld’. 5)) Vs € 3"},
or (711} {ma. Pla.3)) > a(a’ . Pla.5)) Vs € Ha) 2]
) (¢ . P(a".5)) Vs € 3"
and |a| < |a'[}.

? The missing arrows in the two automata below do not need to be specified for
this example.



Basically. this definition corresponds to the definition of ESS for automata
given by Binmore and Samuelson (1992} in which complexity has been taken
into account. Then, it follows Probst (1993) in the sense that potential invaders
are restricted to come only from outside the PIC. The two facts that follow show
that. although the conditions given above look very similar to the ones given
by Binmore and Samuelson. ESC is neither a stronger nor a weaker condition

than MESS.

Fact 3.1  The automaton a being a MESS does not rmply that there 1s an
ESC A™ such that a belongs to it.

Indeed, Binmore and Samuelson show that the strategy that they call * Taé-for-
Tit" constitutes a MESS in the Repeated Prisoners” Dilemma. On the other
hand. we will see later that there is only one set of automata that is an ESC in
the Repeated Prisoners” Dilemma. and that set does not include the strategy
“Tat-for-Tit".

Fact 3.2  The set A being an ESC does not tmply that a 15 a MESS for any
a i A

Again. the Repeated Prisoners” Dilemma provides an example of 1t. We will
see that the awtomaton playing = Ti-for-Tat” belongs to the ondy ESC but, as
Binmoere and Samuelson point out. it is not a MESS.

The following fact indicates that the condition for ESC might be too strong.

Fact 3.3  There are games with no ESC.

Consider the following game:

C 3.3 4.5
D 54 1.1

Figure 3.2 A game without ESC.

Note first that the one state automaton € can not be in any ESC for it is easy
to check that the automaton D would invade the population P(C, D)

On the other hand, the automaton ¢ can successfully invade any popu-
jation Pe(a.s) for any @ in any A that is assumed to be an ESC. To see that
this 1s true. we need to use a result that we prove later in the paper and that
establishes that any automata in any ESC gets the highest payoff possible when
playing against a replica of itself. In this example, that result translates into
saying that any automata a that belong to any ESC A must attain the payofl

8



3. Clearly. this is only possible if ¢ always plays €' once in the cycle C%(a)
in which it gets when playving against a replica of itself. If this automaton a
reaches such cyele without ever plaving 7). we have that the automaton (' can
invade the population formed by the automaton a because:

(i) C does at least as well as a against D = 3(a).
(ii) € also attains the payoff of 3 when playing against a.
(i) If @ £ C. then € has strictly less internal states than a.

So. before reaching the cyele C%(a). @ must play D at least one time.
Let g be this particular state prior to the cyvcle at which a plays D. Clearly.
89(q. D) # ¢ for otherwise @ would never reach the cycle ("*(a). Thus, the only
possibility left to avoid (ii) above is that é%{q.C') = ¢. But if this is_the case.
we have that 7(C.a) =4 > 3 = 7(a.a) so that C also invades Pe{a. D).

Hence. we have seen that €' can invade any ESC but " is not evolutionary
stable on its own. Therefore. no ESC exists for this game.

4. The Results

We present now our two main results. The first one states that any automaton
in any ESC is utilitarian in the following sense:

Definition 4.1 An automaton a € A is said te be ufilitarian if a €
arg maxage 4 m(a. a).

That is. @ is an utilitarian automaton if 7(a.a) = =, where 7~ is the maximum
payvofl achicvable when an automaton plays against a replica of itself. Since
the game is symmetric. an alternative characterization of =* is 7 = [7(s, 7).
where ™ € arg max,es [ (5. 5).

Our second result will establish that if an ESC exists. then it is unique,

4.1. Efficiency of ESC

Theorem 4.1.1  Let A C A be an ESC. Then, Ya € A7 mla. a) = 7.

Proof:  Suppose the contrary, that is. suppose that Ja € A such that
7la.a) < 7. From here. we constder two different cases depending on whether
«’s initial move is in J3(a) or not. We will show that, in either case. an automaton
«' can he constructed in such a way that @’ will defeat a. which implies that
mla. @) < 77 is not possible if @ belongs to an ESC.

Case 1. Suppose A%(48) = s; ¢ J(a). In this case, two things may happen: that
a moves to some state in (2% a) when its opponent’s initial action is different
from its initial action {s;} or that a moves to some state not in @%(«a).

9



{1.1) Suppose that 3s; # s; such that &%{gg. s5) € Q" (a).
Construct an automaten a’ as a replica of @ but with a new 1nitial state
, |
(43) plus some additional states (¢s,. .. . q¢,.¢7. g7 ) as follows:

() A%(q)) =5
(i) 87 (qd i) = 6%(a5.5;)

7

(i) 69 (q¥ . sk) =g, Ysk £ S sk £ 5

(V) A7(ge,) € 3(3)

(V) 6 (e 5) = 1

(vi) 8% (45 .5;) =4

(vil) A% (g7 )=s". s £ s
(viii) &% (g7sT) =0

(ix) A% (g7} =5

(x) &% (7. 87) = ¢

(xi)  &¥(g7.5;) =45,

(xil)  A"(y,,) € 3(5))
(xiil) 8% (qe,.8;) = qs,

This new automaton a is much more complex than a, but complexity 1s less
important than performance. What counts is that a’ mimics ¢ when playmg
against a but attains the utilitarian payoff x* when playing against a replica
of itself. Indeed. (i) means that the initial action of &' (s;) is different than
a's initial move (s;). Then, (ii) guarantees that when @ and o' meet, both will
transit to state §%(¢3.s;) and from there they will keep playing as if a had
met a replica of itself. Item (iii) takes care of the event in which a’ meets an
automaton that is neither a replica of itself nor the automaton a. This case is
relevant only if this automaton that @’ meets is in (). Thus. to be in the safe
side (just in case @’ has indeed met an automaton in 3(a}). from qg’ a’ moves to
another state (as specified in (iii)) in which a’ plays a best response to the action
taken by its enigmatic opponent (as (iv) indicates). Finally, (v) guarantees that
a' will keep treating its opponent this way as long as its opponent keeps playing
the same action. Because of (vi). we have that if ' meets a replica of itself.
then it moves to state g~ where, according to (vii). a’ finds out whether it is
plaving against a replica of itself or against a one state automaton that always
plays s;. If it turns out that its opponent is a replica of itself. a’ transits to
the state ¢~ (as (viil) indicates) where exerts the “utilitarian™ action s™ (item
(ix)). Then. (x) establishes that %' (") = {q*}. Hence. items (vi) through (x)
make @' an utilitarian automaton. Finally, items (xi) through (xii1) take care
of the case when. once in g~ . & finds out that is plaving against the one state
automaton that always plays s;. Again. just in case s; is in 3(a). o’ always
plays a best response to it (as specified by (xii) and (xiii)).

Because of the way o’ is constructed, it should be clear that:

10



(a) m(a'.§) > m(a.§) Vs & Ia)
(b) T{(d’.a) = m{a.q)

(c) 7(a. (t)::r ay<

(d) wla’ a"y = ="

—~

Items {a) and (b) imply that x{a’. Pa.8)) > wla, P la.5)) Vs € 3a).
Items (a). (¢) and (d) imply that. for ¢ small enough. w{a.P.(a’.5)) <
T(a' Pla’. 3"y ¥s' € 3Ha’). This last inequality clearly implies that @ can
not belong to an ESC.

Let us now consider the more complicated case in which a transits to some
state not in Q%(a) whenever its opponent initial action is different from a’s
initial action.

(1.2) Suppose Vs; # s;  8%qf.5;) ¢ Q%(u)
Consider the automaton a to be an exact replica of a except that
& g8, s;). 5} € Q%(a) Vs; # si. Note that:

{a) If two automata a meet. they will play against each other
exactly as if they where two automata like a since we only changed
transitions that occur in one state not visited when a play against a
replica of itself,

{b) In a similar way, if matched against an one state automata
that always plays an action in J3(a). both a and « will play in the same
way since a and ¢ differ only in transitions that take place when the
action taken by the opponent is s;. which is not in ()

(c) Clearly, because of (a). 3(a) = J{a).

Hence, it is clear that z(a, P, (a.$5)) = 7la. Pdla. §)) = 7(a. Pla.5)) VseE

dta) = 3{a) and |a] = |a|. Therefore. & alse belongs to the same ESC as a.
Construct now an invader automaton a’ as a replica of ¢ but with a new
mitial state (q{]‘J) plus some additional states (g¢,. .. .. q¢,.¢". 7. q7) as follows:
1) /\a'(qg’):‘qj -',éS,'
(i) * (g si) = ¢
(iii)  A(g") = s
(iv)  8%(¢".s) = 6%(6%(ql.5;).5) Vs€S
v) 5“’(q8’.5;\-) =y, Vi F 8. sk F 5
(Vi) A7 (ge,) € 3(3)
{vii) 5“}((1,}..5‘;;):sz,‘
(vin) &% (g5 L8 =q7
(ix) A7) =57, 5T £
(x) 6 (g7 sT) =07
(xi)  A%(g") ="
(xii)  6%(y.sT) = ¢

11



(xii))  &"(q7.5) = gs,
(xiv)  A%(q.,) € 3(55)
(xv)  6%(4e,.5) = us,

As hefore. @' is much more complex than a, but performs better. In this
case, (1) says that @ and o’ have different initial actions (s; and s; respectively).
Item (ii) states that swhenever a’ meets a. o’ transits to an intermediate state
¢’ in which a’ plays s; which is not in J3(a) (according to (ii1)) and then moves
o some state in Q%(a) no matier what its opponent plays. What 1s importaut
lere is that a reaches this very same state in @%(a) that ' las just reached
at the same time (according to (iv)), From here. @ and a’ keep playing as
if they were a pair of a automata (or a pair of @ automata for that matter).
[tems (v) through {xv) have the same meaning and implications than items (iii)
through (xiti) in the previous case (1.1). that is. they just make sure that o'
is an utilitarian automaton and that a’ plays a best response to any one state
automaton that always plays some action in 3(a). Hence. as before, we have
that;

a) w(a’.5) > w(a.3) Vs Ha)
1) = wla,a)
cyma. 'y = wla.a)< T

Therefore. 7(a’. Poa.3)) > m(a. Pla.3)) Vs € Ha) and. for € small enough.
Tla. PAd’ . §) < mla’ . Pla’.§)) Vs € 3a') This last inequality clearly im-
plies that @ can not belong to an ESC and therefore neither can a.

We turn now to Case 2 in which the initial action of automaton a happens
to belong to J(a).

Case 2. Suppose now that A (g%) = s; € JH{a). As in Case 1. the automaton a
might or might not move 1o some state in @%(a) after its opponent plays sorne
action s; different from its own itial action s;.

(2.1) Suppose that 3s; # s; such that #%(43.s;) € @*(a). In this case, either {1)
Eq:,-‘ € Q7(a) such that A*(¢7) # 5 or (i) A®(q) = & Vg € Q% a). If (i) holds.
construct the automaton @ as a replica of the automaton a but with a different
initial s1ate (qg') plus some additional states (g, ... .. qe g ¢ ¢ ) as follows:

(i) Mg ) =8 # s
(i) 6(q0  si) = 6%qg. 55)
(i) 6¥(¢¥ . si)=¢'
(v)  A*(¢) € A(&)
(v) 6 s) =
(vi) V(g8 sk) =g, Yse £ siosr #F5
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(x) AT =T s £
{x1) 5“:((1- sT) =47

{xil) /\“’(q') = 5"

(xiil) &% (y".s7 =4

(x1v) 5“’(q_.sj) = qs,

(xv) AT (g4,) € 3(5)

(xvi)  8(qe,.85) = 4,

According to (1), antomaton a and a' play different action sat the beginning.
e (i) says that if the opponent of @’ plays s; then o’ finds out that it is not
plaving against a replica of itself and then transits to the same state to which
automaton @ transits when its opponent plays s;. So. if a and ¢’ meet, after
playing different actions at the beginning both will transit to the same state
and from there will keep plaving as if automata @ had met a replica of itself.
Item (iil) refers to that particular state g7 at which automaton a plays an action
different from s;. This state is important because in 1t, automaton a' can tell
whether it is plaving against the automaton « or against & which, in this case
(Case 2).is in J(a). llence, according to (iii). if the opponent of a' plays s;. o
learns that it is playing against the automaton § € J(«) and therefore moves
to state ¢’ where a’ plays a best response to s; (item (iv}) and keeps doing so
as long as its opponent keeps playing s; (item (v)). If. on the contrary. when
a' is at 4 its opponent does not play s;. then o behaves exactly as antomaton
@. Ttems (vi) through (xvi} are like items (i11) through (xiii) in Case 1.1. that
is. they just make sure that @’ is an utilitarian automaton and that @' playvs
a best response to any one state automaton that always plays some action i
J(a). Therefore. once again. we have that:

(a) w(a’'.8) > w(a.5) Vs & 3a)
(M) wla’ . a) = 7la.a)
(¢} mla.d') = a(a. a} < 7~
{

(a/.a'y==

jal
x|

Hence, w(a’. P.la.5)) > mla.Pa.d)) Vs € JFa) and m(a. Pla".8")) <
(@’ . PAa’ &) ¥s' € 3a'). Thus, automaton a can not belong to any ESC
as it is defeated by an automaton as a’.

Nevertheless, this result relies on the assumption (i) that 37 € Q" («) such
that A%(qy) # ;. There is. thhough. another possibility. Suppose now that (11)
holds. that is. A%(¢) = s; Vg € Q%(a). In this case. the invader automaton a
can be easily constructed as a replica of a plus the usual additional states as

follows:
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Al ) = 8 s

T s ) = gl )

(‘“’(q[‘-}’.sk) = ., Ysp FEosiosr #F o8
A (g0,) € 3(3)

c‘“:(r;“;,sk) = s,

R N

This automaton a’ plays the same role as the one constructed hefore (when
we assuimed that (1) hold). The only difference is that, in this case, a’ does
not need to distinguish between a and 3, because they behave in the same
way when playing against «’. Therefore, we have again that 7(c¢’, Pila.5)) >
m(a. Pla.5)) ¥s € Ia) and 7(a. Pa’.5)) < w(a". Pla’.§)) Vs € 3(a')
which means that 4 can not belong to an ESC,

The last case to study is when automaton a transits to some state not in
@7 (a) whenever its opponent s initial action is not the same as a’s initial action.

(2.2) Suppose that ¥s; £ s, £%(gf.s5;) ¢ Q" (u).

We will consider heve three different cases depending on whether {2.2.1)
Q%a) = {qj} or (2.2.2) Q*(a) # {¢5} and Is; # s, and g € Q%(a)\q] such
that A%(q) # s; or. on the contrary, (2.2.3) Q%a) # {¢3} and Vs; # s; and
Y€ Q%al\gy. A(q)=s;.

(2.2.1) Suppose that Q%(a) = {¢8}. Consider the automaton & to be an
exact replica of @ except that #*(%(g¢f. 5;).5:)) = qf for some s5; # 5;. Since we
have only changed a transition net used when a plays against a replica of itself.
we have that 7(a. ) = 7{a.a) = 7(a.a). Moreover. 7(a.5) = w(a.5) ¥s €
Ala) = F(a) for the transition we have changed only occurs when the opponent
plays s; which. in this case. is not in 3(a). Furthermore. |a| = |e|. Hence.
either a belongs to the samme ESC as a or @ is not in an ESC. Censtder now the
automaton a’ to be an exact replica of a plus some additional states as follows:

(1) A"(48) = s; # s,

(i) 8% (4 . s)=¢

(i) AT (¢') = s

(iv)  8¥(¢'.s)=¢q8 VseS

(V) 8V(g8 si) = qa Vsi £ s osi #E s
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(Vi) A(qq) € J5x)
(vit) 8% (e sk) = g,
(vi) c‘-"i(q(‘{ L8 =4~
(ix) A (qT)=s". s #
(x) &(q7.s7)=4q
(xi) A" (") =+
{xil) 5“[(5!'.5') =q
(xiil) &% (g7 .85) = q,
(xiv)  A%(q,,) € 3(5)
(xv) 6al(qs,~31) = s,

By (1). automaton a and «' play different actions at the beginning. Item
{ii) says that if the opponent of @ plays s; the ¢’ finds out that it is not playing
against a replica of itself and then transits to the state ¢’ and plays s; (according
to (iii}). By doing that. o’ makes @ go back to ¢2 and. at the same time. @’ also
transits 1o the same state qg as (1v) mdicates. From there on. a and a’ play
against cach other as if a plaved against a replica of itself. Items (v) through
(xii). as before. just make sure that a' is an ntilitarian automaton and that ¢
plays a best response to any one state automaton that always plays some action
in J3(a). Therefore, we have that:

Therefore, #(a’. P.{a.5)) = 7la. P (a.§)) Vs € Fa) and. for € small enough,
mla. Pela' . 5)) < mla’ . Pa’. ")) Ws € 3a') This last inequality clearly nm-
plies that a can not belong to an ESC and therefore neither can a.

(2.2.2) Suppose that 3s; # s, and 3¢ € Q%(a)\gj such that A%(y) # 55

Consider the automaton a te be an exact replica of automaton a except
that &%(gf.s;) = 6%(q5.s;) and 6{’((1;‘.53-] = &%(¢].5;) where ¢; 1s {wlog.)
the first state in Q%(a)\¢] in which ¢’s action is not s;. Since we have only
changed transitions not used when a plays against a replica of itself, we have
that w{a.a) = 7(a,a) = 7(a.a). Also, ¥s #s;. w(a.3) = 7(a.3) because the
changes only matter when the opponent plays s;. In the case when the opponent
Is §;. because of the way a is constructed, we also have that w{a, §;} = m(a, §;).
Furthermore, |@¢| = |a|. Hence, either ¢ belongs to the same ESC as @ or a is
not in an ESC.

Notice now that A% (gd) = s; and &%(gd.s;) = &gl 5) € Q4 a). Hence.
we can apply the arguments used in {2.1) to conclude that @ (and. consequently,
a) can not bhelong to an ESC.

(2.2.3) Suppose that Vs; # s; and Vg € Q% (al\gd.  A%(q) = s;
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Clearly. the above 1s possible only if 5 = {s;.s;}. which implies that
U(si.8:) # U(s5.8;) for otherwise 7(a.a) = 77 and we are assuming the oppo-
site. In this situation. two things might oceur: s; € 3(3;) or s; & 3(5;).

(2.2.3.1) Suppose s; € 3(3;). Consider the automaton @ to be an exact
replica of @ but #%(qf.s;) = qf. Clearly. 7(a.a) = 7(a.a) = 7{a. ) for we have
only changed a transition not used when a plays against a replica of itself. For
a similar reason. w(a. §;) = w{a.5;)). Also, since s; € 3(s;). mla.5;) > wla.5;)
and la| < la|. Thus. either ¢ helongs to the same ESC as ¢ or @ can not helong
to an ESC.

Notice now that A%(¢d) = s; and 5’-‘(qg,$j) = 43 € Q%a). Hence. we can
apply the arguients used in (2.1) to conclude that a (and. consequently. a) can
not helong to an ESC.

(2.2.3.2) Suppose s, ¢ J(5;). In this case, since § = {s;.5;}. we have
that {s;} = 3(5;). which nuplies {s;} = 3(5;) for otherwise we would not have
§; € J{a) (main assumption in this Case 2).

Suppose that U'(s;.s) > U(s;.5;). Clearly. 1t must then be the case that
wla, 8§} = U(s;.8) for otherwise consider the automaton &' to be an exact
replica of @ plus an additional state ¢’ such that:

(i) &8 5) = ¢
(i) Mg)=s,
(i) & (¢ sy =¢

In this case, #(a’. a) = 7{a,a) = 7(¢’. &) for we have changed only tran-
sitions not used by a against a. For a sumilar reason. w(a'.5;) = w(a,§;).
On the other hand. w(a’.§;} = {'(s;.5;) > w(a.8). Hence, a{a’. Pc(a. ;7)) >
7{a. Pla.5;)). Thus, it must be the case that x(e,5;) = ['(s;,s;). This being
the case, though, we have that the automaton §; defeats a. Indeed, given that
Tla.8;) = [7{s;.5;) 15 easy to see that 7(s;.a) = U'(s;.5;) > w(a.a). Hence,
for € small enongh, we have that Vs € 3a), (8. P (a.5)) > 7la. Pela. 5)).
Therefore, s; defeats automaton a, which means that a can not belong to an
ESCif U(si.8:) > Ufs;.85).

Suppose, on the contrary. that {7{s;.8;) < I7(s;.5;). For the same reason
as above, m{a.$;) = L'(s;.¢;) for otherwise a replica of a with the differences
that follow would defeat «:

(i) 6% )= ¢
(i) A"(g) = s
(i) 69'(qg". s;

Q,l) =1
Hence. w{a.5;) = U'(s;.5;). As before. we have then that, in this case, §;
defeats a for a(s;.a) = ['(s;.5;) > 7(u.a) and. therefore. for ¢ small enough.
we have that m(§; . Pi(a.3)) > m{a. P.(a.d)) Vs € Ia). Consequently. a can
not belong to an ESC 1n this case either.

!
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We have found that, in any case, for any non utilitarian automaton we
can construct an utilitarian automaton that defeats it. Therefore. no ESC can
contain a non utilitarian automaton. .

The result that follows is of less importance, but indicates that an automaton
in an ESC' also performs efficiently against any automaton that always plays a
myopic hest response.

Proposition 4.1.1 Let A" C A be an ESC. Then. Ya € A7 and ¥s €
Ha), 7la.5) = maxgeq mla’ §) = max, es U(s5.8).

Proof: Suppose that the proposition is not true, that is. suppose that A~
is an ESC but 3a € A and Is € J{a) such that 7(a.§) < max, s U(s;.58).
Suppose additionally that a’s initial action is to play s. and that it always plays
s thereafter if its opponent keeps playing s. [t is clear then, by theorem 2.4.1.1.
that s = s~ for otherwise a would not belong to an ESC. Hence, in this case,
$™ can not be a best response to a. Hence. either a's initial action is different
from s or a eventually takes an action different from s when playing against
&. In either case, let g be that particular state at which a’s action is not s.
Consider then the automaton a' to he an exact replica of ¢ except that it has
an additional state, g+, and that:

() 67(q.5)=¢q"
(i) A¥(g") € 3s)
(i) & (gt.s) = ¢7

Clearly. by the way o' is constructed, we have that a(¢’.a) = 7la.a) =
7la’.@’) and 7(a’.3) > w(a.5). Hence. a' defeats a. which contradicts the
assumption that A is an ESC. "

4.2. Uniqueness of ESC

Our uniqueness result will refer to games for which there 1s only one action
that vields the utilitarian payofl. The [ollowing lemma says that when an
equilibriumn automaton meets a replica of itself. only this particular action will
be used infinitely many times.

Lemma 4.2.1  Lel A™ be an FSC and suppose that that there 1s a unigue
¢ €8 such that U(s*.s*) =", Then. Va € A" . C%a)={q"} and A%(¢"} = 5".

Proof:  Note first that X%(¢) = 57 Vg € C"*(a) for otherwise w{a.a) # 7~
and thos, according to theorem 2.-4.1.1. a could not helong to an ESC. Next,
it must be the case that (*(a) = {¢*} and A%(¢") = s~ for if C"%(a) contained
more states. we could just “chop oft” all those extra states in ("*(a). The result
would be an automaton that would behave exactly as a but less complex and,
hence, would invade 47, .
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The following proposition indicates that the complexity of an equilibrium au-
tomaton is determined by the fact that it must attain the utilitaran payoff
when playing against a replica of itsell and the maximum payoff possible when
playing against any of the “myopic” players (as Theorem 2.4.1.1 and Proposi-
tion 2.4.1.1 establish). That is, an equilibrium automaton must have just as
many internal states as needed to optimally play against a replica of itself and
against the myopic players. but no more.

Definition 4.2.1  S(a) € 5 is a subset of S that 1s minimal with respect 1o
the following two propertics:

(1) 357 € S(e) such that [7{s7.s7) = ="

(i) ¥s; € 3a) 3s(i) € S(a) such that  s(7) € 3(s;)

Proposition 4.2.1  Let A7 be an ESC and suppose that thal there 15 a unique
s €8 such that U{s™.s") = 7. Then. Va € A", |u| = |S(a)].

Proof: Note first that |a] > |S(a)| for otherwise cither Theorem 2.4.1.1 or
Proposition 2.4.1.1 wounld not be satisfied by a. Suppose. though. that the
proposition is not true, i.e.. |a| > |S(a)|. In other words, suppose that Ja € 1~
and § € Q% such that S(a}) € {X(¢q) € S| 7 € Q*\¢}. That is, § is an
extra state that a carries and that is unnecessary to attain the maximal payoffs
against itself and the myopic players.

It should also be clear that § € Q@%(x) for some z € 3(a)Uea for the contrary
would mean that a never uses § whatsoever and. therefore, an exact replica of «
without this extra state § would invade a population of @’s for it would behave
exactly as a but would be less complex. From here we would consider two
different cases depending on whether § € @%(a) or ¢ & Q(a).

Case 1. Suppose first that ¢ € Q%(a). In this case, there must exist a s; € 3(a)
such that § € Q%(5;). We can then construct an invader automaton a’ by
replicating a. “cutting oft” the unused state § (and its successors). and adding a
new state ¢, after ¢° (remember -Lemma 2.4.2.1- that ¢* is the state satisfyving:
C*(a) = {q7} and A%(q™) = s7) in such a way that:

() 8 (" si) = g,

(n A“{ (qe.) € 3(8;). and
(1) &% (g, . 5:) = g,
We will add a new state g, as above for each s; € J(a) such that C%(s)
comes after ¢ in Q% s;). Clearly, the new automaton a’ has one less state (at
least) that @ and behaves exactly as a when playving against a, itself, or any
$; € J(a) = Ha'). Therefore. such an automaton @’ would invade a population
of a’s. contradicting the assumption that a belongs to an ESC.

Case 2. Suppose now that § € @*(a)}. Two things may happen in this case:
either A%(§) # A%(q™) or A%(q) = A%(¢).
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Case 2.1. Suppose that A*(§) #£ A%(¢7). Consider first the automaton «’
as an exact replica of a except that 89°(3. A% q™)) = ¢~. Clearly. @ and a' are
indistinguishable since we have only changed a transition not used by a when
plaving against itself or agast one of the myopic players unless it happens to
meet i“(q'). The latter would only matter if A%(¢™) € 3{a), which would imply
that. also in this case, 7{a. ;\“(q" }) = 7(c’. A%(g™)) for the transition has been
changed in such a way that o’ moves to ¢~ where it plays a best response to
A%(g™). Therefore. @' must belong also to .4*. Consider now the automaton a”
that is an exact replica of «” with the following modifications:

C(g) =A%),
() &% (4.s)=4q¢" Vs € Jdla) = J{a")= 3(a"). and
i (¢=. s;) € C%5,) Vs; € Ha) = 3a'} = 3d").

Because of (1) and (ii). @ and a” are indistingmishable when playing against
each other. Morcover, (i) and (i) ensures that a’ imitates a (and hence a)
when playving against any miyopic playver. Therefore, a” must helong to A" as
well. Notice now that the extra state § has been transformed in such a way
that when it is active, a” playvs the same action as in ¢* and then transits to ¢°
regardless of the opponent’s action. In this situation. this extra state is totally
redundant and can be readily eliminated. Consider thus the automaton a'”
that is an exact replica of a” except that it does not have the extra state ¢
and all the transitions that “pointed” to ¢~ now point to ¢ (unless ¢ is the
initial state). It is clear that «” and &'

pavoft point of view, but a' is strictly less complex than «” for it has one less
H

are totally indistinguishable from a
state. Therefore, ¢’ would invade a population composed of automata in A~.
contradicting the assumption of 4" being an ESC.

Case 2.2 Suppose now that A7(§) = A%(¢™). Consider first the automaton
a’ as an exact replica of a with the following modifications:

(1) 8% (§.s;) = ¢~ for some s; # A%(q7).
(i) &% (g7 8:) € C(s4).

Clearty, a and ¢’ are indistinguishable since we have only changed a tran-
sttion not used by ¢ when playing against itself or against any of the myopic
plavers unless it happens to meet 3,. This would matter if s; € 3(a) = J(a').
To he in the safe side. ¢” is constructed in such a way that. because of item(ii).
m(a.s;} = w(a.s;). Therefore, ¢’ must belong to A", Consider next the au-
tomaton a’’ that is an exact replica of a' except for the following:

) 2 = s
() & (q.s)=q¢" ¥s€ Ju)= d)= Ia"). and
(i) &% (g7.s;) € C%(3;) s, € Ha) = 3Ha') = 3a").
(

Because of (1) and (ii}. ¢’ and «” are indistinguishable when playing against
each other. Moreover. (11) and (iii) makes sure that " imitates a (and hence a')
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when plaving against any myopic playver. Therefore. o'’ must belong to A™ as
well. Notice now that the extra state § has been transformed in such a way that
when it is active, a” plays s; which., by assumption. is different from A%(g”).
Hence. we can apply the arguments used in Case 2.1 to conclude that A" can
not he an ESC.

We have therefore proved that assuming |a} > 15(a) leads us to conclude
that A* is not an ESC. Hence. it must be the case that |a| = |5{a)|. .

The following two corollaries are obvious implications of the previous result.
The first one states that if there are two different ESCs, there must be of the
same complexity. The second establishes a uniform bound to the complexity of

an ESC.

Corollary 4.2.1  Let A and A" be two FSC and suppose thal that there 15 a
unique 7 € 8 such that U(s™.s™ )= 7. Then. Va e A and o' € 2V, |a| = |a'].

Corvollary 4.2.2 Let A be an ESC and suppose tha! thal there 15 a unique
s €5 such that U{s".s*) — 7. Then. Ya € A, |a]| < |5].

Proofs: Obvious,

The lemma that follows is the last result we need before we can state and
proof our uniqueness theorem. It indicates that if two ESCs have some elements
in common. then the two collections have to be the same.

Lemma 4.2.2 Let 4 and A’ be two ESC such that ANA" £ 0. Then, A= A

Proof:  The proof is simple. Suppose 3a’ € A" such that ¢’ ¢ A and let
a e AN A" Then. 4 can not be an ESC for ¢’ invades - as it does ~as well ag”
a. -

We can now state and prove our second result.

Theorem 4.2.1  Suppose tha! there is a unigue 7 € 5 such that U(s™,57) =
7 . Then of A" 1s an ESC. 1l s unigue.

Proof: Suppose 4 and A’ are two different ESC and let a € A and o' € A'.
Because of lemma 2.4.2.1. we have that A%(g") = A% (4"') = s~. where {17} =
(**(a) and {¢"'} = €% (a’). Therefore. 3{a) = 3(a’') = 3(57). Now, if A and 4
are two different E5C. we must have that either ("(a’) # ("*{a) or Ca’(a) #+
C¥'(a'). Assume (w.lo.g.) that ("*(a’) # C%(a). Let gz € Q% and go € Q¢ be
the first states in C"%(a) and C'“'(rr’) respectively such that A%{g,) # A“’(qa:).
Let D%a) = {qq..... g~} € C*a) he the suhsequence of states visited by «
when plays against a replica of itself that starts with the first states at which
a plays a different action than ', and let D% (a’) = {qar..... ¢} C C¥(a")
be the analogous subsequence for a’. Construct the automaton b as an exact
replica of ¢ except for the following:
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(1) éb(q.x"(rm)—uq A(ga)) Vg€ D*a)\g"
() 1A% (qa) # 57 8g™ A% (gar)) = 8%(q0. A% (gar))

Analogously. we conustruct b as an exact replica of @ except for the follow-
ing:

(1) 8702 a)) = & (0. A" (qa)) Vg € D (a'Ng”
(1) 10 (ga) # 578" (47 A%(ga)) = & (40 A°(4a))

By the way they are constructed. we have that:

(a)  w@(b.a) = w{a.a) since we have only changed transi-
tions not used when & plays against a replica of itself.

(b}  w(b.8) = w(a.3) because we have only changed tran-
sitions that occurs when playing against the automaton
that always uses the action (@'}, Item (ii} makes sure
that automaton b plays against this automaton exactly
a a would do.

Similarly.

(a)  =(V.q') = =(c’. a") since we have only changed tran-
sitions not used when a’ plays against a replica of itself.

(b)  m(t'. 5) = 7{a’. 5) because we have only changed tran-
sitions that occurs when playing against the automaton
that always uses the action A%(a). Item (ii) makes sure
that automaton b plays against this automaton exactly
a a' would do.

Hence.

{1) @ and b belong 1o the same ESC. 4.
(2)  a’ and ¥ belong to the same ESC. A"

Additionally. note that®

(a) (b)) =7t b)=a(b b) = =(b.})
(b} w(b.3) = x(b'.5) Vse& 35

Hence.

(3) b and ¥ belong to the same ESC.

° It might occur that. still. when b and & play against cach other. they reach to a
point at which they use different actions. If this is the case. we can repeat the process
{construct two new automata ins the same way we constructed b and b') until that,

eventually, thev will play like @ vs. a or @’ vs. @’ when plaving against each other.
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Note that (1). (2). and (3) together imply that AN A" # 0. Henceforth, by
lemma 2.4.2.2. we have that 4 = A’ "

The following example shows that it is necessary 1o assume that there is
only one action {s%) in the stage game associated with the utilitarian pair of
payofls in order to have a unique ESC.

Example 4.2.1  Consider the following game:
B C D
B 3.3 0.0 0.5

0.0 3.3 0.5
D 2.0 5.0 1.1

!

Figure 4.2.1 A game with two ESC.

This game is a modification of the Prisoners” Dilemuma with the introduction

of a new strategy (B} which just “replicates” the role of the strategy . That
is. B vs. B and B vs. D generate the same payoff pairs as C vs. O and C vs.
D respectively, and the equivalent holds for 22 vs B and D vs. .

In Section 6 we prove that the set composed of the automata that imple-
ment the strategies Ti-for-Tat and Grim Trigger form an ESC of the Repeated
Prisoners’ Dilemma. Using the same arguments. one can easily prove that the
two sets. 4 and ', below are both ESCs of the game described in Figure 4.2.1.

The set 4 is composed of all the automata whose basic “skeleton™ is the one
depicted in figure 4.2.2, that Is, automata that are obtained by freely specifyving
the transitions (arrows) nat pictured in Figure 4.2.2. Analogously. the set A" is
the set composed of all the automata whose basic “skeleton™ appears in Figure

4.2.3.
° D

Figure 4.2.2  The skelcton of the automata in A.
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D °
Figure 4.2.3  The skeleton of the automata in A’

5. Polymorphous Populations

We consider now the case in which populations can be composed not only of one
type of automaton (plus some best response to it). as it was the case before,
but of a mixture of the automata in a PIC. For instance. in the case of the
Repeated Prisoners’ Dilemma, we have seen that a population composed of
automata of the type Tif-for-Tat or a population composed of automata of the
tvpe Grim trigger are both stable in the sense that each can be “invaded™ only
by automata of the other type and that those automata are “indistinguishable”
from a evolutionary point of view. Therefore, nothing prevents any of the
automata in an FSC to drift in a population composed of replicas of some
other automaton of the sanme ESC. In this situation, a natural question to ask
is: what happens then if a population is composed of a mixture of the automata
in the ESC ? We will see in this section that the results obtained m the case of
homogencous populations hold in this more general case as well. For that. we
need some additional notation.

Since we will be working with mixtures of automata, the set of reference will
be the set of probability distributions over the set of finite automata denoted by
A(A) and 5 will denote a typical element of this set. According to the expected
utility hypothesis, we define

m{n.p) = Z Z Ha.fa, (@ ;) V. p € A(A)

a, €Suppinla;€Suppiy)
Also, as we did in section 2. we define

qu(‘ﬂ.{a?) L (A" (g))
€7+ (ay)]

O’((Ii'.(lj.s) =

('onsequently,

o{n.s) = Z Z I]a.ﬂnjff(ﬂi'“j-s)

a, €ESuppin) a;€Suppin)
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and a(n) = {a(n.s1).....0(n.5,)}. Therefore, the expected payofl of using
action s; in a population characterized hy » is:

u(s;.o(m) = Z oln.s; ) (57.55)

s,€5

Hence. in this case, the “besi response ” to a population composed of the mixture
n 15 given by:

Im={s; €5 | ulsi.a{n) >uls;.o(n)) Vs; €5}

The lemma that follows relate the best response to a mixture with the best
response to each automaton in the support of the mixture,

Lemma 5.1 (,cquppin 300) C H)) C Usesuppen F@)

Proof: Clearly. if s is a best response to all the automata in the support of
n. 1t is also a best response to a lineal combination of those automata because
of the linear property of the expected utility hypothesis. Reciprocally. if s 1s a
best response to ., there must exist an automaton in the support of 5 to which
5 1s also a best response. s

We present next the definition of a Polymorphous Evolutionary Stable Collection
{PESC). that is meant to be the appropriate extension of the definition of ESC
to include the possibility of a population composed of a mixture of the automata
in the collection.

Definition 5.1 A PIC A C A s a Polymorphous Evolutionary Stable
Collection or PESC if ¥y € A(A™).Va € Supp(y) and ¥b ¢ A" 3¢ such thai
Ve € (0.¢6),

D wla. Pe(n.8)) > =(b. P(n. ) VYse 3}
) > 7(h. Py.5)) Vs € I(n)
and ¥y € A(A) such that Supp(p) = Supp(n) U {b}
Ja' € Supp(n) such thar Vs € 3(p)
mla" Py 3)) > 2. Polp. 5N}
or (i) {wla, Pn.8)) 2> 7(b.P(n.8)) Vs e In)
and  w(a Py 8 2 oAb Pl §))
Yo' € Supp(a). ¥ as in {ii). and ¥s' € 3(b)
and  Ja' € Supp(n) such that 1a| < [6]}.

or (i) {7(a.PAn. &)

Hence, for any mixture n of the elements of the collection A™. item (1} establishes
that any automaton in the mixture mnst be a best response to the population

24



composed of that mixture together with some myopic best response to it. Ttem
(i) says that if there is another automaton outside the collection that is a
best response to that population as well, then there must exist an automaton
in the mixture that destabilizes a hvpothetical population composed of the
intruder. some of the original inhabitants of the population and some myopie
best tesponse to this combination. The idea behind this is that the original
mixture can regain its prevalence in the population. Last. item (iii) determines
that if it is not possible to drive the intruder out of the population as indicated
in (i1). it can be done by means of a less complex automaton in the mixture.

We will show that the results obtained in section 2.4, that is. efficiency and
uniqueness of ESC. apply to PESC as well.

Proposition 5.1 Let A" be an ESC of G#* and let G have an strictly domi-
nant strategy. Then, A7 is a PESC of G¥.

Proof: Let € A(AY). Then. Va; € Supp(n) we have that a; € A7 . Thus.
since A" is an FSC of G#. we have that Vb6 @ 47 wla;.q;) = w(a;.a;) =
w(b.a;) Ya; € Supp(n). Therefore,

Z Mo, Tla;a;) 2 Z Na, w(hot5)

a,€Suppln) a,ESuppin!

and thus.

wla; ) = w(bo) [3]

Let s* be the strategy that is strictly dominant in G. Clearly. 3(a) =
{s*} Va € A Therefore. by proposition 2.4.1.1. z(e;.3%) > 7(h.51) Va; €
A In particular,

Tla;. 81y > ah. ) [1]

Therefore. [3] and [4] together imply that ¥e > 0
7, Pely. §7)) > w(b.Pe(n.5%))

If the above inequality always holds as a strict inequality. the proposition is
proved. Suppose on the contrary that Iy € A(A%). a; € Supp(y) such that

wla; Py 5 = 7(b. P, 57))

or. equivalently.

em(a;i 8T Y+ (1 =€) Z fa,7(¢i an) =
ap €Suppinl
=er(b. &Y+ (1—¢) Z Ha, m(boan) [5]

apESuppin)

25



Now. since x(a;.§7) > m{b. %) (hecause of Proposition 2.4.1.1) and w(a;.an) =
#(an.ay) > 7(b, ay) for otherwise A~ would not be an ESC. we have that [5]
implies that

Tr((lf].PE(ﬂh.§+)) = W(b‘p;(ﬂh.gﬁ-)) Va, € Supp(n)

Therefore. by the definition of ESC, either

(a) Tr(ah.T’E(b.é'i"')) > w{b. P (b 3T)) or
(b)  w{an. Pu(b,5%)) = 7(b.Plb.3%)) and  [an| < [B].

If (a) holds we have that
exlan. 8P)+ (1 — c)m(an. b) > em(b, 5+ (1 —e)m(b. b)
Consider then any g € A{A) satisfving Supp(pr) = Supp(n) U {b}. Il (a) holds.
poem(an. 3 + pull — O alan.b) > mer(b.57) + (1 — On(b.b) - [6]

Also. because of lemma 2.3.1 and because 4™ is an ESC. w(axn.a;) = 7la;. ¢5) >
a{b.a;) and m(ap.51) > x(b.31). Therefore, Yap € Supp(n).

fla,em{cy. FASIES tra, (1 — €)mlan. aj) z;lajfﬂ'(b..‘}+) + j1a, {1 - e)m(b.a;) (7]
Adding [6] and [7] we get
en{an. 5+ (1= )mlap. p) > ex(b.37) + (1 — ehm(b. 1)

or. equivalently.
w(an, Pyt §+)) > Tr(b Pyt §+])
Hence. if (a) holds, we have that A~ is also a PESC of G#.
If. on the contrary. (b) holds we have that, clearly

{an. Pe(p. 57)) > (b Pe(p. 3%))

and fag| < |b]. which also satisfy the conditions for PESC.
Hence. in either case. we have seen that if 4~ is an ESC of G¥# and G has
a strictly dominant strategy. A" is also a PESC of G#*. =

Proposition 5.2 Lct A be @ PESC. Then, A™ 15 an ESC.

Proof:  Simply notice that the definition of PESC includes the definition of
ESC as a particular case. .
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The two corollary that follow extend our two main results to polymorphous
populations and are easily obtained from the previous results.

Corollary 5.1 Let A C A be ¢ PLSC. Then Vae A7 wla.a)=7".
Proof: Combine proposition 2.5.2 and theorem 2.4.1.1. -
Corollary 5.2 Suppoese that there ts a unique 57 € S such that U(s™.s7) =
av. Then of A s a PESC, 1t 1s unique.

Proof: Combine proposition 2.5.2 and theorem 2.4.2.1. ]

Therefore, if we consider polymorphous populations. the efficiency and unique-
ness results obtained previously are preserved.

6. The Repeated Prisoners’ Dilemma

[n this section we analyze the Repeated Prisoners’ Dilemima based on the game
given in Figure 2.6.1 using the approach developed in the previous sections. We
will find that the unique ESC in this game contains only two automata that
implement the well known Tit-for-Taf and Grim trigger strategies.

D C
1.1 5.0
C 0.5 3.3

Figure 6.1  The Prisoners’ Dilemma

Let 4™ = {I. G} be the set containing the automaton T. that implements the
strategy Tit-for-Tat. and the automaton G, that implenients the strategy Grim
trigger. depicted in Figure 2.2.1.

Lemma 6.1 A™ s a PIC

Proof: This result is straightforward, just natice that:

G PAT. D)) = (1. PAT.D)) =
=1(G.PAG. D)) = o(T.PAG. D)) = e+ 3(1 — ) .
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Proposition 6.1 A" s an ESC

Proof:  First, we will prove that no antomaton from outside 4™ can success-
fully invade a population consisting mainly of automata of type G. For that,
note that

TGP AG. DY) =€+ 3(1 —¢)

is the highest payoff achievable against P,((. D). Thus. no automaton can do

strictly better against P((. 1)) than G itsell. Therefore, if a € A\A" 15 a
potential invader of P.((, D). it must be the case that:

A PAG. D) = e+ 31 =€)
In order to achieve a payoff of 3 against (7. @ must necessanly be such that
Aggy=C and AN (qp-C))=C ¥n2>1 [&]

where 8%(q. C)" = &4 (q. CY' 71 ) for n > 2 (similarly for (¢, D)"). That
is. 8%(q. )" is the active state for automaton a when. being at ¢. its opponent
plays ¢ n consecutive times.

Also, a would need to attain the maximum payofl against D. so that it
must be the case that

35 € Q° such that AENg.DYY=D ¥n>1 (9]

Now, [8] and [9] together imply that #{a. P(a. D)} = #(G.Pa. D)) and also
that |a| > 2. Thus. according to (iii) in [2]. if @ can invade 'P((G.b). it 1s
necessary that

2< ol 1G] =2 [10]

It is easy to verily that only two automata satisfy [3]. [9] and [10]. the one
implementing the Grim Trigger strategy itself and the one implementing the
Tit-for-Tal strategy. Therefore. we must conclude that no automaton from
outside A can enter the population P(G. D).

It remains to prove the analogous for a population consisting mainly on
automata of tvpe T, that is. no automaton from outside A~ can suecessfully
invade a population P(T. D). As before. no automaton can do better against
T’((If[_)] than T itself. Therefore, we must look for automata that satisfv
a{a. PAT. f))) = ¢+ 3(1 — ¢). Hence. such antomata must satisfy 7(a. f)) =1
and w(a. T) = 3. which implies

A9 € Q° such that ANE (g IV )= D ¥n>1 [11]
J¢" e Q" such that A E (g CY')=C V1 [12]
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Clearly. [I11) and [12] imply that |«] > 2. Additienally. we have that
7(T. P, (a. f))) = ¢+ 31l — ). so that if a can invade P(T. f)). It 15 neces-
sary that

<l < [T| =2 13

As hefore. only two automata satisfy [11]. [12] and [12]. those in A”. Therefore.
we must conclude that no automaton from outside 4° can enter the population
PAT. D). ]

Clearly, since the Prisoners’ Dilenima has a strategy that is strictly domi-
nant, the strategies Tit-for-Tat and Grim trigger also formi a PESC. The next
proposition formally states this fact.

Proposition 6.2 4" = {T. G} 1s the unique PESC of the Repeated Prisoners’
Dilemma.

Proof: Clearly. D is a strictly dominant strategy in the Prisoners” Dilemma.
Therefore, according to theorem 2.6.1 and proposition 2.5.1 4™ is a PESC. To
see that it is unique, apply corollary 2.5.2. u

7. Games of Common Interests

The games of common intcrests where first studied by Aumann and Sorin (1989)
and are related to a problem considered one year earlier by Harsanyi and Selten
(1988). The problem refers to the question of what equilibrium should be
used as the prediction for the outcome of a game if there exist more than one
equilibrinm. Consider. for example. the following game (from Harsanyi and
Selten (1988)):

51 50
51 9.9 0,8
59 8.0 7.7

Figure 7.1 A game with two Nash equilibria

Both (s;. %) and {(s2, s2) are Nash equilibria of the game, but the pair of payoffs
(9.9) associated to (s;.s;) strictly Pareto-dominates any other pavoff vector.
For that reason. one might think of (s).s) as the “natural” outcome of the
game, Nevertheless, (s5.82) also constitutes an equilibrium of the game, the so
called risk-dominant equilibrium according to Harsanyi and Selten’s terminol-
ogy. The problem in this situation is the following: what assuiuptions can we
make on the way the game is plaved so that the Parelo-demunant cquilibrium
1s selected 7
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Aumann and Sorin define a game of common infcrests as a (2-persons)
game that has a simple payofl pair that strongly Pareto-dominates all other
pavofl pairs.” They consider repetitions of the game with each plaver attaches
a small but positive probability to the other playing some fixed strategy with
bounded recall. They show that this game has an equilibrium in pure strategies
with payoffs ~close™ to the Pareto-dominant vector.

Analyzing this type of games using the approach developed in the previous
sections. it turns out that a repeated gane based on a game of common interests
always has an ESC'. Morcover, this ESC consists of an unique autematon that
always plays the action associated to the Pareto-dominant equilibrium. The
simplicity of this result might be surprising, but it is a rather natural conse-
quence of the the introduction of complexity costs in the evolutionary frame-
work. Indeed. any potential equilibrium automaton should. in the first place.
attain the Pareto-dominant payvofl for otherwise a successful invader could be
constructed (very much like in the proof of Theorem 2.4.1.1) in such a way that
attains this Pareto-dominant payoff when plaving against itself but imitates the
original automaton if faced against it. Therefore. the “noisy” players that re-
spond “myopically” to the behavior of the majority of the population will play
this Pareto-dominant strategy all the time. In this situation, it is unnecessarily
costly 1o carry extra states that will not be used in any case.®
The following definition and proposition formalizes this discussion.

Definition 7.1 {Aumann and Serin) A game G s of common nlerests of
there is a payoff pair (U'1(s7.53).0'9(57,53)) that strongly Parcto-dominates all
other outcomes, t.e.. such tha!

Ui(s].83) > Ui(s1.59) ¥s1 82 €S5S ¥i=1.2

Proposition 7.1  Let & be a game of common mlerest and let s denotfe the
action associated to the Parclo-dommant equilibrium. Then G¥# has a unique
ESC consisting of the on¢-state antomaton that always plays the action s*.

Proof: Since (s7.s7) strictly Pareto-dominates any other pair of payoffs, we
have that 3(5") = {s7}. Hence. a(s7.P(s*,s")) = {"(s7.57). Let @ € Ala #
57) be a potential invader. Then « must satisfy =(a. P(s™.57)) = ['(s".57).
which implies that J(a) = {s7} and hence 7(s™, P{a.s7)) = 7({a.P(a.s7)) and
|5*] < |al. That is, §* cannot be invade by any automaton thanks to its optimal

[

There might or might sot exist other equilibria of the game,

® For a stmilar reason. the onec-state automaton that always plays the action asso-
ciated to the Pareto-dominant equilibrium is also a MESS {Binmore and Samuelson
(1992)). Nevertheless, it is not an ESS (Mayvnard-Smith (1982))
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performance and minimal complexity. Therefore, {57} is an ESC. Moreover. it
is unique in virtue of Theorem 2.4.2.1. -

8. Conclusions

In this paper we analyvze the evolutionary stability of repeated symmetric games
in the context of the Abreu and Rubinstein’s automaton selection games. e
focus on a modification of Probst’'s (1993) solution concept (ESC) which is
a modification of Binmore and Samuelson’s (1992) MESS which, in turn, is
a modification of the conventional ESS to adapt it to the automata context
with complexity costs. We show that, if any population contains always a
small fraction of people playing a short run best response to their environment.
then there is only cne set of automata that is evolutionary stable in the sense
that no automaton from outside the set can successfully enter a population
composed mainly of such automata. Furthermore. those automata are efficient
in the sense that they maximize the payoff that an automaton can obtain when
playing against a replica of itself.

The main problem of our approach is that, for some games. there might
not exist an ESC. Nevertheless, we think that this could be solved by relaxing
the equilibrium conditions. For instance, instead of requiring that any mixture
of automata in a PIC has to be evolutionary stable. we might require that
some mixture of the automata in the PIC be stable. By doing that we might
(or might not!) solve the problem of the non existence of a solution. hut the
arguments that we have used to prove that a polymorphous stable population
is also efficient and unique would not work anymore. Nevertheless, we think
that it is necessary to explore this modification.

Some interesting results are obtained when analyzing typical symmetric
games such as the Repeated Prisoners’ Dilemma and Games of Commeon In-
terests using this solution concept. In the case of the Repeated Prisoners’
Dilemma, it turns cut that the unique population that is evolutionary stable
according to the conditions imposed in this paper is the one composed of the
moast renowned strategies in the broad literature devoted to this game: Tit-
for-Tat and Grim trigger. For games of Common I[nterest. we find that only
the singleton containing the one-state automaton that always plays the action
associated to the Pareto-dominant equilibrium is stahle.

We believe that the main attractive of this approach is that simple hypoth-
esis. such as assuming that in any population there is always some people that
respond myopically to the behavior of the majority, lead to desirable results such
as uniqueness and efficiency. The picture, though, is far from been complete.
We think that further research in the direction of relating this approach to some
~traditional” or “rationality-based” solution concepts like the ones considered
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in game theory would be of interest. The goal of such an exercise would be
to determine whether the type of evolutionary stability proposed in this paper
induces some sort of “rationality” and. if so. of what kind. Furthermore, the
solution concept proposed here is a purely static one. The study of a dynamical
process that incorporates the ideas discussed in this paper would be, in our
opinion. of great interest.
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