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1. Introduction
Motivation

"Case-Based Decision Theory" (CBDT) is a theory of decision making
under uncertainty, which suggests that people tend to choose acts which
performed well in similar decision situations in the past. More specifically, the
theory, in its original version, assumes that a decision maker has "cases” in
his/her memory, each of which is a triple (g.a.r), where g is a decision problem,
a is the act chosen in it, and r is the result which was obtained. CBDT assumes a
utility function over the set of results, #, and a similarity function over the set of
problems, s, such that, given a memory (i.e., a set of cases) M and a decision
problem p, each act a is evaluated according to the weighted sum

() U@=Upy@=2, 5 (Pur).

While it stands to reason that past performance of an act would affect the
act's evaluation in current problems, it is not necessarily the case that past
performance is the only relevant factor in the evaluation process. Specifically,
one act's performance may affect the desirability of other, similar acts. For
instance, suppose that a hypothetical decision maker ~ to be dubbed "Mrs.
Agent" — is looking for a house to buy. One of her options is to purchase a house
in a neighborhood she has lived in in the past. Agent hasn't lived in the same
house she is now considering, yet it seems unavoidable that her past experience
with a close, and probably similar house would color her valuation of the new
one. Similarly, consider a decision maker, say, Mr. Agent, who tries to decide
whether or not to buy a new product in the supermarket. He has never
purchased this product in the past, but he has had the pleasure of consuming
similar products by the same producer. Again, we would expect Agent's
decision to depend on his experience with similar acts.

Another class of examples illustrating the effects of similarity between acts
includes economic problems which involve a continuous parameter. For
instance, the decision whether or not to "Offer to sell at price p” for a specific
value p, would likely be affected by the results of the same act with different but
close values of p. Furthermore, some of the results obtained in Gilboa and



Schmeidler (1993a) and Gilboa and Schmeidler (1993c¢) for a finite set of acts are
likely to have natural extensions to cases with infinitely many acts, provided
some notion of similarity over the latter.

Yet another example is Gilboa and Schmeidler (1993a), in which we model
a consumer who chooses among products in a repeated problem. In particular, a
consumer whose utility function is negative will never be "satisficed;" the more
(s)he chooses a product, the more (s)he dislikes it, thus exhibiting change-seeking
behavior. In this model, substitution and complementarity effects are modeled
by act-similarity. For instance, after attending three (distinct) operas, our
consumer may wish to see a movie. Indeed, a fourth opera would also be a
"new" act, yet it is "too similar” to the other acts recently chosen.

The need for modeling act-similarity may sometimes be obviated by
redefining "acts" and "problems.” For instance, when buying a house, Agent's
acts may be simply "To Buy"” and "Not to Buy," where each possible purchase is
modeled as a separate decision problem. However, such a model is hardly very
intuitive, especially when many acts are considered simultaneously.

Hence it seems more natural to extend the basic CBDT model and to
assume that a decision maker also has a similarity function over acts. Moreover,
in many cases the similarity function is most naturally defined on problem-act
pairs. For example, "Driving on the left in New York" may be similar to "Driving

"o

on the right in London;” "Buying when the price is low" may be more similar to
"Selling when the price is high" than to "Selling when the price is low,” and so
forth.

In short, we would like to have a model in which the similarity function s
is defined on such pairs, and - again, given a memory M and a decision problem

p,—each act a is evaluated according to the weighted sum
(o) U@=U,yla@)= z(q‘b‘r)eMs((p,a),(q,b))u(r).

In this paper we provide an axiomatization of this decision rule. The
axiomatization is somewhat different in nature from those typically found in the
literature, as well as from the axiomatization of (*} we present in Gilboa and
Schmeidler (1992). We devote the rest of the introduction to explain the
conceptual problem involved in the axiomatization and the solution suggested
here. Section 2 presents the model and the results. Proofs are to be found in
Section 3. Finally, Section 4 concludes with some remarks.



The Problem

We would like to axiomatize the decision rule () in terms of (in-principle)
observable preferences, thereby rendering it testable and meaningful. Thatis, we
would like to use information about preferences between acts to derive a
similarity function between problem-act pairs. However, we here face a
problem: the mathematical structure of the decision problem does not relate acts
to such pairs in any obvious way. To be precise, any two acts are a-priori related
to any problem-act pair in the past to the same extent.

To clarify this point, it may be useful to compare our problem to classical
numerical representations of preference relations. For instance, consider von-
Neumann and Morgenstern (1944), who use preferences between lotteries to
derive a utility function over consequences (together with the expected utility
formula). The acts among which their decision maker chooses are naturally tied
to the consequences. Furthermore, degenerate lotteries may be identified with
consequences. Thus, for example, an ordinal ranking over consequences is
implicit in the preference over lotteries. Next consider de Finetti (1937), who
derives a subjective probability function over events from preferences between
uncertain acts, which are functions from the state space to a utility space. In
particular, his structure includes indicator functions, which can be identified
with events. Thus, one act may "belong” to a certain event more than another by
the very structure of the mathematical constructs. Correspondingly, the
likelihood of an event may be measured by the preference for its corresponding
indicator function. Similarly, Savage (1954) and Anscombe and Aumann (1963)
use similar models, in which acts are differentially related to states and events.

The derivation of CBDT without act similarity follows a similar structure:
acts there are identified with their "act profiles,” namely with the results to which
they led in the past. Thus this model provides a relation between acts and
problems: an act is identified with a function from the set of problems in which
it was chosen to outcomes. In particular, the similarity between a past problem
and a current one may be measured by the preference (in the current problem)
for an act which was chosen in this past problem.

By contrast, the model we would like to axiomatize here prohibits the
identification of acts with "act profiles." Indeed, since the preference for one act
depends on other acts' performance in past cases, it may no longer be assumed



that an act's own history is all that matters for its evaluation. Rather, it is the
entire history — of this act as well as of others — which may, a-priori, be relevant
to the evaluation of each and every act.

The problem posed by this model is not the mere fact that more
information pertains to acts' evaluation. The problem is that - as far as an
outsider observer can tell from the very structure of the model — it is the same
information for all acts. When comparing two acts, say, a and ¢, given a
memory M and a decision problem p, there may be nothing in the cases in M
which naturally ties them to either a or ¢. As opposed to the case of (*), in
which every act had its own history, now every act may have a claim to any past
case. It is the problem-act similarity function which presumably determines
which acts — at the new problem p — are more similar to successful ones, and
which have to bear the cost of past failures. But when we attempt to
axiomatically derive the similarity function, this information is, of course, not yet
given.

Thus, on one hand we have the acts, over which preferences may be
observed, and on the other - the cases, or problem-act pairs, over which the
similarity function is to be defined. If all acts relate to all cases to the same
extent, how can the similarity be derived from observations?

One solution to the similarity-derivation problem is to resort to cognitive
data, namely to assume that, independently of preferences, we have some
problem-act similarity judgments. Such judgments, especially if they can be
quantified in an essentially-unique way, can be used to relate current acts to past
cases, and thereby to identify acts with various "act profiles” to varying degrees,
providing the missing link between acts and cases. Thus one could probably
formulate axioms which will dictate that - given cognitive data defining
problem-act similarity — preferences are representable by (») with the same
similarity function.

Yet such an approach is vulnerable to standard criticism regarding the
validity of cognitive data in economics, as well as the presumed relationship of
"similarity” as, say, verbally expressed, and "similarity" as implicitly defined by
behavior. In short, although we do not think cognitive data should be dismissed,
(and we certainly think it is not "metaphysical nonsense"), we would prefer to
have a purely behavioral derivation of the similarity function.



The Context Approach

The solution we propose is the following: assume that we observe
preference over a set of acts A at a given problem p and with a given memory
M. Further assume that we can also access the decision maker's preferences
given a modified memory, in which everything but the outcomes is identical to
the given memory M. Given a certain (actual or conceivable) memory, we
assume a weak order on the set of acts. However, there is nothing in the
structure of an "act” which relates it to past cases. Rather, our axioms are
formulated in terms of the memories that would give rise to certain preferences.
That is, the axioms will not say anything too exciting about the objects of choice
themselves. They will use the structure of memory, or the context in which
choice is made.

In a sense, we solve the similarity-derivation problem by explicitly
modeling the acts-cases relation: the very fact that an act is chosen in a certain
context of cases will be brought to the fore, providing the missing link. In other
words, since the objects of preference (i.e., acts) are not related to memory (or the
“"context” of choice), we simply introduce this relation as an additional ingredient
of the formal model; we basically assume that we are given a function, which
attaches to each possible context (memory) a preference over acts. It follows that,
in order to derive a similarity function over past cases, our axioms will not deal
only with the objects of choice, but also with the contexts of choice.

To clarify this point, let us again compare the structure we employ here
with known axiomatizations of numerical representations. For instance, von
Neumann and Morgenstern (1944) derive the utility function, to be used in
expected utility theory, from preference over lotteries. Indeed, their axioms are
formulated in terms of lotteries and exploit their structure, such as the use of
compound lotteries. Herstein and Milnor (1953) represent an order over a
mixture space, where the axiom of independence uses the mixing operation.
Similarly, Savage (1954) derives both utility and probability from preferences
over acts, which are functions from states to outcomes. Correspondingly, his
axioms make heavy use of this structure, for instance in the "Sure-Thing
Principle” (axiom P2), where given acts are "spliced" to define new ones.

By contrast, in this paper the acts — over which preferences are defined -
form a completely abstract set, lacking algebraic, topological or any other
structure. All we can say about acts directly is that they are ranked by a weak



order. On the other hand, the context of decision — the results that were obtained
for the problem-act pairs in memory - is a nicely structured set. (In the formal
model we assume, for simplicity, that the results are measured in "utiles,” and
therefore the set of "contexts” is simply R” where n is the number of cases in
memory.} Thus most of the mathematical "action” in this paper is not taking
place in the set of objects of choice, but in the set of "circumstances” under which
decisions are made.

For example, whereas a typical axiom in a more standard model may
stipulate that "If x is preferred to y, then x+z is preferred to y+z," a typical
axiom in our framework states that "If « is preferred to b both in context x and

in context y, then a is preferred to b also in context x+y." In a sense, the
"interesting” axioms are formulated in a space which is a "dual” of the space of
acts. Naturally, this approach changes the proof techniques. While separation
theorems are as helpful as ever, the proof is quite different from classical ones.
(In particular, it will turn out to be the case that there is no distinction between
finite and infinite sets of acts.)

From a conceptual viewpoint, in Gilboa and Schmeidler (1992) we also use
the "context approach.” There we also assume there that an act's ranking
depends on memory or on "context.” The axioms we use are stated in terms of
"act profiles,” and they implicitly restrict the circumstances under which certain
preference patterns may emerge. For instance, we require that "If x is preferred
to y, and z is preferred to w, then x+z is preferred to y+w,"” where all the
objects compared are "act profiles." This may be read as, "If a certain act ¢ has
yielded the payoff vector x, and a certain act b has yielded the vector y, and in
this context a is preferred to b, and if... then..." However, this is only implicit in
that model. Mathematically, we assume there that the given data are preferences
between the same type of entities which are being mathematically manipulated.

As explained above, we relinquish this more standard approach here since
it is not clear how an act should be mapped to the context space. Thus we take
an additional step and let the "context approach” be reflected in the formal model
as well.

Matsui (1993) also provides an axiomatization of CBDT with problem-act
similarity. His model allows the similarity function to depend on past cases’
outcomes as well. He uses the classical approach, and assumes preferences over
objects which can be algebraically manipulated. However, since acts are not
naturally related to past cases in the presence of act similarity, he uses more



elaborate entities than "act profiles." There appears to be no simple relationship
between Matsui's results and ours. While both papers axiomatize similar
functionals (with the exception of the dependence on past cases' results), the
entities that characterize these functional are different.

2. The Model

In this section we describe our formal model, axioms and results. We start
with the model's primitives, following Gilboa and Schmeidler (1992).

Let P be a nonempty set of problems. Let A be a nonempty set of acts. For
each pe P there is a nonempty subset A, c A of acts available at p. Let R be a
set of outcomes or results. The set of casesis C=PxAXR. A memory is a finite
subset M c C. W.lo.g. {(without loss of generality) we assume that for every
memory M, if m=(p,a,r),m" =(p’.a’.r'ye M and m# m’,then p=p’.

We assume (explicitly) that R=% and (implicitly) that it is scaled so that
the utility function is the identity. That is, our axioms should be interpreted as if
results are measured in "utiles." Needless to say, this model calls for a
generalization in which the utility function will also be axiomatically derived,
together with the similarity function.

Our axioms will be stated in terms of preferences among acts given a
certain memory M and facing a certain problem p. Moreover, they will relate
preferences among acts given different possible memories. The following
notation will therefore prove useful: given a memory M, denote its projection on
PxAby E. Thatis,

E=E(M) ={(q,a)| dreR, (qar)e M}

In other words, E is the set of problem-act pairs recalled. We will also use the
projection of M (or of E)on P, denoted by H. Thatis,

H=HM)=H(E)={qeP|3acA reR s (gar)eM}.

Thus H is the set of problems recalled.

For every memory M and every problem pe H we assume a preference

relation over acts, 2,,,C A, %A, Our main result derives the numerical



representation for a given set E and a given problem pe H. Let us therefore
assume that E and p are given. Every memory M with E(M)=E may be
identified with the results it associates with the problem-act pairs, i.e., with a
function x=x(M)e RE. An element x € R* specifies the history of results, or the
context of the decision problem p. Denoting n=|E}, we abuse notation and

identify ®R® with ®". (By so doing we implicitly introduce an order over E.
However, at no point will it play any role in our results.) Thus a relation 2,

over A, may be thought of as a relation 2,. Moreover, we will assume that 2, is
defined for every xeR". We define >, and =, to be the asymmetric and
symmetric parts of >_, as usual.

We will use the following axioms:

Al Order: For every xe& R", 2, is complete and transitiveon A,,.

A2 Continuity: For every {x cR" and xeR", and every a,hbe A, if x, -5 x
S y kfg=1 y r k

(in the standard topology on ®")and ¢ 2, b forall k21, then a2, b.

A3 Additivity: For every x,yeR" and every a,be A, if a2, b and a2, b, then

az,,b.

Ad Reflection: Forevery xeR”, and every a,be A, if a2z b, then b2_, a.

Axiom Al is probably the most standard of all. It simply required that,
given any conceivable context, the decision maker's preference relation over acts
is a weak order. Axioms A2-A4 are new in the sense that they are formulated in
terms of contexts, rather than in terms of acts. However, at least axioms A2 and
A3 cannot fail to remind the reader of standard axioms in the classical approach:
A2 requires that preferences would be continuous in the space of contexts. A3
states that preferences be additive in this space. That is, that if both contexts x
and y suggest that a is preferred to b, then so does the "sum" context x+y. The
logic of this axiom is that a context may be thought of as "evidence” in favor of
one act or another. Thus, if both x and y "lend support” to choosing a over b,
then so should the "accumulated evidence" x +y.

Needless to say, A3 is one of the main axioms, and carries most of the
responsibility for the additive functional we end up with. Naturally, it cannot be



any more plausible than the additive functional itself, and there are reasonable
examples in which additivity fails. (In particular, such examples are very natural
if there is a process of "second-order induction," by which the decision maker
refines his/her similarity judgments based on past experience. We discuss this
issue in Gilboa and Schmeidler (1993b).) However, the main role of the
axiomatization here is to relate the theoretical construct, "problem-act similarity,”
to observable preferences. Hence we do not attempt to present A3 as a "canon of
rationality.” While we believe it is a sensible requirement in some cases, we
concede it may fail in others.

The "reflection” axiom states, roughly, that "for opposite contexts, one has
opposite preferences.” That is, if the utilities obtained in the past - given by the
context — were to be "reversed,” all preferences would also be reversed. For
instance, suppose that according to context x, a is preferred to b. Further
assume that this preference is mostly due to the fact that an act, which is very
similar to a, was extremely successful according to x. Now consider the context
—x; according to it, the same act — similar to a — was disastrous. It makes sense
that in —x, b will be preferred to a. As in the case of A3, axiom A4 can also be
criticized as too restrictive. However, we find it reasonable as a "first
approximation.”

Axioms Al1-A4 can easily be seen to be necessary for the functional form
we would like to derive. By contrast, the next axiom we introduce is not. While
the theorem we present is an equivalence theorem, it characterizes a more
restricted class of preferences than the decision rule discussed in the
introduction, namely those preferences satisfying axiom A5 as well. This axiom
should be viewed merely as a technical requirement. It states that preferences are
"fine" in the following sense: for any four acts, there is a conceivable context
which would distinguish among all four of them.

A5 Discernability: For every distinct a,b.c,d € A, there exists x € X" such that

a> b> c>_d.

(Observe that AS is trivially satisfied when |A pl <4.)

Note that, specifically, A5 rules out preferences according to which acts ¢
and d are always "between” a and b. This may be particularly restrictive for
some applications. For instance, consider acts which are linearly ordered, say,
they are parametrized by quantity. In this case it may well be the case that "Sell



100 shares" is preferred to "Sell 300 shares," or vice versa — but that in both cases,
"Sell 200 shares" is ranked in between the two. Yet (in the presence of at least
four acts), this is precluded by A5. Therefore there is certainly room to study
more general axiom systems. In Section 4 we discuss axiom A5 in more detail,
and provide examples to show that axioms A1-A4 alone cannot guarantee the
desired result.

Qur main result can now be formulated.

Theorem: Let there be given E and p as above. Then the following two
statements are equivalent:
(i) {2.} - satisfy A1-A5;
(ii) Forevery ae A, there is a vector s € R" such that:

—for every x e R" and every a,be A,

(**) a=2,b iff isqx- > is-bx,-,

and
— for every distinct a,b,c,d € A,, the vectors (s“ _ ) (s“ - sf) and (s“ — sd)

are linearly independent.

Furthermore, in this case, if |Ap| 2 4, the vectors {s“} ., are unique in the
agdp
. it fa na .
following sense: if {s }GEAP and {s }aeAp both satisfy (**), then there are a

scalar & >( and a vector $ € R" such thatforall ae A, 5" =as”+f.

We remind the reader that R" is used as a proxy for R*. Thus the vectors
{s“} ., provided by the theorem can also be thought of as functions from £ to
aeAp

R. Furthermore, these can be viewed as defining similarity on problem-act
pairs. Specifically, the theorem implies that under A1-A5, there exists a

similarity function
spi(PxAF >R

defined by

10



se((p.a).(q.0)) = s"((¢.0))

for (¢,b) e E and p ¢ H(E) (and arbitrarily otherwise), such that the functional

Upm(@) =2, aSel(pa)(g.0)utr)

represents >, for every p,M with E(M)=E and p¢ H(M).

We now turn to discuss additional properties of the similarity function
one may be interested in. First, we observe that the theorem provides vectors
{s“b}ahbeA such that, for every xeR" and every a,be A, a2, b iff s*.x>0,

P

n

where ".” denotes vector product, i.e., x-y= 2 x,v;. (To see this, set s =5t —5)
i=1

Moreover, these vectors are unique up to multiplication by a positive scalar.

Notice that the theorem does not provide any additional information, since the

vectors {s"} ., may be "shifted” by any vector feR*. In particular, no

particular importance should be attached to the sign of the similarity vectors.
That is, when we consider an act a at a problem p, given E which includes
(g.b), it is meaningless to ask whether a at p is similar to b at g to a positive or
negative degree. It is only meaningful to ask whether a at p is similar to b at g
more or less than a different act ¢ at p is similar to b at g. That is, we are
comparing differences of the form sg((p.a)(¢.b)) - sz((p.c).{(a.b)).

Similarly, we note that {s“b }a pes AT€ unique only up to a positive scalar.

Hence we will not be interested in the actual magnitude of the differences above,
rather, only in the ratio between such differences.

Next, we remind ourselves that the similarity function sz depends on the
pairs of problem-act recalled, E. Thus, to obtain the formulation (), we need to
impose an additional condition (or "axiom”), which would imply that the
similarity between pairs (p,a) and (g¢,b) € E is independent of E.

There are several ways in which one may formulate such a condition. In

particular, one may use only the original data, namely the preference orders
>, wC A, xA,, and in this language express the fact that the similarity depends
only on the pairs compared, rather than on the rest of memory. Alternatively,

one may use the language of the similarity function provided by the

11



representation theorem. As we argue in Gilboa and Schmeidler (1992), as long as
the theoretical terms used are uniquely defined, there is no theoretical reason to
necessarily prefer the more primitive observable data to the derived constructs.
Specifically, should one wish to test a certain axiom whose formulation uses the
similarity function, one may first measure this function and then check whether
it satisfies the required condition. Drawing an analogy to physics, one may
formulate an axiom involving the theoretical construct "mass,” rather than
formulate the axiom directly in terms of "observables.” As long as it is known
how mass is to be measured, it is perfectly legitimate to use it in further
developments of the theory.

We here choose to formulate the memory-independence condition in
terms of the derived similarity function. However, we can only use terms which
are uniquely defined, namely the ratios of differences of the form
sp((p.a).(g.b)) = se((p.c).(g.b)). Using this language, we can state the following

condition:

Memory-Independent Similarity: For every p.q€ P, every a,b,ce A, and every
E' and E* such that (q.b) e E'E*, and pe H(E'),H(Ez), the following hold:

@) sp((p.a)(gb)) =5, ((pc)(g.b)) = 0 iff 5.2 ((p.a).(q. b)) = s, ((poc)(g.b)) = 0;

(ii) in case these differences are not zero, then, for every a’.b".c’€ A, and ¢’ e P
with (¢’,#") € E',E*, the following equality holds:

sp((p.a)(q".0) = s, (P.c)g87) _ 2 ((Poa)(q' ) = 5,2 (P )G )
52 ((p.a)(g.b)) = s, ((poc). (4. 0)) sg((p.a)(g.b)) =5, ((p.c).(g.0))

We will only use this axiom if (i) (and (ii)) of the theorem holds, and if
|A pl 2 4. Under these conditions, the functions s, are "essentially unique.” To be

precise, the expressions on both sides of the equation above do not depend on
the specific choice of s,;.

We note without proof the following result:

Corollary: Assume that lAp| >4, and that the relations

{2, |peP\HOM), |M23)

12



satisfy A1-A5 and the Memory-Independent Similarity condition. Then there to
exists a single (memory-independent) similarity function

si(Px A} - R
such that

Q) Ula)=U, y(a)= Z(q‘b‘r)eMs((p,a),(q,b))u(r)
represents 2, for every p,M.

(The proof is very similar to that of the corresponding theorem - Theorem
2 — in Gilboa and Schmeidler (1992). There the interested reader can also find a
“translation” of A6 to the language of observed preferences.t)

3. Proof

We split the proof into three parts: the equivalence of (i) and (ii) and the
uniqueness of the representation.

Part 1: (i) implies (ii}

Throughout this part of the proof, we assume that A1-A4 hold, since they
are also necessary for the numerical representation (¥*). Axiom A5, by contrast,
is implied by (*#) only in conjunction with the additional condition of linear
independence. Since there may be some interest in deriving (**) without linear
independence, we will explicitly mention A5 whenever used. Thus, those parts
of the proof in which A5 is not mentioned can also be generalized.

The strategy of the proof is as follows: we first show that for every pair of
acts a,be A, there is a vector s € R" such that a2, b iff s x>0. We then

would like to show that the vectors {s"”} , can be written as differences

a,

5% = 5%~ 5" for some {s"}a. This latter part would be first proved by induction

for a finite set of acts, and then extended to infinitely many acts.

1 The corresponding axiom in Gilboa and Schmeidier (1992) is named "A5."



We begin with a few auxiliary results. OQur first lemma strengthens the
additivity axiom to strict preferences:

Lemma 1: For every x,yeR" and every a,beA,, if a> b and a2 b, then

a>,.. b

Proof: Assume, to the contrary, that >, a. By the reflection axiom, a2, b
implies b2_  a. Using additivity for (x+y)+(~y)=x, we obtain b2 4, a

contradiction. <>

Lemma 2: Forevery xeR” and 4 >0,and every a,be A, if a2, bthen a2, b.

Proof: Assume that @ 2, b and let there be given A4 > 0. First consider A = % for

some natural number n>1. If b >, a, successive application of Lemma 1 yields
h>_ a, a contradiction. Hence a 2,;, b holds. By (successive application of) the
additivity axiom, we get a 2, b for all rational A >0. Continuity completes the

proof. <>

Lemma 3: Forevery xe R" and A >0, and every a,be A, if a> b then a>, b.

Proof: Assume that a>, b and let there be given A >0. If b2, a, then, using
Lemma 2 with A" = %L ,we obtain b >_a. Hence a>,, b is established. <>

It will be convenient to introduce the following notation: given a.b€ A,

define

X“b={xefﬁ"|(12xb}
and
&% ={xeH|a> b},

Notice that for all a,b € A,, by the definition of >, X < X* and, using

the order axiom as well, (X*) = X**. Observe also that by the reflection axiom,
X =-x".

14
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Lemma 4: Forevery a,be A, the sets X*, X are convex.

Proof: For X* convexity follows from the additivity axiom and Lemma 2. For
X* we use Lemmata 1 and 3. <>

Lemma 5; For every a,be A, the set X is closed, and X* is open (in the

standard topology on ®").

Proof: X is closed by the continuity axiom. Since X** = (X"}, and the latter is

closed, X* isopen. <>

Lemma 6: For every a,be A, there exists a vector s € R" such that
X :{xei}i’"]s“b-xEO}.
Furthermore, s* is unique up to a positive multiplicative scalar.

Proof: Let there be given a,be A,. By the reflection axiom, a2, b, i.e.,, 0 € xX®.
Hence, using Lemmata 4 and 5, X?isa nonempty, closed and convex subset of
R". By the same lemmata, (X"”)C = X" is open and convex. A separating

hyperplane argument guarantees the existence of a linear functional §: X" —» %
and a number ¢ € R” such that

xe X% iff S(x)2¢ for all xe R".

It is easy to verify that §=0 iff X* =%R". In this case the constant ¢ may
be any nonpositive number, and, in particular, zero. One may set s =0 and
note that it is the unique vector satisfying s* - x>0 for all x e ®R".

Suppose, then, that § is not identically zero. Since 0 e X**, we have ¢<0.
We now wish to show that ¢ =0. Indeed, assume that ¢ <. In this case we may
choose an x e R" such that S(x)=c. Then x e X* but 2x ¢ X®, in contradiction
to Lemma 2.

We have therefore established that ¢=0. The vector s* defined by §
satisfies the desired representation, i.e., s x20 iff xeX®. Finally, it is



straightforward to verify that it is unique up to multiplication by a positive
scalar. <>

The scaling of the vectors {s“b }ab will play an important role in the sequel.

It will therefore be useful to explicitly denote the set of all vectors which identify
X For a,be A,, denote

S“b={s“""egi"|s“b-x2() iff xeX“b}.

Note that §% is simply {As*’|4 >0} for any s** € 5.

Also observe that s® =0 for some s® € § (equivalently, $* ={0}) iff
X =R", which is equivalent to X* =%" and to $* ={0}. That is, for any
a,beA,, §* ={0} iff a=, b for all xeR". Since this is an equivalence relation
on A,, we may restrict attention to its equivalence classes. Abusing notation, we
will not distinguish between an equivalence class and a representative thereof.

Alternatively, we will henceforth simply assume w.l.o.g. that for all a#b,
5% 2 {0}.

At this point it may be helpful to review the strategy of the proof in more
detail. We have already obtained a numerical representation of sorts: for every
a,b € A, we can numerically distinguish between vectors x € R* such that a=, b
to those for which b>_a. However, what we wish to obtain is a numerical
representation of 2, over all of A, for any given x. To this end, we would like to

show that one can find {s*]  such that for every a.be A, 5% =5 —5" € S I

such vectors {s"} ., are found, we can use Lemma 6 to obtain the representation
a

(**). Indeed, in this case we conclude that, for every x e R"” and every a,beA,,

az. b = xe X = s x20 &= foxzstox.

-X

The vectors {s"} " of course, are somewhat arbitrary. Indeed, all that

matters for our representation are their pairwise differences {s“ —sb} E
a,0€e P

(Hence the uniqueness of the resulting similarity function is only up to a shift by

an arbitrary vector.) Correspondingly, we will focus on finding specific vectors

§% e S* for every a.beA, and then choose {s"} .4 such that s* —s* =5,
a

16



However, not every choice of §% € 5% would allow for such equalities to hold.

For instance, it is obviously necessary that the vectors we select satisfy §** = —§*;

similarly, for every a.b,c.€ A, we also have to make sure that our vectors satisfy

~ab ~
g ca

+ 5% 4§ = (0. Hence, before we continue with the selection of {E“b}, it will be
useful (or at least reassuring) to prove that the sets {S"b } have some properties

corresponding to these necessary conditions. After we establish the following
three lemmata, we will turn to define the vectors {E"” }

Lemma 7: For every a,be A, and every s* € §%, —s* e §™.

Proof: Let there be given s € §. By definition, for all xeR", az, b iff
s? . x>0. Axiom A4 implies that a>, b iff b>_, a. Thus, forall xeR", b= _ a

- =X

iff (—s“b)(—x) > (). Since (—x) may be any vector in K", —s* € §* follows. <>

We observe that in the case ‘AP| =2, Lemma 7 concludes the proof of (ii}):

assume that A, ={a.b}; choose any vector s and any vector 5% € §%, and define

a

s* =5 — 5. Then for every xreR",

and

b> a o % x>0 o sPoxz2s®ox .

X

Lemma 8: For every three distinct acts, a,b,c € A, we may select vectors s® € §%,
5% € 8% and 5% e 5§, such that

ab
5% 4 ghe = g7,

Proof: Let us select some 5% € 5%, s* e §* and s* e$5%, and define the

following LP problem:
(P)  Min__,.s% x
st s x>0

17



Consider also its dual problem,

(D) Max,pz 0
st s+ Bst =5"
o,fz20.

Transitivity of 2, implies that (P) is bounded: every x which is feasible
for (P) satisfies a>_b and b2, c. Hence it also satisfies a2, ¢, which implies
that s* - x20. Since (P) is bounded, (D) is feasible. It follows that there are
a,f3 20 such that as® + 57 =5%. <>

We mention in passing that Lemma 8 concludes the proof of (ii} for the
case |AP1 =3. Moreover, it will also play a major role in the induction step for a
general A,. However, for the induction step we would also need another result,
guaranteeing that the coefficients o and f above are unique in the cases of

interest:

Lemma 9: Assume that |Ap1 > 4 and that A5 holds. Then for every three distinct

acts, a,b,c€ A, and any s* € §%, there are unique vectors 5% € § and s e ™
such that

ab | b
sT 457 =57,

Proof: Assume there is more than one such pair s, s*. Then any two vectors
s® €5 and s* 5™ are linearly dependent. That is, either §% =5 or
§% = 5% If §% = 5% there is no x € R" for which a>_c >, b. If, on the other

hand, $°° = -§”, no x satisfies a >, b>, ¢. Inboth cases, A5 is violated. <>

We are now equipped to deal with the general case. For simplicity, we
break the induction step into two: the finite and the transfinite cases.

Lemma 10: Assume that axiom A5 holds. Let A, C A, be finite. Then, for every

distinct a,b € A,, there exists §*° € §° such that:
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(i) §% =g for every distinct a,b € Ay;
and
(i)  §P 45 =5% for every distinct a,b,c € A,.

Proof: We use inductionon &k = IAOI For k =3 the proof follows from Lemmata
7-8. Assume, then, that k > 4 and that the Lemma is true for subsets of A, of size
[<k. Choose ac€A, and consider A =Aj\{a}. Apply the Lemma to obtain
{5* }b’w‘l such that §% e §%, and such that they satisfy (i) and (ii) on A,.

For every be A,, select a certain s* € $* and denote s* = —s®. We wish
to show that for every such b there exists a constant 4, >0 such that §% =2, s%
and §% = -1, s, together with {gbf}bml , satisfy (i) and (i) over all A,.

Consider any distinct b,c € A;. We argue that the following system (in 4,
and A,) has a unique solution:

A, ™+ A5 =5k ; Ay A, >0.

Indeed, lemma 9 guarantees that a unique solution exists. Yet the
coefficient A, defined by it may depend on ¢, and vice versa — 4. may depend

on k. (Note, however, that these coefficients do not depend on the order of b
and ¢, due to property (i) and to the choice of {.s“b.sb“}beA .) That is, we have

found, for any b,c € A, unique coefficients 4,(c)>0 and A.(b) >0 such that
A,(0)s™ + A_(b)s® =§*

and obviously also
A(P)s+ Ay (c)s™ = 5.

Our next step is to show that the coefficients above depend only on their
subscript. That is, we would like to show that, for every distinct b,c,d € 4,
A, (c)=2A,(d). Let there be given such b,¢,d € A|. Consider the following three
equations:

A, (c)s% + A (b)s™ = §h



A(d)s + A (c)s™ =5

Ay (B)s™ + A, (d)s®t =§%.

Summing them up, we obtain

[1,(c) = Ap(d)]s™ +[A(d) = A (BY]s™ +[A,4(B) - Au(0)]s™ =

s 45945 =0.
We claim that the vectors s*, s and s* are linearly independent.
Indeed, assume they were not. Then s can be written as a nonnegative linear

combination of {s”” ,sb",s“,sm} (where at most one of the first two and one of the

last two vectors have positive coefficients). In this case, 2 -preferences among
{a,b,c} dictate 2 -preference between {a,d}, and at least one of the 24
permutations of {a,b,c,d} is ruled out for all x € R”, in contradiction to A5.

We therefore conclude that s*, s and s are linearly independent.
Hence their coefficients above have to vanish, and, in particular, A,(c)=4,(d).
Denote this value by 1, and define §* =41,s5%, and s =2, 5% =—4, 5% for

every be A, Since A, >0, §* €S and §* e $*. By definition, {5""’,5”"}
1 b bea,

satisfy property (i). Finally, property (ii) follows from our choice of 4, =4,(c).
This concludes the proof of the Lemma. <>

We now turn to the general case:

Lemma 11: Assume that axiom A5 holds. Then, for every distinct a,b € A, there

exists §% e $% such that:

(1) §% = _gba for every distinct a,be A;

and
(ii) §% 4§ = 5% for every distinct a,b,c € A,.

Proof: The proof is by Zorn's lemma, repeating the argument of Lemma 10.
Define a set



b AgAp;SabGSabvavbeA
Y= (A, 5" )
{ }a,bEA {s"b} e satisfy (i),(ii)

Next define a partial order on it, =2 ¥ x¥, as follows: given

(A"{Slab }a.bEAl ) ’ (Az’{Szab}a.b,s/a1 ) e¥, (Al’{slab}a.be,tl ) 2 (AZ’{S?-ab}a,beAz) if (a)

A, C A and (b) 5,% = 5% for all a,b € A,.

Given a 2-chain {[Ay,{s,,""} ber )} in ¥, consider the ordered pair
T ) yer

(A*,{s*“b }“‘bm.) defined by

A‘ = UyeI’ AT

and

5,7 = s},“” for some y eI suchthat a,be A,.

To verify that (A.,{s,,“”} )e ¥, note that s € §% for every a,beA,,

abed
and (i) and (ii) hold since every pair or triple of elements of A, also belong to A,

for some y e I'. Hence every =-chain in ‘¥ has an upper bound in it.

Furthermore, an element (A,{s“b} bm) e ¥ is >-maximal only if A= AP: if
there exists a € A, \ A, one may define {.s“b}beA as in Lemma 10, and find a =-

larger element in ¥ for the set of acts Auw{a}. However, an element of ¥

corresponding to the set A, defines the required {5‘“’} pen <

We finally formulate the main result as follows:

Lemma 12: Assume that axiom A5 holds. Then there are vectors {s"} A such

(I'Ep

that, for every a,be A, and every x e R",

az_b iff s ox2stx

—x
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Proof: Choose an act ae A, and set s* to be an arbitrary vector, say, zero. For
any other act be A,, define s* =§* where {Eb"} are defined by Lemma 11.
Consider any two acts b,c € A, and note that

s7oxz2stx = $P x> 59 x o (Eb“—im)-xZ().

In view of (i) and (it) of Lernma 11, this is equivalent to §%.x>0. Lemma
11 also states that §* e §%; using Lemma 6, this implies that xe X* and b2, c.
Conversely, b2, ¢ implies s¥-x20 for all s*eS$™, and eventually also

b
s7ox2s5 x. <>

To conclude the proof of (ii), we note that, by similar arguments to those
employed in the proof of Lemma 10, the vectors {E“b,§“c,§“d} defined by Lemma

11, are linearly independent for any distinct a,b,c,d € A,
Part 2: (ii) implies (i

It is straightforward to verify thatif {>.} .. are representable by {s° }aeA
as in (**), they have to satisfy axioms Al-A4. We will therefore only prove that
this representation — coupled with the linear independence condition ~ imply

axiom Ab.
a : .
Assume, then, that {2,} . and {s }aeAp are given, that for every distinct

a,b,c.d e A,, the vectors (s“ —sb), (s" - sc) and (s“ —sd) are linearly independent

but that A5 fails to hold. Specifically, this means that there are four distinct acts
a,b,c.d € A, such that for no xe R” is it the case that a>, >, c>, d. In other

words, {s" }aeA are such that the following linear system has no solution:
F

(S“—sb) x=1
(sb—sf)-le
(s“—sd)-le

This implies that these vectors are linearly dependent. That is, there are
coefficients ¢, 3, and y (not all of which are zero), such that
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a(s" —sb)+ﬁ(sb —sc)+ y(sc —sd)=0.
Notice that

and

Re-arranging the terms, we get
(o -—ﬁ)(s“ - sb)+(ﬁ - y)(s" —s“)+ y(s" —sd) =0.

By linear independence, it must be the case that a—f=f§-7y=y =0, namely,
that a=f8=y=0, a contradiction. Hence A5 cannot fail to hold if (s“ —sb),

s7—5°) and (s® —59) are linearly independent. <>
(57— 57) and (s =s7) y indep

Part 3: Uniqueness

Suppose that |AP|2 4 and that {s"} and {f“ }aeA both satisfy (**), and

(JGP

we wish to show that there are a scalar @ >0 and a vector 8 € R” such that for all
acA,, " =oas"+p.

If s°=s"forall a,be A,, then we also get s* =5 forall g,be A,. In this
case, setting =0 and B=3§"-s" for some (therefore, all) ae A, will do.
Assume, then, that for some a,be 4, s* # 5%, hence also §° # §°. Since, using the
notations and the results in Part 1, (s“ —sb),(f" —§b)e 5% and $“ #{0}, there
exists a unique « >0 such that (3" —Eb) = a(s“ —sb). Define ff=5" —as®.

We now wish to show that for every ce A,, 5 =as+[. Let there be
given ce A,. If 5 =5°, then also §° =5, In this case, s=§"=as"+8=as"+J.
bPand ¥ =§"=as"+B=as"+B. We
therefore assume that s° #s” and s° #s”. In this case, there are unique ¥.6>0
such that

Similarly, if s° =s”, then also §°=3
y

(57)= )

and
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(2 -57)=3(s" )
Summing up these two with (§* - §*} = a(s* —s"), we get
=) 7[5 =) (68570
Setting (s” —s7) = (s” — )+ (s” - 5°) and rearranging terms, we get
(a-8)(s* —s")+ (8- 7)s*-s°)=0.

Since (s“ - s") and (s“ - sc) are linearly independent (when there are at least four
acts), we conclude that a =y =45. Substituting a =7y into (&‘ —-E") = y(s“ —s")

we get §° = a(sc ~s")+§" =as" +f.<>
This completes the proof of the theorem.

4, Remarks
The Role of Axiom A5

As mentioned above, axiom A5 is not necessary for the numerical
representation (**). Indeed, when IAP|S 3, this representation was obtained

without using it. While it is obviously necessary for the linear independence
condition in (ii), one may wonder, whether axioms Al-A4 are sufficient for (**)
to hold. We answer this question in the negative by two examples.

Example 1:

Let A, = {a,b,c,d} and n=3. Using the notation developed in the proof,

we define {2,} .. by the sets {S"b} .., » Fepresentatives of which are:

ab
A

11
I
I

(-1,1,0) ; s =(0,~1,1); s“ = (1,0, 1);
s =(2,-3,1); s =(1,2,-3); s =(3,-1,-2).
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(As in Section 3, we set s*" = -5 for u,ve A,.)
We first verify that {>,} . satisfy A1-A4. Axioms A2-A4 hold whenever

the relations are defined by some sets {S‘“’} ., - Furthermore, completeness is
uy »

also satisfied whenever §™ =-§". We should therefore only prove that >, is
transitive for all x € ®*. However, in view of our proof, it suffices to find, for

each triple T ={u,v,w} C A,, coefficients A,*,A;"™,A;™ >0 such that
APV S AT S A A S =0,

We have four triples to consider. Denote T_, =AP\{u} for ueA,.
Beginning with 7_, we note that s +5“4+5% =0, hence
/IT_R”‘ = Ar_a“’ = AT_a‘”’ =1 would do. Next consider T_,. Setting Ay “ =2 and
Ar “=A; “ =1 we obtain the desired equality. Symmetrically, we may choose
Ar “=2and A; ®=A; " =1for T_, and for the last triple, T_;, A; “ =2 and
Ap H=hp =1

Hence, {2,} _. satisfy all of A1-A4. Yet we argue that they cannot be

represented as in (**). Indeed, assume such a representation, with vectors
{8.},04 did exist. Define §* =s*-s". We know that for every u,ve A, there

A

exists a coefficient A" >0 such that §* =4"5". W.lo.g. we may assume
A% =1. Since s and s are linearly independent, we also get A/ = 4% =1,

Considering the equation A% s + 15" =5, we notice it has a unique
solution with A% =2. (Where uniqueness follows from linear independence of
s* and s.) Hence we have §* =(-2,2,0). By a similar token, the equation
Adagda 4 39 5% = % also has a unique solution in which A* =1. Thus we also
have §* =(~1,1,0), a contradiction.

Example 2:

Thus we conclude that in the absence of axiom A5, we cannot simply
extend the representation given by {f“b} poq OnASEt Atoaset AU {u}. Indeed,

if we managed to perform this feat the reader would probably become very
suspicious: the technique used in the finite and the transfinite induction steps
were basically identical. Furthermore, we ended up with a numerical
representation of orders on potentially very large sets. Thus, if the induction step
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may be performed without resorting to A5, one can get such numerical
representations without any continuity or separability axiom, which simply does
not seem correct.

Indeed, this intuition is reflected in the following example. Let A, =[0, 1]
and let 2, be the lexicographic order on it. For any given n21, define {2,} _. as

follows:
if x>0, a> b iff  a>, b;
i=1
if Y x=0, a=b forall a,be A,;
i=1
and
if Y x,<0, b>.a iff  a>b.
i=1

Thus, for every xeR", >_is one of (i) 2, ; (ii) 2,7 ; or (iii) the trivial
relation (according to which any two acts are equivalent). Hence 2, satisfies Al.
It can also be verified that A2-A4 are satisfied by {>,} .. However, one would

not expect to obtain a representation as in (**), since it would imply a numerical
representation of >, as well.

We therefore conclude that A5, which is also used in our proof for the
finite case, implicitly bounds the cardinality of the set of acts A,. Specifically,

|AP| <X since there cannot be more than a continuum of independent vectors in
R

Finally, we note that if the set of acts contains at least four elements, A5
also restricts the size of memory n: for n<3 and |Ap[ >4 A5 cannot hold.

Separable Similarity

Our result derives a similarity function over problem-act pairs. While
there are numerous examples in which such pairs are the "atoms" of similarity
judgments, there are also examples in which one may assume that these
judgments are separable; that is, that problem similarity and act similarity are



separately assessed, and then aggregated to form a problem-act similarity
function. For instance, one such aggregation may be multiplicative, namely

s((p,a)(q.6)) = sp(p,q)s,(a,b).

Given an essentially-unique problem-act similarity function, one may
formulate additional axioms on it, which would allow such a decomposition.
While we do not follow this track in this paper, we note that classical results on
additive and multiplicative separability may be employed here as well.
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